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Abstract
In a groundbreaking paper, Calderbank et al. es-
tablished that quantum stabilizer (qubit) codes can
be represented by self-orthogonal additive codes
over GF(4)n. In this presentation, we specifically
look at the representation of 0-dimensional qubit
codes by self-dual additive codes. Self-dual addi-
tive codes are additive subgroups of GF(4)n and
are classified by their length and their minimum
distance (a quantity proportional to the number of
errors the code can correct). Additionally, self-
dual additive codes can be generated by graphs,
though many such current codes in literature are
constructed from circulant graphs and their varia-
tions.

We present a new code-construction from gen-
eralized Toeplitz graphs to generate new zero-
dimensional qubit codes. Let G be a finite group.
A generalized Toeplitz graph Γ = TG(S) has the
vertex set V (Γ) = G and the edge set E(Γ) =
{(v,sv) : s ∈ S,sv ∈ G}. Using the given gener-
alized Toeplitz construction and randomized com-
puter search, we obtained 66- and 93-length qubit
codes that improve the minimum distance of the
current codes by one.
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Self-Dual Additive Codes

Let GF(q) be an alphabet, q ∈ N. An additive code
of length n over GF(q) is any additive subgroup of
GF(q)n. They are often represented as a generator
matrix, whose rows additively span the subgroup.
Under the Hermitian trace inner product ∗,

C∗ := {⃗x ∈ GF(q)n : ∀⃗c ∈C, c⃗∗ x⃗ = 0}.
C is called self-orthogonal if C ⊆ C∗ and self-dual if
C =C∗. Codes whose codewords all have even weight
are called Type II; else, they are Type I.

From graphs to QECCs

Danielson and Parker An n×n graph adjacency ma-
trix A generates a self-dual additive code over GF(4)
defined by A+ωI with parameters [[n,0,d]]2 [3] They
detect d −1 errors and correct

⌊d−1
2

⌋
errors.

Calderbank et al. A self-orthogonal additive
(n,2n−k) F4 code C, where all elements of C∗\C have
minimum weight greater than or equal to d, corre-
sponds to a quantum error correction code with length
n, dimension k, and minimum distance d[2].

0-dimensional QECCs are important for testing the
accuracy of quantum computers. Using these theorems
lets us efficiently construct 0-dimensional QECCs.

Generalized Toeplitz Graphs

Circulant Graphs are commonly used to generate
QECCs[4] and have a circulant adjacency matrix:

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1


Toeplitz graphs generalize circulant graphs and have
a Toeplitz adjacency matrix:

2 3 1 0 −1
1 2 3 1 0
9 1 2 3 1
0 9 1 2 3
2 0 9 1 2



Definition

Let G be a semigroup, S ⊂V ⊆ G, with |V | finite.

The generalized Toeplitz graph [1] Γ = TV(S)
has

V (Γ) =V

E(Γ) = {(v,sv) : s ∈ S,sv ∈V}
To ensure that the graph is simple and undirected,
S =−S and 1 /∈ S.
We consider graphs with V = G and G a group.

Computational Methods

Algorithm 1 Pseudocode to Generate GT Graph
Require: A ⊆V \{1},A = A−1

1: for v ∈V do
2: for a ∈ A do
3: if av ∈V then

Add edge (v,av) to graph Γ

4: end if
5: end for
6: end for

Algorithm 2 Pseudocode to Generate GT Codes
1: G is a group of order n
2: dmax is minimum distance
3: for i = 1 → 109 do
4: A := RandomSubset(G)\{1}
5: Γ := ToeplitzGraph(A,G)
6: Ad jMat := Ad jacencyMatrix(Γ)
7: C := AdditiveCode(Ad jMat +ωI)
8: if Veri f yMinDistance(C,dmax) = true then
9: You have a code, minimum distance at least d!

10: end if
11: end for

Coding Theory Results
From the adjacency matrices of generalized Toeplitz graphs, we discovered two new QECCs of lengths n = 66 and n = 93 with respective minimum distances
d = 17 and d = 22, improving upon previous best minimum distances of d = 16 and d = 21. The following codes were generated from a randomized search
using the MAGMA programming language.

Codes of New Type

Table 1:Optimal Codes of a Type Unattainable via Circulant Graphs [4]

Γn dmin(C(Γn)) Type Group ID A k(Γn) |Aut(Γn)|
Γ8 4 I G8,2 A18 4 48
Γ12 6 I G12,2 A12 6 12
Γ20 8 I G20,5 A20 6 40
Γ22 8 I G22,1 A22 10 22
Γ28 10 I G28,3 A28 16 28
Γ36 12 II G36,5 A36 13 72

Directly Constructed Codes

Table 2:Optimal codes created using a direct construction

Code Order Group Min Dist
[[55,0,16]] 55 Z5⋉Z11 16
[[81,0,20]] 81 SmallGroup(81,8) 20

Code Tables

Graph Theory Results

Generalized Toeplitz Graph Example

The GT graph TZ2⋊Z3
({(0,1),(0,2),(1,2)}).
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Generalized Toeplitz Properties

Let S ⊂ G be the defining set, and Γ = TG(S) be the generalized toeplitz
graph generated from S.

• If G is a group, then a unique S produces a unique edge set. (ie.
A ̸= B ⇒ E(TV(A)) ̸= E(TV(B)).)

• The complement Γ := TG((G\S)\{1}).

• If G is a semigroup, then TG(S) is |S|-regular

• Let G be a finite group. Then the valence of TG(S) is even if S contains an
even number of involutions.

• Let G be a finite group with |G|= n. Let H ≤ G be a subgroup such that
[G : H] = 2. Let Kn

2
denote the complete graph on n/2 vertices. For

H∗ = H \{1},
TG(H∗)∼= Kn

2
∪Kn

2

• Let G, H be finite groups. If G ∼= H with ϕ : G → H, then

TG(S)∼= TH(ϕ(S))
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