Geometria descrittiva

branca della geometria

La geometria descrittiva è la scienza che permette, attraverso determinate costruzioni geometriche, di definire, con metodi grafici, l'esatezza della forma di un oggetto bidimensionale e tridimensionale. La rappresentazione può essere finalizzata a visualizzare oggetti già esistenti, come nel rilievo (per lo più architettonico), oggetti mentalmente concepiti, come nella progettazione di manufatti tridimensionali.[1]

Casid'intersezione tra superfici di rotazione.
Casid'intersezione tra superfici di rotazione.

I metodi di rappresentazione (di prospettiva, di assonometria e delle proiezioni ortogonali) della geometria descrittiva si basano principalmente su due operazioni fondamentali, dette operazioni di proiezione e sezione.[2] Gli assiomi della geometria descrittiva elementare sono sostanzialmente i postulati di Euclide, con l'aggiunta della nozione di ente improprio (punto, retta e piano), secondo una costruzione analoga a quella della geometria proiettiva.

 
Gaspard Monge

Fin dall'antica civiltà egizia è stato dimostrato, attraverso il ritrovamento di disegni che illustravano la copertura ellittica di tombe, un corretto utilizzo delle proiezioni ortogonali[3], anche se non correlate tra loro, come sarà solo successivamente grazie a Gaspard Monge. Tra il I secolo a.C. e il I secolo d.C. Vitruvio, nei suoi trattati intitolati De architectura, utilizzò come elementi di rappresentazione degli edifici le piante ed i prospetti da lui chiamati icnografie e ortografie.

Nel XV secolo, nell'opera di Jacopo Barozzi da Vignola I cinque ordini di architettura, viene adoperato quello che diverrà noto come metodo di Monge. Nello stesso periodo, Alberto Dürer definì alcuni procedimenti grafici riguardanti le coniche, come sezioni piane di un cono quadrico, e lo studio della prospettiva.

Nel 1600 gli studiosi Girard Desargues e Guarino Guarini hanno posto i fondamenti per la nascita della disciplina della geometria descrittiva, ma solo nel 1799 viene pubblicato il libro Geometrie descriptive in cui vengono poste le regole fondamentali, finalizzate a rappresentare su uno stesso piano (detto piano di proiezione) gli oggetti in tridimensione.

Attualmente la geometria descrittiva comprende come parte integrante la geometria proiettiva i cui studi più significativi e conclusivi si devono a Jean Victor Poncelet, discepolo di Monge.

Concetti

modifica
 
omologia
  Lo stesso argomento in dettaglio: Glossario di geometria descrittiva.

Alcuni concetti fondamentali della geometria descrittiva sono:

Metodi di rappresentazione

modifica
  Lo stesso argomento in dettaglio: Metodi di rappresentazione.

Essi si classificano, in generale, secondo l'entità dello stabilito centro di proiezione. Quando esso è un punto proprio si parla di "proiezioni centrali", altrimenti di "proiezioni parallele", cioè quando tale centro di proiezione è punto improprio, posto all'infinito.

 
elementi fondamentali della prospettiva
 
fotorestituzione 3D

Problemi e costruzioni

modifica
 
raccordo tangenziale tra superfici toriche

Alcuni problemi di cui si occupa la geometria descrittiva sono:

Curve geometriche

modifica
 
Elica conica circolare
  • Le coniche: ottenute come sezioni piane di un cono quadrico (punto, retta, circonferenza, ellisse, parabola ed iperbole).
  • Le quartiche: ottenute, in generale, come in intersezione di due superficie quadriche che non hanno nessuna sezione piana in comune.
  • Le curve cicloidiche: curve ottenute come conseguenza del movimento planare e rigido di una conica rispetto ad un'altra conica ad essa complanare.
  • Le eliche: ottenute dal movimento transrotazionale, tridimensionale e rigido di una conica rispetto ad un'altra conica ad essa complanare.

Superfici geometriche

modifica
 

Le principali categorie di superfici trattate dalla geometria descrittiva sono così classificate:

  • Le superfici rigate: in questa categoria vengono trattate le superfici generate dal movimento rigido di una retta lungo una o più direttrici, come gli elicoidi rigati, i conoidi rigati e le superfici coniche ed i piani (come casi particolari di rigate).
  • Le superfici toriche: questa categoria include tutti i tipi di tori che sono generati dal movimento rotatorio affine o omotetico di una conica non degenere lungo una direttrice conica, anch'essa non degenere. La condizione è che tali coniche, direttrice e generatrice, siano ortogonali tra loro.
  • I paraboloidi.

Applicazioni

modifica
 

La geometria descrittiva viene applicata principalmente nei campi che riguardano la costruzione di manufatti architettonici (e industriali). In particolare viene usata per avere proporzioni dimensionali e percettive di una data e possibile idea progettuale. L'applicazione informatica dei concetti della geometria descrittiva permette oggigiorno di poter creare un'architettura ad alta complessità tridimensionale, ma soprattutto di poter controllare in modo inequivocabile ogni sua forma e dimensione.

Campi d'applicazione

 
prospettiva a quadro verticale di una pedana sormontata da una volta a crociera
  1. ^ (ES) Gordon V. O., Sementsov e Ogievskii M. A., Curso de Geometria Descriptiva, Russia, Editorial Mir Moscu, 1973.
  2. ^ Mandarino D., Desenho projetivo e geometria descritiva, Sao Paulo, Ed Plêiade, 1996.
  3. ^ Si veda ad es

Bibliografia

modifica
  • Antonella Gesuele, Alessandra Pagliano e Valentina Verza, La geometria animata. Lezioni multimediali di Geometria Descrittiva, Veneza, Editrice Cafoscarina, 2007, ISBN 978-88-7543-170-9.
  • Lamberto Nasini, Lezioni ed esercizi di fondamenti e applicazioni di geometria descrittiva, Roma, Editrice Kappa, 1996.
  • Hasan Isawi e Lamberto Nasini, Vedere con la mente. Una geometria per comprendere lo spazio senza percepirlo visivamente, Editrice Officina, 2006.
  • Barbara Aterini, Introduzione ai metodi di rappresentazione della geometria descrittiva, Firenze, Alinea, 1997.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica


Controllo di autoritàThesaurus BNCF 13909 · LCCN (ENsh85054144 · GND (DE4128330-2 · BNF (FRcb11931532q (data) · J9U (ENHE987007565329105171
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy