LeetCode in Kotlin

1856. Maximum Subarray Min-Product

Medium

The min-product of an array is equal to the minimum value in the array multiplied by the array’s sum.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [1,2,3,2]

Output: 14

Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2). 2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]

Output: 18

Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3). 3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]

Output: 60

Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4). 4 * (5+6+4) = 4 * 15 = 60.

Constraints:

Solution

class Solution {
    fun maxSumMinProduct(nums: IntArray): Int {
        val n = nums.size
        val mod = (1e9 + 7).toInt()
        if (n == 1) {
            return (nums[0].toLong() * nums[0].toLong() % mod).toInt()
        }
        val left = IntArray(n)
        left[0] = -1
        for (i in 1 until n) {
            var p = i - 1
            while (p >= 0 && nums[p] >= nums[i]) {
                p = left[p]
            }
            left[i] = p
        }
        val right = IntArray(n)
        right[n - 1] = n
        for (i in n - 2 downTo 0) {
            var p = i + 1
            while (p < n && nums[p] >= nums[i]) {
                p = right[p]
            }
            right[i] = p
        }
        var res = 0L
        val preSum = LongArray(n)
        preSum[0] = nums[0].toLong()
        for (i in 1 until n) {
            preSum[i] = preSum[i - 1] + nums[i]
        }
        for (i in 0 until n) {
            val sum = if (left[i] == -1) preSum[right[i] - 1] else preSum[right[i] - 1] - preSum[left[i]]
            val cur = nums[i] * sum
            res = Math.max(cur, res)
        }
        return (res % mod).toInt()
    }
}
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy