LeetCode in Kotlin

372. Super Pow

Medium

Your task is to calculate ab mod 1337 where a is a positive integer and b is an extremely large positive integer given in the form of an array.

Example 1:

Input: a = 2, b = [3]

Output: 8

Example 2:

Input: a = 2, b = [1,0]

Output: 1024

Example 3:

Input: a = 1, b = [4,3,3,8,5,2]

Output: 1

Constraints:

Solution

@Suppress("NAME_SHADOWING")
class Solution {
    fun superPow(a: Int, b: IntArray): Int {
        val phi = phi(MOD)
        val arrMod = arrMod(b, phi)
        return if (isGreaterOrEqual(b, phi)) {
            // Cycle has started
            // cycle starts at phi with length phi
            exp(a % MOD, phi + arrMod)
        } else {
            exp(a % MOD, arrMod)
        }
    }

    private fun phi(n: Int): Int {
        var n = n
        var result = n.toDouble()
        var p = 2
        while (p * p <= n) {
            if (n % p > 0) {
                p++
                continue
            }
            while (n % p == 0) {
                n /= p
            }
            result *= 1.0 - 1.0 / p
            p++
        }
        if (n > 1) {
            // if starting n was also prime (so it was greater than sqrt(n))
            result *= 1.0 - 1.0 / n
        }
        return result.toInt()
    }

    // Returns true if number in array is greater than integer named phi
    private fun isGreaterOrEqual(b: IntArray, phi: Int): Boolean {
        var cur = 0
        for (j in b) {
            cur = cur * 10 + j
            if (cur >= phi) {
                return true
            }
        }
        return false
    }

    // Returns number in array mod phi
    private fun arrMod(b: IntArray, phi: Int): Int {
        var res = 0
        for (j in b) {
            res = (res * 10 + j) % phi
        }
        return res
    }

    // Binary exponentiation
    private fun exp(a: Int, b: Int): Int {
        var a = a
        var b = b
        var y = 1
        while (b > 0) {
            if (b % 2 == 1) {
                y = y * a % MOD
            }
            a = a * a % MOD
            b /= 2
        }
        return y
    }

    companion object {
        private const val MOD = 1337
    }
}
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy