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1 Introduction

Given a group G of linear transformations and integers m and s, let

E(G, m) = {x ∈ G | xm = 1}, (1)

and

E(G, m, s) =






x ∈ E(G, m)

x has s distinct eigenvalues or

conjugate pairs of eigenvalues






. (2)

(For each group G we consider below, we will specify more precisely what s stands for). Also

let

N(G, m) = number of conjugacy classes of G in E(G, m),

N(G, m, s) = number of conjugacy classes of G in E(G, m, s).

For Γ any finitely generated abelian group and G a Lie group, one can consider the space of ho-

momorphisms Hom(Γ, G) and the space of representations of Γ in G, Rep(Γ, G) ≡ Hom(Γ, G)/G
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(where G acts by conjugation); using this notation, E(G, m) = Hom(Z/mZ, G) and N(G, m) =

|Rep(Z/mZ, G)|. For the case Γ = Zn, the spaces Hom(Zn, G) and Rep(Zn, G) have been stud-

ied for various Lie groups G in [3, 1, 2, 4] (and references therein), where there has been interest

in their number of path-connected components and their cohomology groups.

It is the purpose of this paper to compute N(G, m) = |Rep(Z/mZ, G)| and N(G, m, s) for

G a unitary, orthogonal, or symplectic group. Unlike Rep(Γ, G) for Γ = Zn, the representation

space Rep(Z/mZ, G) is a finite set, so we can count its number of elements. The results are

summarized in Table 1.

The numbers N(G, m, s) have never been studied before in the mathematical literature.

What motivated their definition, as well as the definition of N(G, m), was the need to find

a formula for the number of certain vacua in the quantum moduli space of M-theory com-

pactifications on manifolds of G2 holonomy. In that context, the numbers N(SU(p), q) and

N(SU(p), q, s), where q and p are relatively prime, were computed in [8]. These numbers are

related to symmetry breaking patterns in grand unified theories, with the number N(SU(p), q, s)

being particularly significant as s is related to the number of massless fields in the gauge theory

that remains after the symmetry breaking. The connections with symmetry breaking pat-

terns arise from the fact that if M is a manifold and π1(M) is its fundamental group, then

Rep(π1(M), G) is the moduli space of isomorphism classes of flat connections on principal

G-bundles over M ; in grand unified theories arising from string or M-theory, these flat connec-

tions (called Wilson lines) serve as a symmetry breaking mechanism. For more on the physical

applications and implications of these numbers, see [9].

As for N(G, m), certain cases have been studied previously in the mathematical literature,

using different techniques than ours. Two of the quantities we derive, Theorems 2.2 and 3.1,

were obtained in [5, 6] using the full machinery of Lie structure theory with a generating

function approach; in [16, 7], the case of certain prime power orders is computed; and in [11],

Theorem 2.6 is obtained. Our methods are different; they are purely combinatorial and direct,

and apply not only to simply connected or adjoint groups as in [5, 6], so we are able to derive

formulas for O(n), SO(n), and U(n) alongside those for SU(n) and Sp(n).

Other aspects of elements of finite order in Lie groups have been studied. See for example

[10, 13, 12, 14, 15].

In addition to the quantities N(G, m) and N(G, m, s), which count conjugacy classes of

elements of any order dividing m, we consider also conjugacy classes of elements of exact order

m in G: let
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F (G, m) = {x ∈ G | xm = 1, xn 6= 1 for all n < m},

and

F (G, m, s) =






x ∈ F (G, m)

x has s distinct eigenvalues or

conjugate pairs of eigenvalues






.

Also let

K(G, m) = number of conjugacy classes of G in F (G, m),

K(G, m, s) = number of conjugacy classes of G in F (G, m, s).

Since

N(G, m) =
∑

d|m

K(G, d),

N(G, m, s) =
∑

d|m

K(G, d, s),

we have, by the Mobius inversion formula,

K(G, m) =
∑

d|m

µ(d)N(G,
m

d
), (3)

K(G, m, s) =
∑

d|m

µ(d)N(G,
m

d
, s), (4)

where µ(d) is the Mobius function.

The reader is invited to obtain K(G, m) and K(G, m, s) from Table 1 and equations (3)

and (4) above.
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Table 1: Number of conjugacy classes of elements of finite order in Lie groups

G m N(G, m) N(G, m, s)

U(n) any
(

n+m−1
m−1

)
s
n

(
n
s

)(
m
s

)

SU(n) (n, m) = 1 1
m

(
n+m−1

n

)
s

nm

(
n
s

)(
m
s

)

any 1
m

∑

d|(n,m)
φ(d)

(
(n+m−d)/d

n/d

)
1
m

∑

d|(n,m)

∑

j≥0
φ(d)

(
(n+m−jd−d)/d

(n−jd)/d

)(
m/d

j

)(
jd
s

)

(−1)j+s

Sp(n) any
(

n+[ m
2

]
n

)
s
n

(
n
s

)(
[ m
2

]+1
s

)

SO(2n + 1) any
(

n+[ m
2

]
n

)
s
n

(
n
s

)(
[m

2
]+1
s

)

O(2n + 1) 2k + 1
(

n+[ m
2

]
n

)
s
n

(
n
s

)(
[m

2
]+1
s

)

O(2n) 2k + 1
(

n+[ m
2

]
n

)
s
n

(
n
s

)(
[m

2
]+1
s

)

SO(2n) 2k + 1
(

n+[ m
2

]−1
n−1

)
n+m−1

n
s
n

(
n
s

)(
[m

2
]

s

)
m+1−s

[m
2
]+1−s

O(2n + 1) 2k 2
(

n+ m
2

n

)
2s
n

(
n
s

)(
m
2

+1
s

)

O(2n) 2k
(

n+ m
2
−1

n−1

)
4n+m

2n
2n−s−1

n−s

(
n−2
s−1

)(
m
2

+1
s

)

SO(2n) 2k
(

n+ m
2

n

)

+
(

n+ m
2
−2

n

)
s
n

(
n
s

) [

2
(

m
2

s

)

+
(

m
2
−1

s−2

)]
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2 Counting conjugacy classes in unitary groups

We begin with N(U(n), m), with no conditions on the integers m and n. Since every element

of U(n) is diagonalizable, every conjugacy class has diagonal elements. The diagonal entries

are mth roots of unity, e2πikj/m, kj = 0, . . ., and m − 1, j = 1, . . . , n. In each conjugacy class

there is a unique diagonal element for which the diagonal entries are ordered so that the kj

are nondecreasing with j. Therefore, N(U(n), m) is the number of such diagonal matrices with

nondecreasing kj.

Let {nk} = (n0, . . . , nm−1),
∑m−1

k=0 nk = n with nk ≥ 0. Such a sequence is a weak m-

composition of n, and it is well-known that there are
(

n+m−1
m−1

)

such sequences [17]. There is

a bijective map between such sequences and diagonal matrices in U(n) with ordered entries:

{nk} corresponds to the diagonal U(n) matrix with nk repetitions of the eigenvalue e2πik/m:

diag(1, 1, · · · , 1
︸ ︷︷ ︸

n0

, e2πi/m, · · · , e2πi/m

︸ ︷︷ ︸

n1

, · · · , e2(m−1)πi/m, · · · , e2(m−1)πi/m

︸ ︷︷ ︸

nm−1

) . (5)

Thus N(U(n), m) is the number of weak m-compositions of n, so we obtain the following

formula.

Theorem 2.1 For any positive integers n and m,

N(U(n), m) =

(

n + m − 1

m − 1

)

(6)

Note that N(U(n), m) is also the number of inequivalent unitary representations of Z/mZ of

dimension n.

Now we turn to the special unitary group SU(p), and calculate N(SU(p), q) where (p, q) = 1.

Given a sequence {nk}, k = 0, . . . q − 1 with
∑q−1

k=0 nk = p, nk ≥ 0 (i.e., a weak q-composition

of p), the determinant of the corresponding matrix x is exp 2πi
q

(
∑q−1

k=0 knk

)

, so the condition

det x = 1 requires
∑

k knk ≡ 0 mod q. Thus for a weak q-composition of p to determine a

matrix in SU(p), we need
∑

k knk ≡ 0 mod q.

We now show the family of weak q-compositions of p are partitioned into sets of size q where

in each such set there is exactly one such composition with
∑

knk ≡ 0. Consider the q distinct

sequences

{n
(j)
k } = {nk+j} j = 0, 1, . . . , q − 1 , indices are understood mod q. (7)

(The only way for the sequences not to be distinct is if all nk were equal, which would imply

qnk = p, impossible when (p, q) = 1). The determinant of the matrix xj corresponding to the
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jth sequence is exp 2πi
q

(
∑q−1

k=0 knk+j

)

. Since (p, q) = 1 and

q−1
∑

k=0

knk+j −
q−1
∑

k=0

knk+j+1 ≡ p mod q , (8)

exactly one of the q values of j gives the sum
∑

k knk+j ≡ 0 mod q, so det(xj) = 1 for that

value of j. We conclude:

Theorem 2.2 For (p, q) = 1,

N(SU(p), q) =
1

q

(

p + q − 1

q − 1

)

=
(p + q − 1)!

p! q!
. (9)

Now we turn to counting conjugacy classes whose elements have a given number s of distinct

eigenvalues. We begin with N(U(n), m, s). A U(n) matrix with s distinct eigenvalues (which

has centralizer of the form Πs
i=1U(ni)) corresponds to a sequence {na} = (n1, . . . ns),

∑s
a=1 na =

n, na ≥ 1. Such a sequence is an s-composition of n and there are
(

n−1
s−1

)

such sequences

[17]). There are also
(

m
s

)

ways to choose the s eigenvalues themselves. We therefore obtain the

following formula.

Theorem 2.3 For any positive integers n and m,

N(U(n), m, s) =

(

n − 1

s − 1

)(

m

s

)

=
s

n

(

n

s

)(

m

s

)

. (10)

For the special unitary group, again we impose (p, q) = 1. Given an s-composition of p,

{na} = (n1, . . . ns),
∑s

a=1 na = p, na > 0, consider {λa} = (λ1, . . . , λs) where λa ∈ {0, . . . , q−1}

determine the eigenvalues e
2πiλa

q with multiplicity na of the corresponding matrix. Arrange the
(

q
s

)

s! possibilities for {λa} in sets of size q given by

{λ(j)
a } = (λ1 + j, . . . , λs + j), j = 0, . . . , q − 1 (all numbers are understood mod q). (11)

The determinant of the matrix xj corresponding to the jth choice is

exp
2πi

q

(
s∑

a=1

na(λa + j)

)

.

Since (p, q) = 1 and
∑

a

na(λa + j) −
∑

a

na(λ + j + 1) = p,

exactly one of the q matrices has determinant 1. Since so far neither the λa’s nor the na’s

have been ordered, once we arrange the eigenvalues to have increasing λa’s, each matrix would

appear s! times. Dividing by s!q, we obtain
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Theorem 2.4 For (p, q) = 1,

N(SU(p), q, s) =
1

q

(

p − 1

s − 1

)(

q

s

)

=
s

pq

(

p

s

)(

q

s

)

. (12)

From Theorems 2.2 and 2.4, we deduce an intriguing symmetry between p and q:

Corollary 2.1 For (p, q) = 1,

N(SU(p), q) = N(SU(q), p);

N(SU(p), q, s) = N(SU(q), p, s).

This symmetry has implications involving dualities of gauge theories; see [9].

It is clear that for any G and m, we must have

∑

s

N(G, m, s) = N(G, m). (13)

Since N(G, m, s) = 0 when s > m, the sum is finite. Applying equation (13) to G = U(n) gives

∑

s

(

n − 1

s − 1

)(

m

s

)

=

(

n + m − 1

m − 1

)

, (14)

which is a special case of the Chu-Vandermonde identity [17].

We may also obtain both N(SU(n), m) and N(SU(n), m, s) without requiring (n, m) = 1

via a generating function approach. Let

F (x, t, u) =
m−1∏

k=0

(

1 + u
∞∑

a=1

(tkx)a

)

.

A typical term in F (x, t, u) is

x
∑

nk t
∑

knk us,

where nk, k = 0, . . . , m−1 are nonnegative integers and s is the number of k’s for which nk 6= 0.

If
∑

nk = n and
∑

knk ≡ 0 mod m then the sequence {nk} corresponds to a diagonal SU(n)

matrix of order m with s distinct eigenvalues. To pick out the terms in F (x, t, u) for which
∑

knk ≡ 0 mod m, let ζ = exp 2πi/m and recall

1

m

m−1∑

j=0

ζjb =







1, if m|b

0, else
,

so

G(x, u) =
1

m

m−1∑

j=0

F (x, ζj, u) =
∑

n,s

N(SU(n), m, s)xnus. (15)
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Rewriting
(

1 + u
∞∑

a=1

(tkx)a

)

= (1 − u) +
u

1 − tkx
=

1 − tk(1 − u)x

1 − tkx
,

we have

G(x, u) =
1

m

m−1∑

j=0

m−1∏

k=0

1 − ζkj(1 − u)x

1 − ζkjx
. (16)

For ζj a primitive dth root of unity, we have the factorization (1 − xd) =
∏d−1

l=0 (1 − ζjlx). Since

ζj, j = 0, . . . , m − 1 is a primitive dth root of unity φ(d) times, where φ(d) is Euler’s function,

we have

G(x, u) =
1

m

∑

d|m

φ(d)

[

1 − (1 − u)dxd
]m/d

(1 − xd)m/d
. (17)

Expanding in binomial series gives

G(x, u) =
1

m

∑

d|m

φ(d)
∑

k,j,l≥0

(

k + m/d − 1

k

)(

m/d

j

)(

jd

l

)

(−1)j+l xd(k+j)ul.

Setting d(k + j) = n and l = s, we have

Theorem 2.5 For any positive integers n, m, and s,

N(SU(n), m, s) =
1

m

∑

d|(n,m)

∑

j≥0

φ(d)

(

n/d + m/d − j − 1

n/d − j

)(

m/d

j

)(

jd

s

)

(−1)j+s. (18)

We may deduce from Theorems 2.5 and 2.4 that for (p, q) = 1,

1

q

∑

j≥0

(

p + q − j − 1

p − j

)(

q

j

)(

j

s

)

(−1)j+s =
s

pq

(

p

s

)(

q

s

)

. (19)

For N(SU(n), m) we apply equation (13), or equivalently set u = 1 in G(x, u), and obtain (see

also [11]) the next result.

Theorem 2.6 For any positive integers n and m,

N(SU(n), m) =
1

m

∑

d|(n,m)

φ(d)

(

n/d + m/d − 1

n/d

)

. (20)
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3 Counting conjugacy classes in symplectic groups

The diagonal elements of U(n) and SU(p) that we counted in the previous section belonged to

the maximal tori of those groups. For Sp(n) ≡ Sp(n,C) ∩ U(2n), the maximal torus is

TSp(n) =
{

(e2πiθ1 , . . . , e2πiθn , e−2πiθ1, . . . , e−2πiθn)
}

. (21)

Since Sp(n) is compact and connected, we have Sp(n) =
⋃

x∈G xTSp(n)x
−1. Hence, every element

x ∈ G can be conjugated into the torus, so every conjugacy class has elements in TSp(n). Any

two elements x and x′ of TSp(n) that differ only by θ′l = −θl for some l’s are in the same

conjugacy class; the symplectic matrix El,n+l −En+l,l, where (Eab)cd = δacδbd, conjugates them.

So a conjugacy class is fully determined by n values of θl restricted to [0, 1/2].

Conjugacy classes of elements of order m have a unique element in TSp(n) such that θl ∈
1
m

(0, 1, . . . , [m
2
]) and the θl are nondecreasing as i runs from 1 to n. Following the arguments

leading to Theorem 2.1, and noting that here we have weak ([m
2
] + 1)-compositions of n, rather

than weak m-compositions of n, we obtain our next theorem.

Theorem 3.1 For any positive integers n and m,

N(Sp(n), m) =

(

n + [m
2
]

[m
2
]

)

. (22)

We now consider N(Sp(n), m, s) where s denotes the number of complex conjugate pairs of

eigenvalues. Following the arguments leading to Theorem 2.3, but replacing m by ([m
2
] + 1),

we have

Theorem 3.2 For any positive integers n, m, and s,

N(Sp(n), m, s) =

(

n − 1

s − 1

)(

[m
2
] + 1

s

)

. (23)
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4 Counting conjugacy classes in orthogonal groups

The maximal tori of the different orthogonal groups depend on the parity of l in SO(l) or O(l)

and also on whether the orthogonal group is special or not:

TSO(2n) = {diag(A(θ1), A(θ2), . . . , A(θn))} , (24)

TSO(2n+1) = {diag(A(θ1), A(θ2), . . . , A(θn), 1)} , (25)

TO(2n) =







T1,even = diag(A(θ1), A(θ2), . . . , A(θn))

T2,even = diag(A(θ1), A(θ2), . . . , A(θn−1), B)






, (26)

TO(2n+1) =







T1,odd = diag(A(θ1), A(θ2), . . . , A(θn), 1)

T2,odd = diag(A(θ1), A(θ2), . . . , A(θn),−1)






, (27)

where

A(θ) =




cos 2πθ sin 2πθ

− sin 2πθ cos 2πθ



 ; B =




1

−1



 . (28)

The identity

BA(θ)B−1 = A(−θ) (29)

will become useful below.

With the maximal tori defined as above, every element of the orthogonal group can be

conjugated to the torus, so each conjugacy class has a nonempty intersection with the group’s

maximal torus.

The counting of conjugacy classes depends on the parity of the order m of the elements, so

we treat the odd and even cases separately.

4.1 Odd m

We begin with N(SO(2n+1), m). The block-diagonal matrix diag(B, I2n−2,−1) is an element of

SO(2n+1) and equation (29) shows that conjugation by it takes x ∈ TSO(2n+1) to x′ ∈ TSO(2n+1)

where θ′1 = −θ1 and the other θi remain the same. Similarly, two elements x and x′ of TSO(2n+1)

that differ by θ′l = −θl for any l = 1, . . . , n belong to the same conjugacy class. We therefore

consider only elements of TSO(2n+1) with θl ∈ [0, 1/2] as we did for the symplectic case. As

before, we order the θl to be nondecreasing with l.

For elements of order m, we have θl ∈
1
m

(0, 1, . . . , [m
2
]). So N(SO(2n+1), m) is the number

of weak ([m
2
] + 1)-compositions of n:
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Theorem 4.1 For any positive integer n and any odd integer m = 2k + 1,

N(SO(2n + 1), m) =

(
n +

[
m
2

]

[
m
2

]

)

. (30)

For O(2n+ 1), there are two conjugacy classes of maximal tori, i.e., TSO(2n+1), and T2,odd in

equation (27). However, all elements of T2,odd have even order, so none has order m = 2k + 1.

Therefore, the number of conjugacy classes of elements of odd order in O(2n + 1) is the same

as that for SO(2n + 1), so we get the following result.

Theorem 4.2 For any positive integer n and any odd integer m = 2k + 1,

N(O(2n + 1), m) =




n +

[
m
2

]

[
m
2

]



 . (31)

For O(2n), again T2,even ∈ TO(2n) does not play a role when m is odd. Also, the block diagonal

matrix diag(B, I2n−2) is an element of O(2n), so the results for O(2n + 1) and O(2n) are the

same.

Theorem 4.3 For any positive integer n and any odd integer m = 2k + 1,

N(O(2n), m) =




n +

[
m
2

]

[
m
2

]



 . (32)

Things become more subtle for SO(2n): diag(B, I2n−2) has determinant −1 so it is not an

element of SO(2n). Therefore, it is no longer the case that if x, x′ ∈ TSO(2n) differ only by

θ′i = −θi for some i’s then x and x′ are necessarily in the same conjugacy class. However, the

block diagonal matrix diag(B, B, I2n−4) is in SO(2n), so if θ′l = −θl for an even number of l’s,

so x and x′ are in the same conjugacy class.

There are two cases to consider: θ′1 = θ1 = 0 and θl 6= 0 for all l. In the first case,

A(θ1) = A(θ′1) = I2, and if θ′l = −θl for any additional l ≥ 2 (not necessarily an even number of

times), then x and x′ are in the same conjugacy class. The number of conjugacy classes that are

represented by elements of TSO(2n) with θ1 = 0 is the number of weak
([

m
2

]

+ 1
)

-compositions

of n − 1. In the second case θl 6= 0 for all l, the number of classes is the number of weak
[

m
2

]

-compositions of n; since here, flipping the sign of one θl, say θ′1 = −θ1 and leaving the

others fixed lands in a different conjugacy class, we multiply the number by two to include all

the classes. This leads to the following theorem.
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Theorem 4.4 For any positive integer n and any odd integer m = 2k + 1,

N(SO(2n), m) =

(
n +

[
m
2

]

− 1
[

m
2

]

)

+ 2

(
n +

[
m
2

]

− 1
[

m
2

]

− 1

)

=

(
n +

[
m
2

]

− 1
[

m
2

]

)

n + m − 1

n
. (33)

We now turn to N(SO(2n + 1), m, s), where as for the symplectic groups, s denotes the

number of distinct conjugate pairs of eigenvalues of the elements. For all the orthogonal groups,

there are n θl’s and
(

n−1
s−1

)

= s
n

(
n
s

)

ways to partition them into s nonzero parts. There are
[

m
2

]

+1

possible values for the θi. The same is true for O(2n + 1), and O(2n), yielding the next result.

Theorem 4.5 For any positive integers n and s, and any odd integer m = 2k + 1,

N(SO(2n + 1), m, s) = N(O(2n + 1), m, s) = N(O(2n), m, s) =
s

n

(

n

s

)([
m
2

]

+ 1

s

)

. (34)

The above derivation does not apply to SO(2n) because as before, some classes need to be

counted twice due to the absence of (B, I2n−2) in SO(2n). First, we divide the n eigenvalue

pairs into s nonzero parts (s-compositions of n). In choosing the s eigenvalues out of the
[

m
2

]

+1

possibilities, we differentiate the cases where θ1 = 0, which we count once, from the cases where

θ1 6= 0, which we need to count twice to account for θ′1 = −θ1, θ′l = θl, l > 1 which is in a

distinct conjugacy class. We get the following formula.

Theorem 4.6 For any positive integers n and s and any odd integer m = 2k + 1,

N(SO(2n), m, s) =




n − 1

s − 1













[
m
2

]

s − 1



+ 2





[
m
2

]

s









=
s

n




n

s









[
m
2

]

s




m + 1 − s
[

m
2

]

+ 1 − s
.

4.2 Even m

Unlike the case for odd m, here we will have to consider T2 in both O(2n) and O(2n + 1).

There will also be changes from the odd m case due to the fact that θl = 1/2, corresponding

to A(θl) = −I2, can appear.

For SO(2n + 1), we have essentially the same as we did for odd m, i.e., weak
(

m
2

+ 1
)

-

compositions of n.
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Theorem 4.7 For any positive integer n and any even integer m = 2k,

N(SO(2n + 1), m) =




n + m

2
m
2



 . (35)

For O(2n + 1), we have to consider conjugacy classes with elements in T2,odd of TO(2n+1). But

the counting is exactly the same as in T1,odd, so the next theorem follows.

Theorem 4.8 For any positive integer n and any even integer m = 2k,

N(O(2n + 1), m) = 2




n + m

2
m
2



 . (36)

Turning to O(2n), we note that elements in T2,even have only n − 1 θl’s. Other than that, the

counting is the same as before, and we have

Theorem 4.9 For any positive integers n and any even integer m = 2k,

N(O(2n), m) =




n + m

2
m
2



+




n + m

2
− 1

m
2





=




n + m

2
− 1

m
2




4n + m

2n
.

For SO(2n), again we need to be careful since θ′l = ±θl does not always mean x and x′ are in

the same conjugacy class. Only when at least one of the θi is 0 or 1/2, so that A(θl) = ±I2

for that l, which commutes with B, does θ′l = ±θl mean x and x′ are in the same conjugacy

class. If no θl is 0 or 1/2 then if say θ′1 = −θ1 and θ′l = θl, l > 1, we have a different conjugacy

class for x and x′. The number of conjugacy classes such that at least one θl is 0 or 1/2 is the

number of weak
(

m
2

+ 1
)

-compositions of n − 1 (where we have fixed θ1 = 0) plus the number

of weak
(

m
2

)

-compositions of n − 1 (where we do not allow θl = 0 and we require θl = 1/2 for

some l). The number of conjugacy classes where no θl is 0 or 1/2 is twice the number of weak
(

m
2
− 1

)

-compositions of n. After some algebra we obtain the next result.

Theorem 4.10 For any positive integer n and any even integer m = 2k,

N(SO(2n), m) =




n + m

2
m
2



+




n + m

2
− 2

m
2
− 2



 . (37)

For N(SO(2n+1), m, s), we have the same calculation as for odd m, and for N(O(2n+1), m, s),

we simply double the result to account for the elements in T2,odd, giving
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Theorem 4.11 For any positive integers n and s and any even integer m = 2k,

N(SO(2n + 1), m, s) =
s

n




n

s









m
2

+ 1

s



 ;

N(O(2n + 1), m, s) =
2s

n




n

s









m
2

+ 1

s



 .

Next is O(2n), where T2,even has only n − 1 θl’s, so the contribution from T2,even differs from

that from T1,even by replacing n with n − 1. After some algebra we get the following theorem.

Theorem 4.12 For any positive integers n and s and any even integer m = 2k,

N(O(2n), m, s) =
2n − s − 1

n − s

(

n − 2

s − 1

)(
m
2

+ 1

s

)

. (38)

For SO(2n), for each s-composition of n, the number of conjugacy classes of TSO(2n) with

θl 6= 0, 1/2 for all l is





m
2
− 1

s



 , and the number of conjugacy classes with at least one

θl = 0, 1/2 is the sum of





m
2

s − 1



, which gives the number of conjugacy classes with θ1 = 0,

and





m
2
− 1

s − 1



 which gives the number of conjugacy classes with θl 6= 0 ∀l and θl = 1/2 for

some l. As before, we multiply the number for θl 6= 0, 1/2 by 2, and add the rest. After some

algebra, we have our final result.

Theorem 4.13 For any positive integers n and s and any even integer m = 2k,

N(SO(2n), m, s) =




n − 1

s − 1













m
2

+ 1

s



+





m
2
− 1

s







 . (39)
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