Skip to main content

Advertisement

Log in

Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

A site-specific nitrogen fertilizer application system that uses optical reflectance measurements of growing wheat plants to estimate N requirements has been developed. The machine enables unique applications of liquid N fertilizer at a grid level of 0.37 m2. To achieve widespread adoption, the precision application system must be efficient enough to overcome the cost advantage of pre-plant applications of anhydrous ammonia (NH3) relative to top-dress applications of either dry or liquid N sources on growing wheat. The objective of this research is to determine if the system is more profitable than conventional methods. Data from on-farm N fertilizer experiments were collected across three years and nine locations in the Southern Plains of the U.S.A. Net returns were calculated for each of eight treatments. The site-specific precision system was competitive economically, but it was not unambiguously superior to the conventional alternatives because it could not overcome the cost advantage of NH3 pre-plant N sources relative to the cost of applying urea-ammonium nitrate (UAN) during the growing season. The value of the precision system is sensitive to the price of UAN relative to the price of NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Parameter estimates were shifted one standard deviation to the left in an effort by Raun et al. (2002) to describe a yield boundary.

  2. The level of N applied to the NRS (kg ha−1) is equal to 0.0417 kg times the expected maximum potential yield of the field (kg ha−1). In this study the average expected maximum potential yield was assumed to be 3,225 kg ha−1.

References

  • Alchanatis, V., Scmilovitch, Z., & Meron, M. (2005). In-field assessment of single leaf nitrogen status by spectral reflectance measurement. Precision Agriculture, 6, 25–39.

    Article  Google Scholar 

  • American Society of Agricultural, Biological Engineers. (2006). Agricultural machinery management data. ASAE D497.5. MI, USA: St. Joseph.

    Google Scholar 

  • Biermacher, J., Epplin, F. M., Brorsen, B. W., Solie, J. B., & Raun, R. W. (2006). Maximum value of a precise nitrogen application system for wheat. Precision Agriculture, 7, 193–204.

    Article  Google Scholar 

  • Bullock, D. S., Lowenberg-Deboer, J., & Swinton, S. M. (2002). Adding value to spatially managed inputs by understanding site-specific yield response. Agricultural Economics, 27, 233–245.

    Article  Google Scholar 

  • Carr, P. M., Carlson, G. R., Jacobson, J. S., Nielson, G. A., & Skogley, E. O. (1991). Farming soils, not fields: A strategy for increasing fertilizer profitability. Journal of Production Agriculture, 4, 57–67.

    Google Scholar 

  • Ehlert, D., Schmerler, J., & Voelker, U. (2004). Variable rate nitrogen fertilisation of winter wheat based on a crop density sensor. Precision Agriculture, 5, 263–273.

    Article  Google Scholar 

  • Frank, M. D., Beattie, B. R., & Embleton, M. E. (1990). A comparison of alternative crop response models. American Journal of Agricultural Economics, 72, 597–603.

    Article  Google Scholar 

  • Grimm, S. S., Paris, Q., & Williams, W. A. (1987). A von Liebig model for water and nitrogen crop response. Western Journal of Agricultural Economics, 12, 182–192.

    Google Scholar 

  • Haneklaus, S., Schroeder, D., & Schnug, E. (1999). Decision making strategies for fertilizer use in precision agriculture. In P. C. Roberts, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 4th International Conference on Precision Agriculture (pp.1757–1765). Madison, WI, USA: ASA/CSSA/SSSA.

  • Kletke, D., & Doye, D. (2001). Oklahoma farm and ranch custom rates, 2001–2002. Stillwater, OK, USA: Oklahoma Cooperative Extension (Current report CR-205).

  • Lambert, D. M., Lowenberg-Deboer, J., & Malzer, G. L. (2006). Economic analysis of spatial-temporal patterns in corn and soybean response to nitrogen and phosphorus. Agronomy Journal, 98, 43–54.

    Article  Google Scholar 

  • Large, E. C. (1954). Growth stages in cereals. Plant Pathology, 3, 128–129.

    Article  Google Scholar 

  • Oklahoma Cimatological Survey. (2007). Oklahoma climate data. http://climate.mesonet.org/rainfall_update.html. Accessed February 2008.

  • Oklahoma Mesonet. (2007). Soil characteristics. http://www.mesonet.org/sites. Accessed February 2008.

  • Phillips, S. B., Keahey, D. A., Warren, J. G., & Mullins, G. L. (2004). Estimating winter wheat tiller density using spectral reflectance sensors for early-spring, variable rate nitrogen application. Agronomy Journal, 96, 591–600.

    Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Whitney, R. W., Lees, H. L., et al. (1998). Microvariability in soil test, plant nutrient, and yield parameters in bermudagrass. Soil Science Society of American Journal, 62, 683–690.

    Article  CAS  Google Scholar 

  • Raun, W. R., Solie, J. B., Stone, M. L., Freeman, K. W., Mullen, R. W., Zhang, H., et al. (2005). Optical sensor based algorithm for crop nitrogen fertilization. Communications of Soil Science and Plant Analysis, 36, 2759–2781.

    Article  CAS  Google Scholar 

  • Schachtl, J., Huber, G., Maidl, F.-X., Stickse, E., Schulz, J., & Haschberger, P. (2005). Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precision Agriculture, 6, 143–156.

    Article  Google Scholar 

  • Solie, J. B., Raun, W. R., & Stone, M. L. (1999). Submeter spatial variability of selected soil and bermudagrass production variables. Soil Science Society of American Journal, 63, 1724–1733.

    CAS  Google Scholar 

  • Solie, J. B., Raun, W. R., Whitney, R. W., Stone, M. L., & Ringer, J. D. (1996). Optical sensor based field element size and sensing strategy for nitrogen application. Transactions of the ASAE, 39, 1983–1992.

    Google Scholar 

  • Solie, J. B., Stone, M. L., Raun, W. R., Johnson, G. V., Freeman, K. W., Mullen, R. W., et al. (2002). Real-time sensing and N fertilization with a field scale GreenseekerTM applicator. http://nue.okstate.edu/Papers/Minnesota_2002_Solie.htm. Accessed November 2003.

  • Stone, M. L., Solie, J. B., Whitney, R. W., Raun, W. R., & Lees, H. L. (1996). Sensors for detection of nitrogen in winter wheat. SAE Tech. Pap. Ser. 961757. Soc. of automotive eng. PA, USA: Warrendale.

    Google Scholar 

  • Swinton, S. M., & Lowenberg-DeBoer, J. (1998). Evaluating the profitability of site-specific farming. Journal of Production Agriculture, 11, 439–446.

    Google Scholar 

  • Tembo, G., Brorsen, B. W., Epplin, F. M., & Tostão, E. (2008). Crop input response functions with stochastic plateaus. American Journal of Agricultural Economic, 90(2), 424–434.

    Article  Google Scholar 

  • USDA. (2007a). Quick stats. National agricultural statistics service. http://www.nass.usda.gov/QuickStats/PullData_US.jsp. Accessed February 2008.

  • USDA. (2007b). Economics, statistics, and market information system, National agricultural statistics service. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1003. Accessed February 2008.

  • Waugh, D. L., Cate, R. B., & Nelson, L. A. (1973). Discontinuous models for rapid correlation, interpretation and utilization of soil analysis and fertilizer response data. North Carolina State University Technical Bulletin No. 7, Soil fertility evaluation and improvement program. SC, USA: Raleigh.

    Google Scholar 

  • Whipker, L. D., & Akridge, J. T. (2007). 2007 precision agricultural services dealership survey results. Working paper # 07–13, Department of Agricultural Economics, Purdue University, West Lafayette, IN. http://www.agriculture.purdue.edu/ssmc/publications/2007_Presicion_Ag.pdf. Accessed March 31 2008.

Download references

Acknowledgments

The authors gratefully thank the editors and two anonymous journal reviewers for their constructive comments. The project was supported by the USDA Cooperative State Research, Education and Extension Service, Hatch grant number H-2574 and by the Oklahoma Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon T. Biermacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biermacher, J.T., Epplin, F.M., Brorsen, B.W. et al. Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat. Precision Agric 10, 213–230 (2009). https://doi.org/10.1007/s11119-008-9092-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9092-y

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy