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Motivation

Main Problem

“About 12 million people in the U.S. are misdiagnosed in
outpatient care every year.” - Harvard School of Public Health

AI as a promising solution to misdiagnoses

Convolutional Neural Network performed better at detecting
melanomas in comparison to 58 dermatologists from 17 countries
(The International Oncology Network, 2018)
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Today’s talk

Heart Disease Diagnosis AI and Medical Imaging Interpreter

Mathematical Algorithms
Results

Contribution

First model outperformed some other algorithms at detecting
absence of heart disease
Second model achieved 94.55% accuracy in detecting
meningioma tumors. The second best method got an accuracy
of 85.64%.
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First Model: Heart Disease Diagnosis
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Initial Layers

Input Layer: Cardiovascular Risk Factors and Indicators
Columns: # of samples; Rows: # of features (symptoms)

X [0] =


x1,1 . . . x1,237
x2,1 . . . x2,237

· · · . . . · · ·
x13,1 . . . x13,237


First Hidden Layer Calculation:

Z [1] = W [1]X [0] + B [1]

Z [n]: Matrix representation of the n layer
W [n]: Randomly initialized weights matrix
B [n]: Randomly initialized bias matrix

Sample Information to Matrix Matrices Dimensionalities
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Forward Propagation

1) Z [1] = W [1]X [0] + B [1] := Layer 1

2) ReLU(x) =

{
x if x > 0

0 if x ≤ 0

3) A[1] = ReLU(Z [1])
4) Z [2] = W [2]A[1] + B [2] := Layer 2
5) Process is repeated until reaching the output layer composed
of one neuron
6) Sigmoid(z) = 1

1+e−z ,D : (−∞,∞),R : (0, 1)

7) Binary Classifications: Ŷ =

{
1 if Sigmoid(z) ≥ 0.5

0 if Sigmoid(z) < 0.5
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Backpropagation

Loss Function: Binary Cross Entropy Loss

BCE = − 1
N

∑N
i=0[yi log(ŷi ) + (1− yi )log(1− ŷi )]

yi : Actual target (0 or 1)

ŷi : Predicted probability of the target (not yet rounded, that
is just the Sigmoid(z) of the last layer)

N: # Samples fed to the model at a time
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We have to sufficiently minimize the loss function. Let’s use
partial derivates and the chain rule to do it.

∂BCE
∂W = ∂BCE

∂ŷ ·
∂ŷ
∂Z ·

∂Z
∂W

∂BCE
∂B = ∂BCE

∂ŷ ·
∂ŷ
∂Z ·

∂Z
∂B

We can update the weights’ and bias’ parameters to make the
loss get closer to zero. (This happens in every layer from the
end to the beginning)

New W
[5]
numbers = W

[5]
numbers − α ∂BCE

∂W
[5]
variables

(W
[5]
numbers)

New B
[5]
numbers = B

[5]
numbers − α ∂BCE

∂B
[5]
variables

(B
[5]
numbers)

Note: One random sample is loaded at a time (SGD).
Definition: An epoch is when all the samples in the training
dataset have gone through the model.
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Gradient Descent Intuition
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Determination of Number of Epochs

Accuracy Analysis

VDacc,n = PTEn
TTVD

· 100

95% CI Marginn =

(
196

√
VDacc,n(1−VDacc,n)

N

)
PTEn = Correct Predicted Targets after the Epoch n

VDacc,n = Validation Data Accuracy

TTVD = Total Targets in the Validation Dataset (same as #
samples in VD)

Note: The data was standarized but regarding their corresponding
feature and the dataset was split in three: Xtest ,Xtrain, and Xval
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Second Model: Medical Imaging Interpreter

Four classes:
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Convolutional Neural Network (CNN)

Convolutional Layer
Example: Valid Cross-Correlation

Y1 = B1 + X1 ⋆ K1,2 + X2 ⋆ K1,2 + X3 ⋆ K1,3

Y2 = B2 + X1 ⋆ K2,1 + X2 ⋆ K2,2 + X3 ⋆ K2,3

In general,
Y1 = B1 + X1 ⋆ K1,2 + X2 ⋆ K1,2 + · · ·+ Xn ⋆ K1,n

Y2 = B2 + X1 ⋆ K2,1 + X2 ⋆ K2,2 + · · ·+ Xn ⋆ K1,n

. . .

Yd = Bd + X1 ⋆ Kd ,1 + X2 ⋆ Kd ,2 + · · ·+ Xn ⋆ Kd ,n
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Other types of layers used

Max-pooling:

Average-pooling: Same pro-
cess as max-pooling but comput-
ing the average
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Backpropagation

One Hot Encoding:

glioma tumor: [1,0,0,0]

meningioma tumor:
[0,1,0,0]

no tumor: [0,0,1,0]

pituitary tumor: [0,0,0,1]

Cross Entropy Loss:
CEL = −

(
1
n

)∑n
i=1

∑c
j=1(y truei ,j)log(y predi ,j)

n = Number of samples in
the batch

i = index of the sample
(ranges from 1 to 16)

j = index of possible labels
(ranges from 1 to 4)

y truei ,j = true label for
sample i and label j

y predi ,j = predicted
probability for sample i and
label j
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The parameters’ updates of the outer layer would look like this
(slightly modified because of momentum):

Ki ,j
(3)
numbers ← Ki ,j

(3)
numbers − α ∂L

∂Ki,j
(3)
variables

(Ki ,j
(3)
numbers)

Bi ,j
(3)
numbers ← Bi ,j

(3)
numbers − α ∂L

∂Bi,j
(3)
variables

(Bi ,j
(3)
numbers)

In order to change the parameters for hidden layers, keep in mind
that Y (2) = X (3).

∂L

∂K
(2)
i,j

= X
(2)
j ⋆ ∂L

∂Y
(2)
i

= X
(2)
j ⋆ ∂L

∂X
(3)
i

∂L

∂B
(2)
i

= ∂L

∂Y
(2)
i

= ∂L

∂X
(3)
j

The same algorithm can be used to find the partials of the other
hidden layers and update those parameters.
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What’s momentum?

Vt = βVt−1 + α∇wtL(Wt ,X , y) , Wt+1 = Wt − Vt

∇wtL(Wt ,X , y) :Gradient of the Loss Function w.r.t a
learnable parameter (will be applied to all contained in the
model)

α: Learning rate

Vt : Velocity at time step t

Wt : A model parameter at time step t

β: Momentum coefficient

Note: Vt−1 is initialized as V0 = 0. Accelerates convergence.
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Both models’ specific details

Note:

ReLU(x) =

{
0 if x ≤ 0

x if x > 0
, ReLU ′(x) =

{
0 if x ≤ 0

1 if x > 0
Workflows:
First Model:

Layers’ output neurons:

First (after the input
layer): 360
Second: 180
Third: 90
Fourth: 45
Fifth (last): 1

Activation functions:
ReLU, Sigmoid (end)

Learning Rate: 0.01

Loss: BCE

Optimization Algorithm:
SGD

# Epochs: 482
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Second Model:

1 Conv. Layer: 16 kernels with K matrices of shape 3x3; ReLU;
Batch Normalization, Max-pooling

2 The same process is repeated but now the inputs are the
results obtained.

3 After that, the same happens with the additional step of
average pooling.

4 Then, all the information is converted into a matrix where
each row is a sample, and each column the information
extracted per sample.

5 Standard Feedforward Neural Network: first layer with 120
neurons, ReLU, Second Layer with 84 neurons, ReLu, output
layer with 4 neurons. Output Layer: 16x4 matrix where each
row is a sample and each column the predicted probability for
the classes.
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Second model details

Learning rate: 0.01

Momentum coefficient: 0.9

Batch Normalization: Each batch of size 16 is fed to the
network

x̂ = x−x̄√
V (x)+10−5

, y = γx̂ + β

where γ and β are learnable parameters
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Results

First Model: Heart Disease Diagnosis AI
Epoch selection

Data Sizes:
Training: 237 (79.8%)
Validation: 30 (10.1%)
Testing: 30 (10.1%)
Validation Accuracy: 86.67%
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Confusion Matrix for First Model (Testing Dataset)

Note: 0 indicates
absence and 1 presence.

Overall Accuracy:
80%

Absence: 88.2%

Presence: 69.2%
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Results

Second Model: Medical Imaging Interpreter AI
Epoch selection

Data Sizes:
Training: 2870 (87.92%)
Validation: 197 (6.03%)
Testing: 197 (6.03%)
Validation Accuracy: 70.56%
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Confusion Matrix for Second Model (Testing Dataset)

Figure: 0 represents Glioma Tumor, 1
Meningioma Tumor, 2 No Tumor, and 3
Pituitary Tumor

Overall Accuracy: 71.07%

Meningioma: 94.55%

No Tumor: 88.89%

Pituitary: 86.8%

Glioma: 23.7%
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Discussion and Conclusion

First Model: The meaningful contribution of the model is
that it outperforms other proposed machine learning
algorithms published from the scientific community at
detecting absence (Nashif, Raihan, Islam, & Imam, 2018)
such as an artificial neural network by 24.78% and a Naive
Bayes algorithm by 5.32%.

Second Model: For the four-class classification task, the
model achieves 94.55% accuracy in detecting meningioma
tumors. As a reference, the second-best method (Google
Vision Transformer) from recent machine learning research
projects in the community acquired a 85.64% accuracy for the
same task.
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Appendix Slides - Matrix presentation of sample
information

Consider 237 samples as vectors (there are 13 features per each):

s1 = < v1,1, v1,2, . . . , v1,13 >
s2 = < v2,1, v2,2, . . . , v2,13 >

. . .
s237 = < v237,1, v237,2, . . . , v237,13 >

Each node in the input layer represents the data per feature:

x1 = < v1,1, v2,1, . . . , v237,1 >
x2 = < v1,2, v2,2, . . . , v237,2 >

. . .
x13 = < v1,13, v2,13, . . . , v237,13 >
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Appendix Slides - Matrix dimensionalities

Note:

# Rows in weights’, bias matrix, and z matrix: # Neurons in
the layer

# Cols in weights’ matrix: # Neurons in the previous layer.

# Cols in the z matrix and 1’s matrix: # Samples in the
previous layer
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Further Reading

Complete Research Paper: Daza Vigo, E. S. (2023).
Machine Learning Approaches for Precision Medicine.
Retrieved from https://www.researchgate.net/

publication/383692584_Machine_Learning_

Approaches_for_Precision_Medicine

You can also scan the QR code to access the paper.
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