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Abstract

The descent set D(w) of a permutation w of 1,2,...,n
is a standard and well-studied statistic. We introduce a new
statistic, the connectivity set C(w), and show that it is a kind
of dual object to D(w). The duality is stated in terms of the
inverse of a matrix that records the joint distribution of D(w)
and C(w). We also give a variation involving permutations of
a multiset and a g-analogue that keeps track of the number
of inversions of w.

1 A duality between descents and con-
nectivity.

Let &,, denote the symmetric group of permutations of [n] = {1,2,...,n},
and let w = ajas - - -a, € &,. The descent set D(w) is defined by

D(w)={i : a; > ais1} C [n—1].

The descent set is a well-known and much studied statistic on permu-
tations with many applications, e.g., [6, Exam. 2.24, Thm. 3.12.1][7,
§7.23]. Now define the connectivity set C(w) by

Clw)={i : a; <agforall j <i<k}C[n—1]. (1)
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The connectivity set seems not to have been considered before except
for equivalent definitions by Comtet [3, Exer. VI.14] and Callan [1]
with no further development. H. Wilf has pointed out to me that the
set of splitters of a permutation arising in the algorithm Quicksort [8,
§2.2] coincides with the connectivity set. Some notions related to the
connectivity set have been investigated. In particular, a permutation
w with C(w) = () is called connected or indecomposable. If f(n)
denotes the number of connected permutations in &,,, then Comtet
3, Exer. VI.14] showed that

Zf(n):z" =1 !

— 7'”’

and he also considered the number #C(w) of components. He also
obtained [2][3, Exer. VIL.16] the complete asymptotic expansion of
f(n). For further references on connected permutations, see Sloane
[4]. In this paper we will establish a kind of “duality” between descent
sets and connectivity sets.

We write S = {iy,...,ix}< to denote that S = {iy,...,ix} and
ih <o <ig. Given S ={iy,...,ig}< C [n — 1], define

Note that 7(S) depends not only on S but also on n. The integer
n will always be clear from the context. The first indication of a
duality between C' and D is the following result.

Proposition 1.1. Let S C [n — 1. Then
#Hwe &, : SCCw)} = n(S)

n!
#Hwed,:SDODw)} S

Proof. The result for D(w) is well-known, e.g., [6, Prop. 1.3.11].
To obtain a permutation w satisfying S O D(w), choose an ordered
partition (Al, .. -aAk—l—l) of [n] with #AJ = ij - ij—l (Wlth ’io = 0,
ik+1 = n) in n!/n(S) ways, then arrange the elements of A; in in-
creasing order, followed by the elements of A, in increasing order,
ete.



Similarly, to obtain a permutation w satisfying S C C'(w), choose
a permutation of [i1] in ;! ways, followed by a permutation of [i; +
1,i2] = {’Ll + 1,’i1 + 2, C ,’ig} in (Z2 - Zl)' ways, etc. O

Let S, T C [n—1]. Our main interest is in the joint distribution of
the statistics C' and D, i.e., in the numbers

Xsr = #{w €6, : C’(w) = g, D(w) = T},

where S = [n — 1] — S. (It will be more notationally convenient to
use this definition of Xgr rather than having C(w) = S.) To this
end, define

Zsr = #{we6, : SCC(w), TC Dw)}

For instance, if n = 4, S = {2,3}, and T" = {3}, then Zsr = 3,
corresponding to the permutations 1243, 1342, 1432, while Xgr = 1,
corresponding to 1342. Tables of Xgr for n = 3 and n = 4 are given
in Figure 1, and for n = 5 in Figure 2.

Theorem 1.2. We have

g L 0S)/MT), if ST
5T 0, otherwise,

Proof. Let w =a;---a, € 6,. If i € C(w) then a; < a;41, so
i ¢ D(w). Hence Zgp =0if S 2 T.

Assume therefore that S O T. Let C(w) = {c1,...,¢j}< with
co=0and ¢jy1 =n. Fix 0 < h < j, and let

[chycna ] NT = {cp, = i1, 2, ..+, ik = Chy1 )<

If w=ay---a, with S C C(w) and T C D(w), then the number of
choices for a., +1,ac, +2,...,ac,,, is just the multinomial coefficient

( Chi1 = Ch ) _ (Chy1 — cn)!
Gy — 11,13 — U2, ..., I — Tg—1 (g —i1)! (73 — i) - - - (ip — tp—1)!
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S\T |0 1 2 12
0 |1
1 [0 1
2 |0 0 1
12 {0 1 1 1
S\T |0 1 2 3 12 13 23 123
0 |1
1 [0 1
2 |0 0 1
3 /0 0 0 1
12 10 1 1 0 1
13 /00 0 0 0 1
2310 011 0 0 1
12310 1 21 2 4 2 1

Figure 1: Table of Xgr for n =3 and n =4

Taking the product over all 0 < h < j yields n(S)/n(T). O

Theorem 1.2 can be restated matrix-theoretically. Let M = (Mgr)
be the matrix whose rows and columns are indexed by subsets S, T C
[n — 1] (taken in some order), with

1, £SDT:
Mesr = { 0, otherwise.

Let D = (Dgr) be the diagonal matrix with Dgs = n(S). Let Z =
(Zsr), i.e., the matrix whose (S,T)-entry is Zgr as defined in (2).
Then it is straightforward to check that Theorem 1.2 can be restated
as follows:

Z =DMD™. (3)

Similarly, let X = (Xg7). Then it is immediate from equations (2)
and (3) that
MXM = Z. (4)

The main result of this section (Theorem 1.4 below) computes the
inverse of the matrices X, Z, and a matrix Y = (Ygr) intermediate
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123 |10

12410 0 0 0 0 O

134 10 0 0 0 O

23410 0 1 2 1

1234 | 0

Figure 2: Table of Xg7 forn =5



between X and Z. Namely, define
Ysr =#{w e &, : SCC(w), T = D(w)}. (5)

It is immediate from the definition of matrix multiplication and (4)
that the matrix Y satisfies

Y =MX=2ZM". (6)

In view of equations (3), (4) and (6) the computation of Z7!, Y1,
and X ~! will reduce to computing M~!, which is a simple and well-
known result. For any invertible matrix N = (Ngr), write Ng; for
the (S, T)-entry of N7,

Lemma 1.3. We have
Mgp = (=1)">"# Mgy (7)

Proof. Let f, g be functions from subsets of [n] to R (say) related
by

1(5) =3 g(1). (®)

TCS

Equation (7) is then equivalent to the inversion formula

9(8) =Y (~*EDH(T). (9)

TCS

This is a standard combinatorial result with many proofs, e.g., [6,
Thm. 2.1.1, Exam. 3.8.3]. O

Theorem 1.4. The matrices Z,Y, X have the following inverses:

Zsp = (1) Zg (10)
Vil = (CFSYTg{we 6, 5= C(w), T C D(w)) (1)
Xor = ()" Xgrp. (12)

Proof. By equations (3), (4), and (6) we have

Zl'=DM'D™', Y '=MDM D', X' =MDM D 'M.
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Equation (10) is then an immediate consequence of Lemma 1.3 and
the definition of matrix multiplication.
Since Y ™! = M Z~! we have for fixed S 2 U that

Yoo = Y, ()T zpy
T:8S2TDU
= ) ()" {wes, : TCCw), UC D(w)}
T:5S2TDOU
= (-)#TH#Vhtw e s, : T CCOw), UC D(w)}.
T:UCTCS

Equation (11) is now an immediate consequence of the Principle of
Inclusion-Exclusion (or of the equivalence of equations (8) and (9)).
Equation (12) is proved analogously to (11) using X ' =Y ~'M. O

NOTE. The matrix M represents the zeta function of the boolean
algebra B, [6, §3.6]. Hence Lemma 1.3 can be regarded as the de-
termination of the Mébius function of B, [6, Exam. 3.8.3]. All our
results can easily be formulated in terms of the incidence algebra of
B,.

NOTE. The matrix Y arose from the theory of quasisymmetric
functions in response to a question from Louis Billera and Vic Reiner
and was the original motivation for this paper, as we now explain.
See for example [7, §7.19] for an introduction to quasisymmetric func-
tions. We will not use quasisymmetric functions elsewhere in this
paper.

Let Comp(n) denote the set of all compositions o = (a, ..., ax)
of n, e, ¢y > 1 and Y o; = n. Let @ = (,...,a4) € Comp(n),
and let &, denote the subgroup of G,, consisting of all permutations
w=ay---a,such that {1,...., a0} ={a1,...,a0, }, {1 +1,..., 00+

a2} = {Gay+1,- - Gaytas b €tc. Thus &, = G, X -+ X G,, and
#6, =n(S), where S = {ag, a1+ ag,...,o0n+-+ax_1}. fwe G,
and D(w) = {i1, ..., i}, then define the descent composition co(w)
by

co(w) = (iy,4 — i1,..., 0 — ix—1,n — i) € Comp(n).



Let L, denote the fundamental quasisymmetric function indexed by
a [7, (7.89)], and define

Ro= Y Leotw)- (13)

weBqy

Given a = (ay,...,ax) € Comp(n), let S, = {a,0q0 + g, ..., a1 +
-+ 4+ ag_1}. Note that w € &, if and only if S, C C(w). Hence
equation (13) can be rewritten as

Ra =) Ysg Ls,
B

with Yg g as in (5). It follows from (5) that the transition matrix
between the bases L, and R,, is lower unitriangular (with respect to
a suitable ordering of the rows and columns). Thus the set {R,
a € Comp(n)} is a Z-basis for the additive group of all homogeneous
quasisymmetric functions over Z of degree n. Moreover, the problem
of expressing the Lg’s as linear combinations of the R,’s is equivalent
to inverting the matrix Y = (Ysr).

The question of Billera and Reiner mentioned above is the follow-
ing. Let P be a finite poset, and define the quasisymmetric function

KPIZSL’f,
f

where f ranges over all order-preserving maps f: P — {1,2,...} and
af = [l,cp s (see [7, (7.92)]). Billera and Reiner asked whether
the quasisymmetric functions Kp generate (as a Z-algebra) or even
span (as an additive abelian group) the space of all quasisymmetric
functions. Let m denote an m-element antichain. The ordinal sum
P & Q of two posets P, () with disjoint elements is the poset on the
union of their elements satisfying s < t if either (1) s,t € P and
s<tin P, (2)s,t€Qand s<tin @, or (3) s€ Pandt e Q. If
a=(ag,...,a ) € Comp(n) then let P, = a; ®- - -Dag. It is easy to
see that Kp, = R,, so the Kp_’s form a Z-basis for the homogeneous
quasisymmetric functions of degree n, thereby answering the question
of Billera and Reiner.



2 Multisets and inversions.

In this section we consider two further aspects of the connectivity set:
(1) an extension to permutations of a multiset and (2) a g-analogue
of Theorem 1.4 when the number of inversions of w is taken into
account.

Let T'= {i1,...,i}< C [n— 1]. Define the multiset

Np={17,2270 . (k+1)"""%}.

Let Gy, denote the set of all permutations of Np, so #8n, =
n!/n(T); and let w = ayas---a, € Sy,. In analogy with equation
(1) define

Clw)={i : a; < ay forall j <i<k}.

(Note that we could have instead required only a; < aj rather than
a; < ax. We will not consider this alternative definition here.)

Proposition 2.1. Let S,T C [n —1]. Then
#w e Gy - Clw) =5} = (XM)gz

= E X?U
U:UDT

= #{wed,: Cw)=S, Dw)DT).

Proof. The equality of the three expressions on the right-hand
side is clear, so we need only show that

#HwebBy, : Clw)=S}=#{we &, : C(w)=S, Dw)DT}.
(14)
Let T' = {i1,...,ir}< C [n —1]. Given w € &,, with C(w) = S and
D(w) DT, in w™! replace 1,2,...,4; with 1’s, replace i, + 1,... iy
with 2’s, etc. It is easy to check that this yields a bijection between
the sets appearing on the two sides of (14). O

Let us now consider g-analogues Z(q), Y (q), X(q) of the matrices
Z,Y, X. The g-analogue will keep track of the number inv(w) of
inversions of w = a1 ---a, € &,,, where we define

inv(w) = #{(i,4) : i <j, a; > a;}.
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Thus define .
X(Qsr= > ¢,

weGn
C(w)=S, D(w)=T

and similarly for Z(q)sr and Y (¢q)sr. We will obtain g-analogues of
Theorems 1.2 and 1.4 with completely analogous proofs.

Write () = 1+q+ -+ ¢t and (5)! = (1)(2)---(j), the
standard g-analogues of j and j!l. Let S = {i1,...,ix}< C [n — 1],
and define

1(S,q) = 41! (32 — 41)! - - - (i — e_1)! (m — ix).

Let T C [n—1],and let T = {iy,...,ix}~. Define

= () (75 )+ (5 7)

Note that z(T") is the least number of inversions of a permutation
w e 6, with T'C D(w).

Theorem 2.2. We have

Z)sr = { TS QT a), i SOT =0;
st 0, otherwise.

Proof. Preserve the notation from the proof of Theorem 1.2. If
(s,t) is an inversion of w (i.e., s < t and as > a;) then for some
0<h<jwehave ¢ +1 < s <t < ¢py1. It is a standard fact
of enumerative combinatorics (e.g., [, (21)][6, Prop. 1.3.17]) that if
U={uy,...,u}< C[m —1] then

Z inv(v) ( m )
q Uiy Ug — Uiy en, M — Uy
Du(ev?énU
_ (m)!
(u)! (uz — ug)!-- - (m — u,)!’

a ¢-multinomial coefficient. From this it follows easily that if U =
{y1,...,Ys}< then

inv(v) __  2(T) m
>« =4 (yl,yz—yl,---,m—ys>'

vESm
D(v)2U
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Hence we can parallel the proof of Theorem 1.2, except instead of
merely counting the number of choices for the sequence u = (a, , a.,+
1,...,a.,, ) we can weight this choice by ¢™ (@ Then

inv(u) . ig—i1 +et i —ik—1 ch+1 J— ch >
S = ) |
u

2 — 11573 — 1250009l — 1

summed over all choices v = (ac,,a., +1,...,a.,,,). Taking the
product over all 0 < h < j yields ¢*Tn(S, q)/n(T,q). O

Theorem 2.3. The matrices Z(q),Y (q), X(q) have the following in-
verses:

Z(@)sr = (V)P TZ(1/q)sr
Vs = ()RS g

wWES p,
S=C(w), TCD(w)

X(q)gr = (DT X(1/q)sr.

Proof. Let D(q) = (D(q)sr) be the diagonal matrix with D(q)ss =
n(S,q). Let Q(q) be the diagonal matrix with Q(q)ss = ¢**). Ex-
actly as for (3), (4) and (6) we obtain

Z(q) = D(Q)MD(q)~'Q(q)
MX(q)M = Z(q)

Y(g) = MX(q)=Z(q)M™".

The proof now is identical to that of Theorem 1.4. O

Let us note that Proposition 2.1 also has a straightforward g-
analogue; we omit the details.
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