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Abstra
t

We investigate several hyperplane arrangements that 
an be viewed as deformations of

Coxeter arrangements. In parti
ular, we prove a 
onje
ture of Linial and Stanley that the

number of regions of the arrangement

x

i

� x

j

= 1; 1 � i < j � n;

is equal to the number of alternating trees on n+1 verti
es. Remarkably, these numbers have

several additional 
ombinatorial interpretations in terms of binary trees, partially ordered sets,

and tournaments. More generally, we give formulae for the number of regions and the Poin
ar�e

polynomial of 
ertain �nite subarrangements of the aÆne Coxeter arrangement of type A

n�1

.

These formulae enable us to prove a \Riemann hypothesis" on the lo
ation of zeros of the

Poin
ar�e polynomial. We give asymptoti
s of the Poin
ar�e polynomials when n goes to the

in�nity. We also 
onsider some generi
 deformations of Coxeter arrangements of type A

n�1

.

1 Introdu
tion

The Coxeter arrangement of type A

n�1

is the arrangement of hyperplanes in R

n

given by

x

i

� x

j

= 0; 1 � i < j � n: (1.1)

This arrangement has n! regions. They 
orrespond to n! di�erent ways of ordering the sequen
e

x

1

; : : : ; x

n

.

In the paper we extend this simple, nevertheless important, result to the 
ase of a general 
lass

of arrangements whi
h 
an be viewed as deformations of the arrangement (1.1).
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One spe
ial 
ase of su
h deformations is the arrangement given by

x

i

� x

j

= 1; 1 � i < j � n: (1.2)

We will 
all it the Linial arrangement. This arrangement was �rst 
onsidered by N. Linial and

S. Ravid. They 
al
ulated its number of regions and the Poin
ar�e polynomial for n � 9. On the

basis of this numeri
al data the se
ond author of the present paper made a 
onje
ture that the

number of regions of (1.2) is equal to the number of alternating trees on n+ 1 verti
es (see [29℄).

A tree T on the verti
es 1; 2; : : : ; n + 1 is alternating if the verti
es in any path in T alternate,

i.e., form an up-down or down-up sequen
e. Equivalently, every vertex is either less than all its

neighbors or greater than all its neighbors. These trees �rst appeared in [11℄, and in [20℄ a formula

for the number of su
h trees on n + 1 verti
es was proved. In this paper we provide a proof of

the 
onje
ture on the number of regions of the Linial arrangement. Another proof was given by

Athanasiadis [3, Thm. 4.1℄.

In fa
t, we prove a more general result for trun
ated aÆne arrangements, whi
h are 
ertain

�nite subarrangements of the aÆne hyperplane arrangement of type

e

A

n�1

(see Se
tion 9). As a

byprodu
t we get an amazing theorem on the lo
ation of zeros of Poin
ar�e polynomials of these

arrangements. This theorem states that in one 
ase all zeros are real, whereas in the other 
ase all

zeros have the same real part.

The paper is organized as follows. In Se
tion 2 we give the basi
 notions of hyperplane arrange-

ment, number of regions, Poin
ar�e polynomial, and interse
tion poset. In Se
tion 3 we des
ribe

the arrangements we will be 
on
erned with in this paper|deformations of the arrangement (1.1).

In Se
tion 4 we review several general theorems on hyperplane arrangements. Then in Se
tion 5

we apply these theorems to deformed Coxeter arrangements. In Se
tion 6 we 
onsider a \semi-

generi
" deformation of the braid arrangement (the Coxeter arrangement of type A

n�1

) related

to the theory of interval orders. In Se
tion 7 we study the hyperplane arrangements whi
h are

related, in a spe
ial 
ase, to interval orders (
f. [29℄) and the Catalan numbers. We prove a theo-

rem that establishes a relation between the numbers of regions of su
h arrangements. In Se
tion 8

we formulate the main result on the Linial arrangement. We introdu
e several 
ombinatorial ob-

je
ts whose numbers are equal to the number of regions of the Linial arrangement: alternating

trees, lo
al binary sear
h trees, sleek posets, semia
y
li
 tournaments. We also prove a theorem

on 
hara
terization of sleek posets in terms of forbidden subposets. Finally, in Se
tion 9 we study

trun
ated aÆne arrangements. We prove a fun
tional equation for the generating fun
tion for the

numbers of regions of su
h arrangements, dedu
e a formula for these numbers, and from it obtain

a theorem on the lo
ation of zeros of the 
hara
teristi
 polynomial.

2 Arrangements of Hyperplanes

First, we give several basi
 notions related to arrangements of hyperplanes. For more details,

see [34, 16, 17℄.

A hyperplane arrangement is a dis
rete 
olle
tion of aÆne hyperplanes in a ve
tor spa
e. We

will be 
on
erned here only with �nite arrangements. Let A be a �nite hyperplane arrangement in

a real �nite-dimensional ve
tor spa
e V . It will be 
onvenient to assume that the ve
tors dual to

hyperplanes in A span the ve
tor spa
e V

�

; the arrangement A is then 
alled essential. Denote by

r(A) the number of regions of A, whi
h are the 
onne
ted 
omponents of the spa
e V �

S

H2A

H .

We will also 
onsider the number b(A) of \relatively bounded" regions of A, whi
h will just be the

number of bounded regions when A is essential.

These numbers have a natural q-analogue. Let A

C

denote the 
omplexi�ed arrangement A. In

other words, A

C

is the 
olle
tion of the hyperplanes H 
 C , H 2 A, in the 
omplex ve
tor spa
e

V 
C . Let C

A

be the 
omplement to the union of the hyperplanes of A

C

in V 
C , and let H

k

(�; C )
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denote singular 
ohomology with 
oeÆ
ients in C . Then one 
an de�ne the Poin
ar�e polynomial

Poin

A

(q) of A as

Poin

A

(q) =

X

k�0

dimH

k

(C

A

; C ) q

k

;

the generating fun
tion for the Betti numbers of C

A

.

The following theorem, proved in the paper of Orlik and Solomon [16℄, shows that the Poin
ar�e

polynomial generalizes the number of regions r(A) and the number of bounded regions b(A).

Theorem 2.1 We have r(A) = Poin

A

(1) and b(A) = Poin

A

(�1).

Orlik and Solomon gave a 
ombinatorial des
ription of the 
ohomology ring H

�

(C

A

; C ) (
f. Se
-

tion 8.3) in terms of the interse
tion poset L

A

of the arrangement A.

The interse
tion poset is de�ned as follows: The elements of L

A

are nonempty interse
tions of

hyperplanes in A ordered by reverse in
lusion. The poset L

A

has a unique minimal element

^

0 = V .

This poset is always a meet-semilatti
e for whi
h every interval is a geometri
 latti
e. It will be

a (geometri
) latti
e if and only if L

A


ontains a unique maximal element, i.e., the interse
tion of

all hyperplanes in A is nonempty. (When A is essential, this interse
tion is f0g.) In fa
t, L

A

is a

geometri
 semilatti
e in the sense of Wa
hs and Walker [31℄, and thus for instan
e is a shellable

and hen
e Cohen-Ma
aulay poset.

The 
hara
teristi
 polynomial of A is de�ned by

�

A

(q) =

X

z2L

A

�(

^

0; z) q

dim z

; (2.1)

where � denotes the M�obius fun
tion of L

A

(see [27, Se
tion 3.7℄).

Let d be the dimension of the ve
tor spa
e V . Note that it follows from the properties of

geometri
 latti
es [27, Proposition 3.10.1℄ that the sign of �(

^

0; z) is equal to (�1)

d�dimz

.

The following simple relation between the (topologi
ally de�ned) Poin
ar�e polynomial and the

(
ombinatorially de�ned) 
hara
teristi
 polynomial was found in [16℄:

�

A

(q) = q

d

Poin

A

(�q

�1

): (2.2)

Sometimes it will be more 
onvenient for us to work with the 
hara
teristi
 polynomial �

A

(q)

rather than the Poin
ar�e polynomial.

A 
ombinatorial proof of Theorem 2.1 in terms of the 
hara
teristi
 polynomial was earlier

given by T. Zaslavsky in [34℄.

The number of regions, the number of (relatively) bounded regions, and, more generally, the

Poin
ar�e (or 
hara
teristi
) polynomial are the most simple numeri
al invariants of a hyperplane

arrangement. In this paper we will 
al
ulate these invariants for several hyperplane arrangements

related to Coxeter arrangements.

3 Coxeter Arrangements and their Deformations

Let V

n�1

denote the subspa
e (hyperplane) in R

n

of all ve
tors (x

1

; : : : ; x

n

) su
h that x

1

+� � �+x

n

=

0. All hyperplane arrangements that we 
onsider below lie in V

n�1

. The lower index n � 1 will

always denote dimension of an arrangement.

The braid arrangement or Coxeter arrangement (of type A

n�1

) is the arrangement A

n�1

of

hyperplanes in V

n�1

� R

n

given by

x

i

� x

j

= 0; 1 � i < j � n: (3.1)
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Figure 1: The Coxeter hyperplane arrangement A

2

.

It is 
lear that A has r(A

n�1

) = n! regions (
alled Weyl 
hambers) and b(A

n�1

) = 0 bounded

regions. Arnold [1℄ 
al
ulated the 
ohomology ring H

�

(C

A

n

; C ). In parti
ular, he proved that

Poin

A

n�1

(q) = (1 + q)(1 + 2q) � � � (1 + (n� 1)q): (3.2)

In this paper we will study deformations of the arrangement (3.1), whi
h are hyperplane ar-

rangements in V

n�1

� R

n

of the following type:

x

i

� x

j

= a

(1)

ij

; : : : ; a

(m

ij

)

ij

; 1 � i < j � n; (3.3)

where m

ij

are nonnegative integers and a

(k)

ij

2 R.

One spe
ial 
ase is the arrangement given by

x

i

� x

j

= a

ij

; 1 � i < j � n: (3.4)

The following hyperplane arrangements of type (3.3) are worth mentioning:

� The generi
 arrangement (see the end of Se
tion 5) given by

x

i

� x

j

= a

ij

; 1 � i < j � n;

where the a

ij

's are generi
 real numbers.

� The semigeneri
 arrangement G

n

(see Se
tion 6) given by

x

i

� x

j

= a

i

; 1 � i � n; 1 � j � n; i 6= j;

where the a

i

's are generi
 real numbers.

� The Linial arrangement L

n�1

(see [29℄ and Se
tion 8) given by

x

i

� x

j

= 1; 1 � i < j � n: (3.5)

� The Shi arrangement S

n�1

(see [25, 26, 29℄ and Se
tion 9.2) given by

x

i

� x

j

= 0; 1; 1 � i < j � n: (3.6)

� The extended Shi arrangement S

n�1; k

(see Se
tion 9.2) given by

x

i

� x

j

= �k;�k + 1; : : : ; k + 1; 1 � i < j � n; (3.7)

where k � 0 is �xed.
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Figure 2: Seven regions of the Linial arrangement L

2

.

� The Catalan arrangements (see Se
tion 7) C

n�1

(1) given by

x

i

� x

j

= �1; 1; 1 � i < j � n; (3.8)

and C

0

n�1

(1) given by

x

i

� x

j

= �1; 0; 1; 1 � i < j � n: (3.9)

� The trun
ated aÆne arrangement A

ab

n�1

(see Se
tion 9) given by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; b� 1; 1 � i < j � n; (3.10)

where a and b are �xed integers su
h that a+ b � 2.

One 
an de�ne analogous arrangements for any root system. Let V be a real d-dimensional ve
-

tor spa
e, and let R be a root system in V

�

with a 
hosen set of positive roots R

+

= f�

1

; �

2

; : : : ; �

N

g

(see, e.g., [7, Ch. VI℄). The Coxeter arrangement R of type R is the arrangement of hyperplanes

in V given by

�

i

(x) = 0; 1 � i � N: (3.11)

Brieskorn [6℄ generalized Arnold's formula (3.2). His formula for the Poin
ar�e polynomial

of (3.11) involves the exponents e

1

; : : : ; e

d

of the 
orresponding Weyl group W :

Poin

R

(q) = (1 + e

1

q)(1 + e

2

q) � � � (1 + e

d

q):

Consider the hyperplane arrangement given by

�

i

(x) = a

(1)

i

; : : : ; a

(m

i

)

i

1 � i � N; (3.12)

where x 2 V , m

i

are some nonnegative integers, and a

(k)

i

2 R. Many of the results of this paper

have a natural 
ounterpart in the 
ase of an arbitrary root system. We will brie
y outline several

related results and 
onje
tures in Se
tion 9.4.

4 Whitney's Formula and the NBC Theorem

In this se
tion we review several essentially well-known results on hyperplane arrangements that

will be useful in the what follows.

Consider the arrangement A of hyperplanes in V

�

=

R

d

given by equations

h

i

(x) = a

i

; 1 � i � N; (4.1)

5



where x 2 V , the h

i

2 V

�

are linear fun
tionals on V , and the a

i

are real numbers.

We 
all a subset I of f1; 2; : : : ; Ng 
entral if the interse
tion of the hyperplanes h

i

(x) = a

i

,

i 2 I , is nonempty. For a subset I = fi

1

; i

2

; : : : ; i

l

g, denote by rk(I) the dimension (rank) of the

linear span of the ve
tors h

i

1

; : : : ; h

i

l

.

The following statement is a generalization of a 
lassi
al formula of Whitney [32℄.

Theorem 4.1 The Poin
ar�e and 
hara
teristi
 polynomials of the arrangement A are equal to

Poin

A

(q) =

X

I

(�1)

jIj�rk(I)

q

rk(I)

; (4.2)

�

A

(q) =

X

I

(�1)

jIj

q

d�rk(I)

; (4.3)

where I ranges over all 
entral subsets in f1; 2; : : : ; Ng. In parti
ular,

r(A) =

X

I

(�1)

jIj�rk(I)

(4.4)

b(A) =

X

I

(�1)

jIj

:

We also need the well-known 
ross-
ut theorem (see, [27, Corollary 3.9.4℄).

Theorem 4.2 Let L be a �nite latti
e with minimal element

^

0 and maximal element

^

1, and let X

be a subset of verti
es in L su
h that (a)

^

0 62 X, and (b) if y 2 L and y 6=

^

0, then x � y for some

x 2 X. Then

�

L

(

^

0;

^

1) =

X

k

(�1)

k

n

k

; (4.5)

where n

k

is the number of k-element subsets in X with join equal to

^

1.

Proof of Theorem 4.1 Let z be any element in the interse
tion poset L

A

, and let L(z) be the

subposet of all elements x 2 L

A

su
h that x � z, i.e., the subspa
e x 
ontains z. In fa
t, L(z)

is a geometri
 latti
e. Let X be the set of all hyperplanes from A whi
h 
ontain z. If we apply

Theorem 4.2 to L = L(z) and sum (4.5) over all z 2 L

A

, we get the formula (4.3). Then by (2.2)

we get (4.2). �

A 
y
le is a minimal subset I su
h that rk(I) = jI j � 1. In other words, a subset I =

fi

1

; i

2

; : : : ; i

l

g is a 
y
le if there exists a nonzero ve
tor (�

1

; �

2

; : : : ; �

l

), unique up to a nonzero

fa
tor, su
h that �

1

h

i

1

+ �

2

h

i

2

+ � � �+ �

l

h

i

l

= 0. It is not diÆ
ult to see that a 
y
le I is 
entral

if, in addition, we have �

1

a

i

1

+ �

2

a

i

2

+ � � �+ �

l

a

i

l

= 0. Thus, if a

1

= � � � = a

N

= 0 then all 
y
les

are 
entral, and if the a

i

are generi
 then there are no 
entral 
y
les.

A subset I is 
alled a
y
li
 if jI j = rk(I), i.e., I 
ontains no 
y
les. It is 
lear that any a
y
li


subset is 
entral.

Corollary 4.3 In the 
ase when the a

i

are generi
, the Poin
ar�e polynomial is given by

Poin

A

(q) =

X

I

q

rk(I)

;

where the sum is over all a
y
li
 subsets I of f1; 2; : : : ; Ng. In parti
ular, the number of regions

r(A) is equal to the number of a
y
li
 subsets.

6



Indeed, in this 
ase a subset I is a
y
li
 if and only if it is 
entral.

Remark 4.4 The word \generi
" in the 
orollary means that no k distin
t hyperplanes in (4.1)

interse
t in an aÆne subspa
e of 
odimension less than k. For example, if A is de�ned over Q then

it is suÆ
ient to require that the a

i

be linearly independent over Q.

Let us �x a linear order � on the set f1; 2; : : : ; Ng. We say that a subset I of f1; 2; : : : ; Ng is a

broken 
entral 
ir
uit if there exists i 62 I su
h that I [ fig is a 
entral 
y
le and i is the minimal

element of I [ fig with respe
t to the order �.

The following, essentially well-known, theorem gives us the main tool for the 
al
ulation of

Poin
ar�e (or 
hara
teristi
) polynomials. We will refer to it as the No Broken Cir
uit (NBC)

Theorem.

Theorem 4.5 We have

Poin

A

(q) =

X

I

q

jIj

;

where the sum is over all a
y
li
 subsets I of f1; 2; : : : ; Ng without broken 
entral 
ir
uits.

Proof We will dedu
e this theorem from Theorem 4.1 using the involution prin
iple. In order to

do this we 
onstru
t an involution � : I ! �(I) on the set of all 
entral subsets I with a broken


entral 
ir
uit su
h that for any I we have rk(�(I)) = rk(I) and j� � I j = jI j � 1.

This involution is de�ned as follows: Let I be a 
entral subset with a broken 
entral 
ir
uit,

and let s(I) be the set of all i 2 1; : : : ; N su
h that i is the minimal element of a broken 
entral


ir
uit J � I . Note that s(I) is nonempty. If the minimal element s

�

of s(I) lies in I , then we

de�ne �(I) = I n fs

�

g. Otherwise, we de�ne �(I) = I [ fs

�

g.

Note that s(I) = s(�(I)), thus � is indeed an involution. It is 
lear now that all terms in (4.2)

for I with a broken 
entral 
ir
uit 
an
el ea
h other and the remaining terms yield the formula in

Theorem 4.5. �

Remark 4.6 Note that by Theorem 4.5 the number of subsets I without broken 
entral 
ir
uits

does not depend on the 
hoi
e of the linear order �.

5 Deformations of Graphi
 Arrangements

In this se
tion we show how to apply the results of the previous se
tion to arrangements of type (3.3)

and to give an interpretation of these results in terms of (
olored) graphs.

With the hyperplane x

i

� x

j

= a

(k)

ij

of (3.3) one 
an asso
iate the edge (i; j) that has the


olor k. We will denote this edge by (i; j)

(k)

. Then a subset I of hyperplanes 
orresponds to a


olored graph G on the set of verti
es f1; 2; : : : ; ng. A

ording to the de�nitions in Se
tion 4, a


ir
uit (i

1

; i

2

)

(k

1

)

; (i

2

; i

3

)

(k

2

)

; : : : ; (i

l

; i

1

)

(k

l

)

in G is 
entral if a

(k

1

)

i

1

;i

2

+a

(k

2

)

i

2

;i

3

+ � � �+a

(k

l

)

i

l

;i

1

= 0. Clearly,

a graph G is a
y
li
 if and only if G is a forest.

Fix a linear order on the edges (i; j)

(k)

, 1 � i < j � n, 1 � k � m

ij

. We will 
all a subset of

edges C a broken A-
ir
uit if C is obtained from a 
entral 
ir
uit by deleting the minimal element

(here A stands for the 
olle
tion fa

(k)

ij

g). Note that it should not be 
onfused with the 
lassi
al

notion of a broken 
ir
uit of a graph, whi
h 
orresponds to the 
ase when all a

(k)

ij

are zero.

We summarize below several spe
ial 
ases of the NBC Theorem (Theorem 4.5). Here jF j

denotes the number of edges in a forest F .

7



Corollary 5.1 The Poin
ar�e polynomial of the arrangement (3.3) is equal to

Poin

A

(q) =

X

F

q

jF j

;

where the sum is over all 
olored forests F on the verti
es 1; 2; : : : ; n (an edge (i; j) 
an have a 
olor

k, where 1 � k � m

ij

) without broken A-
ir
uits. The number of regions of arrangement (3.3) is

equal to the number of su
h forests.

In the 
ase of the arrangement (3.4) we have:

Corollary 5.2 The Poin
ar�e polynomial of the arrangement (3.4) is equal to

Poin

A

(q) =

X

F

q

jF j

;

where the sum is over all forests on the set of verti
es f1; 2; : : : ; ng without broken A-
ir
uits. The

number of regions of the arrangement (3.4) is equal to the number of su
h forests.

In the 
ase when the a

(k)

ij

are generi
 these results be
ome espe
ially simple.

For a forest F on verti
es 1; 2; : : : ; n we will write m

F

:=

Q

(i;j)2F

m

ij

, where the produ
t is

over all edges (i; j), i < j, in F . Let 
(F ) denote the number of 
onne
ted 
omponents in F .

Corollary 5.3 Fix nonnegative integersm

ij

, 1 � i < j � n. Let A be an arrangement of type (3.3)

where the a

(k)

ij

are generi
. Then

1. Poin

A

(q) =

P

F

m

F

q

jF j

,

2. r(A) =

P

F

m

F

,

where the sums are over all forests F on the verti
es 1; 2; : : : ; n.

Corollary 5.4 The number of regions of the arrangement (3.4) with generi
 a

ij

is equal to the

number of forests on n labelled verti
es.

This 
orollary is \dual" to the following known result (see, e.g., [27, Exer
ise 4.32(a)℄). Let

P

n

be the permutohedron, i.e., the polyhedron with verti
es (�

1

; : : : ; �

n

) 2 R

n

, where �

1

; : : : ; �

n

ranges over all permutations of 1; : : : ; n.

Proposition 5.5 The number of integer latti
e points in P

n

is equal to the number of forests on

n labelled verti
es.

The 
onne
ted 
omponents of the

�

n

2

�

-dimensional spa
e of all arrangements (3.4) 
orrespond

to (
oherent) zonotopal tilings of the permutohedron P

n

, i.e., 
ertain subdivisions of P

n

into

parallelepipeds. The regions of a generi
 arrangement (3.4) 
orrespond to the verti
es of the


orresponding tiling, whi
h are all integer latti
e points in P

n

.

It is also well-known that the volume of the permutohedron P

n

is equal to the number of

parallelepipeds in a tiling whi
h, in turn, is equal to n

n�2

|the number of trees on n labelled

verti
es. Dually, this implies the following result.

Proposition 5.6 The number of verti
es (i.e., one-dimensional interse
tions of hyperplanes) of

the arrangement (3.4) with generi
 a

ij

is equal to n

n�2

.
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6 A Semigeneri
 Deformation of the Braid Arrangement.

De�ne the \semigeneri
" deformation G

n

of the braid arrangement (3.1) to be the arrangement

x

i

� x

j

= a

i

; 1 � i � n; 1 � j � n; i 6= j;

where the a

i

's are generi
 real numbers (e.g., linearly independent over Q). The signi�
an
e of

this arrangement to the theory of interval orders is dis
ussed in [29, x3℄. In [29, Thm. 3.1 and Cor.

3.3℄ a generating fun
tion for the number r(G

n

) of regions and for the 
hara
teristi
 polynomial

�

G

n

(q) of G

n

is stated without proof. In this se
tion we provide the proofs.

Theorem 6.1 Let

z =

X

n�0

r(G

n

)

x

n

n!

= 1 + x+ 3

x

2

2!

+ 19

x

3

3!

+ 195

x

4

4!

+ 2831

x

5

5!

+ 53703

x

6

6!

+ � � � :

De�ne a power series

y = 1 + x+ 5

x

2

2!

+ 46

x

3

3!

+ 631

x

4

4!

+ 11586

x

5

5!

+ 267369

x

6

6!

+ � � �

by the equation

1 = y(2� e

xy

):

Then z is the unique power series satisfying

z

0

z

= y

2

; z(0) = 1:

Proof We use the formula (4.4) to 
ompute R(G

n

). Given a 
entral set I of hyperplanes x

i

�x

j

= a

i

in G

n

, de�ne a dire
ted graph G

I

on the vertex set 1; 2; : : : ; n as follows: let i! j be a dire
ted edge

of G

I

if and only if the hyperplane x

i

� x

j

= a

i

belongs to I . (By slight abuse of notation, we are

using I to denote a set of hyperplanes, rather than the set of their indi
es.) Note that G

I


annot


ontain both the edges i ! j and j ! i, sin
e the interse
tion of the 
orresponding hyperplanes

is empty. If k

1

; k

2

; : : : ; k

r

are distin
t elements of f1; 2; : : : ; ng, then it is easy to see that if r is

even then there are exa
tly two ways to dire
t the edges k

1

k

2

; k

2

k

3

; : : : ; k

r�1

k

r

; k

r

k

1

so that the

hyperplanes 
orresponding to these edges have nonempty interse
tion, while if r is odd then there

are no ways. It follows that G

I

, ignoring the dire
tion of edges, is bipartite (i.e., all 
ir
uits have

even length). Moreover, given an undire
ted bipartite graph on the verti
es 1; 2; : : : ; n with blo
ks

(maximal 
onne
ted subgraphs that remain 
onne
ted when any vertex is removed) B

1

; : : : ; B

s

,

there are exa
tly two ways to dire
t the edges of ea
h blo
k so that the resulting dire
ted graph

G is the graph G

I

of a 
entral set I of hyperplanes. In addition, rk(I) = n � 
(G), where 
(G)

is the number of 
onne
ted 
omponents of G. Letting e(G) be the number of edges and b(G) the

number of blo
ks of G, it follows from equation (4.3) that

�

G

n

(q) =

X

G

(�1)

e(G)

2

b(G)

q


(G)

;

where G ranges over all bipartite graphs on the vertex set 1; 2; : : : ; n. This formula appears without

proof in [29, Thm. 3.2℄. In parti
ular, putting q = �1 gives

r(G

n

) = (�1)

n

X

G

(�1)

e(G)+
(G)

2

b(G)

: (6.1)

To evaluate the generating fun
tion z =

P

r(G

n

)

x

n

n!

, we use the following strategy.
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(a) Compute A

n

:=

P

G

(�1)

e(G)

, where G ranges over all (undire
ted) bipartite graphs on

1; 2; : : : ; n.

(b) Use (a) and the exponential formula to 
ompute B

n

:=

P

G

(�1)

e(G)

, where now G ranges

over all 
onne
ted bipartite graphs on 1; 2; : : : ; n.

(
) Use (b) and the blo
k-tree theorem to 
ompute the sum C

n

:=

P

G

(�1)

e(G)

, where G ranges

over all bipartite blo
ks on 1; 2; : : : ; n.

(d) Use (
) and the blo
k-tree theorem to 
ompute the sum D

n

:=

P

G

(�1)

e(G)

2

b(G)

, where G

ranges over all 
onne
ted bipartite graphs on 1; 2; : : : ; n.

(e) Use (d) and the exponential formula to 
ompute the desired sum (6.1).

We now pro
eed to steps (a){(e).

(a) Let b

k

(n) be the number of k-edge bipartite graphs on the vertex set 1; 2; : : : ; n. It is known

(e.g., [28, Exer
ise 5.5℄) that

X

n�0

X

k�0

b

k

(n)q

k

x

n

n!

=

2

4

X

n�0

 

n

X

i=0

(1 + q)

i(n�i)

�

n

i

�

!

x

n

n!

3

5

1=2

:

Put q = �1 to get

X

n�0

A

n

x

n

n!

=

0

�

1 +

X

n�1

2

x

n

n!

1

A

1=2

= (2e

x

� 1)

1=2

:

(b) A

ording to the exponential formula [12, p. 166℄, we have

X

n�1

B

n

x

n

n!

= log

X

n�0

A

n

x

n

n!

=

1

2

log(2e

x

� 1):

(
) Let B

0

n

denote the number of rooted 
onne
ted bipartite graphs on 1; 2; : : : ; n. Sin
e B

0

n

=

nB

n

, we get

X

n�1

B

0

n

x

n

n!

= x

d

dx

X

n�1

B

n

x

n

n!

=

x

2� e

�x

: (6.2)

Suppose now that B is a set of nonisomorphi
 blo
ks B and w is a weight fun
tion on B, so w(B)

denotes the weight of the blo
k B. Let

T (x) =

X

B2B

w(B)

x

p(B)

p(B)!

;

where p(B) denotes the number of verti
es of B. Let

u(x) =

X

G

 

Y

B

w(B)

!

x

p(G)

p(G)!

;
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where G ranges over all rooted 
onne
ted graphs whose blo
ks are isomorphi
 to elements of B,

and where B ranges over all blo
ks of G. The blo
k-tree theorem [13, (1.3.3)℄[28, Exer. 5.20(a)℄

asserts that

u = xe

T

0

(u)

: (6.3)

If we take B to be the set of all nonisomorphi
 bipartite blo
ks, w(B) = (�1)

e(B)

, and u =

x=(2� e

�x

), then it follows from (6.2) that

T (x) =

X

n�1

C

n

x

n

n!

: (6.4)

(d) Let D

0

n

be de�ned like D

n

, ex
ept that G ranges over all rooted 
onne
ted bipartite graphs

on 1; 2; : : : ; n, so D

0

n

= nD

n

. Let v(x) =

P

n�1

D

0

n

x

n

n!

. By the blo
k-tree theorem we have

v = xe

2T

0

(v)

;

where T (x) is given by (6.4). Write f

h�1i

(x) for the 
ompositional inverse of a power series

f(x) = x+ a

2

x

2

+ � � �, i.e., f(f

h�1i

(x)) = f

h�1i

(f(x)) = x. Substitute v

h�1i

for x and use (6.3) to

get

x = v

h�1i

(x)e

2T

0

(x)

= v

h�1i

(x)

�

x

u

h�1i

(x)

�

2

:

Substitute v(x) for x to obtain

x v(x) = u

h�1i

(v(x))

2

:

Take the square root of both sides and 
ompose with u(x) = x=(2� e

�x

) on the left to get

p

xv

2� e

�

p

xv

= v: (6.5)

(e) Equation (6.1) and the exponential formula show that

z = exp

0

�

�

X

n�1

(�1)

n

D

n

x

n

n!

1

A

= exp

�

�

Z

v(�x)

x

�

; (6.6)

where

R

denotes the formal integral, i.e.,

R

P

a

n

x

n

n!

=

P

a

n

x

n+1

(n+1)!

. (The �rst minus sign in (6.6)


orresponds to the fa
tor (�1)


(G)

in (6.1).)

Let v(�x) = �xy

2

. Equation (6.5) be
omes (taking 
are to 
hoose the right sign of the square

root)

1 = y(2� e

xy

);

while (6.6) shows that z

0

=z = �v(�x)=x = y

2

. This 
ompletes the proof. 2

Note. The semigeneri
 arrangement G

n

satis�es the hypotheses of [29, Thm. 1.2℄. It follows

that

X

n�0

�

G

n

(q)

x

n

n!

= z(�x)

�q

;
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as stated in [29, Cor. 3.3℄. Here z is as de�ned in Theorem 6.1.

An arrangement 
losely related to G

n

is given by

G

0

n

: x

i

� x

j

= a

i

; 1 � i < j � n;

where the a

i

's are generi
. The analogue of equation (6.1) is

r(G

0

n

) = (�1)

n

X

G

(�1)

e(G)+
(G)

2

b(G)

;

where now G ranges over all bipartite graphs on the vertex set 1; 2; : : : ; n for whi
h every blo
k is

alternating, i.e., every vertex is either less that all its neighbors or greater than all its neighbors.

The �rst author of this paper has obtained a result analogous to Theorem 6.1.

7 Catalan Arrangements and Semiorders

Let us �x distin
t real numbers a

1

; a

2

; : : : ; a

m

> 0, and let A = (a

1

; : : : ; a

m

). In this se
tion we


onsider the arrangement C

n�1

= C

n�1

(A) of hyperplanes in the spa
e V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j

x

1

+ � � �+ x

n

= 0g given by

x

i

� x

j

= a

1

; a

2

; : : : ; a

m

; i 6= j: (7.1)

We 
onsider also the arrangement C

0

n�1

= C

0

n�1

(A) obtained from C

n�1

by adjoining the hyper-

planes x

i

= x

j

, i.e., C

0

n

is given by

x

i

� x

j

= 0; a

1

; a

2

; : : : ; a

m

; i 6= j: (7.2)

Let

f

A

(t) =

X

n�0

r(C

n�1

)

t

n

n!

;

g

A

(t) =

X

n�0

r(C

0

n�1

)

t

n

n!

be the exponential generating fun
tions for the numbers of regions of the arrangements C

n�1

and

C

0

n�1

.

The main result of this se
tion is the following theorem, stated without proof in [29, Thm. 2.3℄.

Theorem 7.1 We have f

A

(t) = g

A

(1� e

�t

) or, equivalently,

r(C

0

n�1

) =

X

k�0


(n; k) r(C

k�1

);

where 
(n; k) is the signless Stirling number of the �rst kind, i.e., the number of permutations of

1; 2; : : : ; n with k 
y
les.

Let us have a 
loser look at two spe
ial 
ases of arrangements (7.1) and (7.2). Consider the

arrangement of hyperplanes in V

n�1

� R

n

given by the equations

x

i

� x

j

= �1; 1 � i < j � n: (7.3)

Consider also the arrangement given by

x

i

� x

j

= 0; �1; 1 � i < j � n: (7.4)

It is not diÆ
ult to 
he
k the following result dire
tly from the de�nition.
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Figure 3: Forbidden subposets for semiorders.

Proposition 7.2 The number of regions of the arrangement (7.4) is equal to n!C

n

, where C

n

is

the Catalan number C

n

=

1

n+1

�

2n

n

�

.

Theorem 7.1 then gives a formula for the number of regions of the arrangement (7.3).

Let R be a region of the arrangement (7.3), and let (x

1

; : : : ; x

n

) 2 R be any point in the region

R. Consider the poset P on the verti
es 1; : : : ; n su
h that i >

P

j if and only if x

i

�x

j

> 1. Clearly,

distin
t regions 
orrespond to distin
t posets. The posets that 
an be obtained in su
h a way are


alled semiorders. See [29℄ for more results on the relation between hyperplane arrangements and

interval orders (whi
h are a generalization of semiorders).

The symmetri
 group S

n

naturally a
ts on the spa
e V

n�1

by permuting the 
oordinates x

i

.

Thus it also permutes the regions of the arrangement (7.4). The region x

1

< x

2

< � � � < x

n

is


alled the dominant 
hamber. Every S

n

-orbit of regions of the arrangement (7.4) 
onsists of n!

regions and has a unique representative in the dominant 
hamber. It is also 
lear that the regions

of (7.4) in the dominant 
hamber 
orrespond to unlabelled (i.e., nonisomorphi
) semiorders on n

verti
es. Hen
e, Proposition 7.2 is equivalent to a well-known result of Wine and Freund [33℄ that

the number of nonisomorphi
 semiorders on n verti
es is equal to the Catalan number. In the

spe
ial 
ase of the arrangements (7.3) and (7.4), i.e., A = (1), Theorem 7.1 gives a formula for

the number of labelled semiorders on n verti
es whi
h was �rst proved by Chandon, Lemaire, and

Pouget [8℄.

The following theorem, due to S
ott and Suppes [24℄, presents a simple 
hara
terization of

semiorders (
f. Theorem 8.4).

Theorem 7.3 A poset P is a semiorder if and only if it 
ontains no indu
ed subposet of either of

the two types shown on Figure 3.

Return now to the general 
ase of the arrangements C

n�1

and C

0

n�1

given by (7.1) and (7.2).

The symmetri
 group S

n

a
ts on the regions of C

n�1

and C

0

n�1

. Let R

n�1

denotes the set of all

regions of C

n�1

.

Lemma 7.4 The number of regions of C

0

n�1

is equal to n! times the number of S

n

-orbits in R

n�1

.

Indeed, the number of regions of C

0

n�1

is n! times the number of those in the dominant 
hamber.

They, in turn, 
orrespond to S

n

-orbits in R

n�1

. As was shown in [29℄, the regions of C

n�1


an be

viewed as (labelled) generalized interval orders. On the other hand, the regions of C

0

n�1

that lie in

the dominant 
hamber 
orrespond to unlabelled generalized interval orders. The statement now is

tautologi
al, that the number of unlabelled obje
ts is the number of S

n

-orbits.

Now we 
an apply the following well-known lemma of Burnside (a
tually �rst proved by Cau
hy

and Frobenius, as dis
ussed e.g. in [28, p. 404℄).
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Lemma 7.5 Let G be a �nite group whi
h a
ts on a �nite set M . Then the number of G-orbits

in M is equal to

1

jGj

X

g2G

Fix(g;M);

where Fix(g;M) is the number of elements in M �xed by g 2 G.

By Lemmas 7.4 and 7.5 we have

r(C

0

n�1

) =

X

�2S

n

Fix(�; C

n�1

);

where Fix(�; C

n�1

) is the number of regions of C

n�1

�xed by the permutation �.

Theorem 7.1 now follows easily from the following lemma.

Lemma 7.6 Let � 2 S

n

be a permutation with k 
y
les. Then the number of regions of C

n�1

�xed

by � is equal to the total number of regions of C

k�1

.

Indeed, by Lemma 7.6, we have

r(C

0

n�1

) =

X

�2S

n

Fix(�; C

n�1

) =

X

k�0


(n; k) r(C

k�1

);

whi
h is pre
isely the 
laim of Theorem 7.1.

Proof of Lemma 7.6 We will 
onstru
t a bije
tion between the regions of C

n�1

�xed by � and

the regions of C

k�1

.

Let R be any region of C

n�1

�xed by a permutation � 2 S

n

, and let (x

1

; : : : ; x

n

) be any point

in R. Then for any i; j 2 f1; : : : ; ng and any s = 1; : : : ;m we have x

i

� x

j

> a

s

if and only if

x

�(i)

� x

�(j)

> a

s

.

Let � = (


11




12

� � � 


1l

1

) (


21




22

� � � 


2l

2

) � � � (


k1




k2

� � � 


kl

k

) be the 
y
le de
omposition of the

permutation �. Write X

i

= (x




i1

; x




i2

; : : :) for i = 1; : : : ; k. We will write X

i

� X

j

> a if

x

i

0

� x

j

0

> a for any x

i

0

2 X

i

and x

j

0

2 X

j

. The notation X

i

� X

j

< a has an analogous

meaning. We will show that for any two 
lasses X

i

and X

j

and for any s = 1; : : : ;m we have either

X

i

�X

j

> a

s

or X

i

�X

j

< a

s

.

Let x

i

�

be the maximal element in X

i

and let x

j

�

be the maximal element in X

j

. Suppose that

x

i

�

�x

j

�

> a

s

. Sin
e R is �-invariant, for any integer p we have the inequality x

�

p

(i

�

)

�x

�

p

(j

�

)

> a

s

.

Then, sin
e x

i

�

is the maximal element of X

i

, we have x

i

�

� x

�

p

(j

�

)

> a

s

. Again, for any integer

q, we have x

�

q

(i

�

)

� x

�

p+q

(j

�

)

> a

s

, whi
h implies that X

i

�X

j

> a

s

.

Analogously, suppose that x

i

�

�x

j

�

< a

s

. Then for any integer p we have x

�

p

(i

�

)

�x

�

p

(j

�

)

< a

s

.

Sin
e x

j

�

� x

�

p

(j

�

)

, we have x

�

p

(i

�

)

� x

j

�

< a

s

. Finally, for any integer q we obtain x

�

p+q

(i

�

)

�

x

�

q

(j

�

)

< a

s

, whi
h implies that X

i

�X

j

< a

s

.

If we pi
k an element x

i

0

in ea
h 
lass X

i

we get a point (x

1

0

; x

2

0

; : : : ; x

k

0

) in R

k

. This point

lies in some region R

0

of C

k�1

. The 
onstru
tion above shows that the region R

0

does not depend

on the 
hoi
e of x

i

0

in X

i

.

Thus we get a map � : R ! R

0

from the regions of C

n�1

invariant under � to the regions of

C

k�1

. It is 
lear that � is inje
tive. To show that � is surje
tive, let (x

1

0

; : : : ; x

k

0

) be any point

in a region R

0

of C

k

. Pi
k the point (x

1

; x

2

; : : : ; x

n

) 2 R

n

su
h that x




11

= x




12

= � � � = x

1

0

,

x




21

= x




22

= � � � = x

2

0

; : : : ; x




k1

= x




k2

= � � � = x

k

0

. Then (x

1

; : : : ; x

n

) is in some region R of C

n�1

(here we use the 
ondition a

1

; : : : ; a

m

6= 0). A

ording to our 
onstru
tion, we have �(R) = R

0

.

Thus � is a bije
tion.

This 
ompletes the proof of Lemma 7.6 and therefore also of Theorem 7.1. �
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8 The Linial Arrangement

As before, V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j x

1

+ � � � + x

n

= 0g. Consider the arrangement L

n�1

of

hyperplanes in V

n�1

given by the equations

x

i

� x

j

= 1; 1 � i < j � n: (8.1)

Re
all that r(L

n�1

) denotes the number of regions of the arrangement L

n�1

. This arrangement

was �rst 
onsidered by Nati Linial and Shmulik Ravid. They 
al
ulated the numbers r(L

n�1

) and

the Poin
ar�e polynomials Poin

L

n�1

(q) for n � 9.

In this se
tion we give an expli
it formula and several di�erent 
ombinatorial interpretations

for the numbers r(L

n�1

).

8.1 Alternating trees and lo
al binary sear
h trees

We 
all a tree T on the verti
es 0; 1; 2; : : : ; n alternating if the verti
es in any path i

1

; : : : ; i

k

in T

alternate, i.e., we have i

1

< i

2

> i

3

< � � � i

k

or i

1

> i

2

< i

3

> � � � i

k

. In other words, there are

no i < j < k su
h that both (i; j) and (j; k) are edges in T . Equivalently, every vertex is either

greater than all its neighbors or less than all its neighbors. Alternating trees �rst appear in [11℄

and were studied in [20℄, where they were 
alled intransitive trees (see also [29℄).

r r r r r

r r r r r

r�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

01 23

4

5

67

8

910

Figure 4: An alternating tree.

Let f

n

be the number of alternating trees on the verti
es 0; 1; 2; : : : ; n, and let

f(x) =

X

n�0

f

n

x

n

n!

be the exponential generating fun
tion for the sequen
e f

n

.

A plane binary tree B on the verti
es 1; 2; : : : ; n is 
alled a lo
al binary sear
h tree if for any

vertex i in T the left 
hild of i is less than i and the right 
hild of i is greater than i. These trees

were �rst 
onsidered by Ira Gessel (private 
ommuni
ation). Let g

n

denote the number of lo
al

binary sear
h trees on the verti
es 1; 2; : : : ; n. By 
onvention, g

0

= 1.

The following result was proved in [20℄ (see also [11, 29℄).

Theorem 8.1 For n � 1 we have

f

n

= g

n

= 2

�n

n

X

k=0

�

n

k

�

(k + 1)

n�1

and f = f(x) satis�es the fun
tional equation

f = e

x(1+f)=2

:

15
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Figure 5: A lo
al binary sear
h tree.

The �rst few numbers f

n

are given in the table below.

n 0 1 2 3 4 5 6 7 8 9 10

f

n

1 1 2 7 36 246 2104 21652 260720 3598120 56010096

The main result on the Linial arrangement is the following:

Theorem 8.2 The number r(L

n�1

) of regions of L

n�1

is equal to the number f

n

of alternat-

ing trees on the verti
es 0; 1; 2 : : : ; n, and thus to the number g

n

of lo
al binary sear
h trees on

1; 2; : : : ; n.

This theorem was 
onje
tured by the se
ond author (thanks to the numeri
al data provided

by Linial and Ravid) and was proved by the �rst author. A di�erent proof was later given by C.

Athanasiadis [3℄.

In Se
tion 9 we will prove a more general result (see Theorems 9.1 and Corollary 9.9).

8.2 Sleek posets and semia
y
li
 tournaments

Let R be a region of the arrangement L

n�1

, and let (x

1

; : : : ; x

n

) be any point in R. De�ne

P = P (R) to be the poset on the verti
es 1; 2; : : : ; n su
h that i <

P

j if and only if x

i

� x

j

> 1

and i < j in the usual order on Z.

We will 
all a poset P on the verti
es 1; 2; : : : ; n sleek if P is the interse
tion of a semiorder

(see Se
tion 7) with the 
hain 1 < 2 < � � � < n.

The following proposition immediately follows from the de�nitions.

Proposition 8.3 The map R 7! P (R) is a bije
tion between regions of L

n�1

and sleek posets on

1; 2; : : : ; n. Hen
e the number r(L

n�1

) is equal to the number of sleek posets on 1; 2; : : : ; n.

There is a simple 
hara
terization of sleek posets in terms of forbidden indu
ed subposets

(
ompare Theorem 7.3).

Theorem 8.4 A poset P on the verti
es 1; 2; : : : ; n is sleek if and only if it 
ontains no indu
ed

subposet of the four types shown on Figure 6, where a < b < 
 < d.
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Figure 6: Obstru
tions to sleekness.
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Figure 7: As
ending 
y
les.

In the remaining part of this se
tion we prove Theorem 8.4.

First, we give another des
ription of regions in L

n�1

(or, equivalently, sleek posets). A tour-

nament on the verti
es 1; 2; : : : ; n is a dire
ted graph T without loops su
h that for every i 6= j

either (i; j) 2 T or (j; i) 2 T . For a region R of L

n�1


onstru
t a tournament T = T (R) on the

verti
es 1; 2; : : : ; n as follows: let (x

1

; : : : ; x

n

) 2 R. If x

i

� x

j

> 1 and i < j, then (i; j) 2 T ; while

if x

i

� x

j

< 1 and i < j, then (j; i) 2 T .

Let C be a dire
ted 
y
le in the 
omplete graph K

n

on the verti
es 1; 2; : : : ; n. We will write

C = (


1

; 


2

; : : : ; 


m

) if C has the edges (


1

; 


2

); (


2

; 


3

); : : : ; (


m

; 


1

). By 
onvention, 


0

= 


m

. An

as
ent in C is a number 1 � i � m su
h that 


i�1

< 


i

. Analogously, a des
ent in C is a number

1 � i � m su
h that 


i�1

> 


i

. Let as
(C) denote the number of as
ents and des(C) denote the

number of des
ents in C. We say that a 
y
le C is as
ending if as
(C) � des(C). For example,

the following 
y
les are as
ending: C

0

= (a; b; 
), C

1

= (a; 
; b; d), C

2

= (a; d; b; 
), C

3

= (a; b; d; 
),

C

4

= (a; 
; d; b), where a < b < 
 < d. These 
y
les are shown on Figure 7.

We 
all a tournament T on 1; 2; : : : ; n semia
y
li
 if it 
ontains no as
ending 
y
les. In other

words, T is semia
y
li
 if for any dire
ted 
y
le C in T we have as
(C) < des(C).

Proposition 8.5 A tournament T on 1; 2; : : : ; n 
orresponds to a region R in L

n�1

, i.e., T =

T (R), if and only if T is semia
y
li
. Hen
e r(L

n�1

) is the number of semia
y
li
 tournaments

on 1; 2; : : : ; n.

This fa
t was independently found by Shmulik Ravid.

For any tournament T on 1; 2; : : : ; n without 
y
les of type C

0

we 
an 
onstru
t a poset P =

P (T ) su
h that i <

P

j if and only if i < j and (i; j) 2 T . Now the four as
ending 
y
les C

1

, C

2

,

C

3

, C

4

in Figure 7 
orrespond to the four posets on Figure 6. Therefore, Theorem 8.4 is equivalent

to the following result.

Theorem 8.6 A tournament T on the verti
es 1; 2; : : : ; n is semia
y
li
 if and only if it 
ontains

no as
ending 
y
les of the types C

0

; C

1

; C

2

; C

3

, and C

4

shown in Figure 7, where a < b < 
 < d.
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Remark 8.7 This theorem is an analogue of a well-known fa
t that a tournament T is a
y
li
 if

and only if it 
ontains no 
y
les of length 3. For semia
y
li
ity we have obstru
tions of lengths 3

and 4.

Proof Let T be a tournament on 1; 2; : : : ; n. Suppose that T is not semia
y
li
. We will show

that T 
ontains a 
y
le of type C

0

; C

1

; C

2

; C

3

, or C

4

. Let C = (


1

; 


2

; : : : ; 


m

) be an as
ending


y
le in T of minimal length. If m = 3, or 4 then C is of type C

0

; C

1

; C

2

; C

3

, or C

4

. Suppose

that m > 4.

Lemma 8.8 We have as
(C) = des(C).

Proof Sin
e C is as
ending, we have as
(C) � des(C). Suppose as
(C) > des(
). If C has

two adja
ent as
ents i and i + 1 then (


i�1

; 


i+1

) 2 T (otherwise we have an as
ending 
y
le

(


i�1

; 


i

; 


i+1

) of type C

0

in T ). Then C

0

= (


1

; 


2

; : : : ; 


i�1

; 


i+1

; : : : ; 


m

) is an as
ending 
y
le in

T of length m� 1, whi
h 
ontradi
ts the fa
t that we 
hose C to be minimal. So for every as
ent

i in C the index i+ 1 is a des
ent. Hen
e as
(C) � des(C), and we get a 
ontradi
tion. �

We say that 


i

and 


j

are on the same level in C if the number of as
ents between 


i

and 


j

is

equal to the number of des
ents between 


i

and 


j

.

Lemma 8.9 We 
an �nd i; j 2 f1; 2; : : : ;mg su
h that (a) i is an as
ent and j is a des
ent in C,

(b) i 6� j � 1 (mod m), and (
) 


i

and 


j�1

are on the same level (see Figure 8).

Proof We may assume that for any 1 � s � m the number of as
ents in f1; 2; : : : ; sg is greater

than or equal to the number of des
ents in f1; 2; : : : ; sg (otherwise take some 
y
li
 permutation

of (


1

; 


2

; : : : ; 


m

)). Consider two 
ases.

1. There exists 1 � t � m � 1 su
h that 


t

and 


m

are on the same level. In this 
ase, if the

pair (i; j) = (1; t) does not satisfy 
onditions (a){(
) then t = 2. On the other hand, if the pair

(i; j) = (t+1;m) does not satisfy (a){(
) then t = m� 2. Hen
e, m = 4 and C is of type C

1

or C

2

shown in Figure 7.

2. There is no 1 � t � m� 1 su
h that 


t

and 


m

are on the same level. Then 2 is an as
ent and

m� 1 is a des
ent. If the pair (i; j) = (2;m� 2) does not satisfy (a){(
) then m = 4 and C is of

type C

3

or C

4

shown in Figure 7. �

Now we 
an 
omplete the proof of Theorem 8.6. Let i; j be two numbers satisfying the 
onditions

of Lemma 8.9. Then 


i�1

, 


i

, 


j�1

, 


j

are four distin
t verti
es su
h that (a) 


i�1

< 


i

, (b) 


j�1

> 


j

,

(
) 


i

and 


j�1

are on the same level, and (d) 


i�1

and 


j

are on the same level (see Figure 8). We

may assume that i < j.

r

r

r

r

6

?




j




j�1




i�1




i

Figure 8:
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If (


j�1

; 


i�1

) 2 T then (


i�1

; 


i

; : : : ; 


j�1

) is an as
ending 
y
le in T of length less than m,

whi
h 
ontradi
ts the requirement that C is an as
ending 
y
le on T of minimal length. So

(


i�1

; 


j�1

) 2 T . If 


i�1

< 


j�1

then (


j�1

; 


j

; : : : ; 


m

; 


1

; : : : ; 


i�1

) is an as
ending 
y
le in T of

length less than m. Hen
e, 


i�1

> 


j�1

.

Analogously, if (


i

; 


j

) 2 T then (


j

; 


j+1

; : : : ; 


p

; 


1

; : : : ; 


i

) is an as
ending 
y
le in T of length

less than m. So (


j

; 


i

) 2 T . If 


i

> 


j

then (


i

; 


i+1

; : : : ; 


j

) is an as
ending 
y
le in T of length

less than m. So 


i

< 


j

.

Now we have 


i�1

> 


j�1

> 


j

> 


i

> 


i�1

, and we get an obvious 
ontradi
tion.

We have shown that every minimal as
ending 
y
le in T is of length 3 or 4 and thus have proved

Theorem 8.6. �

8.3 The Orlik-Solomon algebra

In [16℄ Orlik and Solomon gave the following 
ombinatorial des
ription of the 
ohomology ring of

the 
omplement of an arbitrary 
omplex hyperplane arrangement. Consider a 
omplex arrangement

A of aÆne hyperplanes H

1

; H

2

; : : : ; H

N

in the 
omplex spa
e V

�

=

C

n

given by

H

i

: f

i

(x) = 0; i = 1; : : : ; N;

where f

i

(x) are linear forms on V (with a 
onstant term).

We say that hyperplanes H

i

1

; : : : ; H

i

p

are independent if the 
odimension of the interse
tion

H

i

1

\ � � � \H

i

p

is equal to p. Otherwise, the hyperplanes are dependent.

Let e

1

; : : : ; e

N

be formal variables asso
iated with the hyperplanes H

1

; : : : ; H

N

. The Orlik-

Solomon algebra OS(A) of the arrangementA is generated over the 
omplex numbers by e

1

; : : : ; e

N

,

subje
t to the relations:

e

i

e

j

= �e

j

e

i

; 1 � i < j � N; (8.2)

e

i

1

� � � e

i

p

= 0; if H

i

1

\ � � � \H

i

p

= ;; (8.3)

p+1

X

j=1

(�1)

j

e

i

1

� � �
e

i

j

� � � e

i

p+1

= 0; (8.4)

whenever H

i

1

; : : : ; H

i

p+1

are dependent. (Here 
e

i

j

denotes that e

i

j

is missing.)

Let C

A

= V �

S

i

H

i

be the 
omplement to the hyperplanes H

i

of A, and let H

�

DR

(C

A

; C )

denote de Rham 
ohomology of C

A

.

Theorem 8.10 (Orlik, Solomon [16℄) The map � : OS(A)! H

�

DR

(C

A

; C ) de�ned by

� : e

i

7! [df

i

=f

i

℄

is an isomorphism.

Here [df

i

=f

i

℄ is the 
ohomology 
lass in H

�

DR

(C

A

; C ) of the di�erential form df

i

=f

i

.

We will apply Theorem 8.10 to the Linial arrangement. In this 
ase hyperplanes x

i

� x

j

= 1,

i < j, 
orrespond to edges (i; j) of the 
omplete graph K

n

.
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Proposition 8.11 The Orlik-Solomon algebra OS(L

n�1

) of the Linial arrangement is generated

by e

vw

= e

(v;w)

, 1 � v < w � n, subje
t to relations (8.2), (8.3), and also to the following relations:

e

ab

e

b


e

a


� e

ab

e

b


e


d

+ e

ab

e

a


e


d

� e

b


e

a


e


d

= 0;

e

a


e

b


e

bd

� e

a


e

b


e

ad

+ e

a


e

bd

e

ad

� e

b


e

bd

e

ad

= 0:

(8.5)

where 1 � a < b < 
 < d � n (
f. Figure 7).

Proof Let C = (


1

; 


2

; : : : ; 


p

) be a 
y
le in K

n

. We say that C is balan
ed if as
(C) = des(C). We

may assume that in equation (8.4) i

1

; i

2

; : : : ; i

p

are edges of a balan
ed 
y
le C. We will prove (8.4)

by indu
tion on p. If p = 4 then C is of type C

1

; C

2

; C

3

, or C

4

(see Figure 7). Thus C produ
es

one of the relations (8.5). If p > 4, then we 
an �nd r 6= s su
h that both C

0

= (


r

; 


r+1

; : : : ; 


s

)

and C

00

= (


s

; 


s+1

; : : : ; 


r

) are balan
ed. Equation (8.4) for C is the sum of the equations for C

0

and C

00

. Thus the statement follows by indu
tion. �

Remark 8.12 This proposition is an analogue to the well-known des
ription of the 
ohomology

ring of the Coxeter arrangement (3.1), due to Arnold [1℄. This 
ohomology ring is generated by

e

vw

= e

(v;w)

, 1 � v < w � n, subje
t to relations (8.2), (8.3) and also the following \triangle"

equation:

e

ab

e

b


� e

ab

e

a


+ e

b


e

a


= 0;

where 1 � a < b < 
 � n.

9 Trun
ated AÆne Arrangements

In this se
tion we study a general 
lass of hyperplane arrangements whi
h 
ontains, in parti
ular,

the Linial and Shi arrangements.

Let a and b be two integers su
h that a � 0, b � 0, and a + b � 2. Consider the hyperplane

arrangement A

ab

n�1

in V

n�1

= f(x

1

; : : : ; x

n

) 2 R

n

j x

1

+ � � �+ x

n

= 0g given by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; b� 1; 1 � i < j � n: (9.1)

We 
all A

ab

n�1

a trun
ated aÆne arrangement be
ause it is a �nite subarrangement of the aÆne

arrangement of type

e

A

n�1

given by x

i

� x

j

= k, k 2 Z.

As we will see the arrangement A

ab

n�1

has di�erent behavior in the balan
ed 
ase (a = b) and

the unbalan
ed 
ase (a 6= b).

9.1 Fun
tional equations

Let f

n

= f

ab

n

be the number of regions of the arrangement A

ab

n�1

, and let

f(x) =

X

n�0

f

n

x

n

n!

(9.2)

be the exponential generating fun
tion for f

n

.

Theorem 9.1 Suppose a; b � 0.

1. The generating fun
tion f = f(x) satis�es the following fun
tional equation:

f

b�a

= e

x�

f

a

�f

b

1�f

: (9.3)
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2. If a = b � 1, then f = f(x) satis�es the equation:

f = 1 + xf

a

; (9.4)

Note that the equation (9.4) 
an be formally obtained from (9.3) by l'Hôpital's rule in the limit

a! b.

In the 
ase a = b the fun
tional equation (9.4) allows us to 
al
ulate the numbers f

aa

n

expli
itly.

Corollary 9.2 The number f

aa

n

is equal to an(an� 1) � � � (an� n+ 2).

The fun
tional equation (9.3) is espe
ially simple in the 
ase a = b � 1. We 
all the arrange-

ment A

a;a+1

n�1

the extended Shi arrangement. In this 
ase we get:

Corollary 9.3 Let a � 1. The number f

n

of regions of the hyperplane arrangement in R

n

given

by

x

i

� x

j

= �a+ 1;�a+ 2; : : : ; a; i < j;

is equal to f

n

= (an+1)

n�1

, and the exponential generating fun
tion f =

P

n�0

f

n

x

n

n!

satis�es the

fun
tional equation f = e

x�f

a

.

In order to prove Theorem 9.1 we need several new de�nitions. A graded graph is a graph G

on a set V of verti
es labelled by natural numbers together with a fun
tion h : V ! f0; 1; 2; : : :g,

whi
h is 
alled a grading. For r � 0 the verti
es v of G su
h that h(v) = r form the rth level

of G. Let e = (u; v) be an edge in G, u < v. We say that the type of the edge e is the integer

t = h(v)� h(u) and that a graded graph G is of type (a; b) if the types of all edges in G are in the

interval [�a+ 1; b� 1℄ = f�a+ 1;�a+ 2; : : : ; b� 1g.

Choose a linear order on the set of all triples (u; t; v), u; v 2 V , t 2 [�a+ 1; b� 1℄. Let C be

a graded 
y
le of type (a; b). Every edge (u; v) of C 
orresponds to a triple (u; t; v), where t is

the type of the edge (u; v). Choose the edge e of C with the minimal triple (u; t; v). We say that

C n feg is a broken 
ir
uit of type (a; b).

Let (F; h) be a graded forest. We say that (F; h) is grounded or that h is a grounded grading

on the forest F if ea
h 
onne
ted 
omponent in F 
ontains a vertex on the 0th level.

Proposition 9.4 The number f

n

of regions of the arrangement (9.1) is equal to the number of

grounded graded forests of type (a; b) on the verti
es 1; 2; : : : ; n without broken 
ir
uits of type (a; b).

Proof By Corollary 5.1, the number f

n

is equal to the number of 
olored forests F on the verti
es

1; 2; : : : ; n without broken A-
ir
uits. Every edge (u; v), u < v, in F has a 
olor whi
h is an integer

from the interval [�a+ 1; b� 1℄. Consider the grounded grading h on F su
h that for every edge

(u; v), u < v, in F of 
olor t we have that t = h(v)�h(u) is the type of (u; v). It is 
lear that su
h

a grading is uniquely de�ned. Then (F; h) is a grounded graded forest of type (a; b). Clearly, this

gives a 
orresponden
e between 
olored and graded forests. Then broken A-
ir
uits 
orrespond to

broken graded 
ir
uits. The proposition easily follows. �

From now on we �x the lexi
ographi
 order on triples (u; t; v), i.e., (u; t; v) < (u

0

; t

0

; v

0

) if and

only if u < u

0

, or (u = u

0

and t < t

0

), or (u = u

0

and t = t

0

and v < v

0

). Note the order of u, t,

and v. We will 
all a graded tree T solid if T is of type (a; b) and T 
ontains no broken 
ir
uits of

type (a; b).

Let T be a solid tree on 1; 2; : : : ; n su
h that vertex 1 is on the rth level. If we delete the

minimal vertex 1, then the tree T de
omposes into 
onne
ted 
omponents T

1

; T

2

; : : : ; T

m

. Suppose

that ea
h 
omponent T

i

is 
onne
ted with 1 by an edge (1; v

i

) where v

i

is on the r

i

-th level.
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Lemma 9.5 Let T; T

1

; : : : ; T

m

; v

1

; : : : ; v

m

, and r

1

; : : : ; r

m

be as above. The tree T is solid if and

only if (a) all T

1

; T

2

; : : : ; T

m

are solid, (b) for all i the r

i

-th level is the minimal nonempty level in

T

i

su
h that �a+1 � r

i

� r � b� 1, and (
) the vertex v

i

is the minimal vertex on its level in T

i

.

Proof First, we prove that if T is solid then the 
onditions (a){(
) hold. Condition (a) is

trivial, be
ause if some T

i


ontains a broken 
ir
uit of type (a; b) then T also 
ontains this broken


ir
uit. Assume that for some i there is a vertex v

0

i

on the r

0

i

-th level in T

i

su
h that r

0

i

< r

i

and

r

0

i

� r � �a + 1. Then the minimal 
hain in T that 
onne
ts vertex 1 with vertex v

0

i

is a broken


ir
uit of type (a; b). Thus 
ondition (b) holds. Now suppose that for some i vertex v

i

is not the

minimal vertex v

00

i

on its level. Then the minimal 
hain in T that 
onne
ts vertex 1 with v

00

i

is a

broken 
ir
uit of type (a; b). Therefore, 
ondition (
) holds too.

Now assume that 
onditions (a){(
) are true. We prove that T is solid. For suppose not. Then

T 
ontains a broken 
ir
uit B = C n feg of type (a; b), where C is a graded 
ir
uit and e is its

minimal edge. If B does not pass through vertex 1 then B lies in T

i

for some i, whi
h 
ontradi
ts


ondition (a). We 
an assume that B passes through vertex 1. Sin
e e is the minimal edge in C,

e = (1; v) for some vertex v

0

on level r

0

in T . Suppose v 2 T

i

. If v

0

and v

i

are on di�erent levels

in T

i

then by (b), r

i

< r. Thus the minimal edge in C is (1; v

i

) and not (1; v

0

). If v

0

and v

i

are

on the same level in T

i

, then by (
) we have v

i

< v

0

. Again, the minimal edge in C is (1; v

i

) and

not (1; v

0

). Therefore, the tree T 
ontains no broken 
ir
uit of type (a; b), i.e., T is solid. �

Let s

i

be the minimal nonempty level in T

i

, and let l

i

be the maximal nonempty level in T

i

.

By Lemma 9.5, the vertex 1 
an be on the rth level, r 2 fs

i

� b+1; s

i

� b+1; : : : ; l

i

+ a� 1g, and

for ea
h su
h r there is exa
tly one way to 
onne
t 1 with T

i

.

Let p

nkr

denote the number of solid trees (not ne
essarily grounded) on the verti
es 1; 2; : : : ; n

whi
h are lo
ated on levels 0; 1; : : : ; k su
h that vertex 1 is on the rth level, 0 � r � k.

Let

p

kr

(x) =

X

n�1

p

nkr

x

n

n!

; p

k

(x) =

k

X

r=0

p

kr

(x):

By the exponential formula (see [12, p. 166℄) and Lemma 9.5, we have

p

0

kr

(x) = exp b

kr

(x); (9.5)

where b

kr

(x) =

P

n�1

b

nkr

x

n

n!

and b

nkr

is the number of solid trees T on n verti
es lo
ated on the

levels 0; 1; : : : ; k su
h that at least one of the levels r � a+ 1; r � a+ 2; : : : ; r + b� 1 is nonempty,

0 � r � k. The polynomial b

kr

(x) enumerates the solid trees on levels 1; 2; : : : ; k minus trees on

levels 1; : : : ; r � a and trees on levels r + b; : : : ; k. Thus we obtain

b

kr

(x) = p

k

(x)� p

r�a

(x) � p

k�r�b

(x):

By (9.5), we get

p

0

kr

(x) = exp(p

k

(x)� p

r�a

(x)� p

k�r�b

(x));

where p

�1

(x) = p

�2

(x) = � � � = 0, p

0

(x) = x, p

k

(0) = 0 for k 2 Z. Hen
e

p

0

k

(x) =

k

X

r=0

exp(p

k

(x)� p

r�a

(x)� p

k�r�b

(x)):

Equivalently,

p

0

k

(x) exp(�p

k

(x)) =

k

X

r=0

exp(�p

r�a

(x)) exp(�p

k�r�b

(x)):
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Let q

k

(x) = exp(�p

k

(x)). We have

q

0

k

(x) = �

k

X

r=0

q

r�a

(x) q

k�r�b

(x); (9.6)

q

�1

= q

�2

= � � � = 1, q

0

= e

�x

, q

k

(0) = 1 for k 2 Z.

The following lemma des
ribes the relation between the polynomials q

k

(x) and the number of

regions of the arrangement A

ab

n�1

.

Lemma 9.6 The quotient q

k�1

(x)=q

k

(x) tends to

P

n�0

f

n

x

n

n!

as k !1.

Proof Clearly, p

k

(x)�p

k�1

(x) is the exponential generating fun
tion for the numbers of grounded

solid trees of height less than or equal to k. By the exponential formula (see [12, p. 166℄)

q

k�1

(x)=q

k

(x) = exp (p

k

(x)� p

k�1

(x)) is the exponential generating fun
tion for the numbers

of grounded solid forests of height less than or equal to k. The lemma obviously follows from

Proposition 9.4. �

All previous formulae and 
onstru
tions are valid for arbitrary a and b. Now we will take

advantage of the 
ondition a; b � 0. Let

q(x; y) =

X

k�0

q

k

(x)y

k

:

By (9.6), we obtain the following di�erential equation for q(x; y):

�

�x

q(x; y) = � (a

y

+ y

a

q(x; y)) �

�

b

y

+ y

b

q(x; y)

�

;

q(0; y) = (1� y)

�1

;

where a

y

:= (1� y

a

)=(1� y).

This di�erential equation has the following solution:

q(x; y) =

b

y

exp(�x � b

y

)� a

y

exp(�x � a

y

)

y

a

exp(�x � a

y

)� y

b

exp(�x � b

y

)

: (9.7)

Let us �x some small x. Sin
e Q(y) := q(x; y) is an analyti
 fun
tion of y, then 
 = 
(x) =

lim

k!1

q

k�1

=q

k

is the pole of Q(y) 
losest to 0 (
 is the radius of 
onvergen
e of Q(y) if x is a

small positive number). By (9.7), 


a

exp(�x � a




) � 


b

exp(�x � b




) = 0. Thus, by Lemma 9.6,

f(x) =

P

n�0

f

n

x

n

n!

= 
(x) is the solution of the fun
tional equation

f

a

e

�x�

1�f

a

1�f

= f

b

e

�x�

1�f

b

1�f

;

whi
h is equivalent to (9.3).

This 
ompletes the proof of Theorem 9.1. �

9.2 Formulae for the 
hara
teristi
 polynomial

Let A = A

ab

n�1

be the trun
ated aÆne arrangement given by (9.1). Consider the 
hara
teristi


polynomial �

ab

n

(q) of the arrangement A

ab

n�1

. Re
all that �

ab

n

(q) = q

n�1

Poin

A

ab

n�1

(�q

�1

).
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Let �

ab

(x; q) be the exponential generating fun
tion

�

ab

(x; q) = 1 +

X

n>0

�

ab

n�1

(q)

x

n

n!

:

A

ording to [29, Theorem 1.2℄, we have

�

ab

(x; q) = f(�x)

�q

; (9.8)

where f(x) = �

ab

(�x;�1) is the exponential generating fun
tion (9.2) for numbers of regions

of A

ab

n�1

.

Let S be the shift operator S : f(q) 7! f(q � 1).

Theorem 9.7 Assume that 0 � a < b. Then

�

ab

n

(q) = (b� a)

�n

(S

a

+ S

a+1

+ � � �+ S

b�1

)

n

� q

n�1

:

Proof The theorem 
an be easily dedu
ed from Theorem 9.1 and (9.8) (using, e.g., the Lagrange

inversion formula). �

In the limit b! a, using l'Hôpital's rule, we obtain

�

aa

n

(q) =

�

S

a

logS

1� S

�

n

� q

n�1

:

In fa
t, there is an expli
it formula for �

aa

(q). The following statement easily follows from

Corollary 9.2 and appears in [10, proof of Prop. 3.1℄.

Theorem 9.8 We have

�

aa

n

(q) = (q + 1� an)(q + 2� an) � � � (q + n� 1� an):

There are several equivalent ways to reformulate Theorem 9.7, as follows:

Corollary 9.9 Let r = b� a.

1. We have

�

ab

n

(q) = r

�n

X

(q � �(1)� � � � � �(n))

n�1

;

where the sum is over all fun
tions � : f1; : : : ; ng ! fa; : : : ; b� 1g.

2. We have

�

ab

n

(q) = r

�n

X

s; l�0

(�1)

l

(q � s� an)

n�1

�

n

l

��

s+ n� rl � 1

n� 1

�

:

3. We have

�

ab

n

(q) = r

�n

X

�

n

n

1

; : : : ; n

r

�

(q � an

1

� � � � � (b� 1)n

r

)

n�1

;

where the sum is over all nonnegative integers n

1

; n

2

; : : : ; n

r

su
h that n

1

+ n

2

+ � � �+ n

r

= n.

Examples 9.10 1. (a = 1 and b = 2) The Shi arrangement S

n�1

given by (3.6) is the ar-

rangement A

12

n�1

. By Corollary 9.9.1, we get the following formula of Headley [14, Thm. 2.4℄

(generalizing the formula r(S

n�1

) = (n+ 1)

n�1

due to Shi [25, Cor. 7.3.10℄[26℄):

�

12

n

(q) = (q � n)

n�1

: (9.9)
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2. (a � 1 and b = a+1) More generally, for the extended Shi arrangement S

n�1; k

given by (3.7),

we have (
f. Corollary 9.3)

�

a; a+1

n

(q) = (q � an)

n�1

:

3. (a = 0 and b = 2) In this 
ase we get the Linial arrangement L

n�1

= A

02

n�1

(see Se
tion 8). By

Corollary 9.9.3, we have (
f. Theorem 8.2)

�

02

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(q � k)

n�1

; (9.10)

4. (a � 0 and b = a+ 2) More generally, for the arrangement A

a; a+2

n�1

, we have

�

a; a+2

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(q � an� k)

n�1

: (9.11)

We will 
all this arrangement the extended Linial arrangement.

Formula (9.10) for the 
hara
teristi
 polynomial �

02

n

(q) was earlier obtained by C. Athanasiadis

[3, Theorem 5.2℄ (see also [4, x3℄). He used a di�erent approa
h based on a 
ombinatorial inter-

pretation of the value of �

n

(q) for suÆ
iently large primes q.

9.3 Roots of the 
hara
teristi
 polynomial

Theorem 9.7 has one surprising appli
ation 
on
erning the lo
ation of roots of the 
hara
teristi


polynomial �

ab

n

(q).

We start with the balan
ed 
ase (a = b). One 
an reformulate Theorem 9.8 in the following

way:

Corollary 9.11 Let a � 1. The roots of the polynomial �

aa

n

(q) are the numbers an � 1; an �

2; : : : ; an � n + 1 (ea
h with multipli
ity 1). In parti
ular, the roots are symmetri
 to ea
h other

with respe
t to the point (2a� 1)n=2.

Now assume that a 6= b, with a � 0 and b � 0 as before (unbalan
ed 
ase). The 
hara
teristi


polynomial �

ab

n

(q) satis�es the following \Riemann hypothesis":

Theorem 9.12 Let a+b � 2. All the roots of the 
hara
teristi
 polynomial �

ab

n

(q) of the trun
ated

aÆne arrangement A

ab

n�1

, a 6= b, have real part equal to (a + b � 1)n=2. They are symmetri
 to

ea
h other with respe
t to the point (a+ b� 1)n=2.

Thus in both 
ases the roots of the polynomial �

ab

n

(n) are symmetri
 to ea
h other with respe
t

to the point (a+ b� 1)n=2, but in the 
ase a = b all roots are real, whereas in the 
ase a 6= b the

roots are on the same verti
al line in the 
omplex plane C . Note that in the 
ase a = b � 1 the

polynomial �

ab

n

(q) has only one root an = (a+ b� 1)n=2 of multipli
ity n� 1.

The following lemma is impli
it in a paper of Auri
 [5℄ and also follows from a problem posed

by P�olya [18℄ and solved by Obres
hko� [15℄ (repeated in [19, Problem V.196.1, pp. 70 and 251℄).

For the sake of 
ompleteness we give a simple proof.

Lemma 9.13 Let P (q) 2 C [q℄ have the property that every root has real part a. Let z be a 
omplex

number satisfying jzj = 1. Then every root of the polynomial R(q) = (S+z)P (q) = P (q�1)+zP (q)

has real part a+

1

2

.
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Proof We may assume that P (q) is moni
. Let

P (q) =

Y

j

(q � a� b

j

i); b

j

2 R;

where i

2

= �1. If R(w) = 0, then jP (w)j = jP (w � 1)j. Suppose that w = a+

1

2

+ 
 + di, where


; d 2 R. Thus

�

�

�

�

�

�

Y

j

�

1

2

+ 
+ (d� b

j

)i

�

�

�

�

�

�

�

=

�

�

�

�

�

�

Y

j

�

�

1

2

+ 
+ (d� b

j

)i

�

�

�

�

�

�

�

:

If 
 > 0 then

�

�

1

2

+ 
+ (d� b

j

)i

�

�

>

�

�

�

1

2

+ 
+ (d� b

j

)i

�

�

. If 
 < 0 then we have stri
t inequality in

the opposite dire
tion. Hen
e 
 = 0, so w has real part a+

1

2

. �

Proof of Theorem 9.12 All the roots of the polynomial q

n�1

have real part 0. The operator

T = (S

a

+ S

a+1

+ � � �+ S

b�1

)

n


an be written as

T = S

an

b�1�a

Y

j=1

(S � z

j

)

n

;

where ea
h z

j

is a 
omplex number of absolute value one (in fa
t, a root of unity). The proof now

follows from Theorem 9.7 and Lemma 9.13. �

Note. We have been 
onsidering the trun
ated aÆne arrangement A

ab

n�1

only in the 
ase a � 0

and b � 0. We don't have any interesting results otherwise. For instan
e, the arrangement A

�1;4

3

(with hyperplanes x

i

� x

j

= 2; 3 for 1 � i < j � 4) has 
hara
teristi
 polynomial q

4

� 12q

3

+

60q

2

� 116. The roots of this polynomial are given approximately by 0, 4:33, and 3:83� 3:48i, so

the Riemann hypothesis fails.

9.4 Other root systems.

The results of Subse
tions 9.1{9.3 extend, partly 
onje
turally, to all the other root systems, as

well as to the nonredu
ed root system BC

n

(the union of B

n

and C

n

, whi
h satis�es all the root

system axioms ex
ept the axiom stating that if � and � are roots satisfying � = 
�, then 
 = �1).

Hen
eforth in this se
tion when we use the term \root system," we also in
lude the 
ase BC

n

.

Given a root system R in R

n

and integers a � 0 and b � 0 satisfying a+ b � 2, we de�ne the

trun
ated R-aÆne arrangement A

ab

(R) to be the 
olle
tion of hyperplanes

h�; xi = �a+ 1;�a+ 2; : : : ; b� 1;

where � ranges over all positive roots of R (with respe
t to some �xed 
hoi
e of simple roots).

Here h ; i denotes the usual s
alar produ
t on R

n

, and x = (x

1

; : : : ; x

n

). As in the 
ase R = A

n�1

we refer to the balan
ed 
ase (a = b) and unbalan
ed 
ase (a 6= b).

The 
hara
teristi
 polynomial for the balan
ed 
ase was found by Edelman and Reiner [10,

proof of Prop. 3.1℄ for the root system A

n�1

(see Theorem 9.8), and 
onje
tured (Conje
ture 3.3)

by them for other root systems. This 
onje
ture was proved by Athanasiadis [2, Cor. 7.2.3 and

Thm. 7.7.6℄[4, Prop. 5.3℄ for types A; B; C; BC, and D. For types A; B; C and D the result is

also stated in [3, Thm. 5.5℄. We will not say anything more about the balan
ed 
ase here.

For the unbalan
ed 
ase, we have 
onsiderable eviden
e (dis
ussed below) to support the fol-

lowing 
onje
ture.
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Conje
ture 9.14 Let R be an irredu
ible root system in R

n

. Suppose that the unbalan
ed trun-


ated aÆne arrangement A = A

ab

(R) has h(A) hyperplanes. Then all the roots of the 
hara
teristi


polynomial �

A

(q) have real part equal to h(A)=n.

Note. (a) If all the roots of �

A

(q) have the same real part, then this real part must equal

h(A)=n, sin
e for any arrangement A in R

n

the sum of the roots of �

A

(q) is equal to h(A).

(b) Conje
ture 9.14 implies the \fun
tional equation"

�

A

(q) = (�1)

n

�

A

(�q + 2h(A)=n): (9.12)

Thus �

A

(q) is determined by around half of its 
oeÆ
ients (or values).

(
) Let a+ b � 2 and R = A

n

; B

n

; C

n

, BC

n

, or D

n

. Athanasiadis [4, xx3{5℄ has shown that

�

ab

R

(q) = �

0;b�a

R

(q � ak); (9.13)

where k denotes the Coxeter number of R (suitably de�ned for R = BC

n

). These results and


onje
tures redu
e Conje
ture 9.14 to the 
ase a = 0 when R is a 
lassi
al root system. A similar

redu
tion is likely to hold for the ex
eptional root systems.

(d) Conje
ture 9.14 is true for all the 
lassi
al root systems (A

n

; B

n

; C

n

; BC

n

; D

n

). This

follows from expli
it formulas found for �

ab

R

(q) by Athanasiadis [4℄ together with Lemma 9.13. The

result of Athanasiadis is the following.

Theorem 9.15 Up to a 
onstant fa
tor, we have the following 
hara
teristi
 polynomials of the

indi
ated arrangements. (If the formula has the form F (S)q

n

or F (S)(q � 1)

n

, then the fa
tor is

1=F (1).)

A

0;2k+2

(B

n

) : (1 + S

2

+ � � �+ S

2k

)

2

(1 + S

2

+ � � �+ S

4k+2

)

n�1

(q � 1)

n

A

0;2k+2

(C

n

) : same as for A

0;2k+2

(B

n

)

A

0;2k+1

(B

n

) : (1 + S + � � �+ S

2k

)

2

(1 + S

2

+ � � �+ S

4k

)

n�1

q

n

A

0;2k+1

(C

n

) : same as for A

0;2k+1

(B

n

)

A

0;2k+2

(D

n

) : (1 + S

2

)(1 + S

2

+ � � �+ S

2k

)

4

(1 + S

2

+ � � �+ S

4k+2

)

n�3

(q � 1)

n

A

0;2k+1

(D

n

) : (1 + S + � � �+ S

2k

)

4

(1 + S

2

+ � � �+ S

4k

)

n�3

q

n

A

0;2k+2

(BC

n

) : (1 + S

2

+ � � �+ S

2k

)(1 + S

2

+ � � �+ S

4k+2

)

n

(q � 1)

n

A

0;2k+1

(BC

n

) : (1 + S + � � �+ S

2k

)(1 + S

2

+ � � �+ S

4k

)

n

q

n

:

We also 
he
ked Conje
ture 9.14 for the arrangements A

02

(F

4

) and A

02

(E

6

) (as well as the

almost trivial 
ase A

ab

(G

2

); a 6= b). The 
hara
teristi
 polynomials are

A

02

(F

4

) : q

4

� 24q

3

+ 258q

2

� 1368q + 2917

A

02

(E

6

) : q

6

� 36q

5

+ 630q

4

� 6480q

3

+ 40185q

2

� 140076q+ 212002:

The formula for �

02

F

4

(q) has the remarkable alternative form:

A

02

(F

4

) :

1

8

((q � 1)

4

+ 3(q � 5)

4

+ 3(q � 7)

4

+ (q � 11)

4

)� 48:

Note that the numbers 1; 5; 7; 11 are the exponents of the root system F

4

. For E

6

the analogous

formula is given by

A

02

(E

6

) :

1

1008

P (q)� 210;

27



where

P (q) = 61(q � 1)

6

+ 352(q � 4)

6

+ 91(q � 5)

6

+ 91(q � 7)

6

+ 352(q � 8)

6

+ 61(q � 11)

6

;

whi
h is not as intriguing as the F

4


ase. It is not hard to see that the symmetry of the 
oeÆ
ient

sequen
es (1; 3; 3; 1) and (61; 352; 91; 91; 352; 61) is a 
onsequen
e of equation (9.12) and the fa
t

that if e

1

< e

2

< � � � < e

n

are the exponents of an irredu
ible root system R, then e

i

+ e

n+1�i

is

independent of i.

10 Chara
teristi
 Polynomials and Weighted Trees

In this se
tion we present an interpretation of the 
hara
teristi
 polynomial �

ab

n

(q) of a trun
ated

aÆne arrangement as a weight enumerator of trees.

10.1 Weighted trees

The di�erentiation operator D : f(q) 7! df=dq is related to the shift operator S : f(q) 7! f(q � 1)

via Taylor's formula exp(�D) = S. By Theorem 9.7 we 
an express the 
hara
teristi
 polynomial

�

ab

n

(q), for 0 � a < b, as

(�1)

n�1

(b� a)

n

�

ab

n

(�q) = (e

aD

+ e

(a+1)D

+ � � �+ e

(b�1)D

)

n

� q

n�1

:

We 
an generalize this expression as follows.

Let s(t) be a formal exponential power series

s(t) = s

0

+ s

1

t+ s

2

t

2

=2! + � � �+ s

k

t

k

=k! + � � � ;

where the s

i

are arbitrary numbers and s

0

is nonzero.

We de�ne the polynomials f

n

(q), n > 0, by the formula

f

n

(q) = (s(D))

n

q

n�1

; (10.1)

where D = d=dq. The polynomials f

n

(q) are 
orre
tly de�ned even if the series s(t) does not


onverge, sin
e the expression for f

n

(q) involves only a �nite sum of nonzero terms.

Let T

n

be the set of all trees on the verti
es 0; 1; 2; : : : ; n. We will regard the vertex 0 as the

root of a tree and orient the edges away from the root. By d

i

= d

i

(T ) we denote the outdegree of

the vertex i in a tree T 2 T

n

. For i 6= 0, d

i

is the degree of the vertex i minus 1. De�ne the weight

w

q

(T ) of a tree T by

w

q

(T ) = q

d

0

�1

s

d

1

s

d

2

� � � s

d

n

:

Let us also de�ne the weighting ew on trees T 2 T

n

by ew(T ) = s

d

0

s

d

1

� � � s

d

n

. And let g

n

=

P

T2T

n

ew(T ) be the weighted sum of all trees in T

n

.

Theorem 10.1 1. The polynomial f

n

(q) is the w

q

-weight enumerator for trees on n+1 verti
es,

i.e.,

f

n

(q) =

X

T2T

n

w

q

(T ):

In parti
ular, g

n

= f

n+1

(0)=(n+ 1).

2. The 
oeÆ
ient of q

k

in f

n

(q) is equal to

X

s

k

1

� � � s

k

n

�

n� 1

k; k

1

; : : : ; k

n

�

;
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where the sum is over all k

1

; : : : ; k

n

� 0 su
h that k + k

1

+ � � �+ k

n

= n� 1.

3. Let f(x; q) and g(x) be the exponential generating fun
tions:

f(x; q) = 1 + q

X

n�1

f

n

(q)

x

n

n!

and g(x) =

X

n�0

g

n

x

n+1

n!

:

Then f(x; q) = exp(q g(x)) and the series g = g(x) satis�es the fun
tional equation

g = x s(g): (10.2)

Proof By (10.1), we have

f

n

(q) = s(D)

n

q

n�1

= s(D)

n�1

X

k

1

�0

s

k

1

D

k

1

k

1

!

q

n�1

=

= s(D)

n�1

X

k

1

�0

s

k

1

�

n� 1

k

1

�

q

n�1�k

1

= � � � =

=

X

k

1

;:::;k

n

�0

s

k

1

� � � s

k

n

�

n� 1

k; k

1

; k

2

; : : : ; k

n

�

q

k

;

where k = n� 1� k

1

� � � �� k

n

. This proves 2. Using Pr�ufer's 
oding of trees [22℄[28, Thm. 5.3.4℄,

we obtain the statement 1. A standard exponential formula argument yields the statement 3. �

Now we give several examples for Theorem 10.1.

Example 10.2 (
f. Example 9.10.1) For the Shi arrangement (a = 1 and b = 2), we have s(t) = e

t

and w

q

(T ) = q

d

0

�1

. Theorem 10.1 
laims that (�1)

n�1

�

12

n

(�q) = (q + n)

n�1

is the q-enumerator

for all trees in T

n

a

ording to the degree of the root. Of 
ourse, this is a well-known statement.

Example 10.3 (
f. Example 9.10.3) For the Linial arrangement (a = 0 and b = 2) we have

s(t) = 1 + e

t

, i.e., s

0

= 2 and s

i

= 1 for i � 1. Thus w

q

(T ) = 2

ep(T )

q

d

0

�1

, where ep(T ) is the

number of endpoints i, i 6= 0, of T . In this 
ase we obtain the following statement.

Corollary 10.4 For the Linial arrangement L

n�1

, we have

(�1)

n�1

�

02

n

(�q) =

X

T2T

n

2

ep(T )�n

q

d

0

�1

:

In parti
ular, the number of regions of the Linial arrangement L

n�1

is equal to

P

T2T

n

2

ep(T )�n

.

10.2 Odd degree trees

Let us introdu
e the following shift of the 
hara
teristi
 polynomial of the Linial arrangement:

b

n

(q) = 2

n�1

�

02

n

((q + n)=2) : (10.3)

The Riemann hypothesis (Theorem 9.12) implies that all roots of b

n

(q) are purely imaginary. By

Theorem 9.7, we have

b

n

(q) =

�

S + S

�1

2

�

n

q

n�1

= 2

�n

n

X

k=0

�

n

k

�

(q + n� 2k)

n�1

: (10.4)
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The �rst ten polynomials b

n

(q) are given below:

b

1

(q) = 1

b

2

(q) = q

b

3

(q) = q

2

+ 3

b

4

(q) = q

3

+ 12q

b

5

(q) = q

4

+ 30q

2

+ 65

b

6

(q) = q

5

+ 60q

3

+ 480q

b

7

(q) = q

6

+ 105q

4

+ 1995q

2

+ 3787

b

8

(q) = q

7

+ 168q

5

+ 6160q

3

+ 41216q

b

9

(q) = q

8

+ 252q

6

+ 15750q

4

+ 242172q

2

+ 427905

b

10

(q) = q

9

+ 360q

7

+ 35280q

5

+ 1021440q

3

+ 6174720q

We 
an express b

n

(q) via the di�erentiation operator D = d=dq as

b

n

(q) = 
osh(D)

n

q

n�1

: (10.5)

Thus the sequen
e of polynomials b

n

(q) is a spe
ial 
ase of (10.1) for s(t) = 
osh(t). Equivalently,

s

i

= 1 for even i's and s

i

= 0 for odd i's.

We say that a tree T on the verti
es 0; 1; : : : ; n is an odd degree tree if the degrees of the verti
es

1; : : : ; n in T are odd. Let d

0

(T ) denote the degree of the root 0 in a tree T . Note that, for an odd

degree tree, d

0

(T ) has the same parity as n.

Theorem 10.1 implies the following statement.

Corollary 10.5 1. For n � 1, we have

b

n

(q) =

X

T

q

d

0

(T )�1

;

where the sum is over all odd degree trees on the verti
es 0; 1; : : : ; n.

2. The 
oeÆ
ient of q

k

in b

n

(q) is equal to the sum of multinomial 
oeÆ
ients

�

n�1

k;k

1

;:::;k

n

�

over all

nonnegative even k

1

; : : : ; k

n

su
h that k + k

1

+ � � �+ k

n

= n� 1.

Let odd

n

be the number of all odd degree trees on the verti
es 0; 1; : : : ; n. By Corollary 10.5,

odd

n

= b

n

(1). We have,

n : 0 1 2 3 4 5 6 7 8 9 10

odd

n

: 1 1 1 4 13 96 541 5888 47545 686080 7231801

If n is odd then the degrees of all verti
es (in
luding the root) of an odd degree tree are odd.

The �rst ten numbers odd

1

; odd

3

; odd

5

; : : : appear in [23℄ without further referen
es.

Note that odd

2m

= b

2m+1

(0)=(2m + 1) and odd

2m�1

= b

0

2m

(0)=(2m � 1) for m � 1. Indeed,

by Corollary 10.5, b

2m+1

(0) is the number of odd degree trees on the verti
es 0; 1; : : : ; 2m+1 su
h

that the degree of the root 0 is one. Removing the only edge in
ident to 0, we obtain an odd degree

tree on the verti
es 1; : : : ; 2m+ 1 with the root at any of its 2m+ 1 verti
es. The number of su
h

trees is (2m+ 1) odd

2m

.

Also b

0

2m

(0) is the number of of odd degree trees on the verti
es 0; 1; : : : ; 2m su
h that the

degree of the root 0 is two. Let e be the edge of su
h tree that 
onne
ts the root 0 with the
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omponent whi
h does not 
ontain the vertex 1. Contra
ting the edge e we obtain an odd degree

tree on the verti
es 1; : : : ; 2m with the root at any vertex ex
ept 1. The number of su
h trees is

(2m� 1) odd

2m�1

.

Theorem 10.1.3 gives a fun
tional equation for the generating fun
tions.

Corollary 10.6 Let f(x; q) and g(x) be the exponential generating fun
tions:

f(x; q) = 1 + q

X

n�1

b

n

(q)

x

n

n!

and g(x) =

X

m�0

odd

2m

x

2m+1

(2m)!

:

Then f(x; q) = exp(q g(x)) and g = g(x) satis�es the fun
tional equation

g = x 
osh(g):

11 Asymptoti
s

11.1 Asymptoti
s of the 
hara
teristi
 polynomial

In this se
tion we �nd the asymptoti
s of the 
hara
teristi
 polynomial �

a; a+2

n

(q) of the extended

Linial arrangement. By (9.11), we have

(�1)

n�1

�

a; a+2

n

(q) = 2

�n

n

X

k=0

�

n

k

�

(an+ k � q)

n�1

: (11.1)

We will use this formula to de�ne the polynomial �

a; a+2

n

(q) for an arbitrary real a.

Re
all that two sequen
es a

n

and b

n

are said to be asymptoti
ally equal (in symbols, a

n

� b

n

)

if lim

n!1

a

n

=b

n

= 1.

Theorem 11.1 For any a 2 R, a � 0, and q 2 C , the value of the polynomial (�1)

n�1

�

a; a+2

n

(q)

is asymptoti
ally equal to

(�1)

n�1

�

a; a+2

n

(q) � A � B

q+a+�

� C

n

� (n+ 1)

n�1

; (11.2)

where � is the unique solution to the equation

�=(1� �) = e

1=(�+a)

; 0 < � < 1 : (11.3)

and

A = (� + 2a� + a

2

)

�1=2

; B = �

�1

(1� �) ; C = 2

�1

�

��

(1� �)

��1

(� + a) :

Moreover, the asymptoti
al equality remains valid for the mth derivatives of both sides with respe
t

to q.

Corollary 11.2 For any a 2 R, a � 0, and q 2 C , we have

lim

n!1

�

a; a+2

n

(q)

�

a; a+2

n

(0)

=

�

1� �

�

�

q

;

where � is given by (11.3). Moreover, for any q

0

2 C the Taylor expansion of �

a; a+2

n

(q)=�

a; a+2

n

(0)

at q = q

0


onverges termwise to the Taylor expansion of the right-hand side at q = q

0

.
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Example 11.3 For the 
hara
teristi
 polynomial of the Linial arrangement (
ase a = 0) we have

� � 0:7821882;

A = �

�1=2

� 1:1306920;

B = �

�1

(1� �) � 0:2784645;

C = 2

�1

�

��+1

(1� �)

��1

� 0:6605498;

D = A �B

��1

� 1:4937570:

The number f

n

of regions of the Linial arrangement L

n�1

is asymptoti
ally equal to

f

n

= (�1)

n�1

�

02

n

(�1) � D � C

n

(n+ 1)

n�1

:

Re
all that f

n

is the number of alternating trees on n+ 1 verti
es (see Se
tion 8.1). The total

number of trees on n+ 1 labelled verti
es is (n+ 1)

n�1

.

Corollary 11.4 The probability that a uniformly 
hosen tree on n+1 labelled verti
es is an alter-

nating tree is asymptoti
ally equal to

D � C

n

� 1:4937570 � 0:6605498

n

:

Compare the result that the probability that a uniformly 
hosen permutation w

1

; w

2

; : : : ; w

n

of 1; 2; : : : ; n is alternating (i.e., a

1

> a

2

< a

3

> a

4

< � � �) is asymptoti
ally equal to

�

2

�

�

n+1

� 0:6366198

n+1

:

By Theorem 2.1, the number of bounded regions of the arrangement A

a ;a+2

n�1

is equal to

(�1)

n�1

�

a ;a+2

n

(1). By (11.2) this number is asymptoti
ally equal to B

2

� (�1)

n�1

�

a ;a+2

n

(�1).

Corollary 11.5 The probability that a uniformly 
hosen region in the extended Linial arrangement

A

a a+2

n�1

is bounded tends to B

2

as n!1. For the Linial arrangement, B

2

� 0:0775425. Thus, for

large n, approximately 7:75425% of the regions of the Linial arrangement L

n�1

are bounded.

Note that by (9.9) the portion of the bounded regions in the Shi arrangement S

n�1

is equal to

(n�1)

n�1

(n+1)

n�1

and tends to e

�2

� 0:1353353.

In the proof of Theorem 11.1 we use methods des
ribed in [9℄. The general outline of the proof

is the following: (a) use the Stirling formula for the �-fun
tion to approximate the summands

in (11.1); (b) approximate the summation by integration; (
) use the Lapla
e method to approxi-

mate the integral. The Lapla
e method amounts to the following statement; see [9, Se
t. 4.2℄.

Proposition 11.6 Suppose that g(x) and h(x) are real smooth fun
tions on the interval [a; b℄.

Suppose that �, a < � < b, is the absolute maximum of h(x). We also require that h(x) < h(�) for

x 6= �. Moreover, there exist positive numbers b and 
 su
h that h(x) � h(�) � b for jx � �j � 
.

Also suppose that h

00

(�) exists and h

00

(�) < 0 and that b(�) 6= 0. Then

Z

b

a

g(x) e

n h(x)

dx � (2�)

1=2

g(�) (�nh

00

(�))

�1=2

e

nh(�)

(as n!1):

Now we give more details.

Proof of Theorem 11.1 Let us express the kth summand a

n

(k) in (11.1) via the �-fun
tion as

a

n

(k) =

�(n+ 1) (k + an� q)

n�1

2

n

�(k + 1)�(n� k + 1)
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and view it as a 
ontinuous fun
tion of k on the interval [0; n℄. Elementary 
al
ulations show that

ja

n

(k)j has a unique absolute maximum k = m

n

on the interval [0; n℄. And, for suÆ
iently large n,

we have 1=2 < m

n

=n < (1 + e

�2=(1+2a)

)

�1

. A
tually, m

n

=n approa
hes � as given by (11.3).

Let us �x " su
h that 0 < " < 1�

�

1 + e

�2=(1+2a)

�

�1

. Then we 
an write

n

X

k=0

a

n

(k) = (1 + r

n

(")) �

b(1�")n


X

k=d"ne

a

n

(k) ; (11.4)

where jr

n

(")j � 2" for suÆ
iently large n. The Stirling formula 
laims that

�(z) = z

z�1=2

e

�z

(2�)

1=2

(1 +O(1=z)):

Therefore, the a

n

(k) 
an be written as

a

n

(k) =

�(n+ 1) (k + an� q)

n�1

2

n

�(k + 1)�(n� k + 1)

=

e (n+ 1)

n+1=2

2

n

(2�)

1=2

�

(an+ k � q)

n�1

(k + 1)

k+1=2

(n� k + 1)

n�k+1=2

(1 +O

nk

) ;

where O

nk

is an abbreviation for O((k + 1)

�1

+ (n � k + 1)

�1

). For "n � k � (1� ")n, we have

O

nk

= O(1=n). Let x =

k+1=2

n+1

. Making transformations, we 
an write, for " � x � 1� ",

(an+ k � q)

n�1

(k + 1)

k+1=2

(n� k + 1)

n�k+1=2

=

(x+ a)

n�1

(x

x

(1� x)

1�x

)

n+1

�

�

1

(n+ 1)

2

�

(1�

q+a+1=2

x+a

1

n+1

)

n�1

(1 +

1=2

k+1=2

)

k+1=2

(1 +

1=2

n�k+1=2

)

n�k+1=2

=

=

(x+ a)

n�1

(x

x

(1� x)

1�x

)

n+1

�

1

(n+ 1)

2

�

e

�(q+a+1=2)=(x+a)

e

1=2

e

1=2

(1 +O(1=n)):

Let us introdu
e two fun
tions

g(x) = e

�(q+a+1=2)=(x+a)

(x+ a)

�1

x

�x

(1� x)

x�1

;

h(x) = log(x+ a)� x log(x) � (1� x) log(1� x)

on the interval ["; 1� "℄. The fun
tion h(x) has a unique maximum � 2 ℄"; 1� "[ given by h

0

(�) =

1=(�+a)� log(�)+ log(1��) = 0. This equation is equivalent to (11:3). We have g(�) 6= 0. Thus

the fun
tions g(x) and h(x) satisfy the 
onditions of Proposition 11.6.

Then, for k 2 ["n; (1� ")n℄, the fun
tion a

n

(k) 
an be written as

a

n

(k) = A

n

(x) =

(n+ 1)

n�3=2

2

n

(2�)

1=2

� g(x) e

n h(x)

(1 +O(1=n)) : (11.5)

Sin
e the fun
tion ja

n

(k)j has a unique maximum, we have

�

�

�

�

�

�

b(1�")n


X

k=d"ne

a

n

(k)�

Z

(1�")n

"n

a

n

(k) dk

�

�

�

�

�

�

� max

k2[0;n℄

ja

n

(k)j : (11.6)
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We have

Z

(1�")n

"n

a

n

(k) dk � (n+ 1)

Z

1�"

"

A

n

(x) dx �

(n+ 1)

n�1=2

2

n

(2�)

1=2

�

Z

1�"

"

g(x) e

n h(x)

dx :

By Proposition 11.6, this expression is asymptoti
ally equal to

(n+ 1)

n�1=2

2

n

(2�)

1=2

� (2�)

1=2

g(�) (�nh

00

(�))

�1=2

e

nh(�)

: (11.7)

This expression shows that

max

k2[0;n℄

ja

n

(k)j � A

n

(�) � Constant � n

�1=2

Z

(1�")n

"n

a

n

(k) dk : (11.8)

Using (11.6) and simplifying (11.7), we obtain

b(1�")n


X

k=d"ne

a

n

(k) �

Z

(1�")n

"n

a

n

(k) dk �

(n+ 1)

n�1

2

n

g(�) (�h

00

(�))

�1=2

e

nh(�)

: (11.9)

Sin
e " 
an be arbitrary small, from (11.4) we 
on
lude that

P

n

k=0

a

n

(k) is asymptoti
ally equal

to the right-hand side of (11.9). Finally, the expli
it 
al
ulation of g(�), h(�), and h

00

(�), left as

an exer
ise for the reader, produ
es the formula (11.2).

To prove the statement about derivatives of the 
hara
teristi
 polynomial, we remark that

the mth derivative of a

n

(k) with respe
t to q is obtained by multiplying the expression (11.5) by

(�1=(x + a))

m

. Exa
tly the same argument as above shows that the asymptoti
 behavior of the

sum of the mth derivatives of a

n

(k) is given by the expression (11.9) times (�1=(� + a))

m

, whi
h

is equal to the mth derivative of the right-hand side of (11.9). �

11.2 Asymptoti
s of odd degree trees

In this se
tion we �nd the asymptoti
s of the shifted 
hara
teristi
 polynomial b

n

(q) = 2

n�1

�

02

n

(

q+n

2

)

introdu
ed in Se
tion 10.2. Re
all that b

n

(q) is given by the sum (10.4), and it is also the enumer-

ator for the odd degree trees a

ording to the degree of the root. The behavior of the polynomials

b

n

(q) depends on the parity of n. For example, b

n

(q) is an even fun
tion for odd n and is an odd

fun
tion for even n.

Theorem 11.7 Let � � 1:1996786 be the unique positive solution of the equation


osh(�) = � sinh(�) or, equivalently, (�� 1) e

2�

= (� + 1) : (11.10)

And let C = sinh(�)=e � 0:5550857. Then we have two asymptoti
 equalities

b

n

(q) � 2 e

�1

� 
osh(�q) � C

n

� (n+ 1)

n�1

; n is odd, n!1 ;

b

n

(q) � 2 e

�1

� sinh(�q) � C

n

� (n+ 1)

n�1

; n is even, n!1 ;

(11.11)

for any q 2 C su
h that the right-hand side is non-zero. Moreover, the asymptoti
 equalities remain

valid for the mth derivatives of both sides with respe
t to q provided that the mth derivative of the

right-hand side is non-zero.
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Note that we 
an simplify the right-hand sides in (11.11) and repla
e them by asymptoti
ally

equal expressions 2 
osh(�q)C

n

n

n�1

and 2 sinh(�q)C

n

n

n�1

, respe
tively. Numeri
al 
al
ulation,

however, shows that these expressions are worse approximations for b

n

(q) than (11.11).

Corollary 11.8 For any q 2 C , we have

lim

n is odd, n!1

b

n

(q)=b

n

(0) = 
osh(� q) ;

lim

n is even, n!1

b

n

(q)=b

0

n

(0) = �

�1

sinh(� q) ;

where � is given by (11.10). Moreover, for any q

0

2 C the Taylor expansions at q = q

0

of the terms

in the left-hand side 
onverge termwise to the Taylor expansion of the right-hand side at q = q

0

.

Re
all that the roots of the polynomials b

n

(q) are lo
ated on the purely imaginary axis in C .

Theorem 11.7 gives an approximation for the roots of b

n

(q).

Corollary 11.9 Let us �x a positive number R. Then the roots of the polynomials b

n

(q) lo
ated

in the interval I =℄� i R; iR[

(a) approa
h the points f�� (1=2 +m) i j m 2 Zg\ I as n!1 (n is odd),

(b) approa
h the points f��m i j m 2 Zg\ I as n!1 (n is even),

where � is given by (11.10) and i =

p

�1.

Remark 11.10 Clearly, we also obtain an approximation for the roots of the 
hara
teristi
 poly-

nomials �

02

n

(q) of Linial arrangements by the numbers 2

�1

(n+ �� (1=2 +m) i) for odd n, and by

the numbers 2

�1

(n+ � �m i) for even n, where m 2 Z.

Proof of Theorem 11.7 We will follow proof of Theorem 11.1. If n is odd then by (10.4) we


an write b

n

(q) as

b

n

(q) =

(n�1)=2

X

k=0

2

�n

�

n

k

�

((n� 2k + q)

n�1

+ (n� 2k � q)

n�1

) :

Let us express the kth summand a

n

(k) in the above sum via the �-fun
tion as

a

n

(k) =

�(n+ 1) ((n� 2k + q)

n�1

+ (n� 2k � q)

n�1

)

2

n

�(k + 1)�(n� k + 1)

:

and view it as a 
ontinuous fun
tion of k on the interval [0; (n� 1)=2℄. Again, ja

n

(k)j has a unique

absolute maximum m

n

on [0; (n� 1)=2℄. Cal
ulations shows that, for suÆ
iently large n, we have

0:08 < m

n

=n < 0:09.

Let us �x " su
h that 0 < " < 0:08. Then

(n�1)=2

X

k=0

a

n

(k) = (1 + r

n

(")) �

b(1=2�")n


X

k=d"ne

a

n

(k) ; (11.12)
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where jr

n

(")j � 4" for suÆ
iently large n. We 
an approximate a

n

(k), for k 2 ["n; (1=2� ")n℄, via

the Stirling formula as

a

n

(k) =

=

e (n+ 1)

n�3=2

2

n

(2�)

1=2

�

(1� 2x)

n�1

(x

x

(1� x)

1�x

)

n+1

�

(1 +

q

1�2x

1

n+1

)

n�1

+ (1�

q

1�2x

1

n+1

)

n�1

(1 +

1=2

k+1=2

)

k+1=2

(1 +

1=2

n�k+1=2

)

n�k+1=2

(1 +O(n

�1

)) =

=

e (n+ 1)

n�3=2

2

n

(2�)

1=2

�

(1� 2x)

n�1

(x

x

(1� x)

1�x

)

n+1

�

e

q=(1�2x)

+ e

�q=(1�2x)

e

1=2

e

1=2

(1 +O(n

�1

)) ;

where, as before, x = (k + 1=2)=(n+ 1). Let us de�ne two fun
tions

g(x) =

�

e

q=(1�2x)

+ e

�q=(1�2x)

�

(1� 2x)

�1

x

�x

(1� x)

x�1

;

h(x) = log(1� 2x)� x log(x)� (1� x) log(1� x)

on the interval ["; 1=2� "℄. Then we 
an write a

n

(k) as

a

n

(k) = A

n

(x) =

(n+ 1)

n�3=2

2

n

(2�)

1=2

� g(x) e

n h(x)

(1 +O(1=n)) :

Let � � 0:0832217 be the unique maximum of h(x) on the interval ["; 1=2 � "℄ given by the

equation h

0

(�) = �2=(1� 2�) � log(�) + log(1� �) = 0. And let � = 1=(1� 2�). The equation

for � transforms into the de�ning equation (11.10) for �.

If g(�) 6= 0 or, equivalently, 
osh(� q) 6= 0, then the fun
tions g(x) and f(x) satisfy the


onditions of Proposition 11.6. Using exa
tly the same argument as in proof of Theorem 11.1, we


an write

b(1=2�")n


X

k=e"ne

a

n

(k) �

Z

(1=2�")n

"n

a

n

(k) dk = (n+ 1)

Z

1=2�"

"

A

n

(x) dx

�

(n+ 1)

n�1

2

n

g(�) (�h

00

(�))

�1=2

e

nh(�)

= 2e

�1


osh(� q)C

n

(n+ 1)

n�1

:

Sin
e " 
an be 
hosen arbitrary small, from (11.12) we 
on
lude that b

n

(q) is asymptoti
ally equal

to 2e

�1


osh(� q)C

n

(n+ 1)

n�1

.

For asymptoti
s of the mth derivative of the polynomials b

n

(q) we need to repla
e the fun
-

tion g(x) = 
osh

�

q

1�2x

�

� hterms that do not depend on qi by its mth derivative with respe
t

to q. If the value of this derivative for x = � and 
ertain q 2 C is nonzero, then we 
an apply

Proposition 11.6 and obtain the required statement.

If n is even then by (10.4) we 
an write b

n

(q) as

b

n

(q) =

n=2�1

X

k=0

�

n

k

�

((n� 2k + q)

n�1

� (n� 2k � q)

n�1

) +

�

n

n=2

�

q

n�1

:

The proof in this 
ase goes exa
tly along the same lines. The additional term

�

n

n=2

�

q

n�1

is in-

�nitesimally small with respe
t to b

n

(q); 
f. (11.8). In this 
ase we obtain an analogous expression

for the asymptoti
s of b

n

(q) with g(x) =

�

e

q=(1�2x)

� e

�q=(1�2x)

�

(1 � 2x)

�1

x

�x

(1 � x)

x�1

and

exa
tly the same h(x). This means that in the resulting expression we just repla
e 
osh(� q) by

sinh(� q). The argument about q-derivatives is the same. �
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11.3 Distribution of degrees of random trees

In this se
tion we study a probability distribution on labelled trees inspired by Se
tion 10.1.

Re
all that in Se
tion 10.1, for an arbitrary power series s(t) = s

0

+s

1

t+s

2

t

2

=2!+s

3

t

3

=3!+ � � �,

s

0

6= 0, we introdu
ed the weighting ew(T ) = s

d

0

s

d

1

� � � s

d

n

on the set T

n

of trees on the verti
es

0; 1; : : : ; n, where d

0

; d

1

; : : : ; d

n

are the outdegrees of the verti
es of a tree T 2 T

n

. We also de�ned

the numbers g

n

=

P

T2T

n

ew(T ).

Let us assume that the s

i

are nonnegative. Let I be the set of indi
es n for whi
h g

n

> 0.

For n 2 I , 
onsider the probability distribution on the set T

n

given by P

T

= ew(T )=g

n

for T 2 T

n

.

Let P

n

(k) be the probability that a uniformly 
hosen random vertex of a random tree in T

n

has

outdegree k, i.e.,

P

n

(k) =

X

T2T

n

ew(T )

g

n

m

k

(T )

n+ 1

;

where m

k

(T ) is the number of verti
es in T with outdegree k.

Theorem 11.11 Assume that the series s(t) 
onverges to a holomorphi
 nonlinear fun
tion on C .

Let us �x k � 0 and assume that there exists the limit P (k) = lim

n!1

P

n

(k) over n 2 I. Then

P (k) =

s

k

�

k

s(�) k!

;

where � is the unique positive solution of the equation

s(�) = � s

0

(�) : (11.13)

We 
an interpret P (k) as the probability that a \random vertex" of an \in�nite random tree"

has outdegree k.

Remark 11.12 It is interesting to �nd 
onditions on the fun
tion s(t) that would guarantee that

the sequen
e P

n

(k), n 2 I , 
onverges to a limit.

Example 11.13 Suppose that s

0

= s

1

= s

2

= � � � = 1. In this 
ase we have the uniform

distribution on trees in T

n

. We have s(t) = e

t

and � = 1. Theorem 11.11 predi
ts the Poisson

distribution for outdegrees of an in�nite random tree:

P (k) = e

�1

=k! :

In this 
ase it is not hard to 
al
ulate P

n

(k) expli
itly. For example, P

n

(0) =

nn

n�2

(n+1)

n�1

tends to

1=e as n!1.

Example 11.14 Suppose that s

0

= s

2

= 1 and s

i

= 0 for i = 1; 3; 4; 5; : : :. In this 
ase we have

the uniform distribution on trees su
h that ea
h vertex has outdegree 0 (endpoint) or 2. We have

s(t) = 1 + t

2

=2 and � =

p

2. Theorem 11.11 predi
ts the following distribution of outdegrees:

P (0) = P (2) = 1=2 :

A
tually, any tree in T

2m

with outdegrees 0 or 2 has m+ 1 endpoints. Thus the probability that

a random vertex is an endpoint tends to 1=2 as m!1.

Example 11.15 Assume that s

2m

= 1 and s

2m+1

= 0, m � 0. Then s(t) = 
osh(t). In this 
ase I

is the set of nonnegative even numbers. We have the uniform distribution on the trees in T

n

with

even outdegrees. These are exa
tly odd degree trees if n is even. Thus g

n

= odd

n

for even n and
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g

n

= 0 for odd n. Theorem 11.11 predi
ts the following distribution of outdegrees of an in�nite

random odd degree tree:

P (2m) =

�

2m


osh(�) (2m)!

;

where � � 1:1996786 is the unique positive solution of the equation

sinh(�)� = 
osh(�) :

Note that we have exa
tly the same � as in Theorem 11.7.

Theorem 11.11 does not guarantee that the limit P (2m) exists. We 
an prove that the sequen
e

P

n

(2m), n = 0; 2; 4; : : : 
onverges to a limit using the results of Se
tion 11.2. For example, the

argument with removing an edge in
ident to an endpoint shows that, for even n,

P

n

(0) �

(n+ 1) odd

n

odd

n+1

=

(n+ 1) b

n

(1)

b

n+1

(1)

:

By Theorem 11.7, we have, for even n,

(n+ 1) b

n

(1)

b

n+1

(1)

�

sinh(�)


osh(�)C

�

(n+ 1)

n

(n+ 2)

n

�

sinh(�)


osh(�)C e

=

1


osh(�)

:

Thus the sequen
e P

n

(0) 
onverges to 1= 
osh(�) � 0:5524341. In other words, for large n, around

55:24341% of the verti
es of a uniformly 
hosen random odd degree tree are endpoints.

In order to prove Theorem 11.11, we need the following trivial statement.

Lemma 11.16 Let I be an in�nite subset of nonnegative integers. Also let a(x) =

P

n2I

a

n

x

n

and b(x) =

P

n2I

b

n

x

n

be two power series and x




> 0 su
h that

(a) Both series a(x) and b(x) 
onverge for 0 < x < x




and diverge at x = x




.

(b) We have a

n

; b

n

> 0, n 2 I, and there exists the limit � = lim

n!1; n2I

a

n

=b

n

.

Then there exists the limit lim

x!x




�0

a(x)=b(x) and it is equal to �.

Proof of Theorem 11.11 Note that I = fn � 0 j g

n

> 0g is an in�nite set unless s

i

= 0 for all

i � 1. Let

a(x) =

X

n2I

(n+ 1)P

n

(k) g

n

x

n

=n! ;

b(x) =

X

n2I

(n+ 1) g

n

x

n

=n! :

Then P

n

(k) is the ratio of the 
oeÆ
ients of x

n

in a(x) and b(x). By our assumption P

n

(k)


onverges to the limit P (k). Thus the series a(x) and b(x) satisfy 
ondition (b) of Lemma 11.16.

We have b(x) = g

0

(x). Re
all that g = g(x) satis�es g = x s(g), see (10.2). Thus

b(x) = s(g) + xs

0

(g)d(x) ;

b(x) =

s(g)

1� xs

0

(g)

: (11.14)
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Let g

(k)

(x; y) be the following exponential generating fun
tion

g

(k)

(x; y) =

X

n�0

X

T2T

n

ew(T )y

m

k

(T )

x

n+1

=n!:

Clearly,

a(x) = x

�1

�g

(k)

�y

�

�

�

�

y=1

(x):

The fun
tion g

(k)

= g

(k)

(x; y) satis�es the equation:

g

(k)

= x (s(g

(k)

) + (y � 1)s

k

g

k

(k)

=k!):

Then

a(x) = x s

0

(g) a(x) + s

k

g

k

=k! ;

a(x) =

s

k

g

k

k! (1� xs

0

(g))

: (11.15)

Let 0 < R � 1 be the radius of 
onvergen
e of g(x). All 
oeÆ
ients of the expansion of s

0

(g(x))

are nonnegative and at least one of them nonzero. Thus r(x) = 1 � x s

0

(g(x)) is de
reasing for

positive x, r(0) = 1, and r(x) < 0 for suÆ
iently large x. This implies that there exists a unique

x




2℄0; R[ su
h that

1� x




s

0

(g(x




)) = 0: (11.16)

Then (11.14) and (11.15) imply that a(x) and b(x) 
onverge for 0 < x < x




and diverge for x = x




.

This shows that the series a(x) and b(x) satisfy the 
ondition (a) of Lemma 11.16.

Now we show that the equation (11.13) 
orre
tly de�nes �. All 
oeÆ
ients of the expansion

of p(t) = s(t) � ts

0

(t) are nonpositive ex
ept the 
onstant term s

0

> 0. Then, as before, p(t) is

de
reasing for positive t, p(0) > 0, and p(t) < 0 for suÆ
iently large t. Thus p(t) = 0 has a unique

positive solution t = �. Moreover, � = g(x




). Indeed, by (10.2), x = g=s(g). Thus (11.16) is

equivalent to (11.13).

Therefore, by Lemma 11.16, we have

P (k) = lim

x!x




�0

a(x)

b(x)

=

s

k

g(x




)

k

s(g(x




)) k!

=

s

k

�

k

s(�) k!

:

�
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