Abstract
The SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm and the radiation use efficiency (RUE) model were coupled to test large-scale remote sensing environmental indicators in Brazilian biomes. MODIS MOD13Q1 reflectance product and gridded weather data for the year 2016 were used to demonstrate the suitability of the algorithm to monitor the dynamics of environmental remote sensing indicators along a year in the Brazilian biomes, Amazon, Caatinga, Cerrado, Pantanal, Atlantic Forest, and Pampa. Significant spatial and temporal variations in precipitation (P), actual evapotranspiration (ET), and biomass production (BIO) yielded differences on water balance (WB = P−ET) and water productivity (WP = ET/BIO). The highest WB and WP differences were detected in the wettest biomes, Amazon, Atlantic Forest, and Pampa, when compared with the driest biome, Caatinga. Rainfall distribution along the year affected the magnitude of the evaporative fraction (ETf), i.e., the ET to reference evapotranspiration (ET0) ratio. However, there was a gap between ETf and WB, which may be related to the time needed for recovering good soil moisture conditions after rainfalls. For some biomes, BIO related most to the levels of absorbed photosynthetically active radiation (Amazon and Atlantic Forest), while for others, BIO followed most the soil moisture levels, depicted by ETf (Caatinga, Cerrado, Pantanal, and Pampa). The large-scale modeling showed suitability for monitoring the water and vegetation conditions, making way to detect anomalies for specific periods along the year by using historical images and weather data, with strong potential to support public policies for management and conservation of natural resources and with possibilities for replication of the methods in other countries.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Raw weather data were from the Brazilian National Meteorological Institution (INMET ˗ https://www.gov.br/agricultura/pt-br/assuntos/inmet), shape files used are available by the Statistical and Geographic Brazilian Institute (IBGE ˗ www.ibge.gov.br), and the MODIS products were downloaded from the EARTHDATA AppEEARS’s site (https://lpdaacsvc.cr.usgs.gov/appeears/). Derived data supporting the findings of this study are available from the corresponding author on request.
References
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration, Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56.
Almagro, A., Oliveira, P. T. S., & Nearing, M. A. (2017). Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports, 7, 8130.
Arantes, A. E., Ferreira, L. G., & Coe, M. T. (2016). The seasonal carbon and water balances of the Cerrado environment of Brazil: Past, present, and future influences of land cover and land use. ISPRS Journal Photogrammetry and Remote Sensing, 117, 66–78.
Araujo, L. M., de Teixeira, A. H. C., & Bassoi, L. H. (2019). Evapotranspiration and biomass modelling in the Pontal Sul Irrigation Scheme. International Journal of Remote Sensing, 41, 2326–2338.
Assine, M. L., Merino, E. R., do Nascimento Pupim, F., de Azevedo Macedo, H., & dos Santos, M. G. M. (2015). The Quaternary alluvial systems tract of the Pantanal basin, Brazil. Brazilian Journal of Geology, 45, 475–489.
Bastiaanssen, W. G. M., & Ali, S. (2003). A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems & Environment, 94, 321–340.
Bhattarai, N., Wagle, P., Gowda, P. H., & Kakani, V. G. (2017). Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions. ISPRS Journal Photogrammetry and Remote Sensing, 113, 128–141.
Cabral, O. M. R., Rocha, H. R., Gash, J. H., Freitas, H. C., & Ligo, M. A. V. (2015). Water and energy fluxes from a woodland savanna (Cerrado) in southeast Brazil. Journal of Hydrology, 4, 22–40.
Casagrande, E., Recanati, F., Rulli, M. C., Bevacqua, D., & Meli, P. (2021). Water balance partitioning for ecosystem service assessment. A case study in the Amazon. Ecological Indicators, 121, 107155.
Ceschia, E., Beziat, P., Dejoux, J. F., Aubinet, M., Bernhofer, C., Bodson, B., Buchmann, N., Carrara, A., Cellier, P., Di Tommasi, P., Elbers, J. A., Eugster, W., Grünwald, T., Jacobs, C. M. J., Jans, W. W. P., Jones, M., Kutsch, W., Lanigan, G., Magliulo, E., et al. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139, 363–383.
Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C., Dejoux, J.-F., Huc, M., Keravec, P., Béziat, P., Fieuzal, R., Ceschia, E., & Dedieu, G. (2012). Maize and sunflower biomass estimation in southwest France using spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 124, 884–857.
Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106, 285–304.
Consoli, S., Licciardello, F., Vanella, D., Pasotti, L., Villani, G., & Tomei, F. (2016). Testing the water balance model CRITERIA using TDR measurements, micrometeorological data, and satellite-based information. Agricultural Water Management, 170, 68–80.
Consoli, S., & Vanella, D. (2014). Comparisons of satellite-based models for estimating evapotranspiration fluxes. Journal of Hydrology, 513, 475–489.
da Silva, P. F., de Lima, J. R. S., Antonino, A. C. D., Souza, R., de Souza, E. S., Silva, J. R. I., & Alves, E. M. (2017). Seasonal patterns of carbon dioxide, water, and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, 71–82.
de Almeida, S. L. H., Souza, J. B. C., Nogueira, S. F., Pezzopane, J. R. M., de Teixeira, A. H. C., Bosi, C., Adami, M., Zerbato, C., Bernardi, A. C. C., Bayma, G., & da Silva, R. P. (2023). Forage mass estimation in silvopastoral and full sun systems: Evaluation through proximal remote sensing applied to the SAFER model. Remote Sensing, 15, 815.
de Almeida, S. L. H., Souza, J. B. C., Pilon, C., de Teixeira, A. H. C., do Santos, A. F., Sysskind, M. N., Vellidis, G., & da Silva, R. P. (2023). Performance of the SAFER model in estimating peanut maturation. European Journal of Agronomy, 147, 126844–126810.
de Azevedo, G. B., Rezende, A. V., Azevedo, G. T. O. S., Miguel, E. P., Aquino, F. G., Bruzinga, J. S. C., de Oliveira, L. S. C., Pereira, R. S., & Teodoro, P. E. (2020). Woody biomass accumulation in a Cerrado of Central Brazil monitored for 27 years after the implementation of silvicultural systems. Forest Ecology and Management, 455, 117718.
de Bruin, H. A. R. (1987). From Penman to Makkink. In J. C. Hooghart (Ed.), Proceedings and information: TNO committee on hydrological sciences (Vol. 39, pp. 5–31). Gravenhage.
de Silva, A. L. C., & De Costa, W. A. J. M. (2012). Growth and radiation use efficiency of sugarcane under irrigated and rain-fed conditions in Sri Lanka. Sugar Tech, 14, 247–254.
de Teixeira, A. H. C. (2010). Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco River basin (Brazil) using remote sensing and Penman-Monteith equation. Remote Sensing, 2, 1287–1319.
de Teixeira, A. H. C., Bastiaanssen, W. G. M., Ahmad, M. D., Moura, M. S. B., & Bos, M. G. (2008). Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. Journal of Hydrology, 362, 110–127.
de Teixeira, A. H. C., Leivas, J. F., Garçon, E. A. M., Takeura, C. M., Quartaroli, C. F., & Alvarez, I. A. (2020). Modeling large-scale biometeorological indices to monitor agricultural-growing areas: Applications in the fruit circuit region, São Paulo, Brazil. International Journal of Biometeorology, 1, 1–14.
de Teixeira, A. H. C., Leivas, J. F., Pacheco, E. P., Garçon, E. A. M., & Takemura, C. M. (2021). Biophysical characterization and monitoring large-scale water and vegetation anomalies by remote sensing in the agricultural growing areas of the Brazilian semi-arid region. In P. C. Pandey & L. K. Sharma (Eds.), Advances in remote sensing for natural resource monitoring (1st ed., pp. 94–109). Wiley Online Library.
de Teixeira, A. H. C., Leivas, J. F., & Silva, G. B. (2017). Drought assessments by coupling Moderate Resolution Imaging Spetroradiometer images and weather data: A case study in the Minas Gerais state, Brazil. In G. P. Petropoulos & T. Islam (Eds.), Remote sensing of hydrometeorological hazards (1st ed., pp. 53–68). CRR Press.
de Teixeira, A. H. C., Leivas, J. F., Struiving, T. B., Reis, J. B. R. S., & Simão, F. R. (2021). Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images. Agricultural Water Management, 247, 1–9.
de Teixeira, A. H. C., Scherer-Warren, M., Hernandez, F. B. T., Andrade, R. G., & Leivas, J. F. (2013). Large-scale water productivity assessments with MODIS Images in a changing semi-arid environment: A Brazilian case study. Remote Sensing, 5, 5783–5804.
de Teixeira, A. H. C., Simão, F. R., Leivas, J. F., Gomide, R. L., Reis, J. B. R. S., Kobayashi, M. K., & Oliveira, F. G. (2018). Water productivity modeling by remote sensing in the semiarid region of Minas Gerais state, Brazil. In I. Yuksel & H. Arman (Eds.), Arid environments and sustainability (1st ed., pp. 94–108). InTech.
de Teixeira, A. H. C., Takemura, C. M., Leivas, J. F., Pacheco, E. P., Silva, G. B., & Garçon, E. A. M. (2020). Water productivity monitoring by using geotechnological tools in contrasting social and environmental conditions: Applications in the São Francisco River basin, Brazil. Remote Sensing Applications: Society and Environment, 18, 1–9.
Dehziari, S. A., & Sanaienejad, S. H. (2019). Energy balance quantification using Landsat 8 images and SAFER algorithm in Mashhad, Razavi Khorasan, Iran. Journal of Applied Remote Sensing, 13, 014528.
dos Santos, G. L., Pereira, M. G., Delgado, R. C., Magistrali, I. C., da Silva, C. G., de Oliveira, C. M. M., Laranjeira, J. P. B., & da Silva, T. P. (2021). Degradation of the Brazilian Cerrado: Interactions with human disturbance and environmental variables. Forest Ecology and Management, 482, 118875.
Fernandes, F. H. S., Sano, E. E., Ferreira, L. G., de Mello Baptista, G. M., de Castro Victoria, D., & Fassoni-Andrade, A. C. (2018). Degradation trends on MODIS derived estimates of productivity and water use efficiency: A case study for the cultivated pastures in the Brazilian Cerrado. Remote Sensing Applications: Society and Environment, 11, 30–40.
Franco, R. A., Hernandez, F. B., Teixeira, A. H. D. C., Leivas, J. F., Coaguila, D. N., & Neale, C. M. (2016). Water productivity mapping using Landsat 8 satellite together with weather stations. Proceedings of SPIE, 9998, 99981H-1–99981H-12.
Giambelluca, T. W., Scholz, F. G., Bucci, S. J., Meinzer, F. C., Goldstein, G., Hoffmann, W. A., Franco, A. C., & Bucherta, M. P. (2009). Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agricultural and Forest Meteorology, 149, 1365–1376.
Jardim, A. M. D. R. F., Araújo Júnior, G. D. N., Silva, M. V. D., Santos, A. D., Silva, J. L. B. D., Pandorfi, H., Oliveira-Júnior, J. F. D., Teixeira, A. H. D. C., Teodoro, P. E., de Lima, J. L., & Silva Junior, C. A. D. (2022). Using remote sensing to quantify the joint effects of climate and land use/land cover changes on the Caatinga biome of Northeast Brazilian. Remote Sensing, 14, 1911.
Kunert, N., Aparecido, L. M. T., Wolff, S., Higuchi, N., Santos, J., Araujo, A. C., & Trumbore, S. (2017). A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology, 239, 47–57.
Laipelt, L., Ruhoff, A. L., Fleischmann, A. S., Kayser, R. H. B., de Kich, E. M., da Rocha, H. R., & Neale, C. M. U. (2020). Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a Forest–Savanna transition in Brazil. Remote Sensing, 12, 1108.
Lathuillière, M. J., Dalmagro, H. J., Black, T. A., de Arruda, P. H. Z., Hawthorne, I., Couto, E. G., & Johnson, M. S. (2018). Rain-fed and irrigated cropland-atmosphere water fluxes, and their implications for agricultural production in Southern Amazonia. Agricultural and Forest Meteorology, 256-257, 407–419.
Leivas, J. F., de Teixeira, A. H. C., Andrade, R. G., de Victoria, D. C., Silva, G. B., & Bolfe, E. L. (2015). Application of agrometeorological spectral model in rice area in southern Brazil. Proceedings of SPIE, 9637, 96372B-1–96372B-8.
Lewinsohn, T. M., & Prado, P. I. (2005). How many species are there in Brazil? Conservation Biology, 19, 619–624.
Marengo, J. A., Cunha, A. P., Cuartas, L. A., Leal, K. R. D., Broedel, E., Seluchi, M. E., Michelin, C. M., Baião, C. F. P., Ângulo, E. C., Almeida, E. K., Kazmierczak, M. L., Mateus, N. P. A., Silva, R. C., & Bender, F. (2021). Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Frontiers in Water, 3, 639204.
Mariano, D. A., dos Santos, C. A. C., Wardlowa, B. D., Anderson, M. C., Schiltmeyera, A. V., Tadessea, T., & Svoboda, M. D. (2018). Use of remote sensing indicators to assess effects of drought and human induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment, 213, 129–143.
Marin, F. R., Angelocci, L. R., Nassif, D. S. P., Vianna, M. S., Pilau, F. G., da Silva, E. H. M., Sobenko, L. R., Gonçalves, A. O., Pereira, R. A. A., & Carvalho, K. S. (2019). Revisiting the crop coefficient–reference evapotranspiration procedure for improving irrigation management. Theoretical and Applied Climatology, 138, 1785–1793.
Marques, T. V., Mendes, K., Mutti, P., Medeiros, S., Silva, L., Perez-Marin, A. M., Campos, S., Lúcio, P. S., Lima, K., dos Reis, J., Ramos, T. M., da Silva, D. F., Oliveira, C. P., Costa, G. B., Antonino, A. C. D., Menezes, R. S. C., Santos e Silva, C. M., & Bergson, B. B. (2020). Environmental and biophysical controls of evapotranspiration from seasonally dry tropical forests (Caatinga) in the Brazilian semiarid. Agricultural and Forest Meteorology, 287, 107957.
Mata-González, R., Mclendon, T., & Matin, D. W. (2005). The inappropriate use of crop transpiration coefficients (Kc) to estimate evapotranspiration in arid ecosystems: A review. Arid Land Research and Management, 19, 285–295.
Mateos, L., González-Dugo, M. P., Testi, L., & Villalobos, F. J. (2013). Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agricultural Water Management, 125, 81–91.
Molden, D., Oweis, T., Steduto, P., Kijne, J. W., Hanjra, M. A., & Bindraban, P. S. (2007). Pathways for increasing agricultural water productivity. In R. Ross-Larson & C. Trott (Eds.), Water for food, water for life: A comprehensive assessment of water management in agriculture (pp. 279–310). International Water Management Institute.
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.
Monteith, J. L. (1977). Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B, 281, 277–294.
Moreira, A. A., Fassoni-Andrade, A. C., Ruhoff, A. L., & de Paiva, R. C. D. (2019). Water balance based on remote sensing data in Pantanal. Raega-O Espaço Geográfico em Análise, 46, 20–32.
Nagler, P. L., Glenn, E. P., Nguyen, U., Scott, R. L., & Doody, T. (2013). Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sensing, 5, 3849–3871.
Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). The fate of the Amazon Forests: Land-use and climate change risks and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States, 113, 10759–10768.
Nuñez, D. C., Hernandez, F. B. T., de Teixeira, A. H. C., Franco, R. A. M., & Leivas, J. F. L. (2017). Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 524–529.
Nyolei, D., Nsaali, M., Minaya, V., van Griensven, A., Mbilinyi, B., Diels, J., Hessels, T., & Kahimba, F. (2019). High resolution mapping of agricultural water productivity using SEBAL in a cultivated African catchment, Tanzania. Physics and Chemistry of the Earth, 112, 36–39.
Olivera-Guerra, L., Merlin, O., Er-Raki, S., Khabba, S., & Escorihuela, M. J. (2018). Estimating the water budget components of irrigated crops: combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agricultural Water Management, 208, 120–131.
Pereira, D. R., de Mello, C. R., da Silva, A. M., & Yanagi, S. N. M. (2010). Evapotranspiration and estimation of aerodynamic and stomatal conductance in a fragment of Atlantic Forest in Mantiqueira range region, MG. Cerne, 16, 32–40.
Pereira, M. P. S., Mendes, K. R., Justino, F. J., Couto, F., da Silva, A. S., da Silva, D. F., & Malhado, A. C. M. (2020). Brazilian dry forest (Caatinga) response to multiple ENSO: The role of Atlantic and Pacific Ocean. Science of the Total Environment, 705, 135717.
Pozer, C. G., & Nogueira, F. (2004). Flooded native pastures of the Northern region of the Pantanal of Mato Grosso: Biomass and primary productivity variations. Brazilian Journal of Biology, 64, 859–866.
Rampazo, N. A. M., Picoli, M. C. A., de Teixeira, A. H. C., & Cavaleiro, C. K. N. (2020). Water consumption modeling by coupling MODIS images and agrometeorological data for sugarcane crops. Sugar Tech, 23, 524–535.
Raupasch, M. R. (2001). Combination theory and equilibrium evaporation. Quarterly Journal of Royal Meteorology Society, 127, 1149–1181.
Rebello, V. P. A., Getirana, A., Filho, O. C. R., & Lakshmi, V. (2020). Spatiotemporal vegetation response to extreme droughts in eastern Brazil. Remote Sensing Applications: Society and Environment, 18, 100294.
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.
Rodrigues, A. F., de Mello, C. R., Terra, M. C. N. S., & Beskow, S. (2021). Water balance of an Atlantic Forest remnant under a prolonged drought period. Ciência e Agrotecnologia, 45, e008421.
Roesch, L. F. W., Vieira, F. C. B., Pereira, V. A., Schünemann, A. L., Teixeira, I. F., Senna, A. J. T., & Stefenon, V. M. (2009). The Brazilian Pampa: A fragile biome. Diversity, 1, 182–198.
Rubert, G. C., Roberti, D. R., Pereira, L. S., Quadros, F. L. F., de Velho, H. F. C., & de Moraes, O. L. L. (2018). Evapotranspiration of the Brazilian Pampa biome: Seasonality and influential factors. Water, 10, 1864. https://doi.org/10.3390/w10121864
Safre, A. L. S., Nassar, A., Torres-Rua, A., Aboutalebi, M., Saad, J. C. C., Manzione, R. L., de Teixeira, A. H. C., Prueger, J. H., McKee, L. G., Alfieri, J. G., Hipps, L. E., Nieto, H., White, W. A., del Alsina, M. M., Sanchez, L., Kustas, W. P., Dokoozlian, N., Gao, F., & Anderson, M. C. (2022). Performance of Sentinel-2 SAFER ET model for daily and seasonal estimation of grapevine water consumption. Irrigation Science, 40, 635–654.
Sanches, L., da Silva, L. B., de Lima, S. D., Pereira, O. A., Carrilho, S. F. J., & Nogueira, J. S. (2014). Estoque de energia na biomassa e no ar do dossel de Vochysia divergens. Pohl. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 955–962.
Sanches, L., Vourlitis, G. L., Alves, M. C., Pinto-Júnior, O. B., & Nogueira, J. S. (2011). Seasonal patterns of evapotranspiration for a Vochysia divergens forest in the Brazilian Pantanal. Wetlands, 31, 1215–1225.
Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M. C., Bezerra, A. S., Couto, A. F., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232, 818–828.
Santos, J. E. O., Cunha, F. F., Filgueiras, R., Silva, G. H., de Teixeira, A. H. C., Silva, F. C. S., & Sediyama, G. C. (2020). Performance of SAFER evapotranspiration using missing meteorological data. Agricultural Water Management, 233, 1–8.
Santos, M. G., Oliveira, M. T., & Figueiredo, K. V. (2014). Caatinga, the Brazilian dry tropical forest: Can it tolerate climate changes? Theoretical and Experimental Plant Physiology, 26, 83–99.
Scottá, F. C., & da Fonseca, E. L. (2015). Multiscale trend analysis for Pampa grasslands using ground data and vegetation sensor imagery. Sensors, 15, 17666–17692.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161.
Silva, C. O. F., de Teixeira, A. H. C., & Manzione, R. L. (2019). An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental Modelling & Software, 120, 104497.
Souza, C. M. Z., Jr., Shimbo, J., Rosa, M. R., Parente, L. L., Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M. G., Ferreira, L., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., et al. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sensing, 12, 2735.
Sumner, D. M., & Jacobs, J. (2005). Utility of penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, 308, 81–104.
van Heerden, P. D. R., Donaldson, R. A., Watt, D. A., & Singels, A. (2010). Biomass accumulation in sugarcane: Unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany, 61, 2877–2887.
Vanella, D., Ramírez-Cuesta, J. M., Intrigliolo, D. S., & Consoli, S. (2019). Combining electrical resistivity tomography and satellite images for improving evapotranspiration estimates of citrus orchards. Remote Sensing, 11, 373.
Venancio, L. P., Mantovani, E. C., do Amaral, C. H., Neale, C. M. U., Filgueiras, R., Gonçalves, I. Z., & da Cunha, F. F. (2021). Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Scientia Agricola, 78, 1–12.
Vieira, I. C. G., de Almeida, A. S., Davidson, E. A., Stone, T. A., de Carvalho, C. J. R., & Guerreiro, J. B. (2003). Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sensing of Environment, 87, 470–481.
Villalobos, F. J., Testi, L., Orgaz, F., García-Tejera, O., Lopez-Bernal, A., González-Dugo, M. V., Ballester-Lurbe, C., Castel, J. R., Alarcón-Cabañero, J. J., & Nicolás-Nicolás, E. (2013). Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agricultural and Forest Meteorology, 171, 93–103.
von Randow, R. C. S., Tomasellac, J., von Randow, C., Araújo, A. C., Manzie, A. O., Hutjesf, R., & Kruijt, B. (2020). Evapotranspiration and gross primary productivity of secondary vegetation in Amazonia inferred by eddy covariance. Agricultural and Forest Meteorology, 294, 108141.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang, W., Liu, B., Jin, Z., & Simmons, C. T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 1–8.
Zhang, F., Zhou, G., Wang, Y., Yan, F., & Christer Nilsson, C. (2012). Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrological Processes, 26, 379–386.
Zhang, X., & Zhang, B. (2019). The responses of natural vegetation dynamics to drought during the growing season across China. Journal of Hydrology, 574, 706–714.
Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improving of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment, 95, 164–176.
Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940–943.
Zhou, L., & Zhou, G. (2009). Measurement and modeling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. Journal of Hydrology, 372, 41–47.
Zwart, S. J., Bastiaanssen, W. G. M., De Fraiture, C., & Molden, D. J. (2010). WATPRO: A remote sensing-based model for mapping water productivity of wheat. Agricultural Water Management, 97, 1628–1636.
Acknowledgements
To National Meteorological Institute (INMET) for weather data availability.
Author information
Authors and Affiliations
Contributions
Antônio Teixeira was responsible for running the models, conceptualizations, energy, water, and carbon balance assessments and writing the manuscript, designing of figures, result analyses, software resources, and supervision. Janice Leivas oversaw running of scripts, download and processing MODIS images MODIS images, and formatting of the weather data, methodology, data curation, and editing of the manuscript. Celina Takemura helped on downloading and processing MODIS images, weather data processing, and result analyses. Gustavo Bayma acted on downloading/processing MODIS images and weather data. Edlene Garçon acted on downloading/processing MODIS images and weather data. Inajá Sousa acted on downloading/processing MODIS images and weather data. Franzone Farias acted on processing MODIS images and weather data. Cesar Silva helped with statistical analyzes.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Teixeira, A., Leivas, J., Takemura, C. et al. Remote sensing environmental indicators for monitoring spatial and temporal dynamics of weather and vegetation conditions: applications for Brazilian biomes. Environ Monit Assess 195, 944 (2023). https://doi.org/10.1007/s10661-023-11560-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-11560-8