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ABSTRACT: Mathemat ica l  model l ing  may serve as a rat ional  and powerful  tool in the m a n a g e m e n t  
of complex ecosystems. However,  ecosystem models  are drastic simplifications of the real world. As 
a rule they are based  on a ra ther  incomplete  and  scat tered knowledge  of the system in question. 
Furthermore, ecological systems and  in par t icular  mar ine  systems are character ised by a h igh  
degree of complexity, spatial  and  funct ional  heterogenei ty ,  nonlineari ty,  complex behavioura l  
features such as adptat ion and  self-organisation, and  a considerable  stochastic element .  Never the-  
less, if m a n a g e m e n t  is to be based  on predict ions from mathemat ica l  models  - and  it has  to be  based  
on some kind of "model"  in at least  a broad sense - we need  an est imate of predict ion accuracy in 
terms of the m a n a g e m e n t  var iables  and  constraints.  One possible  approach to model  uncer ta in ty  is 
a probabil is t ic  in terpreta t ion of model  predictions,  genera ted  by use of Monte-Car lo  techniques.  
Fuzzy data sets and  ranges  are used. The resul t ing model  response allows the der ivat ion of 
measures for model  credibility. Probabil i ty distr ibutions can be computed  for certain system states 
under  (un)certain input  conditions, represent ing  the effects of insufficient data  and  structural  
uncertainty on model -based  predictions. Such analysis  indicates  that  predict ion uncer ta in ty  
increases, not only with the uncer ta inty  in the data, but  also with increas ing "dis tance"  from the 
empirical  conditions, and  with time. Present  ecoystem models  can be a tool for qual i ta t ive 
discrimination be tween  different m a n a g e m e n t  al ternatives,  ra ther  than  a credible  means  for 
detai led quant i ta t ive predict ions of system response  to a wide range  of input  conditions. 

E C O S Y S T E M  M O D E L L I N G  IN A M A N A G E M E N T  F R A M E W O R K  

T h e r e  is g r o w i n g  a w a r e n e s s  t h a t  w e  n e e d  s o m e  k i n d  of e n v i r o n m e n t a l  m a n a g e m e n t  

a n d  q u a l i t y  con t ro l  in  o r d e r  to " b a l a n c e "  t h e  i m p a c t  of o u r  a c t i v i t i e s  o n  t h e  n a t u r a l  

e n v i r o n m e n t .  M a n ' s  d e s t r u c t i v e  c a p a c i t y  h a s  r e a c h e d  a l e v e l  w h e r e  l oca l  c a t a s t r o p h i e s  

a re  o n l y  t h e  m o s t  o b v i o u s  s i g n a l s  of a c o n t i n u o u s  p r o c e s s  of g e n e r a l  a n d  w o r l d  w i d e  

e n v i r o n m e n t a l  d e g r a d a t i o n .  T h i s  m i g h t  of c o u r s e  b e  u n d e r s t o o d  as  o n l y  t h e  s y m p t o m s  of 

m o r e  s u b s t a n t i a l  p r o b l e m s  in  o u r  g r o w t h - o r i e n t e d  w o r l d  (c.f. M e a d o w s  e t  al., 1972);  

h o w e v e r ,  t h e  s y m p t o m s  a re  i m m i n e n t  a n d  i m m e d i a t e  d e c i s i o n s  h a v e  to b e  m a d e .  

S i n c e  d e c i s i o n s  a re  b e i n g  m a d e ,  w e  m i g h t  a s k  h o w  th i s  is d o n e  a n d  o n  w h a t  

s c i e n t i f i c  bas i s .  D e c i s i o n s  a r e  m a d e  o n  t h e  b a s i s  of s o m e  i m p l i c i t  or  e x p l i c i t  m o d e l  

d e v e l o p e d  of t h e  s y s t e m s  to b e  a f f e c t e d  b y  t h e  d e c i s i o n .  E n v i r o n m e n t a l  m a n a g e m e n t  

d e c i s i o n s  a r e  g e n e r a l l y  m a d e  to m i n i m i z e ,  or a t  l e a s t  to r e d u c e ,  o v e r a l l  c o s t / b e n e f i t  

r a t ios  i n  a m u l t i - o b j e c t i v e ,  m u l t i - u s e r  s y s t e m .  T h i s  i n c l u d e s  t h e  m a i n t e n a n c e  of c e r t a i n  

e n v i r o n m e n t a l  q u a l i t y  s t a n d a r d s .  Pa r t  of a n  e n v i r o n m e n t a l  m a n a g e m e n t  m o d e l  m u s t  b e  

a n  e c o s y s t e m s  s u b m o d e l ,  w h i c h  p r e d i c t s  t h e  s y s t e m  r e s p o n s e  in  t e r m s  of q u a l i t y  
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var iab les  to potent ia l  m a n a g e m e n t  actions. This submodel  is l inked  to the m a n a g e m e n t  

model ,  wh ich  looks for the opt imal  s trategy in the mul t iob jec t ive  framework.  "Opt imal"  

is def ined  by some kind of goal  function, usual ly  re la ted  to monetary  values.  

A l though  there  is a vast  and cont inuously  g rowing  l i terature on ecological  model-  
ling, this s eeming ly  does not inf luence  m a n a g e m e n t  decisions to a considerable  degree.  

In Mason ' s  (1979) book "The  Effective M a n a g e m e n t  of Resources"  on the North Sea, the 
term "eco logy"  is not even  ment ioned ;  regula t ion  of pollution,  one of the chapters, is 

t rea ted  as a legal,  economic,  and pol i t ical  (in a very narrow sense) problem. 
Of course there  are some excep t iona l  examples  of effect ive d ia logues  b e tw e e n  

decis ion makers  and ecologists  or ecosys tem analysts (Clark et al., 1979), but rarely so for 

the mar ine  envi ronment .  Scientists  may wel l  be asked  to contr ibute their  knowledge ,  but 

more often than not their  reports  are locked  away  in some drawers  rather  than affecting 
the m a n a g e m e n t  decisions.  This is a very unsat isfactory situation, not least  for the 

ecologist .  For a discussion of this d i l emma  see e.g. Biswas (1975). 

To return to the above -desc r ibed  ecosys tem mode l  n e e d e d  for rat ional  ecosystem 
managemen t ,  the m a n a g e r  and decis ion make r  would  l ike to have  a mode l  he can 

unders tand,  which  can be p roven  to be re l iab le  (cf. the discussion transcripts in Russel, 

1975) - and he would  l ike to have  it r ight  now. 

DATA AND MODELS 

In order  to bui ld  a ma thema t i ca l  mode l  - which  is only a special,  formal, case of 
bu i ld ing  a scientific theory - we  usual ly  organize  the empir ica l  information avai lab le  in 

such a way  that  part of it is used  to structure the model,  i.e. to specify the e lements  of the 

mode l  and their  relations.  Another  part of the informat ion is used  as input  (in a 
cybernet ic  sense) to the mode l  structure: this comprises  the coefficients,  which  quanti ta-  

t ively  descr ibe  the internal  relations.  In the case of a dynamic  model ,  this also includes 

the forcings, imports  and exports, which  represent  the border-cross ing relat ions connect-  
ing the mode l  wi th  its envi ronment ,  and finally the ini t ial  state of the model,  ass igning 

start ing values  to all of the e lements .  A third part of the ava i lab le  information is then 

used  to compare  the mode l  response  with  wha t  we  have  observed  in the real  world 

system, and by recurs ive  adjus tments  of the mode l  structure and coefficients we at tempt 
to improve  the mode l  performance.  However ,  the ass ignment  of any p iece  of information 
to any of the above groups is arbitrary. Structure and coefficients  cannot be  es t imated 

independen t ly ,  and an opera t ional  mode l  consists of many  more s impl i fying assump- 

tions than proper t ies  direct ly  measurab le  in the rea l -wor ld  system. 
A close look at the kind of data we  have  on ecosystems shows mainly  uncertaint ies ,  

variabi l i ty,  and sampl ing  errors (more often than not of u n d e t e rm in e d  magnitude) .  In 

addit ion,  ecologica l  theory is full of contradictory hypotheses ,  and it is mostly impossible  

to rule  out any of those because  of lack of re l iab le  data. Exper imenta l  ev idence  as a rule 
stems from micro-sca le  phys io logica l  approaches ,  contradictory to the richness and 

var ie ty  of ecosystems,  and de l ibe ra te ly  neg l ec t i ng  a main  feature  of complex  ecosys- 
tems, which  is the s imul taneous  interact ion of large  numbers  of variables.  Tradi t ional  

concepts  and approaches  are mere ly  extrapolat ions  of ideas  which  proved to be success- 
ful in physics and chemistry.  However ,  ecosystems are qui te  different from electr ical  



Mode l l ing  - a m a n a g e m e n t  tool? 223 

networks and the frictionless pendulum.  All these  incompat ib i l i t ies  can be  overcome 
only with numerous  arbitrary assumptions,  often e n o u g h  impl ic i t ly  h idden  in a mode l  
formulation. The informat ion we  have  at hand  is of a j igsaw puzz le  structure, and at best  

we can deduce  fuzzy patterns, semiquan t i t a t ive  relations,  ranges,  and constraint  condi-  
tion, unless  we  b l indly  be l i eve  in numbers .  

Clearly,  under  the above  constraints  the t radi t ional  de terminis t ic  techniques ,  us ing  

means,  averages ,  assumptions on homogene i ty  and error distributions,  and a firm be l ie f  

in numbers  have  to be quest ioned.  Forcing eco log ica l  systems into a ma thema t i ca l  

framework,  d e v e l o p e d  for vast ly different  systems, for the sake of ease  and e l e g a n c e  of 
the analysis, seems to me  not only a futi le but  also dangerous  l ine of work. As a 

consequence ,  many  mode lba sed  predic t ions  on ecosystems are e i ther  tr ivial  or false, or 

at best  compute r ized  intui t ion of the analyst.  Therefore  we  should not be surpr ised to see 
ecosystems analysis  wi th  only m e a g e r  impact  on env i ronmen ta l  dec is ion  m a k i n g  and 
publ ic  reasoning.  

THE M E T H O D O L O G Y  OF THE APPROACH 

There  seems to be  no scientif ic  way to predic t  the future of a system unless  we  have,  

based on a wel l  es tab l i shed  theory, sufficient informat ion on all the processes  and 

mechanisms  de te rmin ing  the system's  evolut ion.  Clearly,  we  are far from that  posi t ion in 

ecosystems research,  and it migh t  we l l  be ques t ioned,  w h e th e r  such a posi t ion can be 
reached  in principle.  To predict,  however ,  the future state of a system, we  have  to 
extrapolate  our present  k n o w l e d g e  in t ime as we l l  as in state space - the latter to 

es t imate  the systems" response under  condi t ions  not yet  exper ienced .  This is not too bad 
a strategy - in fact one could say it is a basic  s t ra tegy of l iv ing  systems; however ,  this 

strategy is based  on some most s t r ingent  assumptions:  first, the present,  descr ip t ive  

model  of the system must be good enough;  second, the "d i s tance"  of project ion in t ime 
as wel l  as in state space must  be  re la ted  to the unpred ic tab le  (in a de te rminis t ic  sense) 

e lement  of var iabi l i ty  in the system. This s t rategy of predic t ion  requi res  a la rge  n u m b e r  
of assumptions,  and to improve  the scientific qual i ty  - and credibi l i ty  - of m o d e l - b a s e d  

predictions,  these assumptions  have  to be m a d e  explicit .  Whereve r  possible,  the effect of 
such assumptions on mode l  predict ions  should be  explored,  so that uncer ta in ty  about  the 
system in ques t ion wil l  be an expl ic i t  part  of the numer ica l  analysis.  Such analysis  no 
longer  results in one s ingle  answer  - a s ingle  number ,  p re t end ing  a most unreal is t ic  kind 

of precis ion - but a range  of possible  answers.  The  probabi l i ty  distr ibut ions wi th in  such 
ranges  will  part ly d e p e n d  on the qual i ty  of our knowledge ,  but  also on the d e g r e e  of 

extrapolat ion in t ime and state space, as wi l l  be shown below. 

Suppose a de terminis t ic  ecoystems s imula t ion  model,  re la t ing  some m a n a g e m e n t  

var iables  as part  of the input  to some re levan t  qual i ty  var iab les  as the mode l  response.  
To test a model ' s  credibi l i ty  for p red ic t ing  the system's  response  to some m a n a g e m e n t  

al ternatives,  one uses a set of empi r ica l  data, descr ib ing  a se lec ted  or at best  ave rage  
" input" ,  which, used with the g iven  mode l  structure, should result  in a cor responding  

,,output". The set of data  for this analysis  wi l l  be  - and this is not much of an un l ike ly  
assumption - scarce, scattered, noisy, and with  regard  to the var iab les  measured ,  mostly 

i r relevant  in terms of the m a n a g e m e n t  problem.  Therefore,  the informat ion at hand  will  

not a l low for a de ta i led  and re l iab le  quant i ta t ive  descr ipt ion of the input  condi t ions  and 

the corresponding systems response  in terms of the var iab les  of our model .  
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Fig. 1. Schematic summary of the approach, a two-dimensional example. (A) raw input-data space, 
defined by empirical ranges; (B) model response corresponding to A, indicating the empirical range 
of response patterns (compare Figs, 2, 3}; (C) input-data space sub-region corresponding to the 
empirical range in B (compare Fig. 4); (D) Input scenarios, representing e.g. management alternati- 

ves; (E) model response to D (compare Fig, 5) 

Instead, one can use a more fuzzy descr ip t ion of the empir ica l  system behav iour  in 
terms of ranges  for each  of the observed  var iab les  (Fig. 1 B). Any such range is of course 

more  re l iab le  than  the more or less arbi t rary ass ignment  of one s ingle  number  for any 
measu re  descr ib ing  the system, and thus less critical from the credibi l i ty  point  of v iew:  
e v e n  if objec t ive  cri teria for the exact  de l imi ta t ion  of such ranges  are lacking,  and aga in  

somewha t  arbi t rary assumptions  have  to be made,  it seems more l ikely  that an intersub- 
jec t ive  a g r e e m e n t  can be ach i eved  on a range  for a par t icular  value,  rather  than on one 

s ingle  number .  Each of these  ranges,  used  as a constraint  condi t ion on the a l lowable  

response  pat tern  of a model ,  wh ich  represents  the empir ica l  r ange  of system behaviour ,  

now al lows an inf ini te  set of response.  But the combina t ion  of many  const ra ining ranges  

and relat ions quickly  reduces  the a l lowable  patterns.  There  is still an infini te  number  of 

them, of course, but  by a sufficient number  of constraint  condit ions we can del imit  a 
mean ing fu l  reg ion  in the response  space of the model .  

The  input  r equ i r ed  by the mode l  for the numer i ca l  s imula t ion  of the system wil l  also 
be def ined  by a set of ranges  (Fig. 1A). Aga in  these  ranges  represent  various sources of 



Model l ing  - a m a n a g e m e n t  tool? 225 

uncertainty,  and  are b o u n d e d  by limits of plausibi l i ty ,  deduced  from the ava i lab le  
empirical  knowledge.  The first step in  the numer ica l  analys is  is then  to r andomly  sample  
this input -space  region, and  genera te  a model  response  for each of these sample  input-  
vectors. These sample  vectors are then  classified according to whether  the resu l t ing  
model  reponse is wi th in  the region  of p laus ib le  or empir ical  behav iour  or not (Fig. 1C). 
Thus, by reference to the expected model  behaviour ,  a segregat ion  of the initial ,  crude 
input  space is at tempted.  This is necessary,  as the def ini t ion of the inpu t  space did not 
consider the relat ions and  dependenc i e s  be tween  the input  data: even  wi th in  p laus ib le  
ranges for each value,  unreal is t ic  combina t ions  may be sampled.  However,  as our 
knowledge  about  these dependenc ie s  and  correlations is genera l ly  even  more specula-  
tive than  the knowledge  on the s ingle  va lues  empir ical  ranges,  the a-priori  specif icat ion 
of input-space  structure will  only be possible in  a few cases. 

A mul t i tude  of behaviour  gene ra t ing  input-vectors  can thus be generated.  Their  
variabil i ty represents  the uncer ta in ty  in  the basic assumptions,  and an  analysis  of their  
structural relations allows some conclusions on the adequacy  of the model  chosen. For 
predictions, where  one or more inpu t -da ta  are changed,  the whole set of input-vectors  is 
used, as each of them is a p laus ib le  solut ion of the model  ad jus tment  (or calibration) 
procedure in the l ight of the basic  uncer ta in ty  (Fig. 1D). Consequent ly ,  each change  in  
the input  condit ions for the model,  each scenario or a l ternat ive  to be explored, results in 
a mul t i tude  of answers,  which can be in terpre ted  in  a probabi l is t ic  way  (Fig. 1E). Thus, 
the resolut ion or sensi t ivi ty of a model  in  predic t ing  the systems response  to inpu t  
changes  is an  explicit  part  of the forecast. The approach is schemat ical ly  summar ized  in  
Figure 1. For a deta i led  descript ion of the numer ica l  methods  involved,  see Fedra 
(1979b). 

RESULTS AND EXPERIENCES 

Three s imula t ion  models with largely different structure and  characteristics were 
used to study the above approach: a trophic state predic t ion model  for stratified water  
bodies, based on the lake phosphorus model  of Imboden  & G~ichter (1978), a modif ied 
version of a pelagic  food chain model  (Steele, 1974), and  a pr imary product ion  model  for 
shallow, unstrat if ied water  bodies such as lagoons or shallow lakes. In each case, an  
appropriate data set was es tabl ished from literature,  specifying ranges  for inpu t  data and  
the corresponding empir ical  behav iour  for a g iven  ecosystem. Almost 100 000 runs of 
these three models,  were performed, ex tend ing  the s imulat ions  for up to 10 years, in  
order to obta in  a sufficient n u m b e r  of runs for each model /scenar io  for the f inal  analysis.  

As a common feature of all  three models,  the percen tage  of successful runs in terms 
of the empir ical  behav iour  constraint  (Figs 2, 3) was a round  1 to 3 %. The effect of 
increas ing "know.ledge" about  the system, resu l t ing  in a reduct ion  of inpu t  data ranges,  
is shown in Figure 3: increas ing  knowledge  increased  the probabi l i ty  for a successful  
run giving rise to the expected model  behaviour .  The percen tage  of successful runs was 
about 15 % for a 80 % symmetr ic  subreg ion  of the ini t ia l  inpu t -da ta  space. 

The input -da ta  sub-spaces,  es tabl i shed by comparison with the behav iour  de f in ing  
ranges of model  response, exhibi ted  rather bizzare features. This can be at t r ibuted in  
part to the nonl inear i t ies  of the models used as well  as to the d imens iona l i ty  of the inpu t  
spaces of 19, 20, and 22 input -da ta  d imensions ,  respectively.  As men t ioned  above, these 
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Fig. 2. Model response-space projections on planes of behaviour defining variables; 10 000 model 
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input  data  comprise parameters  sensu  stricto, imports and  forcings, and  ini t ial  condi- 
tions. Two examples  of project ions of such an inpu t -da ta  space are shown in  Figure 4. 
The a-posteriori  dis t r ibut ions wi th in  the or iginal  ranges  sampled  (assuming rectangular  
probabi l i ty  densi ty  funct ions a-priori) give some indica t ion  of model  sensit ivity to the 
inpu t -da ta  unde r  the behavioura l  constraints.  Fig. 4a gives an  example  of governing  
parameters ,  s ignif icant ly  correlated, whereas  Fig. 4b shows rather  i n d e p e n d e n t  parame- 
ters, more or less uni formly distr ibuted.  In general ,  the model  behaviour  is much more 
governed  by the combinat ions  and  relat ive ratios of the input -da ta  than  their individual ,  
absolute  values.  This results in the marked  correlat ion structure of the input -da ta  space 
for a g iven  range  of model  response.  This also indicates,  that the determinis t ic  calibra- 
t ion of more than one paramete r  is an  almost futile exercise (at best  a self-fulfilling 
tautology) as there exist no u n i q u e  solutions, if the uncer ta in ty  in the data used is not 
assumed  absent .  

This first, descript ive step in  the approach results in  a set of input-vectors,  all g iving 
rise to the expected range  of model  behaviour .  The var iabi l i ty  of this set represents the 
uncer ta in ty  about  the "true" systems state as well  as the systems variabi l i ty  dur ing  the 
t ime of reference.  For predict ions of the systems response outside this empir ical  range of 
behaviour ,  this var iabi l i ty  is preserved by us ing  the whole set of input-vectors.  One or a 
few selected e lements  are changed  to represent  the change  in input  condit ions to be 
s tudied (Fig. 1D). For the example  shown in Figure 5, nu t r ien t  input  in terms of 
phosphorus  for the trophic state model  for a stratified water  body was varied a round an  
empir ica l  range  of about  1 mg P/m -2 d -1, 21 loading scenarios, r ang ing  from 0 to 5 mg 
P/m -2 d -1 were s imula ted  over a period of 10 years. This could be taken  to represent,  e.g., 
changes  in regional  development ,  watershed  managemen t ,  land use, agricul tural  prac- 
tice, sewer  systems instal lat ions,  or the operat ion of was tewater  t rea tment  facilities. 
Model  response in terms of qual i ty  var iables  such as orthophosphate peak  concentra-  
tions, a lgae biomass  peak, or total yearly pr imary product ion were simulated.  The 
genera l  pat terns ob ta ined  showed: 

(a) an  increase  in  the uncer ta in ty  of the predict ions {measured e.g. as coefficient of 
variation} with increas ing  uncer ta in ty  (wide ranges) in the or iginal  data for inputs  and 
empir ical  systems behaviour .  This is to be expected and  is the most straightforward 
relation; (b) an  increase  in the uncer ta in ty  of predict ions with increas ing deviat ion from 
the empir ica l  ranges  of input /behaviour .  Plots of coefficients of variat ions versus inputs  
show a parabol ic  shape, with the m i n i m u m  in the empir ical  range;  (c) an increase in the 
uncer ta in ty  of the predict ions with time. Al though the means  and  ranges of the predicted 
var iables  reached some kind of s teady state after several  years of s imula t ion  {depending 
on the physical  characteristics of the system}, the t rans ient  period was characterised by a 
marked  increase  of var iabi l i ty  in time. Plott ing coeffcients of var ia t ion versus t ime 
resul ted in  hyperbol ic  patterns,  approach ing  asymptot ical ly a m a x i m u m  level  after some 
years. For example,  after t en  years of s imulat ion,  with a large devia t ion from the 
empir ical  s i tuat ion {more than  threefold nu t r ien t  input}, est imates of pr imary product ion 
r anged  from roughly  100 to 1000 g C/m -2 y-1. This is cer tainly a rather trivial prediction. 

Some conclusions  on how s imula t ion  models can possibly be improved - in terms of 
practical  appl icabi l i ty  - might  be  deduced  from these experiences.  First of all, for a 
sound  test of model  performance,  a model  has to be s imple  in  terms of state and  input  
d imensional i ty .  The n u m b e r  of runs for a g iven  n u m b e r  of sampl ing  points per input-  
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nutrient loading in simulation year 1; (B) orthophosphate maximum/nutrient loading in simulation 
year 2; (C) primary production/nutrient loading in simulation year 5; (D) primary production/ 

nutrient loading in simulation year 10 

range,  for all possible combinat ions ,  will  be  the n u m b e r  of these sampl ing  points  to the 
the power of the n u m b e r  of inputs  or d imensions .  This qui te  obviously leads rather  
quickly to astronomic run  numbers .  Analysis  of compl icated models  with large data 
requi rements  will  be  technica l ly  almost  impossible  - at least  unt i l  more e l egan t  methods  
are developed.  Second, models  should not conta in  var iables  or parameters  not  directly 
measurable  in  the real world system. Data uncer ta in ty  as a major  e l emen t  in  predic t ion  
uncer ta in ty  can be reduced only if the ranges  for each of the numbe r s  to be used in the 
numer ica l  s imula t ion  can  be founded  on the basis  of sufficient measu remen t s  or 
experimentat ion.  Finally,  there is also an  impor tant  cont r ibut ion  necessary from field 
research: not only has the model  to be appropriate  to the data avai lable ,  but  also data 
collection programs will  have  to be des igned  much  more in  accordance with the needs  of 
numer ica l  analysis,  if such analys is  is to be  used  to aid real -world  m a n a g e m e n t  
decisions. 

DISCUSSION 

One possible method is proposed above for explor ing the limits of credibi l i ty  of a 
numer ica l  s imula t ion  model. That  there exist such limits, and  that they may be nar rower  
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than  we  wou ld  l ike  them to be, has  b e e n  d i scussed  (e.g. Hedgpe th ,  1977). Also, cri t ical  
eva lua t ions  have  b e e n  m a d e  of imp lemen ta t i on s  of systems ana lys i s  and  mode l l i ng  
(Hilborn,  1979) and  of the  fa i lures  whi l e  i m p l e m e n t i n g  m o d e l l i n g  into the  m a n a g e m e n t  
and  d e c i s i o n - m a k i n g  process  (Watt, 1977). However ,  for ra t iona l  env i ronmen ta l  man-  
agement ,  the issue is very  def in i te ly  on the s ide of hav ing  a model ,  even  a crude one, 
aga ins t  hav ing  no mode l  at al l  (Biswas, 1975) It should  be s t ressed  that  es t imates  of 
m o d e l  uncer ta in ty ,  and  in pa r t i cu la r  p red ic t ion  uncer ta in ty ,  a re  seen  as an essent ia l  
cr i ter ion for mode l  app l i ca t i on  and  implementa t ion .  Some recent  effort has b e e n  devo ted  
to the  es t ima t ion  of mode l  unce r t a in ty  and  c red ib i l i ty  (e.g. Di Toro & van Straten, 1979; 
van  St ra ten  & de  Boer, 1979; Fedra ,  1979b; Reckhow, 1979; Fed ra  et aL, 1980), and  the 
expl ic i t  inc lus ion  of unce r t a in ty  in m o d e l l i n g  s tudies  (e.g. Wal ters ,  1975; Spear  & 
Hornberger ,  1978), par t ly  in an a t t empt  to expl ic i t ly  p red ic t  p robab i l i t i e s  for cer ta in  
events  or sys tem states  (Reichel  & Dyck, 1979; J a m e s  et  al., 1979). Also, on the 
i m p l e m e n t a t i o n  side,  s t ra teg ies  to cope wi th  uncer ta in ty  and  non-un ique  answers  are 
b e i n g  d e v e l o p e d  (Holl ing,  1978; I IASA 1979). 

With  r e g a r d  to the  mar ine  env i ronment ,  compara t ive ly  few ecosys tem mode l s  have  
b e e n  p u b l i s h e d  (for some more  recent  e x a m p l e s  see  e.g. O 'Br ien  & Wrobl inski ,  1976; 
Walsh  & Howe,  1976; V inogradov  & Menshutk in ,  1977; Kremer  & Nixon, 1978). To my 
knowledge ,  none  of them could  c la im to be  used  in a m a n a g e m e n t  context;  but  
admi t t ed ly  these  mode l s  have  b e e n  d e s i g n e d  for different  purposes .  The s i tuat ion is 
s o m e w h a t  di f ferent  w h e n  look ing  at lakes ,  rivers, and  es tuar ies ,  whe re  some successful  
work  has  b e e n  car r ied  out and  (partly) i m p l e m e n t e d  (e.g. Chen  & Orlob,  1975; Bigelow & 
de Haven ,  1977; Bige low et al., 1977; Bige low et al., 1978; IAHS-AISH,  1978; Jorgensen ,  
1979; Scavia  & Robertson,  1979). This migh t  par t ly  be  a t t r ibu ted  to the  fact that  mar ine  
sys tems are  g e n e r a l l y  l a rge  scale  systems.  Here  spa t ia l  pa t t e rns  p l a y  an  impor tan t  role 
(cf. Steele ,  1978), but  these  are difficult  to assess.  

Mar ine  mode l s  a re  often res t r ic ted  to s e l ec t ed  phys i co -chemica l  fea tures  of the 
env i ronmen t  (e.g. G o l d b e r g  et  al., 1977), or to se lec ted  compar tments ,  as in f isher ies  
models .  Ex tend ing  such f ishery mode l s  towards  mul t i - spec ies  and  ecosys tem models  
(Andersen  & Ursin, 1977) resul ts  in a ra ther  complex  model  wi th  h igh  da ta  requi rements ,  
h igh  d imens iona l i t y  and  numerous  coeff icients  - and  the consequen t  " e d u c a t e d  guess-  
work" .  Wi thou t  doubt ,  such mode l s  may  p lay  an  impor tan t  role in the  d e v e l o p m e n t  of 
env i ronmen ta l  sc ience.  But it m a y  wel l  be  ques t i oned  whe the r  they  can  r easonab ly  be 
a p p l i e d  to r ea l -wor ld  m a n a g e m e n t  p rob lems ,  as the i r  complex i ty  and  h igh  d imens iona l -  
i ty is p roh ib i t ive  to an  ana lys i s  of the i r  sens i t iv i ty  to uncer ta inty .  

However ,  the  use  of numer i ca l  mode l s  should  promote  our  u n d e r s t a n d i n g  of 
env i ronmen ta l  p rob lems .  The  leas t  th ing  a mode l  can  do is to o rgan ize  our k n o w l e d g e  
and  iden t i fy  the l acunae  in it (Steele,  1974). With  r ega rd  to app l i ca t ion  in m a n a g e m e n t  
p rob lems ,  two major  const ra ints  a re  wor th  re i te ra t ing:  first, the  uncer ta in t i es  in ecosys-  
t em ana lys i s  a re  an  inev i tab le ,  p r inc ipa l  componen t  of the  env i ronmen ta l  systems, 
i nc lud ing  man;  and  second,  as m e n t i o n e d  above,  env i ronmen ta l  dec i s ion  m a k i n g  is 
cha rac t e r i zed  by  a d e m a n d i n g  nowness .  There  is no t ime to measu re  in the f ield for 
ano the r  10 yea r s  to r educe  da ta  uncer ta in ty ;  and  w h a t e v e r  effort is d e d i c a t e d  to da ta  
col lect ion,  there  wi l l  a lways  be  a cons ide rab l e  e l e m e n t  of uncer ta in ty  in predic t ion.  This 
is not  m e a n t  to d i sc red i t  the  impor t ance  of f ie ld  da ta :  on the contrary,  the  above  analys is  
c lea r ly  showed  the d i rec t  re la t ion  b e t w e e n  p red ic t ion  uncer t a in ty  and  the qua l i ty  of 



M o d e l l i n g  - a m a n a g e m e n t  tool?  233 

da ta .  T h i s  r a t h e r  a i m s  at  a r e c o n s i d e r a t i o n  of t h e  q u e s t i o n s  w e  m i g h t  r e a s o n a b l y  e x p e c t  a 

m a t h e m a t i c a l  m o d e l  to a n s w e r ,  a n d  c o n s e q u e n t l y  t h e  d e s i g n  of s u c h  m o d e l s .  M o d e l s  for 

m a n a g e m e n t  a p p l i c a t i o n s  wi l l  h a v e  to b e  c o m p a r a t i v e l y  s i m p l e ;  a t t e m p t s  h a v e  to b e  

m a d e  to c a p t u r e  n a t u r a l  c o m p l e x i t y  i n  a m a n n e r  o t h e r  t h a n  a d d i n g  m e c h a n i s t i c  d e t a i l  

(see e.g.,  F e d r a ,  1979a;  S t r a s k r a b a ,  1979). 

C lea r ly ,  c o n s i d e r i n g  t h e  a b o v e ,  t h e  a n s w e r s  o b t a i n a b l e  f r o m  t h e  m o s t  s o p h i s t i c a t e d  

m o d e l  a re  h a r d l y  r e l i a b l e  in  q u a n t i t a t i v e  t e r m s .  A l t h o u g h  t h e  c o m p u t e r  w i l l  of c o u r s e  

p r o d u c e  n u m b e r s ,  it is  n o t  t h e i r  a r i t h m e t i c  p r e c i s i o n ,  b u t  t h e i r  m e a n i n g  w h i c h  m a t t e r s .  

As  t h e  a n s w e r  wi l l  a l w a y s  b e  s o m e  n u m b e r ,  t h e  q u e s t i o n  m u s t  b e  p u t  i n  a n  a p p r o p r i a t e  

way .  T h i s  a m o u n t s  to t h e  f o r m u l a t i o n  of a l t e r n a t i v e  h y p o t h e s e s ,  w h i c h  t h e n  c a n  b e  t e s t e d  

b y  m e a n s  of t h e  c o m p u t e r .  T h i s  is s o m e w h a t  c o m p a r a b l e  to  h y p o t h e s i s  t e s t i n g  in  

m a t h e m a t i c a l  s t a t i s t i c s .  It is  n o t  t h e  a c t u a l  v a l u e  of t h e  t e s t  s t a t i s t i c  w h i c h  m a t t e r s ,  b u t  

w h e t h e r  i t  fo rces  us  to  r e j e c t  ou r  h y p o t h e s i s  or not .  In  t e r m s  of m a n a g e m e n t  a p p l i c a t i o n  

of e c o s y s t e m  m o d e l s ,  t h i s  w o u l d  m e a n  a m o r e  or l e s s  q u a l i t a t i v e  d i s c r i m i n a t i o n  b e t w e e n  

s e v e r a l  m a n a g e m e n t  a l t e r n a t i v e s ,  s o m e  k i n d  of r a n k i n g  a c c o r d i n g  to p e r f o r m a n c e  

c r i t e r i a  of t h e  p o s s i b l e  s t r a t e g i e s .  T h i s  of c o u r s e  r e q u i r e s  a r a t h e r  c a r e f u l  a n d  e l a b o r a t e  

f o r m u l a t i o n  of t h e  m a n a g e m e n t  a l t e r n a t i v e s  a n d  p e r f o r m a n c e  c r i t e r i a ;  a n d  i t  h a s  to  b e  

u n d e r s t o o d  t h a t  a m a t h e m a t i c a l  m o d e l  c a n  o n l y  b e  a too l  for  e c o s y s t e m  m a n a g e m e n t ,  if 

t h e  b a s i c  e n v i r o n m e n t a l  a n d  m a n a g e m e n t  p r o b l e m  is w e l l  f o r m u l a t e d  for  t h e  n u m e r i c a l  

a n a l y s i s .  
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