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Abstract. We begin with three formulas involving integer par-
titions, polynomials over Fq, and Dirichlet series that have strong
similarities. These formulas can be unified and extended by a gen-
eral result involving factorization in a free monoid. The key fact
underlying this approach is that for certain subsets S (called cyclo-

tomic sets) of the positive integers, the numerator and denomina-
tor of a certain rational function GS(x) are products of cyclotomic
polynomials. We then investigate properties of cyclotomic sets
and conclude with a connection between certain cyclotomic sets
and commutative algebra.

1. Introduction

We begin by stating three formulas. A glance at them makes it ob-
vious that there is some connection among them. The main goal of
this paper is to explain and extend this connection. It is stated in
terms of free monoids, so in Section 2 we develop the necessary back-
ground information on free monoids. In Section 3 we give a general
formula (Theorem 3.1) involving free monoids and cyclotomic polyno-
mials. This formula is the main result of this paper; what follows are
applications and enhancements. The key fact underlying Theorem 3.1
is that for certain subsets S (called cyclotomic sets) of the positive
integers, both the numerator and denominator of a certain rational
function GS(x) are products of cyclotomic polynomials. We explain
in Section 4 the connection with the three formulas and how they can
be generalized. In Section 5 we investigate properties of cyclotomic
sets, and finally in Section 6 we discuss a connection between certain
cyclotomic sets and commutative algebra.
First formula. By a partition λ of an integer n ≥ 0, we mean a

sequence λ = (λ1, λ2, . . . ) of integers λi satisfying λ1 ≥ λ2 ≥ · · · ≥ 0
and

∑
λi = n. Thus λi = 0 for all but finitely many i. A nonzero λi

is a part of λ. Let f(n) denote the number of partitions of n for which
no part appears exactly once, i.e., for each k ≥ 1 there is not exactly
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one i for which λi = k. For instance, when n = 8 there are six such
partitions: 44, 3311, 2222, 22211, 221111, 11111111. MacMahon [8,
p. 54] proved the following formula (in a dual form):

(1.1)
∑

n≥0

f(n)xn =
∏

k≥1

1− x6k

(1− x2k)(1− x3k)
.

Second formula. Let f(n) denote the number of monic polynomials
H(t) over the finite field Fq such that when H(t) is factored into irre-
ducible factors over Fq, no irreducible factor occurs with multiplicity
one. Such polynomials are called powerful. Then [10][15]

(1.2)
∑

n≥0

f(n)xn =
1− qx6

(1− qx2)(1− qx3)
.

Third formula. Let S denote the set of positive integers m such that
no prime p divides m with multiplicity one, i.e., if p|m then p2|m. Such
integers are called powerful, in analogy to powerful polynomials. (The
irreducible factors in both cases have multiplicity at least two.) Let
ζ(s) denote the Riemann zeta function, i.e., ζ(s) =

∑
n≥1 n

−s (when
the real part of s exceeds 1). Then [4, (10)]

(1.3)
∑

n∈S

n−s =
ζ(2s)ζ(3s)

ζ(6s)
.

Obviously the three formulas are related in some way. The next sec-
tion develops a general result (Theorem 3.1) which we use in Section 4
to explain the three formulas.

2. A free monoid

Let N = {0, 1, 2, . . .}, and let M denote a free commutative monoid
with countably infinitely many generators. In other words, M is iso-
morphic to the monoid N∞ consisting of all infinite sequences u =
(u1, u2, . . . ), where ui ∈ N and only finitely many ui 6= 0, under the
operation of componentwise addition. The monoid M has a unique
basis B = {v(1), v(2), . . .}, where v(i) is the ith unit coordinate vec-
tor, i.e., v(i)i = 1 while v(i)j = 0 for j 6= i. Every u ∈ M can be
uniquely written u = c1v(1) + c2v(2) + · · · , where ci ∈ N and all but
finitely many ci = 0. We call ci the multiplicity of v(i) in u, denoted
ci = µu(v(i)). Let

(2.1) ω : M → Nm

be a monoid homomorphism, where m ∈ P := {1, 2, 3, . . .} or m = ∞.
We call ω a weight on M if ω−1(α) is finite for all α ∈ Nm. In this
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situation we will associate with the pair (M, ω) and a set S ⊆ P a
certain generating function FS(x). In some situations involving cyclo-
tomic polynomials, FS(x) has a simple expression in terms of F∅(x),
as explained in the next section. In subsequent sections we give three
applications by suitable choices of (M, ω), corresponding to the three
formulas of Section 1.
If α = (α1, α2, . . . ) ∈ Nm we use the multivariate notation x

α =
xα1

1 xα2

2 · · · . Regarding (M, ω) as fixed, consider the formal series

F (x) =
∑

u∈M

x
ω(u).

Because for each α ∈ Nm the set ω−1(α) is finite, the series F (x) is
well-defined, i.e., has finite coefficients. Clearly from the definition of
a free commutative monoid and the fact that ω is a homomorphism,
we have

F (x) =
∏

v∈B

(
1 + x

ω(v) + x
2ω(v) + · · ·

)

=
∏

v∈B

(1− x
ω(v))−1,(2.2)

where B is the unique basis for M. Now let S ⊆ P, and define

(2.3) FS(x) =
∑

u∈M
v∈B⇒µu(v)6∈S

x
ω(u).

Thus the sum is over all elements u ∈ M such that no basis element
v ∈ B appears in u with multiplicity belonging to S. In particular,
F (x) = F∅(x).
Since the multiplicities µu(v) can be chosen independently, we obtain

as a generalization of equation (2.2) the identity

(2.4) FS(x) =
∏

v∈B

(
∑

j∈N−S

x
jω(v)

)
.

Example 2.1. Consider the case S = {1}. In other words, in equa-
tion (2.3) we are summing over all elements u ∈ M for which no basis
element has multiplicity one. We could call such elements u powerful.
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Then equation (2.4) becomes

F{1}(x) =
∏

v∈B

(
1 + x

2ω(v) + x
3ω(v) + x

4ω(v) + · · ·
)

=
∏

v∈B

(
1 +

x
2ω(v)

1− x
ω(v)

)

=
∏

v∈B

(
1− x

ω(v) + x
2ω(v)

1− x
ω(v)

)
.

The key observation is that for an indeterminate z,

(2.5)
1− z + z2

1− z
=

1− z6

(1− z2)(1− z3)
.

Hence

F{1}(x) =
∏

u∈B

1− x
6ω(v)

(1− x
2ω(v))(1− x

3ω(v))

=
F (x2)F (x3)

F (x6)
,(2.6)

We would like to find other sets S ⊆ P that yield formulas similar
to equation (2.6). We discuss such sets in the next section.

3. Cyclotomic polynomials and cyclotomic sets

In order to generalize equation (2.6) we introduce cyclotomic poly-
nomials. Let n ≥ 1. The cyclotomic polynomial Φn(x) (which we
normalize to have constant term 1) is the polynomial over the ratio-
nals Q with constant term 1 whose zeros are the primitive nth roots of
1. Thus Φ1(x) = 1− x and

Φn(x) =
∏

1≤r≤n
gcd(n,r)=1

(
x− e2πir/n

)
, n ≥ 2,

and ∏

d|n

Φd(x) = 1− xn.

By a simple Möbius inversion argument, we obtain the well-known
formula

Φn(x) =
∏

d|n

(1− xd)µ(n/d),
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where µ denotes the usual number-theoretic Möbius function. In partic-
ular, a polynomial P (x) ∈ Q[x] is a product of cyclotomic polynomials
if and only if it can be written in the form

P (x) =
(1− xa1) · · · (1− xas)

(1− xb1) · · · (1− xbt)

for some positive integers a1, . . . , as, b1, . . . , bt.
Note. Usually Φn(x) is normalized to be monic. This only makes

a difference when n = 1. According to our definition Φ1(n) = 1 − x,
while traditionally Φ1(x) = x− 1.
Let S ⊆ P, and define the generating function

(3.1) GS(x) =
1

1− x
−
∑

j∈S

xj .

We say that S is a cyclotomic set if GS(x) can be written as a ra-
tional function whose numerator and denominator are finite products
of cyclotomic polynomials. Equivalently, there exist positive integers
a1, . . . , as and b1, . . . , bt for which

(3.2) GS(x) =

∏r
i=1(1− xai)

∏t
j=1(1− xbj )

.

Note that if S is any finite subset of P, then we can write

GS(x) =
NS(x)

1− x
,

where

(3.3) NS(x) = 1− (1− x)
∑

j∈S

xj ∈ Z[x].

Moreover, S is cyclotomic if and only if NS(x) is a (finite) product of
cyclotomic polynomials. By a well-known theorem of Kronecker [7],
this condition is equivalent to NS(x) having all its zeros α on the unit
circle (|α| = 1).
We come to the main result of this paper. The next section explains

how our three formulas in Section 1 are special cases. The original
proofs of the first and third formulas at [8, p. 54] and [4, (10)] are
essentially specializations of our proof of the next result (Theorem 3.1).
The first published proof [15] of the second formula (1.2) does not follow
this paradigm, unlike the later proof at [13, p. 152].
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Theorem 3.1. Suppose that S is cyclotomic, and let GS(x) be as in
equation (3.1). Thus as in equation (3.2) we can write

GS(x) =

∏r
i=1(1− xai)∏t
j=1(1− xbj )

for certain positive integers ai and bj. Then

FS(x) =

∏t
j=1 F (xbj )

∏r
i=1 F (xai)

.

Proof. The argument is a direct generalization of Example 2.1. We
have

FS(x) =
∏

v∈B

(
1

1− x
ω(v)

−
∑

j∈S

x
jω(v)

)
.

But
1

1− x
ω(v)

−
∑

j∈S

x
jω(v) =

∏r
i=1(1− x

aiω(v))
∏t

j=1(1− x
bjω(v))

.

Hence

FS(x) =
∏

v∈B

(∏r
i=1(1− x

aiω(v))∏t
j=1(1− x

bjω(v))

)
.

Comparing with equation (2.2) completes the proof. �

Like many general results in enumerative combinatorics, such as the
Möbius inversion formula [11, Prop. 3.7.1] and the Exponential Formula
[12, Cor. 5.1.6], Theorem 3.1 per se is rather simple and unassuming.
It is the applications that make it interesting. We will give three such
applications in Section 4 that explain the three formulas in Section 1.

Example 3.2. (a) Equation (2.5) shows that the set S = {1} is
cyclotomic.

(b) The set S = {1, 2, 3, 5, 7, 11} is cyclotomic. Indeed,

GS(x) =
Φ6(x)Φ12(x)Φ18(x)

Φ1(x)

=
(1− x12)(1− x18)

(1− x4)(1− x6)(1− x9)
.(3.4)

(c) For any integer k ≥ 1, the infinite set S = {k, k + 1, k + 2, . . . }
is cyclotomic. Indeed,

(3.5) GS(x) = 1 + x+ · · ·+ xk−1 =
∏

d|k
d6=1

Φd(x) =
1− xk

1− x
.
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It is natural to ask whether cyclotomic sets can be classified or
whether they have any interesting properties in addition to being cy-
clotomic. These questions will be the subject of Section 5.

4. The three formulas redux

4.1. MacMahon’s partition formula. Let Par denote the set of all
partitions of all integers n ≥ 0. We make Par into a monoid by the
operation of multiset union of parts, denoted λ ∪ µ. That is, if mi(λ)
is the number of parts of λ equal to i, then mi(λ∪µ) = mi(λ)+mi(µ).
Clearly Par is a free commutative monoid whose basis elements are
the partitions (i, 0, 0, . . . ) with only one part i > 0. We define the
weight function ω : Par → N by ω(λ) = n if λ is a partition of n. Note
that ω(λ ∪ µ) = ω(λ) + ω(µ), so ω is a monoid homomorphism. Then
F (x) =

∑
n≥0 p(n)x

n, where p(n) denotes the number of partitions of
n. Equation (2.2) becomes

F (x) =
∏

i≥1

(1− xi)−1,

the familiar generating function for p(n) going back to Leibniz and
Euler. Finally Theorem 3.1 specializes to the following result.

Corollary 4.1. Suppose that S is a cyclotomic set so that equation (3.1)
holds for certain positive integers ai and bj. Let pS(n) denote the num-
ber of partitions of n none of whose part multiplicities belong to S.
Then

∑

n≥0

pS(n)x
n =

F (xb1) · · ·F (xbt)

F (xa1) · · ·F (xar)

=

∏r
i=1 (1− xai) (1− x2ai) (1− x3ai) · · ·

∏t
j=1 (1− xbj ) (1− x2bj ) (1− x3bj ) · · ·

.

Example 4.2. Let S = {1}, a cyclotomic set (Example 3.2(a)). Thus
pS(n) is the number of partitions of n for which no part appears exactly
once, denoted f(n) in equation (1.1). We obtain from equation (2.5)
and Corollary 4.1 that
(4.1)

FS(x) =
(1− x6)(1− x12)(1− x18) · · ·

(1− x2)(1− x4)(1− x6) · · · (1− x3)(1− x6)(1− x9) · · ·
,

where x is a single variable because m = 1 in equation (2.1). Hence we
have proved our first formula (1.1) as a consequence of Theorem 3.1.
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The above formula illustrates a special feature of the monoid Par,
namely, we obtain quotients of infinite products that we can try to sim-
plify by cancelling common factors in the numerator and denominator.
The denominator factors 1−xk in equation (4.1) have exponents k that
are multiples of 2 or 3. Multiples of 6 appear twice, once as multiples
of 2 and once as multiples of 3. The numerator factor exponents are
multiples of 6, so they cancel one of the two such denominator fac-
tors. We are left with 1 in the numerator, and factors 1 − xk in the
denominator, each with multiplicity one, where k is divisible by 2 or 3.
Equivalently, k 6≡ ±1 (mod 6). In other words,

FS(x) =
∏

k 6≡±1 (mod 6)

(1− xk)−1.

We conclude that pS(n) (the number of partitions of n with no part
appearing exactly once) is equal to the number of partitions of n into
parts not congruent to ±1 modulo 6. MacMahon [8, p. 54] was aware
that

∏

k 6≡±1 (mod 6)

(1− xk)−1 =
∏

k≥1

1− x6k

(1− x2k)(1− x3k)
.

Let us call a cyclotomic set S clean (continuing to assume M = Par)
if we can write

(4.2) FS(x) =
∏

k∈T

(1− xk)−1

for some T ⊆ P. Thus {1} is clean. We consider equation (4.2) to be
a “clean” partition identity—the coefficient of xn in the expansion of
the right-hand side has the simple interpretation of counting partitions
of n whose parts belong to T . For any particular cyclotomic set S it
is easy to determine whether it is clean, but we don’t have a general
theory of cleanness. Some examples are given below.

Example 4.3. We stated in Example 3.2(b) that the set {1, 2, 3, 5, 7, 11}
is cyclotomic. This set turns out to be clean. We have

FS(x) =
∏

i

(1− xi)−1,

where

(4.3) i ≡ 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 (mod36).

Thus we obtain the following new result.
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Theorem 4.4. For all n ≥ 0, the number of partitions of n such
that no part occurs exactly 1,2,3,5,7 or 11 times equals the number of
partitions of n into parts i satisfying equation (4.3).

Example 4.5. The infinite set S = {2, 3, 4, . . .} is cyclotomic and
clean:

(4.4)
1

1− x
− (x2 + x3 + x4 + · · · ) =

1− x2

1− x
= 1 + x.

We obtain the famous theorem of Euler that the number of partitions
of n into distinct parts equals the number of partitions of n into odd
parts.

Example 4.6. An example of a set that is cyclotomic but not clean is
S = {1, 5, 7, 8, 9, 11}, for which

1

1− x
−
∑

j∈S

xj =
(1− x5)(1− x6)(1− x30)

(1− x2)(1− x3)(1− x10)(1− x15)
.

After canceling all possible numerator and denominator factors, we
obtain

FS(x) =

∏
i(1− xi)∏
j(1− xj)

,

where i ranges over all positive integers satisfying

i ≡ ±5 (mod 30),

while j ranges over all positive integers satisfying

j ≡ ±2,±3,±4,±6,±8,±9,±10,±12,±14, 15 (mod30).

4.2. Finite fields. Fix a prime power q. Let Pol denote the set of all
monic polynomials H(t) ∈ Fq[t], where Fq is the finite field of order q.
We make Pol into a free commutative monoid by the operation of or-
dinary polynomial multiplication. The identity element is the constant
polynomial 1. The unique basis B for Pol consists of those polynomials
in Pol that are irreducible over Fq. For H ∈ Pol define ω(H) = degH .
Clearly ω is a weight on Pol (with m = 1 in equation (2.1)).
The series F (x) (where x is a single variable since m = 1) is given

by
∑

n≥0 f(n)x
n, where f(n) is the number of monic polynomials of

degree n over Fq. Since such a polynomial has n coefficients which can
be chosen independently from Fq, we have f(n) = qn. Hence

F (x) =
∑

n≥0

qnxn =
1

1− qx
.

For S ⊆ P, the coefficient fS(n) of x
n in FS(x) is equal to the number of

monic polynomials of degree n over Fq for which no irreducible factor
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has multiplicity j ∈ S. If S is a cyclotomic set and equation (3.2)
holds, then

(4.5) FS(x) =

∏r
i=1(1− qxai)∏t
j=1(1− qxbj )

.

Thus FS(x) is a rational function of x and q. We can expand this
rational function by partial fractions with respect to q and obtain in
principle an explicit formula for fS(n). This formula will depend on
the congruence class of n modulo some integer N . For example, in
Example 4.8 below we have N = 6, and it is fortuitous that fS(n) can
be written in the condensed form (4.6).

Example 4.7. Let S = {2, 3, 4, . . .}. Then fS(n) is equal to the num-
ber of squarefree monic polynomials of degree n over Fq. By the case
k = 2 of Example 3.2(c) there follows

FS(x) =
1− qx2

1− qx

= 1 + qx+
∑

n≥2

(q − 1)qn−1xn,

whence fS(n) = (q − 1)qn−1 for n ≥ 2, a well-known result going
back at least to Carlitz [2]. (Carlitz in a footnote on page 41 gives a
reference to a proof by Landau in 1919 when q is prime.) Comparing
with Example 4.5 shows that the formula for fS(n) is a kind of “finite
field analogue” (but not a q-analogue in the usual sense of this term
[11, pp. 30–31]) of the result of Euler given in Example 4.5.

Example 4.8. Let S = {1}, so fS(n) is the number of monic polynomi-
als of degree n over Fq such that every irreducible factor has multiplicity
at least two. Such polynomials are called powerful. From equation (2.5)
there follows (in analogy to equation (1.1))

FS(x) =
1− qx6

(1− qx2)(1− qx3)
,

which is our second formula (1.2). The partial fraction decomposition
of FS(x) with respect to q is given by

FS(x) =
1 + x+ x2 + x3

1− qx2
−

x(1 + x+ x2)

1− qx3
.

From this formula it is not difficult to show that

(4.6) fS(n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋.

This formula for fS(n) first appeared as a problem in [10], with a
published solution by Stong [15]. The analogy between equation (1.1)
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and the present example was noted by Stanley [13, p. 152]. In fact, it
was this analogy that inspired the present paper.

Example 4.9. Let S = {1, 2, 3, 5, 7, 11}. From equation (3.4) we get
the following new result:

FS(x) =
(1− qx12)(1− qx18)

(1− qx4)(1− qx6)(1− qx9)

=
Φ2Φ4Φ8Φ7Φ14

Φ5(1− qx4)
+

Φ3Φ9 x
8

Φ5(1− qx9)

−
Φ2Φ3Φ4Φ

2
6Φ12 x

2

1− qx6
,

where Φj = Φj(x). A formula for fS(n) will involve the congruence
class of n modulo 36 (the least common multiple of 4, 6, and 9).

4.3. Dirichlet series. Perhaps the most familiar monoid that is iso-
morphic to M is the set P of positive integers under multiplication.
The basis elements are the prime numbers. What can we do with this
choice of M?
If n = 2α13α25α3 · · · is the prime power factorization of n (so all but

finitely many αi = 0) then define ω : P → N∞ by ω(n) = (α1, α2, α3, . . . ),
clearly a weight on P (with m = ∞ in equation (2.1)). If pi is the ith
prime (so p1 = 2, p2 = 3, p3 = 5, etc.), then change the indetermi-
nate xi into p−s

i , where s is an indeterminate. The “variables” p−s
i

remain algebraically independent, so there is no loss of information
in making this change of notation. The power series

∑
α∈N∞ f(α)xα is

converted into the Dirichlet series
∑

n≥1 g(n)n
−s, where n = 2α13α2 · · ·

and g(n) = f(α).

Writing F̃ (s) for F (x) and F̃S(s) for FS(x) after the above change
of variables, we thus have

F̃ (s) =
∑

n≥1

1

ns
,

the Riemann zeta function ζ(s). For S ⊆ P we have

F̃S(s) =
∑

n∈T

1

ns
,

where T is the set of all n ∈ P such that no prime factor of n has
multiplicity j ∈ S. When S is cyclotomic and equation (3.2) holds, we
obtain from Theorem 3.1 that

F̃S(s) =
ζ(b1s) · · · ζ(bts)

ζ(a1s) · · · ζ(ars)
.
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Example 4.10. Let S = {2, 3, 4, . . .}. Then T is the set of squarefree
positive integers. From equation (4.4) there follows the well-known
formula ∑

n≥1
n squarefree

1

ns
=

ζ(s)

ζ(2s)
.

Example 4.11. Let S = {1}. Integers for which no prime factor has
multiplicity 1 are called powerful [4][9]. We consider 1 to be powerful.
From equation (2.5) we obtain [4, (10)]

(4.7)
∑

n≥1
n powerful

1

ns
=

ζ(2s)ζ(3s)

ζ(6s)
,

which is our third formula (1.3).
As a somewhat frivolous application, it is well-known that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(12) =

691π12

638512875
.

Hence putting s = 1 and s = 2 in equation (4.7) gives [4, (13)]

∑

n≥1
n powerful

1

n
=

ζ(2)ζ(3)

ζ(6)
=

315ζ(3)

2π4
= 1.943596 · · ·

and ∑

n≥1
n powerful

1

n2
=

ζ(4)ζ(6)

ζ(12)
=

15015

1382π2
= 1.100823 · · · .

5. Properties of cyclotomic sets

We have succeeded in our main goal of providing a unified explana-
tion for the three formulas of Section 1 that allows substantial gener-
alization. One obvious question remains: what can we say about the
cyclotomic sets themselves? In general, the classification of cyclotomic
sets, even the finite ones, is wide open. Some properties of finite cy-
clotomic sets are given by the next two results. For a finite set S ⊂ P,
write max(S) for the maximum element of S.

Theorem 5.1. Let S be a finite cyclotomic set and d = max(S). Then
for all 0 ≤ j ≤ d, exactly one of j and d − j belongs to S. Hence
#S = (d+ 1)/2, so in particular d is odd.

Proof. First note that when we write NS(x) as a minimal product of
cyclotomic polynomials, the polynomial Φ1(x) = 1 − x cannot appear



SOME ENUMERATIVE APPLICATIONS OF CYCLOTOMIC POLYNOMIALS 13

as a factor. Otherwise, if we set x = 1 in equation (3.3) then the
left-hand side becomes 0 while the right-hand side becomes 1.
For n ≥ 2, it’s easy to see that

(5.1) xφ(n)Φn(1/x) = Φn(x),

where φ(n) = deg Φn(x). (It is irrelevant here that φ is the Euler phi
function.)
The left-hand side of equation (3.3) has degree d + 1. Since it is a

product of cyclotomic polynomial Φn(x) for n ≥ 2, we have by equa-
tion (5.1),

xd+1

(
1−

(
1−

1

x

)∑

j∈S

x−j

)
= 1− (1− x)

∑

j∈S

xj .

This equation simplifies to

1 + x+ x2 + · · ·+ xd =
∑

j∈S

xj +
∑

j∈S

xd−j ,

and the proof follows. �

Theorem 5.2. Let S be a finite cyclotomic set. When NS(x) is written
as a minimal product of cyclotomic polynomials Φn(x), then n 6= 1 and
n 6= pk, where p is prime and k ≥ 1.

Proof. We saw in the previous proof that n 6= 1. Now put x = 1 in
equation (3.3). Since Φpr(1) = p, the left-hand side is divisible by p
while the right-hand side is 1, a contradiction. �

For any finite S ⊂ P, defineNS(x) to be palindromic if xd+1NS(1/x) =
NS(x), where d = max(S) = degNS(x)− 1. Hence by equation (5.1),
a necessary condition for S to be cyclotomic is that NS(x) is palin-
dromic. There are 2(d−1)/2 sets S with max(S) = d, where d is odd, for
which NS(x) is palindromic. Let c(d) be the number of these that are
cyclotomic. Here is a table of c(d) for d ≤ 29.

d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
c(d) 1 2 3 5 5 9 10 12 18 22 22 37 39 41 54

Note that c(d) seems to grow much more slowly than 2(d−1)/2, perhaps
a little faster than linearly. A very crude upper bound on c(d) is the
total number g(d) of polynomials of degree d + 1 that are products of
cyclotomic polynomials. Kotĕs̆ovec [6] obtained the asymptotic formula

log g(d) ∼
1

π

√
105ζ(3)d,
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where ζ denotes the Riemann zeta function. Thus at least we know
that c(d) has subexponentional growth.
The cyclotomic sets S with max(S) ≤ 9 are the following, where we

we abbreviate e.g. {1, 2, 5} as 125.

1
13, 23

125, 135, 345
1237, 1247, 1357, 2367, 4567

12359, 12569, 13579, 14679, 56789

Some infinite families are clear, such as 1, 23, 345, 4567, 56789, . . . .
Aside. The palindromic polynomials of the form

NS(x) = 1− (1− x)
∑

j∈S

xj ,

where S is a finite subset of P, seem to have many zeros α on the unit
circle (|α| = 1). There are 2b such polynomials when max(S) = 2b+1.
For instance, when b = 16, the proportion of zeros that are on the unit
circle of the 216 = 65536 polynomials is

751153

1081344
= 0.69464 · · · .

No reason is currently known. Some further discussion appears on
MathOverflow [14].

6. Numerical semigroups

We conclude this paper by explaining a connection between certain
cyclotomic sets and commutative algebra. A numerical semigroup is a
submonoid M of N (under addition) such that N−M is finite. Thus M
is closed under addition and contains 0. The condition that N−M is
finite entails no loss of generality, since every submonoid of N is either
{0} or of the form kM , where k ≥ 1 and M is a numerical semigroup.
It is well known that a numerical semigroup is finitely-generated.
Note. It would be more logical to use the term “numerical monoid”

instead of “numerical semigroup.” However, “numerical semigroup” is
what appears in the literature, so we have adhered to this terminology.
Given a numerical semigroup M , define

AM(x) =
∑

i∈M

xi,

the Hilbert series of M . Note that

AM(x) =
1

1− x
−
∑

i∈N−M

xi.
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Following Ciolan, Garćıa-Sánchez, and Moree [3], define a numerical
semigroup to be cyclotomic if the product (1−x)AM (x) is a product of
cyclotomic polynomials. Thus a numerical semigroup M is cyclotomic
if and only if N −M is a cyclotomic set. The set N −M , in addition
to being cyclotomic, has the further property that its complement M
is closed under addition.

Example 6.1. (a) Let M be generated by a, b ≥ 2, denoted M =
〈a, b〉, with gcd(a, b) = 1. Then M is cyclotomic, and

AM(x) =
1− xab

(1− xa)(1− xb)
.

(b) Let M = 〈4, 6, 7〉 = N − {1, 2, 3, 5, 9}. Then M is cyclotomic
with

AM(x) =
(1− x12)(1− x14)

(1− x4)(1− x6)(1− x7)
.

(c) Let M = 〈5, 6, 7〉 = N− {1, 2, 3, 4, 8, 9}. Then M is not cyclo-
tomic.

Example 6.4 below is a continuation of the previous example.
There is an interesting connection between cyclotomic semigroups

and commutative algebra. Let K be a field (Q will do) andM a numer-
ical semigroup. The semigroup algebra K[M ] is the subalgebra of the
polynomial ring K[z] generated by all monomials zi for i ∈ M . Thus
these monomials in fact form a K-basis for M . Let M = 〈g1, . . . , gm〉.
We say that M is a complete intersection if all relations among the
generators zg1 , . . . , zgm of K[M ] (as a K-algebra) are a consequence of
m− 1 of them (the minimum possible). This condition is independent
of the choice of generators. Our definition of complete intersection is
a special case of a more general definition from commutative algebra
that we won’t give here.
A relation among the generators zgi will have the form

(zg1)c1 · · · (zgm)cm = (zg1)d1 · · · (zgm)dm

for nonnegative integers c1, . . . , cm, d1, . . . , dm. The degree of the re-
lation is the integer

∑
gici =

∑
gidi. If M is a complete intersec-

tion with M = 〈g1, . . . , gm〉, and if the minimal relations have degrees
e1, . . . , em−1, then it follows from elementary commutative algebra that

AM(x) =
(1− xe1) · · · (1− xem−1)

(1− xg1) · · · (1− xgm)
.

Hence ifK[M ] is a complete intersection, thenM is cyclotomic. Whether
the converse holds is a central open problem in the theory of cyclotomic
numerical semigroups [3, Conj. 1].
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Conjecture 6.2. If M is a cyclotomic numerical semigroup, then
K[M ] is a complete intersection.

Example 3.2(a) shows that Conjecture 6.2 is true when M is gen-
erated by two elements. Herzog [5, Thm. 3.10] showed that it is also
true when M is generated by three elements. In fact, he showed the
following stronger result (the fourth condition only implicitly).

Theorem 6.3. Let the numerical semigroup M be generated by three
elements. The following four conditions are equivalent.

• M is cyclotomic.
• K[M ] is a complete intersection.
• If S = N − M , then the polynomial 1 − (1 − x)

∑
j∈S x

j is
palindromic.

• (for readers familiar with commutative algebra)K[M ] is a Goren-
stein ring.

Example 6.4. (a) Let M = 〈a, b〉, with a, b ≥ 2 and gcd(a, b) = 1.
Then K[M ] is a complete intersection. The unique minimal
relation is (za)b = (zb)a, of degree ab, in agreement with Exam-
ple 3.2(a).

(b) The numerical semigroup M = 〈4, 6, 7〉 = N − {1, 2, 3, 5, 9} is
cyclotomic. Setting a = z4, b = z6, and c = z7, the minimal
relations are a3 = b2 and a2b = c2, so K[M ] is a complete
intersection. The degrees of the relations are 12 and 14, so

AM(x) =
(1− x12)(1− x14)

(1− x4)(1− x6)((1− x7)
.

Note that there are many more relations among the generators,
e.g., a7 = c4, but they are all consequences of the minimal
relations. For instance, squaring the second gives c4 = (a2b)2 =
a4b2. Substituting b2 = a3 (the first relation) gives c4 = a4a3 =
a7.

(c) The numerical semigroup 〈5, 6, 7〉 = N − {1, 2, 3, 4, 8, 9} is not
cyclotomic. Setting a = z5, b = z6, and c = z7, the minimal
relations are a4 = bc2, b2 = ac, and c3 = a3b. Note that if
we multiply the first relation by b, obtaining a4b = b2c2, then
substitute b2 = ac (the second relation) to get a4b = ac3, and
then divide by a, we get a3b = c3 (the third relation). So why
isn’t the third relation a consequence of the first two, so we have
only two minimal relations? The answer is that dividing by a
is not allowed; we are only allowed to use algebra operations
(linear combinations and multiplication) on the relations.



SOME ENUMERATIVE APPLICATIONS OF CYCLOTOMIC POLYNOMIALS 17

Acknowledgment. I am grateful to the referees for their helpful
suggestions that have greatly improved the elucidation of this paper.

References

[1] G. E. Andrews, Generalization of a partition theorem of MacMahon, J. Com-

binatorial Theory 3 (1967), 100–101.
[2] L. Carlitz, The arithmetic of polynomials in a Galois field, Amer. J. Math. 54

(1932), 39–50.
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