Skip to main content

Advertisement

Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Soil erosion by water is a crucial environmental problem in different Mediterranean countries, resulting from various factors, such as geological, geomorphological, hydro-climatic conditions, and human activities. The study aims at developing water erosion vulnerability map to identify areas at risk in northeastern Algeria (Wilaya of Tebessa) based on the Revised Universal Soil Loss Equation model (USLE/RUSLE). Land use, lithology, slope, distance to stream network (DSN), and precipitation factors were combined to determine the soil erosion vulnerability using the analytical hierarchy process (AHP) approach and geomatics-based techniques (geographic information system and remote sensing). In total, soil erosion vulnerability increases from south to north of the study area. Slight, moderate, high, and very high classes covered for 7.35%, 49.48%, 43.04%, and 0.14% of the whole area, respectively. Our findings stressed the high expansion of water erosion risk, in particular, north of the study area. Protection and maintenance of erosion-prone areas with high risk of soil erosion represent a real challenge for both scholars and policymakers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguaron J, Moreno-Jiménez JM (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 147:137–145. https://doi.org/10.1016/S0377-2217(02)00255-2

    Article  Google Scholar 

  • Akgün A, Türk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci 37:1515–1524. https://doi.org/10.1016/j.cageo.2010.09.006

    Article  Google Scholar 

  • Alsharif AA, Pradhan B (2014) Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens 42:149–163. https://doi.org/10.1007/s12524-013-0299-7

  • Arar A, Chenchouni H (2012) How could geomatics promote our knowledge for environmental management in eastern Algeria? J Environ Sci Technol 5(5):291–305

    Article  Google Scholar 

  • Arar A, Chenchouni H (2014) A “simple” geomatics-based approach for assessing water erosion hazard at montane areas. Arab J Geosci 7:1–12. https://doi.org/10.1007/s12517-012-0782-4

    Article  Google Scholar 

  • Bachaoui B, Bachaoui EM, El Harti A, Bannari A, El Ghmari A (2007) Cartographie des zones à risque d’érosion hydrique : exemple du haut Atlas marocain. Télédétection 7:393–404

    Google Scholar 

  • Bahadur KK (2009) Mapping soil erosion susceptibility using remote sensing and GIS: a case of the Upper Nam Wa Watershed, Nan Province, Thailand. Environ Geol 57:695–705. https://doi.org/10.1007/s00254-008-1348-3

    Article  Google Scholar 

  • Beasley DB, Huggins LF, Monke A (1980) ANSWERS: a model for watershed planning. ASABE 23:938–0944. https://doi.org/10.1016/S0341-8162(99)00038-7

  • Berkane A, Yahiaou A (2007) L’érosion dans les Aurès. Sécheresse 18:213–216

    Google Scholar 

  • Chebbani R, Djilli K, Roose E (2009) Étude des risques d'érosion dans le bassin versant de l’Isser. Algérie. Bull Réseau Erosion 19:85–95

  • Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of north eastern India using USLE, GIS and remote sensing. Water Resour Manag 22:1783–1798. https://doi.org/10.1007/s11269-008-9253-9

    Article  Google Scholar 

  • Dahri N, Abida H (2017) Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ Earth Sci 76:302–314. https://doi.org/10.1007/s12665-017-6619-4

    Article  Google Scholar 

  • De Jong SM, Paracchini ML, Bertolo F, Folving S, Megier J, De Roo APJ (1999) Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena 37:291–308. https://doi.org/10.1016/S0341-8162(99)00038-7

    Article  Google Scholar 

  • De Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. I: theory input and output. Hydrol Process 10:1107–1117. https://doi.org/10.1002/(SICI)1099-1085(199608)10

    Article  Google Scholar 

  • Deleau MMP, Laffite R (1951) Carte Géologique de l’Algérie, 1/50,000, Alger, Algérie. Service de la Carte Géologique de l’Algérie

  • Demmak A (1982) Contribution à l’étude de l’érosion et des transports solides en Algérie septentrionale. Doctoral dissertation, University of Pierre et Marie Curie

  • Djellab S, Mebarkia N, Neffar S, Chenchouni H (2019) Diversity and phenology of hoverflies (Diptera: Syrphidae) in pine forests (Pinus halepensis Miller) of Algeria. J Asia Pac Entomol 22:766–777. https://doi.org/10.1016/j.aspen.2019.05.012

    Article  Google Scholar 

  • Djoukbala O, Mazour M, Hasbaia M, Benselama O (2018) Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environ Earth Sci 77:345–313. https://doi.org/10.1007/s12665-018-7532-1

    Article  Google Scholar 

  • Dragićević S, Lai T, Balram S (2015) GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International 45:114–125. https://doi.org/10.1016/j.habitatint.2014.06.031

    Article  Google Scholar 

  • Eastman JR (2006) IDRISI Kilimanjaro: guide to GIS and image processing. Clark Labs, Clark University, Worcester

    Google Scholar 

  • Effat HA, Hegazy MN (2014) Mapping landslide susceptibility using satellite data and spatial multicriteria evaluation: the case of Helwan District, Cairo. Appl Geomat 6:215–228. https://doi.org/10.1007/s12518-014-0137-9

  • El Jazouli A, Barakat A, Ghafiri A, El Moutaki S, Ettaqy A, Khellouk R (2017) Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 4:25–12. https://doi.org/10.1186/s40562-017-0091-6

  • Fallah M, Kavian A, Omidvar E (2016) Watershed prioritization in order to implement soil and water conservation practices. Environ Earth Sci 75:1248–1217. https://doi.org/10.1007/s12665-016-6035-1

    Article  Google Scholar 

  • Flanagan DC, Nearing MA (1995) USDA-water erosion prediction project: hillslope profile and watershed model documentation (Vol. 10). NSERL report, USA

  • Guidoum A, Nemouchi A, Hamlat A (2014) Modeling and mapping of water erosion in northeastern Algeria using a seasonal multicriteria approach. Arab J Geosci 7:3925–3943. https://doi.org/10.1007/s12517-013-1112-1

    Article  Google Scholar 

  • Hallouz F, Meddi M, Mahé G, Alirahmani S, Keddar A (2018) Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (northwest of Algeria). Water Science 32:79–88. https://doi.org/10.1016/j.wsj.2017.12.004

    Article  Google Scholar 

  • Hamoudi A, Morsli B, Roose E (2008) Caractérisation et analyse des aménagements de DRS en zone Est de l'Algérie. In: Roose E, Alibergel J, De Moni G (eds) Efficacité de la gestion de l'eau et de la fertilité des sols en milieux semi-arides, actes de la session 7 organisée par le réseau E-GCES au sein de la conférence ISCO de Marrakech (Maroc). pp.204–209. Éditions des archives contemporaines, France

  • Kachouri S, Achour H, Abida H, Bouaziz S (2015) Soil erosion hazard mapping using analytic hierarchy process and logistic regression: a case study of Haffouz watershed. Arab J Geosci 7:4257–4268. https://doi.org/10.1007/s12517-014-1464-1

    Article  Google Scholar 

  • Kheir RB, Abdallah C, Khawlie M (2008) Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Eng Geol 99:239–254. https://doi.org/10.1016/j.enggeo.2007.11.012

    Article  Google Scholar 

  • Kheir RB, Shomar B, Greve MB, Greve H (2014) On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: the case study of Lebanon. J Geochem Explor 147:250–259. https://doi.org/10.1016/j.gexplo.2014.05.015

    Article  Google Scholar 

  • Knisel WG (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. US Dept. of Agriculture. Conservation research report

  • Lagacherie P, Álvaro-Fuentes J, Annabi M, Bernoux M, Bouarfa S, Douaoui A, Olivier G, Ali H, Luca M, Rachid M, Mohammed S, Damien R, Sabir M (2018) Managing Mediterranean soil resources under global change: expected trends and mitigation strategies. Reg Environ Chang 18:663–675. https://doi.org/10.1007/s10113-017-1239-9

    Article  Google Scholar 

  • Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4:5–22. https://doi.org/10.1111/1467-9671.00035

    Article  Google Scholar 

  • Michiels P, Gabriels D, Hartmann R (1992) Using the seasonal and temporal precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena 19:43–58. https://doi.org/10.1016/0341-8162(92)90016-5

    Article  Google Scholar 

  • Mihi A, Tarai N, Chenchouni H (2019a) Can palm date plantations and oasification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands? Ecol Indic 105:365–375. https://doi.org/10.1016/j.ecolind.2017.11.027

    Article  Google Scholar 

  • Mihi A, Nacer T, Chenchouni H (2019b) Monitoring dynamics of date palm plantations from 1984 to 2013 using Landsat time-series in Sahara Desert oases of Algeria. In: El-Askary HM et al (eds) Advances in remote sensing and geo informatics applications. Springer Nature, Switzerland, pp 225–228

    Chapter  Google Scholar 

  • Monnier G, Boiffin J, Papy F (1996) Réflexions sur l'érosion hydrique en conditions climatiques et topographiques modérées : cas des systèmes de grande culture de l’Europe de l’Ouest, Cah. ORSTOM, sér. Pédol. 22:123–131

    Google Scholar 

  • Morgan RPC (2001) A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model. Catena 44:305–322. https://doi.org/10.1016/S0341-8162(00)00171-5

    Article  Google Scholar 

  • Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, Chisci G, Torri D, Styczen ME (1998) The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms: Earth Surf. Process. Landforms 23:527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23

  • Nearing MA, Pruski FF, O'neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59:43–50

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute

  • Patil RJ (2018) Spatial techniques for soil erosion estimation: remote sensing and GIS approach. Springer Nature, Switzerland

    Book  Google Scholar 

  • Peláez JI, Lamata MT (2003) A new measure of consistency for positive reciprocal matrices. Comput Math Appl 46:1839–1845. https://doi.org/10.1016/S0898-1221(03)90240-9

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63:965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Raclot D, Le Bissonnais Y, Annabi M, Sabir M, Smetanova A (2018) Main issues for preserving Mediterranean soil resources from water erosion under global change. Land Degrad Dev 29:789–799. https://doi.org/10.1002/ldr.2774

    Article  Google Scholar 

  • Radoane M, Vespremeanu-Stroe A (2016) Landform dynamics and evolution in Romania. Springer Nature, Switzerland

    Google Scholar 

  • Remini W, Remini B (2003) La sédimentation dans les barrages de l’Afrique du nord. LARHYSS Journal 2:45–54

    Google Scholar 

  • Roy HG, Fox DM, Emsellem K (2018) Impacts of vineyard area dynamics on soil erosion in a Mediterranean catchment (1950-2011). J Land Use Sci 13:118–129. https://doi.org/10.1080/1747423X.2017.1385654

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Sun W, Shao Q, Liu J, Zhai J (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 121:151–163. https://doi.org/10.1016/j.catena.2014.05.009

    Article  Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112:228–245. https://doi.org/10.1016/j.geomorph.2009.06.009

    Article  Google Scholar 

  • Toubal AK, Achite M, Ouillon S, Dehni A (2018) Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ Monit Assess 190:210. https://doi.org/10.1007/s10661-018-6580-z

    Article  Google Scholar 

  • Van der Knijff JM, Jones R J A, Montanarella L (2000) Soil erosion risk: assessment in Europe. Space Applications Institute. 34p

  • Williams JR, Nicks AD, Arnold JG (1985) Simulator for water resources in rural basins. J Hydraul Eng 111:970–986. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970)

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Hyattsville, Maryland, USA

  • Wischmeier WH, Smith DD, Uhland RE (1958) Evaluation of factors in the soil-loss equation. Agric Eng 39:458–462

    Google Scholar 

  • Yin S, Zhu Z, Wang L, Liu B, Xie Y, Wang G, Li Y (2018) Regional soil erosion assessment based on a sample survey and geostatistics. Hydrol Earth Syst Sci 22:1695–1712. https://doi.org/10.5194/hess-22-1695-2018

    Article  Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44:168–173

    Google Scholar 

  • Ziadat FM, Taimeh AY (2013) Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad Dev 24:582–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihi, A., Benarfa, N. & Arar, A. Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing. Appl Geomat 12, 179–191 (2020). https://doi.org/10.1007/s12518-019-00289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-019-00289-0

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy