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Abstract. Let T be a collection of 3-element subsets S of {1, . . . , n}
with the property that if i < j < k and a < b < c are two 3-element
subsets in S, then there exists an integer sequence x1 < x2 < · · · <

xn such that xi, xj , xk and xa, xb, xc are arithmetic progressions.
We determine the number of such collections T and the number of
them of maximum size. These results confirm two conjectures of
Noam Elkies.

1. Introduction

This paper has its origins in a problem contributed by Ron Graham
to the Numberplay subblog of the New York Times Wordplay blog [1].
Graham asked whether it is always possible to two-color a set of eight
integers such that there is no monochromatic three-term arithmetic
progression. A proof was found by Noam Elkies. Let

(
[n]
3

)
denote the

set of all three-element subsets of [n] = {1, 2, . . . , n}. Define two such
subsets, say i < j < k and a < b < c, to be consistent if there exist
integers x1 < x2 < · · · < xn for which both xi, xj, xk and xa, xb, xc are
arithmetic progressions. For instance, 1 < 2 < 3 and 1 < 2 < 4 are
obviously not consistent.

Let us call a collection S of three-element subsets of integers valid if
any two elements of S are consistent. For instance, the valid subsets
of

(
[4]
3

)
are

(1.1) ∅ {123} {124} {134} {234} {123, 134} {123, 234} {124, 234},

so eight in all.
Elkies needed to generate all valid subsets of

(
[8]
3

)
. Define f(n) to

be the number of valid subsets of
(
[n]
3

)
, so f(4) = 8 as noted above.
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Elkies needed to work with the case n = 8, but he first computed that

for n ≤ 7 there are exactly 2(n−1

2 ) such subsets, leading to the obvious
conjecture that this formula holds for all n ≥ 1. Elkies then verified
this formula for n = 8, using the list of valid subsets to solve Graham’s

problem. He then checked that f(n) = 2(n−1

2 ) for n = 9 and n = 10. In

Theorem 2.12 we show that indeed f(n) = 2(n−1

2 ) for all n ≥ 1.
Let σ(n) be the size (number of elements) of the largest valid subset

of
(
[n]
3

)
. Elkies showed that

(1.2) σ(n) =

{

m(m− 1), n = 2m

m2, n = 2m+ 1.

Let g(n) be the number of valid subsets of
(
[n]
3

)
of maximal size σ(n).

Equation (1.1) shows that σ(4) = 2 and g(4) = 3. Elkies also conjec-
tured (stated slightly differently) that

(1.3) g(n) =

{

2(m−1)(m−2)(2m − 1), n = 2m

2m(m−1), n = 2m+ 1.

We prove this conjecture in Section 5.
The basic idea behind our two proofs is the following. After the

Numberplay posting appeared, some further discussion continued on
the domino email forum [2]. In particular, David desJardins observed
that distinct triples i < j < k and i′ < j′ < k′ are inconsistent if and
only if either

i ≤ i′, j ≥ j′, k ≤ k′

or

i ≥ i′, j ≤ j′, k ≥ k′.

(The proof is straightforward though somewhat tedious.) Jim Propp
then defined a partial ordering Pn on certain elements of [n]× [n]× [n]

such that the valid subsets of
(
[n]
3

)
are just the antichains of Pn. Since

the antichains of a poset P are just the maximal elements of order
ideals of P , we get that f(n) = #Ln, where Ln := J(Pn) denotes
the (distributive) lattice of order ideals of Pn. One can also define a
coordinate-wise partial ordering Mn on the set of semistandard Young
tableaux (SSYT) of shape δn−1 := (n−2, n−3, . . . , 1) and largest part
at most n− 1. We show that Ln

∼= Mn by observing that both are dis-
tributive lattices and then showing that their posets of join-irreducibles
are isomorphic. See [3, Thm. 3.4.1] for the relevant result on distribu-
tive lattices. It is an immediate consequence of standard results about

SSYT that #Mn = 2(n−1

2 ), so the conjecture on f(n) follows. The proof
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for g(n) is more complicated. Let Kn be the subset of Mn correspond-
ing to maximum size antichains of Pn with respect to the isomorphism
Ln → Mn. By a result of Dilworth, Kn is a sublattice of Mn and is
therefore distributive. We then determine the join-irreducibles of Kn.
They are closely related to the join-irreducibles of M1+⌊n/2⌋, from which
we are able to compute g(n) = #Kn.

2. The number of valid subsets

We assume the reader is familiar with basic definitions and results
on posets and tableaux presented in [3, Chapter 3] and [4, Chapter 7].
Recall that for any graded poset P , its rank-generating function is

F (P, q) =
∑

x∈P

qrank(x).

In this paper, we write a tableau T using “English notation,” so the
longest row is at the top. Write Ta,b = c to mean that the (a, b)-entry
of T is equal to c.

On April 17, 2013, Jim Propp posted on the Domino Forum [2] the
following statement.

I don’t know if this reformulation is helpful, but pairwise
consistent sets are in bijection with antichains in the
subposet of [n] × [n] × [n] containing all the (i, j, k)’s
that satisfy i+ j < n+ 1 < j + k.

([n] × [n] × [n] is the set {(i, j, k) : 1 ≤ i, j, k ≤ n},
ordered so that (i, j, k) ≤ (i′, j′, k′) iff i ≤ i′ and j ≤ j′

and k ≤ k′.)

To see the bijection, just map (i, j, k) to (i, n+1− j, k).

Propp’s statement follows easily from the observation of David des-
Jardins mentioned in the previous section.

Denote Propp’s poset by Pn. The order ideals of Pn form a distribu-
tive lattice Ln = J(Pn) under inclusion [3, §3.4]. There is a simple
bijection [3, end of §3.1] between the order ideals and antichains of a
finite poset. Further, under this bijection, the size of an antichain of a
poset P is exactly the number of elements covered by the corresponding
order ideal in J(P ). Hence,

f(n) =#Ln, the number of elements of Ln;(2.1)

σ(n) =max(number of elements covered by x : x ∈ Ln);(2.2)

g(n) =the number of x ∈ Ln such that x covers σ(n) elements.(2.3)

Recall from Section 1 thatMn is the poset of all SSYT (semistandard
Young tableaux) of shape δn−1 = (n− 2, n− 3, . . . , 1) and largest part
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Figure 1. The distributive lattices L4 and M4

at most n − 1, ordered componentwise. For n ≥ 2 the poset Mn is
a distributive lattice, where join is entrywise maximum and meet is
entrywise minimum, since either of the operations of maximum and
minimum on the integers distributes over the other. We remark that
M1 is an empty set, which is neither interesting nor a distributive
lattice. Hence throughout this paper, we assume n ≥ 2. Let Qn denote
the poset of join-irreducibles of Mn, so Mn = J(Qn).

Theorem 2.1. For n ≥ 2,

Ln
∼= Mn.

We will show that Pn
∼= Qn in Proposition 2.11. Hence by the

fundamental theorem for finite distributive lattices [3, Thm. 3.4], Ln
∼=

Mn. Theorem 2.1 follows. See Figure 1 for the lattices L4 and M4. We
have labelled the join-irreducibles of L4 by the corresponding elements
of P4. One can also confirm f(4) = 8, σ(4) = 2 and g(4) = 3 by
applying (2.1), (2.2), and (2.3) to the figure.

One main application of Theorem 2.1 is that we are able to describe
f(n), σ(n) and g(n) as statistics related to the distributive lattice Mn.
We say that an entry c of a tableau T ∈Mn is reducible if by replacing
c with c− 1 in T we obtain another tableau in Mn.

Note 2.2. The (a, b)-entry of a SSYT T is reducible if and only if

Ta,b − Ta,b−1 ≥ 1 and Ta,b − Ta−1,b ≥ 2,
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where by convention we let for all a, b,

Ta,0 := a and T0,b := 0

(although they are not real entries in T ).

Corollary 2.3. For n ≥ 2,

(a) f(n) = #Mn = #J(Qn).
(b) σ(n) is the maximum number of reducible entries in T , for T ∈

Mn.
(c) g(n) is the number of tableaux in Mn that have the maximum

number σ(n) of reducible entries.

Proof. It follows directly from Theorem 2.1, equations (2.1), (2.2) and
(2.3), and the observation that for any T ∈Mn, the number of elements
covered by T is the same as the number of reducible entries of T. �

In order to prove Pn
∼= Qn, we first need to describe the poset Qn of

join-irreducibles of Mn.

Definition 2.4. For any tableau T with integer entries, we define
Add(T ; a, b, k) to be the tableau obtained from T by adding k to each
(a′, b′)-entry of T with (a′, b′) ≥ (a, b).

Let T 0
n−1 be the minimal element of Mn, so T 0

n−1 is the tableau of
shape δn−1 whose (a, b)-entry is a.

Proposition 2.5. Let Φn be the set {(a, b, k) ∈ P
3 | 1 ≤ k ≤ b ≤

n− 1 − a} with the partial ordering

(a, b, k) ≤Φn
(a′, b′, k′) if a ≥ a′, b ≥ b′, k ≤ k′.

Then for any (a, b, k) ∈ Φn, the tableau Add(T 0
n−1; a, b, k) is a join-

irreducible of Mn. Moreover, all join-irreducible elements of Mn are
obtained in this way.

Furthermore, the map

ψ : (a, b, k) 7→ Add(T 0
n−1; a, b, k)

induces a poset isomorphism from Φn to Qn.

Example 2.6. Let n = 4. Then T 0
3 =

1 1
2

, and the four join-

irreducibles of M4 are:

Add(T 0
3 ; 1, 1, 1) =

2 2
3

Add(T 0
3 ; 2, 1, 1) =

1 1
3

Add(T 0
3 ; 1, 2, 1) =

1 2
2

Add(T 0
3 ; 1, 2, 2) =

1 3
2

We need several preliminary results before proving Proposition 2.5.
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Lemma 2.7. Suppose T is an SSYT and Ta,b is an entry of T . If

(2.4) Ta,b − Ta−1,b > Ta,b−1 − Ta−1,b−1,

then Ta,b is a reducible entry.

Proof. We clearly have Ta,b − Ta−1,b ≥ 2. Thus it is enough to show
Ta,b − Ta,b−1 ≥ 1, which follows from Ta,b − Ta,b−1 > Ta−1,b − Ta−1,b−1 ≥
0. �

Corollary 2.8. Suppose T is an SSYT and Ta,b is an entry of T . If

(2.5) Ta,b − Ta−1,b < Ta,b−1 − Ta−1,b−1,

then there is a reducible entry in the a-th row of T .

Proof. (2.5) implies that Ta,b−1 − Ta−1,b−1 ≥ 2 > 1 = Ta,0 − Ta−1,0.
Therefore there exists 1 ≤ b′ ≤ b− 1 such that

Ta,b′ − Ta−1,b′ > Ta,b′−1 − Ta−1,b′−1.

Then the conclusion follows from Lemma 2.7. �

Corollary 2.9. Suppose T is an SSYT of shape λ. Then the following
are equivalent.

(i) Ta0,b0 is the only reducible entry of T .
(ii) For any pair of indices (a, b) such that Ta,b is an entry of T , we

have the following:
(a) Ta,b − Ta−1,b = 1 for any (a, b) satisfying a 6= a0 or else

satisfying a = a0 and b < b0;
(b) Ta,b − Ta−1,b ≥ 2 for (a, b) = (a0, b0);
(c) Ta,b − Ta−1,b = Ta,b−1 − Ta−1,b−1 for any (a, b) satisfying

a = a0 and b > b0.
(iii) T = Add(T 0; a0, b0, k) for some k ≥ 1, where T 0 is the minimal

SSYT of shape λ.

Proof. It is straightforward to verify that (ii) and (iii) are equivalent
and that (iii) implies (i). We will show (i) implies (ii). Assuming (i),
by Lemma 2.7 and Corollary 2.8, we have

Ta,b − Ta−1,b = Ta,b−1 − Ta−1,b−1, for all (a, b) with a 6= a0.

Note that

(2.6) Ta,0 − Ta−1,0 = a− (a− 1) = 1, for all a.

We have Ta,b − Ta−1,b = 1 when a 6= a0. Since T0,b = 0 for any b, it
follows that Ta,b = a for any a < a0. In particular,

Ta0−1,b = a0 − 1, for all b.
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Since the entries in the ath row is weakly increasing, we must have

(2.7) Ta0,b − Ta0−1,b ≥ Ta0,b−1 − Ta0−1,b−1, for all b.

Thus it follows from Lemma 2.7 that the equality of (2.7) holds when
b 6= b0 and inequality holds when b = b0. Finally, it follows from (2.6)
that condition (ii)(a) holds for a = a0 and b < b0 and thus condition
(b) holds, completing the proof. �

Proof of Proposition 2.5. We first verify the first part of the conclu-
sion of the proposition, which is equivalent to say that ψ gives a bi-
jection from Φn to Qn. Because of Corollary 2.9, it is sufficient to
show that given a + b ≤ n − 1 (which implies that (a, b) is an en-
try in a tableau of shape δn−1), we have k ≤ b if and only if all
the entries in Add(T 0

n−1; a, b, k) are at most n − 1. However, note
that the entries in T 0

n−1 are less than n − 1 and the largest entry in
Add(T 0

n−1; a, b, k) that is different from T 0
n−1 is the last entry in the bth

column of Add(T 0
n−1; a, b, k):

Add(T 0
n−1; a, b, k)n−1−b,b = n− 1 − b+ k.

Therefore each entry in Add(T 0
n−1; a, b, k) is at most n− 1 if and only

if n − 1 − b + k ≤ n − 1, which is equivalent to k ≤ b. Thus the map
(a, b, k) 7→ Add(T 0

n−1; a, b, k) induces a bijection from Φn to Qn.
It is easy to see that Add(T 0

n−1; a, b, k) ≤ Add(T 0
n−1; a

′, b′, k′) if and
only if a ≥ a′, b ≥ b′, k ≤ k′. Hence we get an isomorphism, as desired.

�

We have the following corollary to Proposition 2.5 which will be used
later.

Corollary 2.10. For n ≥ 2,

(2.8) #Qn+1 − #Qn =

(
n

2

)

.

Proof.

#Qn =
n−2∑

k=1

n−2∑

b=k

(n− 1 − b) =
n−2∑

k=1

(
n− k

2

)

=
n−2∑

α=1

(
α + 1

2

)

.

�

Since we’ve shown that Qn
∼= Φn in Proposition 2.5, we establish

that Pn
∼= Qn by showing Pn

∼= Φn.

Proposition 2.11. Let Φn be the poset defined in Proposition 2.5.
Define a map ϕ : Φn → Pn by

ϕ(a, b, k) = (k, n− b, n + 1 − a).
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Then ϕ is an isomorphism of posets.
Therefore, Pn

∼= Φn
∼= Qn.

Proof. This is just a straightforward verification. First we check that
ϕ(a, b, k) ∈ Pn. We need to show that

1 ≤ k ≤ n, 1 ≤ n− b ≤ n, 1 ≤ n + 1 − a ≤ n

k + n− b < n+ 1 < 2n+ 1 − a− b.

These inequalities are immediate from (a, b, k) ∈ Φn, i.e., 1 ≤ k ≤
b ≤ n − 1 − a and a, b, k ∈ P. We can then check that ϕ−1(i, j, ℓ) =
(n+ 1 − ℓ, n− j, i). Hence ϕ is a bijection Φn → Pn.

It remains to show that ϕ is a poset isomorphism. However, one
checks directly that (a, b, k) ≤Φn

(a′, b′, k′) if and only if k ≤ k′, n− b ≤
n− b′, n+ 1 − a ≤ n+ 1 − a′, i.e., ϕ(a, b, k) ≤Pn

ϕ(a′, b′, k′). �

Therefore, as we discussed before, Theorem 2.1 follows from the
above proposition.

Theorem 2.12. For any n ≥ 2, the rank-generating function of Mn is
given by

F (Mn, q) = (1 + q)n−2(1 + q2)n−3 · · · (1 + qn−2)(2.9)

=
n−2∏

i=1

(1 + qi)n−1−i,(2.10)

where F (M2, q) = 1. Hence we have

f(n) = 2(n−1

2 ).

Proof. We compute F (Mn, q) using standard results from the theory
of symmetric functions. The rank of an element (SSYT) in Mn is the
sum of its entries minus

(
n
3

)
. Denote the rank-generating function of

Mn by F (Mn, q). If T is an SSYT with mi entries equal to i, write xT =
xm1

1 xm2

2 · · · . The Schur function sδn−2
(x1, . . . , xn−1) may be defined (see

[4, Def. 7.10.1]) as

sδn−2
(x1, . . . , xn−1) =

∑

T

xT ,

where T ranges over all SSYT of shape δn−2 and largest part at most
n− 1. Hence

q(
n

3)F (Mn, q) = sδn−2
(q, . . . , qn−1).

Now we have [4, Exer. 7.30(a)]

(2.11) sδn−2
(x1, . . . , xn−1) =

∏

1≤i<j≤n−1

(xi + xj).
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From this equation it is immediate that

F (Mn, q) = (1 + q)n−2(1 + q2)n−3 · · · (1 + qn−2).

Setting q = 1 gives f(n) = #Ln = #Mn = 2(n−1

2 ), completing the
proof. �

Note. Rather than using the special formula (2.11) we could have
used the hook-content formula [4, Thm. 7.21.2] for sλ(1, q, . . . , q

m−1),
valid for any λ and m. (Note that if λ is a partition of N , then
qNsλ(1, q, . . . , q

m−1) = sλ(q, q
2, . . . , qm).) Equation (2.11) can be trans-

lated into some enumerative property of valid subsets of
(
[n]
3

)
, but it

seems rather contrived.

3. Valid subsets of maximum size

In the rest of the paper, we will prove Elkies’ conjecture on the for-
mula (1.3) for g(n) as well as provide another proof for his formula (1.2)
for σ(n). Recall that in Corollary 2.3 we give alternative definitions
for σ(n) and g(n) in terms of Mn. We find it is convenient to use the
following obvious lemma to describe tableaux in Mn using inequalities.

Lemma 3.1. Suppose T is a tableau of shape δn−1 with integer entries.
Then T ∈ Mn if and only if the entries of T satisfy the following
conditions:

(a) T1,1 ≥ 1.
(b) Ta,b − Ta,b−1 ≥ 0, for any 2 ≤ b ≤ n − 2, 1 ≤ a ≤ n − 1 − b

(weakly increasing on rows)
(c) Ta,b − Ta−1,b ≥ 1, for any 2 ≤ a ≤ n − 2, 1 ≤ b ≤ n − 1 − a

(strictly increasing on columns)
(d) Tn−1−b,b ≤ n− 1, for any 1 ≤ b ≤ n− 2.

Remark 3.2. For convenience, we sometimes abbreviate conditions (a) –
(c) of Lemma 3.1 as: for all 1 ≤ b ≤ n− 2, 1 ≤ a ≤ n− 1 − b,

Ta,b − Ta,b−1 ≥ 0 and Ta,b − Ta−1,b ≥ 1, ,

with the convention Ta,0 = a and T0,b = 0.

Since σ(n) is the maximum possible number of reducible entries in a
tableau in Mn, we first give an upper bound for the number of reducible
entries in T ∈Mn.

Lemma 3.3. Let T ∈Mn. Then for any 1 ≤ b ≤ n− 2,

#reducible entries in the bth column of T ≤ min(b, n− 1 − b).
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Therefore,

#reducible entries in T ≤
n−2∑

b=1

min(b, n− 1 − b).

Proof. First, the number of reducible entries in the bth column is at
most the number of entries in the bth column, which is n− 1 − b.

By Lemma 3.1(d), the last entry Tn−1−b,b in the bth column satisfies

n− 1 ≥ Tn−1−b,b =

n−1−b∑

a=1

(Ta,b − Ta−1,b) .(3.1)

Hence by Remark 3.2 and Note 2.2,

n− 1 ≥ # (irreducible entries in the bth column of T ) +
(3.2)

2 × # (reducible entries in the bth column of T )

= # (entries in the bth column of T )+

# (reducible entries in the bth column of T )

= n− 1 − b+ # (reducible entries in the bth column of T ) .

Then we conclude that the number of reducible entries in the bth col-
umn is at most b. �

Definition 3.4. Let Kn be the coordinate-wise partial ordering on the
set of all the tableaux in Mn that have

∑n−2
b=1 min(b, n−1−b) reducible

entries. (Thus Kn is a subposet of Mn.)

Remark 3.5. By Lemma 3.3, we see that σ(n) is at most

n−2∑

b=1

min(b, n−1−b) =







1 + 2 + · · ·+ (m− 1) + (m− 1) + · · ·+ 2 + 1

= m(m− 1), if n = 2m;

1 + 2 + · · ·+ (m− 1) +m+ (m− 1) + · · · + 2 + 1

= m2, if n = 2m+ 1.

One only needs show that Kn is nonempty to confirm Elkies’ formula
(1.2) for σ(n). Although one can easily directly construct a tableau that
is in Kn, we choose to start by analyzing the properties of tableaux in
Kn and give a proof for the nonemptyness of Kn indirectly in the next
section. The benefit of doing this is that the arguments are useful for
figuring out the cardinality of Kn, which gives the value of g(n).
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Properties of tableaux in Kn. We have the following immediate
consequence of Lemma 3.3 and its proof.

Lemma 3.6. Suppose T ∈ Mn. Then T ∈ Kn if and only if the
following two conditions are satisfied.

(a) For any 1 ≤ b ≤ 1
2
(n − 1), the number of reducible entries in

the bth column of T is b.
(b) For any 1

2
(n− 1) < b ≤ n− 2, all the entries in the bth column

of T are reducible.

While condition (b) of the above lemma is enough for us to determine
how to create the right half entries of tableaux in Kn, we will discuss
explicit conditions for the left half entries as a consequence of Lemma
3.6(a) in several corollaries below.

Corollary 3.7. Suppose T ∈ Kn. Then for any 1 ≤ b ≤ 1
2
(n− 1),

(a) the last entry Tn−1−b,b in the bth column of T is n− 1;
(b) for any 1 ≤ a ≤ n − 1 − b, the entry Ta,b is reducible if and

only if Ta,b − Ta−1,b = 2, and Ta,b is irreducible if and only if
Ta,b − Ta−1,b = 1.

Therefore,

(c) among all the n−1−b entries Ta,b in the bth column of T, there
are b entries satisfying Ta,b − Ta−1,b = 2, and the remaining
n− 1 − 2b entries satisfying Ta,b − Ta−1,b = 1.

Proof. By Lemma 3.6(a) the number of reducible entries in the bth
column of T is b. However, by the proof of Lemma 3.3, one sees that
this only happens when the equalities in both (3.2) and (3.1) hold.
Therefore (a) and (b) follow, and then (c) follows. �

Corollary 3.8. Suppose T ∈ Kn. Then for any 1 ≤ b ≤ 1
2
(n− 1) − 1

and 1 ≤ a ≤ n− 1 − b (so both Ta,b and Ta−1,b+1 are on the left half of
T ), we have

(3.3) Ta,b − Ta−1,b+1 ≤ 1.

Proof. Assume to the contrary that

(3.4) Ta,b − Ta−1,b+1 ≥ 2.

We claim that a+ b < n− 1. If a = 1, then 1 + b ≤ 1
2
(n− 1) < n− 1;

if a > 1, then by Corollary 3.7(a) the condition a + b = n− 1 implies
Ta,b = n−1 = Ta−1,b+1, which is impossible. Thus a+ b < n−1, and so
a+(b+1) ≤ n−1. Hence T has an (a, b+1)-entry. Then by Corollary
3.7(b),

(3.5) Ta,b+1 − Ta−1,b+1 ≤ 2.
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Comparing with our assumption (3.4), we conclude that Ta,b+1 ≤ Ta,b.
However, since T is a SSYT, one has to have

(3.6) Ta,b+1 = Ta,b.

Thus both equalities in (3.4) and (3.5) hold. In particular, we get
Ta,b+1 − Ta−1,b+1 = 2. Now using Corollary 3.7(b) we conclude that
Ta,b+1 is reducible. However, by Note 2.2 this implies that Ta,b+1−Ta,b ≥
1, which contradicts equation (3.6). �

It turns out that (3.3) is an important property. Since it is related to
the difference of two consecutive northeast-southwest diagonal entries,
we often refer to it as “the diagonal property.” Below we give an easy
but useful lemma for using this property.

Lemma 3.9. Suppose T is a tableau (of some shape) filled with integer
entries. Assume b ≥ 1 and a ≥ 0 and the (a, b), (a+1, b) and (a, b+1)-
entries of T satisfy

(3.7) Ta+1,b − Ta,b+1 ≤ 1 and Ta+1,b − Ta,b ≥ 1.

Then
Ta,b ≤ Ta,b+1,

where the equality holds if and only if Ta+1,b = Ta,b + 1 = Ta,b+1 + 1.

This lemma says that the diagonal property together with the prop-
erty of strictly increasing on columns implies the property of weakly
increasing on rows.

Proof. We combine the two inequalities in (3.7):

Ta,b + 1 ≤ Ta+1,b ≤ Ta,b+1 + 1.

Then the conclusion follows. �

Corollary 3.10. Suppose T ∈ Kn. Then

(3.8) Ta,b = a, for all 1 ≤ b ≤
1

2
(n− 1), 0 ≤ a ≤

1

2
(n− 1) − b.

Therefore for any 1 ≤ b ≤ 1
2
(n−1) and 1 ≤ a ≤ 1

2
(n−1)− b, the entry

Ta,b is irreducible. Hence the first ⌊1
2
(n− 1)⌋ − b entries (not counting

T0,b) in the bth column are irreducible for any 1 ≤ b ≤ ⌊1
2
(n− 1)⌋.

Proof. We prove (3.8) by induction on a noting that the indicies in
(3.8) can be described as

0 ≤ a ≤
1

2
(n− 1) − 1, 1 ≤ b ≤

1

2
(n− 1) − a.

The base case when a = 0 clearly holds since T0,b = 0 by our convention.
Suppose (3.8) holds for a = a0 for some 0 ≤ a0 ≤ 1

2
(n − 1) − 2. We
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want to show Ta,b = a, for a = a0 + 1 and any 1 ≤ b ≤ 1
2
(n − 1) − a.

One checks that a and b satisfy

1 ≤ b ≤
1

2
(n− 1) − 1 and 1 ≤ a ≤

1

2
(n− 1) − b ≤ n− 1 − b.

Hence by Corollary 3.8, we have the diagonal property

Ta,b − Ta−1,b+1 ≤ 1.

Meanwhile, since T is an SSYT, we have

Ta,b − Ta−1,b ≥ 1.

However, by the induction hypothesis,

Ta−1,b = a0 = Ta−1,b+1.

It follows from Lemma 3.9 that

Ta,b = Ta−1,b + 1 = (a− 1) + 1 = a.

Hence (3.8) holds.
The second conclusion easily follows from (3.8) and Corollary 3.7(b).

�

We are now ready to state and prove the main result of this section.

Proposition 3.11. Suppose T is a tableau of shape δn−1 filled with
integer entries. Then T ∈ Kn if and only if the following conditions
are satisfied.

(a) For any 1 ≤ b ≤ ⌊1
2
(n− 1)⌋,

(i) for any 1 ≤ a ≤ ⌊1
2
(n− 1)⌋ − b, we have Ta,b = a;

(ii) among the ⌊n/2⌋ remaining values of a, viz., ⌊1
2
(n− 1)⌋ −

b + 1 ≤ a ≤ n − 1 − b, we have that b of them satisfy
Ta,b − Ta−1,b = 2, and the remaining ⌊n/2⌋ − b of them
satisfy Ta,b − Ta−1,b = 1.

(b) For any 1 ≤ b ≤ ⌊1
2
(n − 1)⌋ − 1 and ⌊1

2
(n− 1)⌋ − b + 1 ≤ a ≤

n− 1 − b, we have the diagonal property Ta,b − Ta−1,b+1 ≤ 1.
(c) For any ⌊1

2
(n− 1)⌋+ 1 ≤ b ≤ n− 2 and any 1 ≤ a ≤ n− 1− b,

we have Ta,b ≤ n− 1, Ta,b − Ta−1,b ≥ 2 and Ta,b − Ta,b−1 ≥ 1.

Proof. Suppose T ∈ Kn. It follows from Lemma 3.6, Corollaries 3.7
and 3.8, and Note 2.2 that (a)–(c) hold.

Now suppose (a)–(c) hold. We first show that T ∈ Mn by verifying
that the conditions in Lemma 3.1 are satisfied. It is clear that condi-
tions (a) and (c) of Lemma 3.1 hold. One sees that (a) implies that
Tn−1−b,b = n − 1 for any 1 ≤ b ≤ ⌊1

2
(n − 1)⌋, which together with (c),

implies condition (d) of Lemma 3.1.
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Thus we only need to show that for any 2 ≤ b ≤ n − 2, 1 ≤ a ≤
n− 1 − b,

(3.9) Ta,b − Ta,b−1 ≥ 0.

However, we already know that (3.9) holds for ⌊1
2
(n−1)⌋+1 ≤ b ≤ n−2

by condition (c), and holds for 2 ≤ b ≤ ⌊1
2
(n − 1)⌋ and 1 ≤ a ≤

⌊1
2
(n− 1)⌋− b by condition (a)(i). Thus we assume 2 ≤ b ≤ ⌊1

2
(n− 1)⌋

and ⌊1
2
(n − 1)⌋ − b + 1 ≤ a ≤ n − 1 − b. Hence by (b), we have the

diagonal property

Ta+1,b−1 − Ta,b ≤ 1.

Then (3.9) follows from Lemma 3.9, so we conclude that T ∈Mn.
Now it suffices to verify conditions (a) and (b) of Lemma 3.6 to

conclude T ∈ Kn. Lemma 3.6(b) clearly follows from (c). For condition
(a) of Lemma 3.6, because of Lemma 3.3, it is enough to check that
for any 1 ≤ b ≤ ⌊1

2
(n − 1)⌋ and ⌊1

2
(n − 1)⌋ − b + 1 ≤ a ≤ n − 1 − b,

if Ta,b − Ta−1,b = 2, then Ta,b is reducible. However, by Note 2.2, it is
sufficient to prove

(3.10) Ta,b − Ta−1,b = 2 =⇒ Ta,b − Ta,b−1 ≥ 1.

If b = 1, since Ta,b−1 = a = Ta−1,b−1 + 1 ≤ Ta−1,b + 1, we immediately
have Ta,b − Ta,b−1 ≥ 1. If b > 1 and a = ⌊1

2
(n − 1)⌋ − b + 1, it follows

from condition (a)(i) that Ta,b−1−Ta−1,b = a− (a−1) = 1. Thus (3.10)
holds. Hence we assume 2 ≤ b ≤ ⌊1

2
(n− 1)⌋ and ⌊1

2
(n− 1)⌋ − b+ 2 ≤

a ≤ n − 1 − b. Applying (b) again, we get Ta,b−1 − Ta−1,b ≤ 1. Then
(3.10) follows. �

4. Two sides

Since the characterization of the left half and right half of tableaux
in Kn stated in Proposition 3.11 are quite different, it is natural to split
each T ∈ Kn into two halves and investigate them separately.

Let δLn−1 be the shape that is the left half of δn−1 including the
middle column if there is one. In other words, δLn−1 is the conjugate of
(n− 2, n− 3, . . . , ⌊n/2⌋). Note that the shape of the right half of δn−1

excluding the middle column is δ⌊n/2⌋.

Definition 4.1. Let KL
n be the set of all the tableaux of shape δLn−1

with integer entries satisfying conditions (a) and (b) of Proposition
3.11. For c = 1 or 2, let KL,c

n be the subset ofKL
n consisting all tableaux

whose (1, ⌊1
2
(n − 1)⌋)-entry is c. (Note that the (1, ⌊1

2
(n − 1)⌋)-entry

is the last entry in the first row of any tableau in KL
n , which has to be

either 1 or 2 by condition (a) of Proposition 3.11.)
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For c = 1 or 2, let KR,c
n be the set of all the tableaux of shape δ⌊n/2⌋

satisfying the following conditions:

a) T1,1 ≥ c + 1.
b) Ta,b − Ta,b−1 ≥ 1 for any 2 ≤ b ≤ ⌊n/2⌋− 1, 1 ≤ a ≤ ⌊n/2⌋ − b.
c) Ta,b −Ta−1,b ≥ 2, for any 2 ≤ a ≤ ⌊n/2⌋−1, 1 ≤ b ≤ ⌊n/2⌋−a,
d) T⌊n/2⌋−b,b ≤ n− 1, for any 1 ≤ b ≤ ⌊n/2⌋ − 1.

We consider all the sets above as posets with the coordinate-wise
partial ordering.

For any T ∈ Kn, we define Split(T ) = (TL, TR), where TL of shape
δLn−1 is the left half including the middle column of T , and TR of shape
δ⌊n/2⌋ is the right half excluding the middle column of T . It follows
from Proposition 3.11 that (TL, TR) ∈ KL,c

n ×KR,c
n for some c = 1 or

2. Thus,

Split(Kn) ⊆
(
KL,1

n ×KR,1
n

)
·∪
(
KL,2

n ×KR,2
n

)
.

The equality in the above equation actually holds.

Lemma 4.2. We have

Split(Kn) =
(
KL,1

n ×KR,1
n

)
·∪
(
KL,2

n ×KR,2
n

)
.

Therefore,
Kn

∼=
(
KL,1

n ×KR,1
n

)
·∪
(
KL,2

n ×KR,2
n

)
.

Proof. We only need to show that for any (TL, TR) ∈ KL,c
n ×KR,c

n for
some c = 1 or 2, if T is the tableau obtained by gluing TL on the left
side of TR, then we have T ∈ Kn. However, by Proposition 3.11, it is
enough to verify that

(4.1) TR
a,1 − TL

a,⌊ 1

2
(n−1)⌋

≥ 1, for all a.

It follows from conditions (a) and (c) of Definition 4.1 that TR
a,1 ≥

c+1+2(a−1). Further, because TL satisfies condition (a) of Proposition
3.11 and TL

1,⌊ 1

2
(n−1)⌋

= c, we conclude that TL
a,⌊ 1

2
(n−1)⌋

≤ c + 2(a − 1).

Therefore equation (4.1) follows. �

The main goal of this section is to show

KL
n
∼= M⌊n/2⌋+1.

Definition 4.3. Let An be the set of tableaux of shape δLn−1 with
integer entries satisfying condition (a) of Proposition 3.11.

Write m = ⌊1
2
(n− 1)⌋. Let A′

n be the set of tableaux of rectangular
shape

(m,m, . . . ,m
︸ ︷︷ ︸

⌊n/2⌋

)
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with entries 1 or 2 where the bth column has b copies of 2’s and ⌊n/2⌋−b
copies of 1’s.

Let A′′
n be the set of tableaux of shape δ⌊n/2⌋ with integer entries in

{1, 2, . . . , ⌊n/2⌋} where the entries in each column are strictly increas-
ing.

Define θ1 : An → A′
n in the following way. For any T ∈ An, we do

the following three operations on T .

(1) For any 1 ≤ b ≤ m and 1 ≤ a ≤ m− b, we replace the number
in the (a, b)-entry with Ta,b − Ta−1,b.

(2) Remove all the entries Ta,b with a + b ≤ m. (Note after this
each column has ⌊n/2⌋ entries left.)

(3) Shift all the entries up to make a rectangular shape.

We call the resulting rectangular tableau θ1(T ).
Define θ2 : A′

n → A′′
n in the following way. For any T ′ ∈ A′

n, we
create θ2(T

′) of shape θ⌊n/2⌋ with entries

(4.2) θ2(T
′)a,b := the row index of the ath 1 in column b of T ′.

Define θ = θ2 ◦ θ1 : An → A′′
n.

Example 4.4. Below are examples of the maps θ1 and θ2 for n = 6
and n = 7.

1 2

3 3

4 5

5

∈ A6
θ17−→

2 2

1 1

1 2

∈ A′
6

θ27−→
2 2

3
∈ A′′

6

1 1 2

2 3 4

4 4 6

5 6

6

∈ A7
θ17−→

2 2 2

1 1 2

1 2 2

∈ A′
7

θ27−→
2 2

3
∈ A′′

7

It is clear that θ1 is a bijection from An to A′
n and θ2 is a bijection

from A′
n to A′′

n. Hence θ is a bijection from An to A′′
n. Below is the

main result of this section.

Proposition 4.5. Consider both An and A′′
n as posets with the coordinate-

wise partial ordering. Then θ is a poset isomorphism from An to A′′
n.
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Furthermore (noting that KL
n is a subposet of An) the map θ induces

a poset isomorphism from KL
n to M⌊n/2⌋+1. Hence,

KL
n
∼= M⌊n/2⌋+1.

We will break the proof of Proposition 4.5 into several lemmas. For
convenience, for any column C with entries in {1, 2}, we define

#Ones(C, i) := the number of 1’s in the first i entries of C,

and

RI(C, a) := the row index of the ath 1 on C.

For example, if C is the first column of the 3 × 2 tableau in A′
6 ap-

pearing in Example 4.4, we have #Ones(C, 1) = 0, #Ones(C, 2) = 1,
#Ones(C, 3) = 2.

We have the following obvious lemma on these two statistics.

Lemma 4.6. Suppose C and C ′ are two columns of ℓ entries in {1, 2}.
Then the following two conditions are equivalent.

(i) For any 1 ≤ i ≤ ℓ, #Ones(C, i) ≤ #Ones(C ′, i).
(ii) #Ones(C, ℓ) ≤ #Ones(C ′, ℓ) and RI(C, a) ≥ RI(C ′, a) for any

1 ≤ a ≤ #Ones(C, ℓ).

Proof. Suppose (i) holds. Clearly we have #Ones(C, ℓ) ≤ #Ones(C ′, ℓ).
Let 1 ≤ a ≤ #Ones(C, ℓ) and RI(C, a) = i. Then

a = #Ones(C, i) ≤ #Ones(C ′, i).

Therefore RI(C ′, a) ≤ i, so (ii) follows.
Suppose there exists 1 ≤ i ≤ ℓ such that #Ones(C, i) > #Ones(C ′, i).

Let a = #Ones(C, i). Then RI(C, a) ≤ i < RI(C ′, a). �

Note that with the definition of RI, we can rewrite (4.2) as

θ2(T
′)a,b := RI(column b of T ′, a).

Lemma 4.7. Suppose T (1), T (2) ∈ An. Then the following conditions
are equivalent.

(a) T (1) ≤ T (2).
(b) For any 1 ≤ j ≤ ⌊1

2
(n− 1)⌋ and 1 ≤ i ≤ ⌊n/2⌋,

#Ones(column j of θ1(T
(1)), i) ≥ #Ones(column j of θ2(T

(2)), i).

(c) θ(T (1)) ≤ θ(T (2)).

Proof. The equivalence between (b) and (c) follows directly from Lemma
4.6.
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Write m = ⌊1
2
(n − 1)⌋. For any T ∈ An, any 1 ≤ j ≤ m and

1 ≤ i ≤ ⌊n/2⌋, we have

Tm−j+i,j − Tm−j,j =

m−j+i
∑

a=m−j+1

(Ta,j − Ta−1,j)

=
i∑

k=1

θ1(T )k,j

=2i− #Ones(column j of θ1(T ), i).

Since T satisfies condition (a)(i) of Proposition 3.11, we have Tm−j,j =
m− j. Thus,

(4.3) Tm−j+i,j = 2i+m− j − #Ones(column j of θ1(T ), i).

Therefore (a) and (b) are equivalent. �

One sees that the first conclusion of Proposition 4.5 follows from
Lemma 4.7.

Lemma 4.8. Suppose T ∈ An. Then the following conditions are
equivalent.

a) T satisfies condition (b) of Proposition 3.11.
b) For any 1 ≤ j ≤ ⌊1

2
(n− 1)⌋ − 1 and 1 ≤ i ≤ ⌊n/2⌋,

#Ones(column j of θ1(T ), i) ≥ #Ones(column j + 1 of θ(T ), i).

c) The entries are weakly increasing in each row of θ(T ).

Proof. The proof is similar to that of Lemma 4.7. The equivalence be-
tween (b) and (c) follows from Lemma 4.6, and the equivalence between
(a) and (b) follows from (4.3). �

Lemma 4.8 implies that T ∈ KL
n if and only if θ(T ) ∈ M⌊n/2⌋+1.

Hence the second part of Proposition 4.5 follows. Below we give a
result on the minimal element of KL

n that will be used in the next
section.

Lemma 4.9. The last entry in the first row of the unique minimal
element of KL

n is 1 if n is even and is 2 if n is odd.

Proof. Note that the minimal element of M⌊n/2⌋+1 is the tableau whose
(a, b)-entry is a. It is easy to determine the minimal element in KL

n

which is in bijection with this minimal element under the map θ, and
check that it satisfies the condition described by the lemma. �

In the rest of this section, we discuss some results on KL,c
n and KR,c

n .
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Lemma 4.10. For m ≥ 2,

KL,1
2m

∼= Mm.

Proof. Suppose T ∈ KL
2m and T ′ = θ(T ).

One checks that T ∈ KL,1
2m if and only if the only 1 in the last column

of θ1(T ) is in the first row, which is equivalent to the fact that the last
entry in the first row of T ′ = θ(T ) is 1.

However, since T ′ is an SSYT, the last entry in the first row of T ′

is 1 if and only if the entries in the first row of T ′ are all 1s. There
is a natural bijection between tableaux in Mm+1 whose first row is all
1s and tableaux in Mm: taking a tableau in the former set, we remove
the first row and subtract 1 from each of the remaining entries, and
obtain a tableau in Mm. It is clear that the composition of θ and this
bijection gives a poset isomorphism from KL,1

2m to Mm. �

Definition 4.11. For m ≥ 1, let Tm be the tableau of shape δm with
entries

(Tm)a,b = 2a+ b, for all 1 ≤ b ≤ m− 1, 1 ≤ a ≤ m− b,

and T ′
m the tableau of shape δm with entries

(T ′
m)a,b = 2a+ b− 1, for all 1 ≤ b ≤ m− 1, 1 ≤ a ≤ m− b,

Example 4.12. Let m = 3. Then

T3 =
3 4

5
and T ′

3 =
2 3

4

Lemma 4.13. For any n ≥ 2, we have

(4.4) KR,1
n ⊇ KR,2

n .

Further, T⌊n/2⌋ is the unique minimal element of KR,2
n and T ′

⌊n/2⌋ is the

unique minimal element of KR,1
n .

Hence, the unique minimal element of KR,2
n is greater than the unique

minimal element of KR,1
n .

Proof. (4.4) follows directly from the defintion of KR,1
n and KR,2

n .
It is clear that if T⌊n/2⌋ ∈ KR,2

n , it has to be the unique minimal
element of KR,2

n . Hence we only need to show that T⌊n/2⌋ ∈ KR,2
n ,

which can be proved by verifying conditions (a)–(d) of Definition 4.1.
We can similarly prove the statement on T ′

⌊n/2⌋. �

Lemma 4.14. Let m ≥ 1.

a) KR,1
2m

∼= Mm+1.

b) KR,2
2m+1

∼= Mm+1.
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Proof. We first prove (a). For any T ∈Mm+1, we define φ(T ) to be the
tableau of shape δm with entries

φ(T )a,b = Ta,b + a+ b− 1.

Comparing Lemma 3.1 and Definition 4.1, one sees that φ(T ) ∈ KR,2
2m+1.

Hence φ : Mm+1 → KR,1
2m . It is easy to define the inverse map of φ and

verify that φ is an poset isomorphism.
b) can be proved similarly by defining a map φ′ : Mm+1 → KR,2

2m+1

where
φ′(T )a,b = Ta,b + a+ b.

�

We finish this section by concluding the nonemptyness of Kn, which
leads to Elkie’s formula for σ(n) as we’ve discussed in Remark 3.5.

Corollary 4.15. For any n ≥ 2, the poset Kn is nonempty.

Proof. By Proposition 4.5 and Lemma 4.13, the sets KL
n , KR,1

n and
KR,2

n are all nonempty. Therefore the conclusion follows from Lemma
4.2. �

Corollary 4.16 (Elkies). For m ≥ 1,

σ(n) =

n−2∑

b=1

min(b, n− 1 − b) =

{

m(m− 1), if n = 2m;

m2, if n = 2m+ 1.

5. Join-irreducibles of Kn

In the last section we confirmed Elkies’ formula for σ(n). As a con-
sequence, the value g(n) is the cardinality of Kn: g(n) = #Kn. In
this section, we will determine rank-generating function of Kn, which
leads to a formula for #Kn by discussing the structure of the poset of
join-irreducibles of Kn.

Let Un be the poset of the join-irreducibles of Kn. By a result of
Dilworth (see Exercise 3.72(a) of [3]), Kn is a distributive lattice. Hence
by the fundamental theorem for finite distributive lattices, we have
Kn = J(Un).

Suppose T ∈ Kn and Split(T ) = (TL, TR). Let c be the last entry in
the first row of TL. It is clear that T is a join-irreducible if and only if
one of the following two cases happens:

(1) TL is a join-irreducible of KL
n , and TR is the unique minimal

element in KR,c
n .

(2) TL is the unique minimal element in KL
n , and TR is a join-

irreducible of KR,c
n .
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We call T ∈ Kn a left-join-irreducible if it fits into situation (1),
and a right-join-irreducible if it fits into situation (2). Let U ℓ

n (U r
n,

respectively) be the subposet of Un that consists of all the left-join-
irreducibles (right-join-irreducibles, respectively). Further, for i = 1, 2
we let U ℓ,c

n be the set of those T that fit into situation (1) with c = i.
(Thus U ℓ

n is the disjoint union of U ℓ,1
n and U ℓ,2

n .)
Note that for a given n, since the unique minimal element in KL

n is
fixed the number c in situation (2) is fixed. Using Lemma 4.9, we can
give a more explict description of U r

n depending on the parity of n.

Lemma 5.1. Suppose T ∈ Kn and Split(T ) = (TL, TR).

(a) For even n, T ∈ U r
n if and only if TL is the unique minimal

element in KL
n and TR is a join-irreducible of KR,1

n .
(b) For odd n, T ∈ U r

n if and only if TL is the unique minimal
element in KL

n and TR is a join-irreducible of KR,2
n .

Recall that Qn is the poset of join-irreducibles of Mn.

Lemma 5.2. For n ≥ 2, the following are true.

(a) U ℓ
n
∼= Q⌊n/2⌋+1.

(b) U ℓ,1
n

∼= the poset of join-irreducibles of KL,1
n .

(c) U r
n
∼= Q⌊n/2⌋+1.

Proof. Suppose for i = 1, 2 we have T (i) ∈ U ℓ
n and Split(T (i)) =

(T (i),L, T (i),R). By Lemma 4.13, we have T (1) ≤ T (2) if and only
if T (1),L ≤ T (2),L. Therefore U ℓ

n is isomorphic to the poset of join-
irreducibles of KL

n . Hence (a) follows from Proposition 4.5.
For any T ∈ KL,1

n , because it does not cover any element in KL,2
n in

the poset KL
n , the elements covered by T in KL

n are exactly the same
as the elements covered by T in KL,1

n . Hence (b) follows from the fact
that U ℓ

n is isomorphic to the poset of join-irreducibles of KL
n .

By Lemma 5.1, U r
n is isomorphic to the poset of join-irreducibles of

KR,1
n if n is even and isomorphic to the poset of join-irreducibles of

KR,2
n if n is odd. It follows from Lemma 4.14 that U r

n
∼= Q⌊n/2⌋+1. �

Lemma 5.3. Suppose T ℓ ∈ U ℓ
n and T r ∈ U r

n are left-join-irreducible
and right-join-irredubcile of Kn, respectively. For s = ℓ, r, let Split(T s) =
(T s,L, T s,R) and cs the last entry in the first row of T s,L. Then the fol-
lowing are equivalent.

(i) T ℓ and T r are comparable.
(ii) T r < T ℓ.
(iii) cr = 1, cℓ = 2, and T r,R ≤ T⌊n/2⌋. (Recall that T⌊n/2⌋ defined in

Definition 4.11 is the unique minimal element of KR,2
n .)
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Proof. Since T r,L is the minimal element of KL
n , we clearly have T r,L <

T ℓ,L. Therefore (i) and (ii) are equivalent. Furthermore, we have con-
dition (ii) is equivalent to T r,R ≤ T ℓ,R.

Note that if cℓ = 2, T ℓ,R = T⌊n/2⌋. Hence (iii) implies (ii). Now we
assume (ii) which implies T r,R ≤ T ℓ,R. If cr ≥ cℓ, then by Lemma 4.13,

T r,R >the unique minimal element in KR,cr

n

≥the unique minimal element in KR,cℓ

n = T ℓ,L.

Thus we must have cr = 1 and cℓ = 2. Then T ℓ,R = T⌊n/2⌋ and (iii)
follows. �

Because of condition (iii) in Lemma 5.3, it is natural for us to divide
U r

n into two sets as well.

Definition 5.4. Let U r,2
n be the subposet of U r

n that consists of all
tableaux T such that TR ≤ T⌊n/2⌋, where Split(T ) = (TL, TR).

Let U r,1
n be the set U r

n\U
r,2
n with the coordinate-wise partial ordering.

Note that in Lemma 5.3, T r is a right-join-irreducible and thus cr

is the last entry in the first row of the minimal element of KL
n . Thus

by Lemma 4.9, cr is always 1 for even n and is always 2 for odd n.
Applying Lemma 5.3 to odd cases and even cases separately, we have
the following results.

Corollary 5.5. Suppose T ℓ ∈ U ℓ
n and T r ∈ U r

n are left-join-irreducibles
and right-join-irredubciles of Kn, respectively.

(a) If n is odd, then T ℓ and T r are incomparable.
(b) Suppose n is even. Let Split(T r) = (T r,L, T r,R). Then the fol-

lowing are equivalent.
(i) T ℓ and T r are comparable.
(ii) T r < T ℓ.
(iii) T ℓ ∈ U ℓ,2

n and T r ∈ U r,2
n .

We now have enough information to determine the rank-generating
function of Kn for odd n.

Theorem 5.6. Suppose n = 2m+ 1 for some m ≥ 1. Then

(5.1) Kn
∼= Mm+1 ×Mm+1

∼= J(Qm+1 +Qm+1).

Therefore the rank-generating function of Kn is given by

(5.2) F (Kn, q) =
(
(1 + q)m−1(1 + q2)m−2 · · · (1 + qm−1)

)2
,

where F (K3, q) = 1.
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Proof. Corollary 5.5 implies that for odd n, we have as posets,

Un = U ℓ
n + U r

n.

Then (5.1) follows from Lemma 5.2. Applying Theorem 2.12, we obtain
(5.2). �

Remark 5.7. Theorem 5.6 can be proved more directly without dis-
cussing the poset Un of join-irreducibles. One can argue that for odd
n, the set KL,1

n is empty and thus Kn
∼= KL,2

n × KR,2
n = KL

n × KR,2
n .

Then (5.1) follows from Proposition 4.5 and Lemma 4.14.

Substituting q = 1 in (5.2) gives us the cardinality of Kn, which is
the value of g(n).

Corollary 5.8. Suppose n = 2m+ 1 for some m ≥ 1. Then

g(n) = #Kn = 2m(m−1).

We focus on the case where n is even for the rest of this section.

Lemma 5.9. For m ≥ 2 we have U r,1
2m

∼= Qm.

Proof. First, it’s clear that

(5.3) U r,1
2m

∼= {T 6≤ Tm | T is a join-irreducible of KR,1
2m }.

where Tm as defined in Definition 4.11 is the minimal element of KR,2
2m .

Recall that in Proposition 2.5 we define a poset Φn and a poset iso-
morphism ψ : Φn → Qn, and in the proof of Lemma 4.14 we define a
poset isomorphism φ : Mm+1 → KR,1

2m . Letting n = m + 1 and taking
the composition of ψ and φ, we obtain an isomorphism from Φm+1 to
the poset of join-irreducible of KR,1

2m . Further, it is easy to see that

φ(ψ((a, b, k)) = φ(Add(T 0
m; a, b, k))

= Add(φ(T 0
m); a, b, k)

= Add(T ′
m; a, b, k),

where T ′
m as defined in Definition 4.11 is the minimal element of KR,1

2m .
Comparing the definitions of T ′

m and Tm, one sees that Tm = Add(T ′
m; 1, 1, 1).

Hence,
Add(T ′

m; a, b, k) 6≤ Tm ⇐⇒ k ≥ 2.

Therefore the right-hand side of (5.3) is isomorphic to

{(a, b, k) ∈ Φm+1 | k ≥ 2} ={(a, b, k) ∈ P
3 | 2 ≤ k ≤ b ≤ m− a}

∼={(a, b′, k′) ∈ P
3 | 1 ≤ k′ ≤ b′ ≤ m− 1 − a}

(k′ = k − 1, b′ = b− 1)

=Φm,
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which is isomorphic to Qm by Proposition 2.5. �

At this point, we have a good understanding of the structure of Un

for even n. We summarize this in the following proposition.

Proposition 5.10. Suppose n = 2m for m ≥ 2. The poset Un of the
join-irreducibles of Kn can be divided into two disjoint sets U ℓ

n and U r
n,

each of which are divided into two disjoint sets U ℓ
n = U ℓ,1

n ·∪U ℓ,2
n and

U r
n = U r,1

n ·∪U r,2
n such that they satsify the following conditions:

a) U ℓ
n
∼= U r

n
∼= Qm+1.

b) U ℓ,1
n

∼= U r,1
n

∼= Qm.
c) No element in U ℓ,1

n is comparable to any element in U r
n.

d) No element in U r,1
n is comparable to any element in U ℓ

n.
e) Each element of U r,2

n is smaller than any element in U ℓ,2
n .

Proof. (a) follows from Lemma 5.2(a,c), and (c)–(e) follow from Corol-
lary 5.5(b). Finally, (b) follows from Lemma 5.2(b), Lemma 4.10, and
Lemma 5.9. �

Theorem 5.11. Suppose n = 2m for some m ≥ 2. Then the rank-
generating function of Kn is given by

F (Kn, q) =
(
(1 + q)m−2(1 + q2)m−1 · · · (1 + qm−2)

)2

·
(

(1 + q)(1 + q2) · · · (1 + qm−1) ×
(

1 + q(
m

2 )
)

− q(
m

2 )
)

,

where F (K4, q) = (1 + q)2 − q = 1 + q + q2.

Proof. The part of F (Kn, q) = F (J(Un), q) which corresponds to order
ideals that do not contain any element of U ℓ,2

n is

F (J(U r
n + U ℓ,1

n ), q) = F (J(U r
n), q)F (J(U ℓ,1

n ), q)

= F (Mm+1, q)F (Mm, q),(5.4)

and the part corresponding to order ideals that contain at least one
element from U ℓ,2

n (and thus contain all the elements in U r,2
n ) is

(
F (J(U ℓ

n), q) − F (J(U ℓ,1
n ), q)

)
× q#Ur,2

n × F (J(U r,1
n ), q)

= (F (Mm+1, q) − F (Mm, q)) × q#Qm+1−#Qm × F (Mm, q).(5.5)

We obtain the formula for F (Kn, q) by adding (5.4) and (5.5), and then
substituting from formulas (2.9) and (2.8). �

Corollary 5.12. Suppose n = 2m for some m ≥ 1. Then

g(n) = #Kn = 2(m−1)(m−2)(2m − 1).
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Proof. If m = 1, one checks directly that Kn contains one element.
Hence, g(2) = #K2 = 1 = 20(21 − 1).

For m ≥ 2 the conclusion follows from substituting q = 1 in the
formula for F (Kn, q) given in Theorem 5.11. �
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