Skip to main content

Remote sensing environmental indicators for monitoring spatial and temporal dynamics of weather and vegetation conditions: applications for Brazilian biomes

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm and the radiation use efficiency (RUE) model were coupled to test large-scale remote sensing environmental indicators in Brazilian biomes. MODIS MOD13Q1 reflectance product and gridded weather data for the year 2016 were used to demonstrate the suitability of the algorithm to monitor the dynamics of environmental remote sensing indicators along a year in the Brazilian biomes, Amazon, Caatinga, Cerrado, Pantanal, Atlantic Forest, and Pampa. Significant spatial and temporal variations in precipitation (P), actual evapotranspiration (ET), and biomass production (BIO) yielded differences on water balance (WB = P−ET) and water productivity (WP = ET/BIO). The highest WB and WP differences were detected in the wettest biomes, Amazon, Atlantic Forest, and Pampa, when compared with the driest biome, Caatinga. Rainfall distribution along the year affected the magnitude of the evaporative fraction (ETf), i.e., the ET to reference evapotranspiration (ET0) ratio. However, there was a gap between ETf and WB, which may be related to the time needed for recovering good soil moisture conditions after rainfalls. For some biomes, BIO related most to the levels of absorbed photosynthetically active radiation (Amazon and Atlantic Forest), while for others, BIO followed most the soil moisture levels, depicted by ETf (Caatinga, Cerrado, Pantanal, and Pampa). The large-scale modeling showed suitability for monitoring the water and vegetation conditions, making way to detect anomalies for specific periods along the year by using historical images and weather data, with strong potential to support public policies for management and conservation of natural resources and with possibilities for replication of the methods in other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Raw weather data were from the Brazilian National Meteorological Institution (INMET ˗ https://www.gov.br/agricultura/pt-br/assuntos/inmet), shape files used are available by the Statistical and Geographic Brazilian Institute (IBGE ˗ www.ibge.gov.br), and the MODIS products were downloaded from the EARTHDATA AppEEARS’s site (https://lpdaacsvc.cr.usgs.gov/appeears/). Derived data supporting the findings of this study are available from the corresponding author on request.

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration, Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56.

    Google Scholar 

  • Almagro, A., Oliveira, P. T. S., & Nearing, M. A. (2017). Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports, 7, 8130.

    Article  Google Scholar 

  • Arantes, A. E., Ferreira, L. G., & Coe, M. T. (2016). The seasonal carbon and water balances of the Cerrado environment of Brazil: Past, present, and future influences of land cover and land use. ISPRS Journal Photogrammetry and Remote Sensing, 117, 66–78.

    Article  Google Scholar 

  • Araujo, L. M., de Teixeira, A. H. C., & Bassoi, L. H. (2019). Evapotranspiration and biomass modelling in the Pontal Sul Irrigation Scheme. International Journal of Remote Sensing, 41, 2326–2338.

    Article  Google Scholar 

  • Assine, M. L., Merino, E. R., do Nascimento Pupim, F., de Azevedo Macedo, H., & dos Santos, M. G. M. (2015). The Quaternary alluvial systems tract of the Pantanal basin, Brazil. Brazilian Journal of Geology, 45, 475–489.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M., & Ali, S. (2003). A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems & Environment, 94, 321–340.

    Article  Google Scholar 

  • Bhattarai, N., Wagle, P., Gowda, P. H., & Kakani, V. G. (2017). Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions. ISPRS Journal Photogrammetry and Remote Sensing, 113, 128–141.

    Article  Google Scholar 

  • Cabral, O. M. R., Rocha, H. R., Gash, J. H., Freitas, H. C., & Ligo, M. A. V. (2015). Water and energy fluxes from a woodland savanna (Cerrado) in southeast Brazil. Journal of Hydrology, 4, 22–40.

    Google Scholar 

  • Casagrande, E., Recanati, F., Rulli, M. C., Bevacqua, D., & Meli, P. (2021). Water balance partitioning for ecosystem service assessment. A case study in the Amazon. Ecological Indicators, 121, 107155.

    Article  Google Scholar 

  • Ceschia, E., Beziat, P., Dejoux, J. F., Aubinet, M., Bernhofer, C., Bodson, B., Buchmann, N., Carrara, A., Cellier, P., Di Tommasi, P., Elbers, J. A., Eugster, W., Grünwald, T., Jacobs, C. M. J., Jans, W. W. P., Jones, M., Kutsch, W., Lanigan, G., Magliulo, E., et al. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139, 363–383.

    Article  Google Scholar 

  • Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C., Dejoux, J.-F., Huc, M., Keravec, P., Béziat, P., Fieuzal, R., Ceschia, E., & Dedieu, G. (2012). Maize and sunflower biomass estimation in southwest France using spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 124, 884–857.

    Article  Google Scholar 

  • Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106, 285–304.

    Article  Google Scholar 

  • Consoli, S., Licciardello, F., Vanella, D., Pasotti, L., Villani, G., & Tomei, F. (2016). Testing the water balance model CRITERIA using TDR measurements, micrometeorological data, and satellite-based information. Agricultural Water Management, 170, 68–80.

    Article  Google Scholar 

  • Consoli, S., & Vanella, D. (2014). Comparisons of satellite-based models for estimating evapotranspiration fluxes. Journal of Hydrology, 513, 475–489.

    Article  Google Scholar 

  • da Silva, P. F., de Lima, J. R. S., Antonino, A. C. D., Souza, R., de Souza, E. S., Silva, J. R. I., & Alves, E. M. (2017). Seasonal patterns of carbon dioxide, water, and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, 71–82.

    Article  Google Scholar 

  • de Almeida, S. L. H., Souza, J. B. C., Nogueira, S. F., Pezzopane, J. R. M., de Teixeira, A. H. C., Bosi, C., Adami, M., Zerbato, C., Bernardi, A. C. C., Bayma, G., & da Silva, R. P. (2023). Forage mass estimation in silvopastoral and full sun systems: Evaluation through proximal remote sensing applied to the SAFER model. Remote Sensing, 15, 815.

    Article  Google Scholar 

  • de Almeida, S. L. H., Souza, J. B. C., Pilon, C., de Teixeira, A. H. C., do Santos, A. F., Sysskind, M. N., Vellidis, G., & da Silva, R. P. (2023). Performance of the SAFER model in estimating peanut maturation. European Journal of Agronomy, 147, 126844–126810.

    Article  Google Scholar 

  • de Azevedo, G. B., Rezende, A. V., Azevedo, G. T. O. S., Miguel, E. P., Aquino, F. G., Bruzinga, J. S. C., de Oliveira, L. S. C., Pereira, R. S., & Teodoro, P. E. (2020). Woody biomass accumulation in a Cerrado of Central Brazil monitored for 27 years after the implementation of silvicultural systems. Forest Ecology and Management, 455, 117718.

    Article  Google Scholar 

  • de Bruin, H. A. R. (1987). From Penman to Makkink. In J. C. Hooghart (Ed.), Proceedings and information: TNO committee on hydrological sciences (Vol. 39, pp. 5–31). Gravenhage.

    Google Scholar 

  • de Silva, A. L. C., & De Costa, W. A. J. M. (2012). Growth and radiation use efficiency of sugarcane under irrigated and rain-fed conditions in Sri Lanka. Sugar Tech, 14, 247–254.

    Article  CAS  Google Scholar 

  • de Teixeira, A. H. C. (2010). Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco River basin (Brazil) using remote sensing and Penman-Monteith equation. Remote Sensing, 2, 1287–1319.

    Article  Google Scholar 

  • de Teixeira, A. H. C., Bastiaanssen, W. G. M., Ahmad, M. D., Moura, M. S. B., & Bos, M. G. (2008). Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. Journal of Hydrology, 362, 110–127.

    Article  Google Scholar 

  • de Teixeira, A. H. C., Leivas, J. F., Garçon, E. A. M., Takeura, C. M., Quartaroli, C. F., & Alvarez, I. A. (2020). Modeling large-scale biometeorological indices to monitor agricultural-growing areas: Applications in the fruit circuit region, São Paulo, Brazil. International Journal of Biometeorology, 1, 1–14.

    Google Scholar 

  • de Teixeira, A. H. C., Leivas, J. F., Pacheco, E. P., Garçon, E. A. M., & Takemura, C. M. (2021). Biophysical characterization and monitoring large-scale water and vegetation anomalies by remote sensing in the agricultural growing areas of the Brazilian semi-arid region. In P. C. Pandey & L. K. Sharma (Eds.), Advances in remote sensing for natural resource monitoring (1st ed., pp. 94–109). Wiley Online Library.

    Chapter  Google Scholar 

  • de Teixeira, A. H. C., Leivas, J. F., & Silva, G. B. (2017). Drought assessments by coupling Moderate Resolution Imaging Spetroradiometer images and weather data: A case study in the Minas Gerais state, Brazil. In G. P. Petropoulos & T. Islam (Eds.), Remote sensing of hydrometeorological hazards (1st ed., pp. 53–68). CRR Press.

    Chapter  Google Scholar 

  • de Teixeira, A. H. C., Leivas, J. F., Struiving, T. B., Reis, J. B. R. S., & Simão, F. R. (2021). Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images. Agricultural Water Management, 247, 1–9.

    Article  Google Scholar 

  • de Teixeira, A. H. C., Scherer-Warren, M., Hernandez, F. B. T., Andrade, R. G., & Leivas, J. F. (2013). Large-scale water productivity assessments with MODIS Images in a changing semi-arid environment: A Brazilian case study. Remote Sensing, 5, 5783–5804.

    Article  Google Scholar 

  • de Teixeira, A. H. C., Simão, F. R., Leivas, J. F., Gomide, R. L., Reis, J. B. R. S., Kobayashi, M. K., & Oliveira, F. G. (2018). Water productivity modeling by remote sensing in the semiarid region of Minas Gerais state, Brazil. In I. Yuksel & H. Arman (Eds.), Arid environments and sustainability (1st ed., pp. 94–108). InTech.

    Google Scholar 

  • de Teixeira, A. H. C., Takemura, C. M., Leivas, J. F., Pacheco, E. P., Silva, G. B., & Garçon, E. A. M. (2020). Water productivity monitoring by using geotechnological tools in contrasting social and environmental conditions: Applications in the São Francisco River basin, Brazil. Remote Sensing Applications: Society and Environment, 18, 1–9.

    Google Scholar 

  • Dehziari, S. A., & Sanaienejad, S. H. (2019). Energy balance quantification using Landsat 8 images and SAFER algorithm in Mashhad, Razavi Khorasan, Iran. Journal of Applied Remote Sensing, 13, 014528.

    Article  Google Scholar 

  • dos Santos, G. L., Pereira, M. G., Delgado, R. C., Magistrali, I. C., da Silva, C. G., de Oliveira, C. M. M., Laranjeira, J. P. B., & da Silva, T. P. (2021). Degradation of the Brazilian Cerrado: Interactions with human disturbance and environmental variables. Forest Ecology and Management, 482, 118875.

    Article  Google Scholar 

  • Fernandes, F. H. S., Sano, E. E., Ferreira, L. G., de Mello Baptista, G. M., de Castro Victoria, D., & Fassoni-Andrade, A. C. (2018). Degradation trends on MODIS derived estimates of productivity and water use efficiency: A case study for the cultivated pastures in the Brazilian Cerrado. Remote Sensing Applications: Society and Environment, 11, 30–40.

    Article  Google Scholar 

  • Franco, R. A., Hernandez, F. B., Teixeira, A. H. D. C., Leivas, J. F., Coaguila, D. N., & Neale, C. M. (2016). Water productivity mapping using Landsat 8 satellite together with weather stations. Proceedings of SPIE, 9998, 99981H-1–99981H-12.

    Google Scholar 

  • Giambelluca, T. W., Scholz, F. G., Bucci, S. J., Meinzer, F. C., Goldstein, G., Hoffmann, W. A., Franco, A. C., & Bucherta, M. P. (2009). Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agricultural and Forest Meteorology, 149, 1365–1376.

    Article  Google Scholar 

  • Jardim, A. M. D. R. F., Araújo Júnior, G. D. N., Silva, M. V. D., Santos, A. D., Silva, J. L. B. D., Pandorfi, H., Oliveira-Júnior, J. F. D., Teixeira, A. H. D. C., Teodoro, P. E., de Lima, J. L., & Silva Junior, C. A. D. (2022). Using remote sensing to quantify the joint effects of climate and land use/land cover changes on the Caatinga biome of Northeast Brazilian. Remote Sensing, 14, 1911.

    Article  Google Scholar 

  • Kunert, N., Aparecido, L. M. T., Wolff, S., Higuchi, N., Santos, J., Araujo, A. C., & Trumbore, S. (2017). A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology, 239, 47–57.

    Article  Google Scholar 

  • Laipelt, L., Ruhoff, A. L., Fleischmann, A. S., Kayser, R. H. B., de Kich, E. M., da Rocha, H. R., & Neale, C. M. U. (2020). Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a Forest–Savanna transition in Brazil. Remote Sensing, 12, 1108.

    Article  Google Scholar 

  • Lathuillière, M. J., Dalmagro, H. J., Black, T. A., de Arruda, P. H. Z., Hawthorne, I., Couto, E. G., & Johnson, M. S. (2018). Rain-fed and irrigated cropland-atmosphere water fluxes, and their implications for agricultural production in Southern Amazonia. Agricultural and Forest Meteorology, 256-257, 407–419.

    Article  Google Scholar 

  • Leivas, J. F., de Teixeira, A. H. C., Andrade, R. G., de Victoria, D. C., Silva, G. B., & Bolfe, E. L. (2015). Application of agrometeorological spectral model in rice area in southern Brazil. Proceedings of SPIE, 9637, 96372B-1–96372B-8.

    Google Scholar 

  • Lewinsohn, T. M., & Prado, P. I. (2005). How many species are there in Brazil? Conservation Biology, 19, 619–624.

    Article  Google Scholar 

  • Marengo, J. A., Cunha, A. P., Cuartas, L. A., Leal, K. R. D., Broedel, E., Seluchi, M. E., Michelin, C. M., Baião, C. F. P., Ângulo, E. C., Almeida, E. K., Kazmierczak, M. L., Mateus, N. P. A., Silva, R. C., & Bender, F. (2021). Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Frontiers in Water, 3, 639204.

    Article  Google Scholar 

  • Mariano, D. A., dos Santos, C. A. C., Wardlowa, B. D., Anderson, M. C., Schiltmeyera, A. V., Tadessea, T., & Svoboda, M. D. (2018). Use of remote sensing indicators to assess effects of drought and human induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment, 213, 129–143.

    Article  Google Scholar 

  • Marin, F. R., Angelocci, L. R., Nassif, D. S. P., Vianna, M. S., Pilau, F. G., da Silva, E. H. M., Sobenko, L. R., Gonçalves, A. O., Pereira, R. A. A., & Carvalho, K. S. (2019). Revisiting the crop coefficient–reference evapotranspiration procedure for improving irrigation management. Theoretical and Applied Climatology, 138, 1785–1793.

    Article  Google Scholar 

  • Marques, T. V., Mendes, K., Mutti, P., Medeiros, S., Silva, L., Perez-Marin, A. M., Campos, S., Lúcio, P. S., Lima, K., dos Reis, J., Ramos, T. M., da Silva, D. F., Oliveira, C. P., Costa, G. B., Antonino, A. C. D., Menezes, R. S. C., Santos e Silva, C. M., & Bergson, B. B. (2020). Environmental and biophysical controls of evapotranspiration from seasonally dry tropical forests (Caatinga) in the Brazilian semiarid. Agricultural and Forest Meteorology, 287, 107957.

    Article  Google Scholar 

  • Mata-González, R., Mclendon, T., & Matin, D. W. (2005). The inappropriate use of crop transpiration coefficients (Kc) to estimate evapotranspiration in arid ecosystems: A review. Arid Land Research and Management, 19, 285–295.

    Article  Google Scholar 

  • Mateos, L., González-Dugo, M. P., Testi, L., & Villalobos, F. J. (2013). Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agricultural Water Management, 125, 81–91.

    Article  Google Scholar 

  • Molden, D., Oweis, T., Steduto, P., Kijne, J. W., Hanjra, M. A., & Bindraban, P. S. (2007). Pathways for increasing agricultural water productivity. In R. Ross-Larson & C. Trott (Eds.), Water for food, water for life: A comprehensive assessment of water management in agriculture (pp. 279–310). International Water Management Institute.

    Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B, 281, 277–294.

    Google Scholar 

  • Moreira, A. A., Fassoni-Andrade, A. C., Ruhoff, A. L., & de Paiva, R. C. D. (2019). Water balance based on remote sensing data in Pantanal. Raega-O Espaço Geográfico em Análise, 46, 20–32.

    Article  Google Scholar 

  • Nagler, P. L., Glenn, E. P., Nguyen, U., Scott, R. L., & Doody, T. (2013). Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sensing, 5, 3849–3871.

    Article  Google Scholar 

  • Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). The fate of the Amazon Forests: Land-use and climate change risks and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States, 113, 10759–10768.

    Article  CAS  Google Scholar 

  • Nuñez, D. C., Hernandez, F. B. T., de Teixeira, A. H. C., Franco, R. A. M., & Leivas, J. F. L. (2017). Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 524–529.

    Article  Google Scholar 

  • Nyolei, D., Nsaali, M., Minaya, V., van Griensven, A., Mbilinyi, B., Diels, J., Hessels, T., & Kahimba, F. (2019). High resolution mapping of agricultural water productivity using SEBAL in a cultivated African catchment, Tanzania. Physics and Chemistry of the Earth, 112, 36–39.

    Article  Google Scholar 

  • Olivera-Guerra, L., Merlin, O., Er-Raki, S., Khabba, S., & Escorihuela, M. J. (2018). Estimating the water budget components of irrigated crops: combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agricultural Water Management, 208, 120–131.

    Article  Google Scholar 

  • Pereira, D. R., de Mello, C. R., da Silva, A. M., & Yanagi, S. N. M. (2010). Evapotranspiration and estimation of aerodynamic and stomatal conductance in a fragment of Atlantic Forest in Mantiqueira range region, MG. Cerne, 16, 32–40.

    Article  Google Scholar 

  • Pereira, M. P. S., Mendes, K. R., Justino, F. J., Couto, F., da Silva, A. S., da Silva, D. F., & Malhado, A. C. M. (2020). Brazilian dry forest (Caatinga) response to multiple ENSO: The role of Atlantic and Pacific Ocean. Science of the Total Environment, 705, 135717.

    Article  CAS  Google Scholar 

  • Pozer, C. G., & Nogueira, F. (2004). Flooded native pastures of the Northern region of the Pantanal of Mato Grosso: Biomass and primary productivity variations. Brazilian Journal of Biology, 64, 859–866.

    Article  CAS  Google Scholar 

  • Rampazo, N. A. M., Picoli, M. C. A., de Teixeira, A. H. C., & Cavaleiro, C. K. N. (2020). Water consumption modeling by coupling MODIS images and agrometeorological data for sugarcane crops. Sugar Tech, 23, 524–535.

    Article  Google Scholar 

  • Raupasch, M. R. (2001). Combination theory and equilibrium evaporation. Quarterly Journal of Royal Meteorology Society, 127, 1149–1181.

    Article  Google Scholar 

  • Rebello, V. P. A., Getirana, A., Filho, O. C. R., & Lakshmi, V. (2020). Spatiotemporal vegetation response to extreme droughts in eastern Brazil. Remote Sensing Applications: Society and Environment, 18, 100294.

    Article  Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.

    Article  Google Scholar 

  • Rodrigues, A. F., de Mello, C. R., Terra, M. C. N. S., & Beskow, S. (2021). Water balance of an Atlantic Forest remnant under a prolonged drought period. Ciência e Agrotecnologia, 45, e008421.

    Article  Google Scholar 

  • Roesch, L. F. W., Vieira, F. C. B., Pereira, V. A., Schünemann, A. L., Teixeira, I. F., Senna, A. J. T., & Stefenon, V. M. (2009). The Brazilian Pampa: A fragile biome. Diversity, 1, 182–198.

    Article  Google Scholar 

  • Rubert, G. C., Roberti, D. R., Pereira, L. S., Quadros, F. L. F., de Velho, H. F. C., & de Moraes, O. L. L. (2018). Evapotranspiration of the Brazilian Pampa biome: Seasonality and influential factors. Water, 10, 1864. https://doi.org/10.3390/w10121864

  • Safre, A. L. S., Nassar, A., Torres-Rua, A., Aboutalebi, M., Saad, J. C. C., Manzione, R. L., de Teixeira, A. H. C., Prueger, J. H., McKee, L. G., Alfieri, J. G., Hipps, L. E., Nieto, H., White, W. A., del Alsina, M. M., Sanchez, L., Kustas, W. P., Dokoozlian, N., Gao, F., & Anderson, M. C. (2022). Performance of Sentinel-2 SAFER ET model for daily and seasonal estimation of grapevine water consumption. Irrigation Science, 40, 635–654.

    Article  Google Scholar 

  • Sanches, L., da Silva, L. B., de Lima, S. D., Pereira, O. A., Carrilho, S. F. J., & Nogueira, J. S. (2014). Estoque de energia na biomassa e no ar do dossel de Vochysia divergens. Pohl. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 955–962.

    Article  Google Scholar 

  • Sanches, L., Vourlitis, G. L., Alves, M. C., Pinto-Júnior, O. B., & Nogueira, J. S. (2011). Seasonal patterns of evapotranspiration for a Vochysia divergens forest in the Brazilian Pantanal. Wetlands, 31, 1215–1225.

    Article  Google Scholar 

  • Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M. C., Bezerra, A. S., Couto, A. F., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232, 818–828.

    Article  Google Scholar 

  • Santos, J. E. O., Cunha, F. F., Filgueiras, R., Silva, G. H., de Teixeira, A. H. C., Silva, F. C. S., & Sediyama, G. C. (2020). Performance of SAFER evapotranspiration using missing meteorological data. Agricultural Water Management, 233, 1–8.

    Article  Google Scholar 

  • Santos, M. G., Oliveira, M. T., & Figueiredo, K. V. (2014). Caatinga, the Brazilian dry tropical forest: Can it tolerate climate changes? Theoretical and Experimental Plant Physiology, 26, 83–99.

    Article  Google Scholar 

  • Scottá, F. C., & da Fonseca, E. L. (2015). Multiscale trend analysis for Pampa grasslands using ground data and vegetation sensor imagery. Sensors, 15, 17666–17692.

    Article  Google Scholar 

  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161.

    Article  CAS  Google Scholar 

  • Silva, C. O. F., de Teixeira, A. H. C., & Manzione, R. L. (2019). An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental Modelling & Software, 120, 104497.

    Article  Google Scholar 

  • Souza, C. M. Z., Jr., Shimbo, J., Rosa, M. R., Parente, L. L., Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M. G., Ferreira, L., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., et al. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sensing, 12, 2735.

    Article  Google Scholar 

  • Sumner, D. M., & Jacobs, J. (2005). Utility of penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, 308, 81–104.

    Article  Google Scholar 

  • van Heerden, P. D. R., Donaldson, R. A., Watt, D. A., & Singels, A. (2010). Biomass accumulation in sugarcane: Unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany, 61, 2877–2887.

    Article  Google Scholar 

  • Vanella, D., Ramírez-Cuesta, J. M., Intrigliolo, D. S., & Consoli, S. (2019). Combining electrical resistivity tomography and satellite images for improving evapotranspiration estimates of citrus orchards. Remote Sensing, 11, 373.

    Article  Google Scholar 

  • Venancio, L. P., Mantovani, E. C., do Amaral, C. H., Neale, C. M. U., Filgueiras, R., Gonçalves, I. Z., & da Cunha, F. F. (2021). Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Scientia Agricola, 78, 1–12.

    Article  Google Scholar 

  • Vieira, I. C. G., de Almeida, A. S., Davidson, E. A., Stone, T. A., de Carvalho, C. J. R., & Guerreiro, J. B. (2003). Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sensing of Environment, 87, 470–481.

    Article  Google Scholar 

  • Villalobos, F. J., Testi, L., Orgaz, F., García-Tejera, O., Lopez-Bernal, A., González-Dugo, M. V., Ballester-Lurbe, C., Castel, J. R., Alarcón-Cabañero, J. J., & Nicolás-Nicolás, E. (2013). Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agricultural and Forest Meteorology, 171, 93–103.

    Article  Google Scholar 

  • von Randow, R. C. S., Tomasellac, J., von Randow, C., Araújo, A. C., Manzie, A. O., Hutjesf, R., & Kruijt, B. (2020). Evapotranspiration and gross primary productivity of secondary vegetation in Amazonia inferred by eddy covariance. Agricultural and Forest Meteorology, 294, 108141.

    Article  Google Scholar 

  • Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang, W., Liu, B., Jin, Z., & Simmons, C. T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 1–8.

    Google Scholar 

  • Zhang, F., Zhou, G., Wang, Y., Yan, F., & Christer Nilsson, C. (2012). Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrological Processes, 26, 379–386.

    Article  Google Scholar 

  • Zhang, X., & Zhang, B. (2019). The responses of natural vegetation dynamics to drought during the growing season across China. Journal of Hydrology, 574, 706–714.

    Article  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improving of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment, 95, 164–176.

    Article  Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940–943.

    Article  CAS  Google Scholar 

  • Zhou, L., & Zhou, G. (2009). Measurement and modeling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. Journal of Hydrology, 372, 41–47.

    Article  Google Scholar 

  • Zwart, S. J., Bastiaanssen, W. G. M., De Fraiture, C., & Molden, D. J. (2010). WATPRO: A remote sensing-based model for mapping water productivity of wheat. Agricultural Water Management, 97, 1628–1636.

    Article  Google Scholar 

Download references

Acknowledgements

To National Meteorological Institute (INMET) for weather data availability.

Author information

Authors and Affiliations

Authors

Contributions

Antônio Teixeira was responsible for running the models, conceptualizations, energy, water, and carbon balance assessments and writing the manuscript, designing of figures, result analyses, software resources, and supervision. Janice Leivas oversaw running of scripts, download and processing MODIS images MODIS images, and formatting of the weather data, methodology, data curation, and editing of the manuscript. Celina Takemura helped on downloading and processing MODIS images, weather data processing, and result analyses. Gustavo Bayma acted on downloading/processing MODIS images and weather data. Edlene Garçon acted on downloading/processing MODIS images and weather data. Inajá Sousa acted on downloading/processing MODIS images and weather data. Franzone Farias acted on processing MODIS images and weather data. Cesar Silva helped with statistical analyzes.

Corresponding author

Correspondence to Antônio Teixeira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, A., Leivas, J., Takemura, C. et al. Remote sensing environmental indicators for monitoring spatial and temporal dynamics of weather and vegetation conditions: applications for Brazilian biomes. Environ Monit Assess 195, 944 (2023). https://doi.org/10.1007/s10661-023-11560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11560-8

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy