Abstract
A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics, Chinese Academy of Sciences. This is the first dataset of large ensemble simulations with a climate system model developed by a Chinese modeling center. The simulation has the largest realizations up to now worldwide in terms of single-model initial-condition large ensembles. Each member includes a historical experiment (1850–2014) and an experiment (2015–99) under the very high greenhouse gas emissions Shared Socioeconomic Pathway scenario (SSP5-8.5). The dataset includes monthly and daily temperature, precipitation, and other variables, requiring storage of 275 TB. Additionally, the surface air temperature (SAT) and land precipitation simulated by the FGOALS-g3 super-large ensemble have been validated and projected. The ensemble can capture the response of SAT and land precipitation to external forcings well, and the internal variabilities can be quantified. The availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the impact of internal variability on forced climate changes.
摘要
本文基于中国科学院大气物理研究所发展的气候系统模式FGOALS-g3开展了110个样本的超级集合模拟试验. 此试验是中国自主发展的气候系统模式第一次开展大集合海气耦合模拟. 此模拟具有到目前为止世界上最多的采用单模式不同初值进行大样本试验的集合成员. 模拟中的每个样本均包括一个从1850–2014年的历史试验和一个从2015–99年的高温室气体排放SSP5-8.5试验. 超级集合试验数据包括月平均和日平均温度、 降水和其他大气和海洋变量, 试验数据共计275TB. 在文中, 作者对超级集合模拟的表面气温(SAT)和陆地降水进行评估和预估分析. 结果表明, 该超级集合可以刻画出SAT和降水对外强迫响应, 也可以用来定量估算内部变率. 已有超过100个样本的集合数据将有助于研究极端事件和了解内部变率对受迫气候变化的影响.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Data availability statement. The data that support the findings of this study are available from https://doi.org/10.11922/sciencedb.01332. The citation is “Bowen ZHAO; Pengfei LIN; Jilin WEI; Xiaolong CHEN; Hailong LIU. FGOALS-g3 Super-large ensemble simulation. (V2). 2021. Science Data Bank. 2021-11-20. https://doi.org/10.11922/sciencedb.01332”.
References
Adler, R. F., and Coauthors, 2018: The global precipitation climatology project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nature Communications, 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.
Bindoff, N., and S.-K. Min, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 867–952.
Branstator, G., and F. Selten, 2009: “Modes of Variability” and climate change. J. Climate, 22, 2639–2658, https://doi.org/10.1175/2008JCLI2517.1.
Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493.
Chan, D., and P. Huybers, 2021: Correcting observational biases in sea-surface temperature observations removes anomalous warmth during World War II. J. Climate, 34, 4585–4602, https://doi.org/10.1175/JCLI-D-20-0907.1.
Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.
Chen, X. L., and T. J. Zhou, 2015: Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett., 42, 9433–9439, https://doi.org/10.1002/2015GL066384.
Cheng, J., Z. Y. Liu, S. Q. Zhang, W. Liu, L. N. Dong, P. Liu, and H. L. Li, 2016: Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 3175–3178, https://doi.org/10.1073/pnas.1519827113.
Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Dai, A. G., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289–306, https://doi.org/10.1007/s00382-018-4132-4.
Dai, A. G., J. C. Fyfe, S.-P. Xie, and X. G. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nature Climate Change, 5, 555–559, https://doi.org/10.1038/nclimate2605.
Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.
Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012a: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x.
Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012b: Communication of the role of natural variability in future North American climate. Nature Climate Change, 2, 775–779, https://doi.org/10.1038/nclimate1562.
Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2.
Dima, M., D. R. Nichita, G. Lohmann, M. Ionita, and M. Voiculescu, 2021: Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration. npj Climate and Atmospheric Science, 4, 27, https://doi.org/10.1038/s41612-021-00182-x.
Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nature Communications, 4, 1715, https://doi.org/10.1038/ncomms2704.
Döscher, R., and Coauthors, 2021: The EC-Earth3 earth system model for the climate model intercomparison project 6. Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2020-446.
Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 8373–8379, https://doi.org/10.1175/JCLI-D-12-00490.1.
Drijfhout, S., W. Hazeleger, F. Selten, and R. Haarsma, 2008: Future changes in internal variability of the Atlantic Meridional Overturning Circulation. Climate Dyn., 30, 407–419, https://doi.org/10.1007/s00382-007-0297-y.
Dunn, R. J. H., and Coauthors, 2020: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3,. J. Geophys. Res.: Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fang, J. Y., G. R. Yu, L. L. Liu, S. J. Hu, and F. S. Chapin, 2018: Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015–4020, https://doi.org/10.1073/pnas.1700304115.
Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 741–882.
Frankcombe, L. M., M. H. England, J. B. Kajtar, M. E. Mann, and B. A. Steinman, 2018: On the choice of ensemble mean for estimating the forced signal in the presence of internal variability. J. Climate, 31, 5681–5693, https://doi.org/10.1175/JCLI-D-17-0662.1.
Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate, 30, 9871–9895, https://doi.org/10.1175/JCLI-D-17-0009.1.
Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.
Hatfield, J. L., and C. L. Walthall, 2014: Climate change: Cropping system changes and adaptations. Encyclopedia of Agriculture and Food Systems, N. K. Van Alfen, Ed., Academic Press, 256–265, https://doi.org/10.1016/B944-0-444-22512-3.00003-6.
Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1108, https://doi.org/10.1175/2009BAMS2607.1.
Hawkins, E., R. S. Smith, J. M. Gregory, and D. A. Stainforth, 2016: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 3807–3819, https://doi.org/10.1007/s00382-015-2806-8.
Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 1357–1364, https://doi.org/10.1175/2010BAMS2877.1.
Huang, X., and Coauthors, 2020: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Science Advances, 6, eaay6546, https://doi.org/10.1126/sciadv.aay6546.
Jeffrey, S., L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Australian Meteorological and Oceanographic Journal, 63, 1–13, https://doi.org/10.22499/2.6301.001.
Kay, J. E., and Coauthors, 2015: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.
Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 1–32, https://doi.org/10.1002/2013RG000434.
Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick, 2019: An ensemble data set of sea surface temperature change from 1850: The met office Hadley Centre HadSST. 4.0.0.0 data set. J. Geophys. Res.: Atmos., 124, 7719–7763, https://doi.org/10.1029/2018JD029867.
Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic Sea Ice Extent. J. Climate, 30, 553–571, https://doi.org/10.1175/JCLI-D-16-0412.1.
Kopparla, P., E. M. Fischer, C. Hannay, and R. Knutti, 2013: Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys. Res. Lett., 40, 5803–5808, https://doi.org/10.1002/2013GL057866.
Li, L., and Coauthors, 2020a: The GAMIL3: Model description and evaluation. J. Geophys. Res.: Atmos., 125, e2020JD032574, https://doi.org/10.1029/2020JD032574.
Li, L. J., and Coauthors, 2020b: The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2019MS002012, https://doi.org/10.1029/2019MS002012.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Advances in Atmospheric Sciences, 37, 239–249, https://doi.org/10.1007/s00376-019-9208-5.
Liu, W., A. V. Fedorov, S.-P. Xie, and S. N. Hu, 2020: Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Science Advances, 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.
Loo, Y. Y., L. Billa, and A. Singh, 2015: Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6, 817–823, https://doi.org/10.1016/j.gsf.2014.02.009.
Maher, N., S. Milinski, and R. Ludwig, 2021: Large ensemble climate model simulations: Introduction, overview, and future prospects for utilising multiple types of large ensemble. Earth System Dynamics, 12, 401–418, https://doi.org/10.5194/esd-12-401-2021.
Maher, N., and Coauthors, 2019: The max Planck institute grand ensemble: Enabling the exploration of climate system variability. Journal of Advances in Modeling Earth Systems, 11, 2050–2069, https://doi.org/10.1029/2019MS001639.
Mamalakis, A., and Coauthors, 2021: Zonally contrasting shifts of the tropical rain belt in response to climate change. Nature Climate Change, 11, 143–151, https://doi.org/10.1038/s41558-020-00963-x.
Meehl, G. A., H. Y. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4, 898–902, https://doi.org/10.1038/nclimate2357.
Meehl, G. A., A. X. Hu, B. D. Santer, and S.-P. Xie, 2016: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Climate Change, 6, 1005–1008, https://doi.org/10.1038/NCLIMATE3107.
Milinski, S., N. Maher, and D. Olonscheck, 2020: How large does a large ensemble need to be? Earth System Dynamics, 11, 885–901, https://doi.org/10.5194/esd-11-885-2020.
Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6,. npj Climate and Atmospheric Science, 3, 45, https://doi.org/10.1038/s41612-020-00151-w.
Morice, C. P., and Coauthors, 2021: An updated assessment of near-surface temperature change from 1850: The HadCRUT 5 data set. J. Geophys. Res.: Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361.
Norris, J., A. Hall, D. Chen, C. W. Thackeray, and G. D. Madakumbura, 2021: Assessing the representation of synoptic variability associated with California extreme precipitation in CMIP6 models. J. Geophys. Res.: Atmos., 126, e2020JD033938, https://doi.org/10.1029/2020JD033938.
Pathak, R., S. Sahany, S. K. Mishra, and S. K. Dash, 2019: Precipitation biases in CMIP5 models over the South Asian region. Scientific Reports, 9, 9589, https://doi.org/10.1038/s41598-019-45907-4.
Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.
Rodgers, K. B., J. Lin, and T. L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12, 3301–3320, https://doi.org/10.5194/bg-12-3301-2015.
Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021.
Rohde, R. A., and Z. Hausfather, 2020: The berkeley earth land/ocean temperature record. Earth System Science Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020.
Schiemann, R., M. E. Demory, M. S. Mizielinski, M. J. Roberts, L. C. Shaffrey, J. Strachan, and P. L. Vidale, 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 2455–2468, https://doi.org/10.1007/s00382-013-1997-0.
Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x.
Selten, F. M., G. W. Branstator, H. A. Dijkstra, and M. Kliphuis, 2004: Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett., 31, L21205, https://doi.org/10.1029/2004GL020739.
Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Smeed, D. A., and Coauthors, 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 1527–1533, https://doi.org/10.1002/2017GL076350.
Swart, N. C., and Coauthors, 2019: The Canadian earth system model version 5 (CanESM5.0.3). Geoscientific Model Development, 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019.
Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165–183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.
Weijer, W., W. Cheng, O. A. Garuba, A. Hu, and B. T. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.
Wyser, K., T. Koenigk, U. Fladrich, R. Fuentes-Franco, M. P. Karami, and T. Kruschke, 2021: The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1,. Geoscientific Model Development, 4, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021.
Xie, Z., and Coauthors, 2020: Land surface model CAS-LSM: Model description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2020MS002339, https://doi.org/10.1029/2020MS002339.
Yang, B., and Coauthors, 2019: Better monsoon precipitation in coupled climate models due to bias compensation. npj Climate and Atmospheric Science, 2, 43, https://doi.org/10.1038/s41612-019-0100-x.
Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18, 4669–4683, https://doi.org/10.1175/JCLI3574.1.
Zhang, R., R. Sutton, G. Danabasoglu, Y. O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316–375, https://doi.org/10.1029/2019RG000644.
Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2, 851–870, https://doi.org/10.1002/wcc.147.
Zhou, T. J., 2021: New physical science behind climate change: What does IPCC AR6 tell us? The Innovation, 2, 100173, https://doi.org/10.1016/j.xinn.2021.100173.
Zhou, X., H. Matthes, A. Rinke, B. Huang, K. Yang, and K. Dethloff, 2019: Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model. Atmospheric Research, 217, 137–149, https://doi.org/10.1016/j.atmosres.2018.10.022.
Acknowledgements
This study is supported by the National Key Program for Developing Basic Sciences (Grant No. 2020YFA0608902) and the National Natural Science Foundation of China (Grant Nos. 41976026 and 41931183). The authors also acknowledge the technical support from the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab). Some simulations presented in this study were performed on the CAS Xiandao-1 supercomputer. The authors also acknowledge the help with model setup from Dr. Lijuan LI and the help with data processing from Mr. Kangjun CHEN.
Author information
Authors and Affiliations
Corresponding author
Additional information
Disclosure statement. No potential conflict of interest was reported by the authors.
Electronic Supplementary Material to
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lin, P., Zhao, B., Wei, J. et al. The Super-large Ensemble Experiments of CAS FGOALS-g3. Adv. Atmos. Sci. 39, 1746–1765 (2022). https://doi.org/10.1007/s00376-022-1439-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-022-1439-1