Skip to main content

Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Remote sensing is a key technology for precision agriculture to assess actual crop conditions. Commercial, high-spatial-resolution imagery from aircraft and satellites are expensive so the costs may outweigh the benefits of the information. Hobbyists have been acquiring aerial photography from radio-controlled model aircraft; we evaluated these very-low-cost, very high-resolution digital photography for use in estimating nutrient status of corn and crop biomass of corn, alfalfa, and soybeans. Based on conclusions from previous work, we optimized an aerobatic model aircraft for acquiring pictures using a consumer-oriented digital camera. Colored tarpaulins were used to calibrate the images; there were large differences in digital number (DN) for the same reflectance because of differences in the exposure settings selected by the digital camera. To account for differences in exposure a Normalized Green–Red Difference Index [(NGRDI  = (Green DN  − Red DN)/(Green DN  + Red DN)] was used; this index was linearly related to the normalized difference of the green and red reflectances, respectively. For soybeans, alfalfa and corn, dry biomass from zero to 120 g m−2 was linearly correlated to NGRDI, but for biomass greater than 150 g m−2 in corn and soybean, NGRDI did not increase further. In a fertilization experiment with corn, NGRDI did not show differences in nitrogen status, even though areas of low nitrogen status were clearly visible on late-season digital photographs. Simulations from the SAIL (Scattering of Arbitrarily Inclined Leaves) canopy radiative transfer model verified that NGRDI would be sensitive to biomass before canopy closure and that variations in leaf chlorophyll concentration would not be detectable. There are many advantages of model aircraft platforms for precision agriculture; currently, the imagery is best visually interpreted. Automated analysis of within-field variability requires more work on sensors that can be used with model aircraft platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. M. Barnes K. A. Sudduth J. W. Hummel S. M. Lesch D. L. Corwin C. Yang C. S. T. Daughtry W. C. Bausch (2003) ArticleTitleRemote- and ground-based sensor techniques to map soil properties Photogrammetric Engineering & Remote Sensing 69 IssueID6 619–630

    Google Scholar 

  • W. C. Bausch H. R. Duke (1996) ArticleTitleRemote sensing of plant nitrogen status in corn Transactions of the ASAE 39 1869–1875

    Google Scholar 

  • T. M. Blackmer J. S. Schepers (1995) ArticleTitleUse of a chlorophyll meter to monitor nitrogen status and schedule fertilization for corn Journal of Production Agriculture 8 56–60

    Google Scholar 

  • T. M. Blackmer J. S. Schepers G. E. Varvel G. E. Meyer (1996a) ArticleTitleAnalysis of aerial photography for nitrogen stress within corn fields Agronomy Journal 88 729–733

    Google Scholar 

  • T. M. Blackmer J. S. Schepers G.E. Varvel E. A. Walter-Shea (1996b) ArticleTitleNitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies Agronomy Journal 88 1–5

    Google Scholar 

  • Booth, D. T., Glenn, D., Keating, B., Nance, J., Cox, S. E. and Barriere J. P. 2003. Monitoring rangeland watersheds with very-large scale aerial imagery. In: Proceedings of the First Interagency Conference on Research in the Watersheds, edited by Kenneth G. Renard (USDA-ARS, Washington, DC), pp. 212–215.

  • J. G. P. W. Clevers (1988) ArticleTitleMultispectral aerial photography as a new method in agricultural field trial analysis International Journal of Remote Sensing 9 IssueID2 319–332

    Google Scholar 

  • C. S. T. Daughtry C. L. Walthall M. S. Kim E. Brown Colstoun Particlede J. E. McMurtrey (2000) ArticleTitleEstimating corn leaf chlorophyll concentration from leaf and canopy reflectance Remote Sensing of Environment 74 229–239 Occurrence Handle10.1016/S0034-4257(00)00113-9

    Article  Google Scholar 

  • P. C. Doraiswamy S. Moulin P. W. Cook A. Stern (2003) ArticleTitleCrop yield assessment from remote sensing Photogrammetric Engineering & Remote Sensing 69 IssueID6 665–674

    Google Scholar 

  • D. M. Gates (1980) Biophysical Ecology Springer-Verlag New York, USA

    Google Scholar 

  • Hongoh, D., Kajiwara, K. and Honda, Y. 2001. Developing ground truth measurement system using RC helicopter and BRDF model in forest area. In Proceedings of the 22nd Asian Conference on Remote Sensing (Centre for Remote Imaging; Sensing, and Processing, National University of Singapore, Singapore), Vol. I, pp, 59–64.

  • A. R. Huete (2004) Remote sensing of soils and soil processes S. L. Ustin (Eds) Remote sensing for Natural Resource Mangement and Environment Monitoring. Manual of Remote Sensing EditionNumber3 NumberInSeriesVolume 4 John Wiley & Sons, Inc Hoboken, NJ, USA 3–52

    Google Scholar 

  • Hunt, E. R. Jr., Daughtry, C. S. T., McMurtrey, J. E., Walthall, C. L., Baker, J. A., Schroeder, J. C. and Liang, S. 2002. Comparison of remote sensing imagery for nitrogen management. In: Proceedings of the Sixth International Conference on Precision Agriculture and Other Precision Resources Management, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA-CSSA-SSSA, Madison, WI, USA), CD-ROM.

  • E. R. Hunt SuffixJr. C. S. T. Daughtry C. L. Walthall J. E. McMurtrey W. P. Dulaney (2003a) Agricultural remote sensing using radio-controlled model aircraft T. VanToai D. Major M. McDonald J. Schepers L. Tapley (Eds) Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and crop Physiology ASA-CSSA-SSSA Madison, WI, USA 191–199.

    Google Scholar 

  • E. R. Hunt SuffixJr. J. H. Everitt J. C. Ritchie M. S. Moran D. T. Booth G. L. Anderson P. E. Clark M. S. Seyfried (2003b) ArticleTitleApplications and research using remote sensing for rangeland management Photogrammetric Engineering & Remote Sensing 69 IssueID6 675–693

    Google Scholar 

  • Y. Inoue S. Morinaga A. Tomita (2000) ArticleTitleA blimp-based remote sensing system for low-altitude monitoring of plant variables: A preliminary experiment for agricultural and ecological applications International journal of Remote Sensing 21 IssueID2 379–385 Occurrence Handle10.1080/014311600750019958

    Article  Google Scholar 

  • Y.-C. Lu C. Daughtry G. Hart B. Watkins (1997) ArticleTitleThe current state of precision farming Food Reviews Intermational 13 IssueID2 141–462

    Google Scholar 

  • Lopez, J. R. and Robert, P. C. 2003. Use of unmanned aerial vehicles to gather remote sensing imagery for precision crop management. In ASA-CSSA-SSSA Annual Meetings Abstracts November 26, 2003. Denver, Colorado (ASA-CSSA-SSSA, Madison, WI, USA), CD-ROM.

  • E. L. Milton (2002) ArticleTitleLow-cost ground-based digital infra-red photography International Journal of Remote Sensing 23 IssueID5 1001–1007 Occurrence Handle10.1080/01431160110104746

    Article  Google Scholar 

  • M. S. Moran Y. Inoue E. M. Barnes (1997) ArticleTitleOpportunities and limitations for image-based remote sensing in precision crop management Remote Sensing of Environment 61 319–346 Occurrence Handle10.1016/S0034-4257(97)00045-X

    Article  Google Scholar 

  • S. Moran G. Fitgerald A. Rango C. Walthall E. Barnes W. Bausch T. Clarke C. Daughtry J. Everitt D. Escobar J. Hatfield K. Havstad T. Jackson N. Kitchen W. Kustus M. McGuire P. Pinter K. Sudduth J. Schepers T. Schmugge P. Starks D. Upchurch (2003) ArticleTitleSensor development and radiometric correction for agricultural applications Photogrammetric Engineering & Remote Sensing 69 IssueID6 705–718

    Google Scholar 

  • F. J. Pierce P. Nowak (1999) ArticleTitleAspects of precision agriculture Advances in Agronomy 67 1–85

    Google Scholar 

  • P. J. Pinter SuffixJr. J. L. Hatfield J. S. Schepers E. M. Barnes M. S. Moran C. S. T. Daughtry D. R. Upchurch (2003) ArticleTitleRemote sensing for crop management Photogrammetric Engineering & Remote Sensing 69 IssueID6 647–664

    Google Scholar 

  • M. C. Quilter V. J. Anderson (2000) ArticleTitleLow altitude/large scale aerial photographs: A tool for range and resource managers Rangelands 22 IssueID2 13–17

    Google Scholar 

  • Ritchie, S. W., Hanson, J. J. and Benson, G. O.1993. How a corn plant develops, Special Report No. 48. (Iowa State University of Science and Technology, Cooperative Extension Service, Ames, IA).

  • P. C. Robert (2002) ArticleTitlePrecision agriculture: A challenge for crop nutrition management Plant and Soil 247 143–149 Occurrence Handle10.1023/A:1021171514148

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A. and Deering, D. W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Third Earth Resources Technology Satellite1 Symposium. Volume I: Technical Presentations, NASA SP−351, edited by S. C. Freden, E. P. Mercanti and M. Becker (National Aeronautics and Space Administration, Washington, DC), p. 309–317.

  • SAS Institute Inc. 1999. SAS/STAT User’s Guide, Cary, NC.

  • P. C. Scharf J. A. Lory (2002) ArticleTitleCalibrating corn color from aerial photographs to predict sidedress nitrogen need Agronomy journal 94 397–404

    Google Scholar 

  • P. C. Scharf J. P. Schmidt N. R. Kitchen K. A. Sudduth S. Y. Hong J. A. Lory J. G. Davis (2002) ArticleTitleRemote sensing for nitrogen management Journal of Soil and Water Conservation 57 518–524

    Google Scholar 

  • S. Shevell (2003) The Science of Color EditionNumber2nd Edition Optical Society of America Washington, DC, USA

    Google Scholar 

  • W. Verhoef (1984) ArticleTitleLight scattering by leaf layers with application to campy reflectance modeling: The SAIL model Remote Sensing of Environment 16 125–141 Occurrence Handle10.1016/0034-4257(84)90057-9

    Article  Google Scholar 

  • G. Wald (1968) ArticleTitleThe molecular basis of visual excitation Nature 219 800–807 Occurrence Handle4876934

    PubMed  Google Scholar 

  • R. H. Waring B. Law M. L. Goulden S. L. Bassow R. W. McCreight S. C. Wofsy F. A. Bazzaz (1995) ArticleTitleScaling gross ecosystem production at Harvard Forest with remote sensing: A comparison of estimates from a constrained quantum-use efficiency model and eddy correlation Plant, Cell & Environment 18 1201–1213

    Google Scholar 

  • C. Yang J. H. Everitt J. M. Bradford D. E. Esccibar (2000) ArticleTitleMapping grain sorghum growth and yield variations using airborne multispectral digital imagery Transactions of the ASAE 43 IssueID6 1927–1938

    Google Scholar 

  • P. J. Zarco-Tejada C. A. Rueda S. L. Ustin (2003) ArticleTitleWater content estimation in vegetation with MODIS reflectance data and model inversion methods Remote Sensing of Environment 85 109–124 Occurrence Handle10.1016/S0034-4257(02)00197-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt , E.R., Cavigelli, M., Daughtry, C.S.T. et al. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precision Agric 6, 359–378 (2005). https://doi.org/10.1007/s11119-005-2324-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-005-2324-5

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy