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Abstract. Let JTλ be the Jacobi-Trudi matrix corresponding to the partition λ, so det JTλ

is the Schur function sλ in the variables x1, x2, . . . . Set x1 = · · · = xn = 1 and all other
xi = 0. Then the entries of JTλ become polynomials in n of the form

(

n+j−1

j

)

. We determine

the Smith normal form over the ring Q[n] of this specialization of JTλ . The proof carries
over to the specialization xi = qi−1 for 1 ≤ i ≤ n and xi = 0 for i > n, where we set qn = y

and work over the ring Q(q)[y].

1. Introduction

Let M be an r×s matrix over a commutative ring R (with identity), which for convenience
we assume has full rank r. In particular, we always have r ≤ s. If there exist invertible r× r
and s× s matrices P and Q such that the product PMQ is a diagonal matrix with diagonal
entries α1, α2, . . . , αr satisfying αi | αi+1 for all 1 ≤ i ≤ r− 1, then PMQ is called the Smith
normal form (SNF) of M . In general, the SNF does not exist. It does exist when R is a
principal ideal domain (PID) such as Q[n], the polynomial ring in the indeterminate n over
the rationals (which is the case considered in this paper). Over a PID the SNF is unique up
to multiplication of diagonal elements by units in R. Note that the units of the ring Q[n] are
the nonzero rational numbers. Since the determinants of P and Q are units in R, we obtain
when M is a nonsingular square matrix a canonical factorization detM = uα1α2 · · ·αm,
where u is a unit. Thus whenever detM has a lot of factors, it suggests that it might be
interesting to consider the SNF.

There has been a lot of recent work, such as [1][5], on the Smith normal form of spe-
cific matrices and random matrices, and on different situations in which SNF occurs. Here
we will determine the SNF of certain matrices that arise naturally in the theory of sym-
metric functions. We will follow notation and terminology from [4, Chap. 7]. Namely, let
λ = (λ1, λ2, . . . ) be a partition of some positive integer, and let hi denote the complete ho-
mogeneous symmetric function of degree i in the variables x1, x2, . . . . Set h0 = 1 and hm = 0
for m < 0. Let t be an integer for which ℓ(λ) ≤ t, where ℓ(λ) denotes the length (number of
parts) of λ. Thus we may regard λ = (λ1, . . . , λt), where the last t− ℓ(λ) entries are 0. The
Jacobi-Trudi matrix JTλ is defined by

JTλ = [hλi+j−i]
t
i,j=1 .

The Jacobi-Trudi identity [4, §7.16] asserts that det JTλ = sλ, the Schur function indexed
by λ.
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For a symmetric function f , let ϕnf denote the specialization f(1n), that is, set x1 = · · · =
xn = 1 and all other xi = 0 in f . It is easy to see [4, Prop. 7.8.3] that

(1.1) ϕnhi =

(

n+ i− 1

i

)

,

a polynomial in n of degree i. Identify λ with its (Young) diagram, so the squares of λ are
indexed by pairs (i, j), 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi. The content c(u) of the square u = (i, j)
is defined to be c(u) = j − i. A standard result [4, Cor. 7.21.4] in the theory of symmetric
functions states that

(1.2) ϕnsλ =
1

Hλ

∏

u∈λ

(n+ c(u)),

where Hλ is a positive integer whose value is irrelevant here (since it is a unit in Q[n]). Since
this polynomial factors a lot (in fact, into linear factors) over Q[n], we are motivated to
consider the SNF of the matrix

ϕnJTλ =

[(

n + λi + j − i− 1

λi + j − i

)]t

i,j=1

.

Let Dk denote the kth diagonal hook of λ, i.e., all squares (i, j) ∈ λ such that either i = k
and j ≥ k, or j = k and i ≥ k. Note that λ is a disjoint union of its diagonal hooks. If
r = rank(λ) := max{i : λi ≥ i}, then note also that Dk = ∅ for k > r. Our main result is
the following.

Theorem 1.1. Let the SNF of ϕnJTλ have main diagonal (α1, α2, . . . , αt), where t ≥ ℓ(λ).
Then we can take

αi =
∏

u∈Dt−i+1

(n+ c(u)).

It follows from equation (1.2) that an altenative statement of Theorem 1.1 is that the αi’s
are squarefree (as polynomials in n), since αt is the largest squarefree factor of ϕnsλ, αt−1 is
the largest squarefree factor of (ϕnsλ)/αt, etc.

Example 1.2. Let λ = (7, 5, 5, 2). Figure 1 shows the diagram of λ with the content of each
square. Let t = ℓ(λ) = 4. We see that

α4 = (n− 3)(n− 2) · · · (n+ 6)

α3 = (n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)

α2 = n(n + 1)(n+ 2)

α1 = 1.

The problem of computing the SNF of a suitably specialized Jacobi-Trudi matrix was
raised by Kuperberg [2]. His Theorem 14 has some overlap with our Theorem 1.1. Propp [3,
Problem 5] mentions a two-part question of Kuperberg. The first part is equivalent to our
Theorem 1.1 for rectangular shapes. (The second part asks for an interpretation in terms of
tilings, which we do not consider.)
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Figure 1. The contents of the partition (7, 5, 5, 2)

2. Proof of the main theorem

To prove Theorem 1.1 we use the following well-known description of SNF over a PID.

Lemma 2.1. For m ≤ n, let diag(α1, . . . , αm) be the SNF of an m × n matrix M over a
PID. Then α1α2 · · ·αk is the greatest common divisor (gcd) of the k × k minors of M .

Let λ be a partition of length at most t and with diagonal hooks D1, . . . , Dt. Given the
t × t matrix ϕnJTλ and 1 ≤ k ≤ t, let Mk be the square submatrix consisting of the last k
rows and first k columns of ϕnJTλ. We claim the following.

C1. If detMk = 0 then ϕnJTλ has a k × k minor equal to 1. Otherwise,

(2.1) detMk = ck

k
∏

i=1

∏

i∈Dt−i+1

(n + c(u)),

where ck is a nonzero rational number.
C2. If detMk 6= 0, then every k × k minor of ϕnJTλ is divisible (in the ring Q[n]) by

detMk.

Proof of C1. It is well known and follows immediately from the Jacobi-Trudi identity for
skew Schur functions that every minor of JTλ is either 0 or a skew Schur function sρ/σ for
some skew shape ρ/σ. Let N be a k × k submatrix of JTλ with determinant zero. This can
only happen if N is strictly upper triangular, since otherwise the determinant is a nonzero
sρ/σ. Each row of JTλ that intersects N consists of a string of 0’s, followed by a 1, and
possibly followed by other terms. The 1’s in these rows appear strictly from left-to-right
as we move down JTλ. Hence the k × k submatrix of JTλ with the same rows as N and
with each column containing 1 is upper unitriangular and hence has determinant 1. Since
ϕnsρ/σ 6= 0, the same reasoning applies to ϕnJTλ, so the first assertion of (C1) is proved.

If on the other hand detMk 6= 0, then Mk is just the Jacobi-Trudi matrix for the subshape
⋃k

i=1Dt−i+1 of λ, so (C1) follows from equation (1.2).

Proof of C2. Suppose that detMk 6= 0. Thus Mk is the Jacobi-Trudi matrix for the
partition µ =

⋃k
i=1Dt−i+1. We now claim that any k × k submatrix of JTλ is the Jacobi-

Trudi matrix of a skew shape ρ/σ such that (the diagram of) ρ/σ has the following property:

(P) There is a subdiagram ν (an ordinary partition) of ρ/σ containing µ, and all other
squares of ρ/σ are to the left of ν.

Proof of (P). A k × k submatrix of JTλ is indexed by a pair (i, j) of row indices i =
(i1, . . . , ik) and column indices j = (j1, . . . , jk), where i1 < · · · < ik and j1 < · · · < jk. The
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Figure 2. A partial Littlewood-Richardson filling

submatrix Mk corresponds to i = (t − k + 1, t − k + 2, . . . , t) and j = (1, 2, . . . , k). We
can get from Mk to any other k × k submatrix M by a sequence of operations consisting of
decreasing a row index ir by 1 (when ir−1 < ir − 1, where i0 = 0) or increasing a column
index js by 1 (when js+1 > js + 1, where jk+1 = t + 1). If M = JTρ/σ, then decreasing the
rth row index by 1 corresponds to adding a square to the right-hand end of the rth row of
ρ/σ. This will be a valid skew shape γ/δ since ir−1 < ir − 1. Clearly if ρ/σ has property
(P) then so does γ/δ. Similarly, increasing the sth column index by 1 corresponds to adding
a square to the left-hand end of the sth row of ρ/σ. This will be a valid skew shape α/β
since js+1 > js + 1. Clearly if ρ/σ has property (P) then so does α/β. We have shown that
if JTρ/σ is any k × k submatrix of JTλ, then we can get from µ to ρ/σ by a sequence of
steps, where each step consists of adjoining a square at the beginning or the end of a row,
always maintaining the shape of a skew partition. Clearly µ itself satisfies (P) and each step
preserves (P), so the proof follows.

Suppose now that 〈sρ/σ, sτ 〉 6= 0. We claim that µ ⊆ τ . This will complete the proof, since
then detMk = H−1

µ

∏

u∈µ(n+ c(u)), and the contents of µ form a submultiset of the contents
of τ .

The statement that 〈sρ/σ, sτ 〉 6= 0 is equivalent to cρστ 6= 0, where cρστ is a Littlewood-
Richardson coefficient [4, eqn. (7.64)]. By the Littlewood-Richardson rule as formulated e.g.
in [4, Thm. A1.3.3], cρστ is the number of semistandard Young tableaux (SSYT) of shape ρ/σ
and content τ whose reverse reading word is a lattice permutation. By Property (P) such
an SSYT must have the last µi entries in row i equal to i. Hence τi ≥ µi for all i, as desired.
This completes the proof of (C2).

As an illustration of the proof of (C2), suppose that λ = (7, 6, 6, 5, 3) and we take k = 3.
Then µ = (4, 3, 1). The 3× 3 minor with rows 3,4,5 and columns 1,3,5 (say) is given by





h4 h6 h8

h2 h4 h6

0 h1 h3



 ,

which is the Jacobi-Trudi matrix for the skew shape (6, 5, 3)/(2, 1). Any Littlewood-Richardson
filling of this shape has to have the entries indicated in Figure 2, so the type τ of this filling
satisfies τ ⊇ (4, 3, 1) = µ.

Proof of Theorem 1.1. If the kth diagonal hook is empty, then (C1) shows that JTλ

contains a k×k minor equal to 1. Hence the gcd of the k×k minors is also 1, and therefore
the gcd of the j × j minors for each j < k is 1. Thus by Lemma 2.1, we have αk = 1 as
desired.
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If the kth diagonal hook is nonempty, then (C2) shows that every k× k minor is divisible
by detMk. Hence the gcd of the k× k minors is equal to detMk, and the proof follows from
equation (2.1) and Lemma 2.1. �

3. A q-analogue

There is a standard q-analogue ϕn(q)sλ of ϕnsλ [4, Thm. 7.21.2], namely,

ϕn(q)sλ = sλ(1, q, q
2, . . . , qn−1)

=
qb(λ)

Hλ(q)

∏

u∈λ

(1− qn+c(u)),

where Hλ(q) is a polynomial in q (the q-analogue of Hλ) and b(λ) is a nonnegative integer.
What is the SNF of ϕn(q)JTλ? The problem arises of choosing the ring over which we
compute the SNF. The most natural choice might seem to be to fix n and then work over
the ring Q[q] (or even Z[q], assuming that the SNF exists). This question, however, is not
really a q-analogue of what was done above, since we considered n to be variable while here
it is a constant. In fact, it seems quite difficult to compute the SNF this way. Its form seems
to depend on n is in a very delicate way. Instead we can set y = qn. For instance,

ϕn(q)h3 =
(1− qn+2)(1− qn+1)(1− qn)

(1− q3)(1− q2)(1− q)

=
(1− q2y)(1− qy)(1− y)

(1− q3)(1− q2)(1− q)
.

Since the entries of ϕn(q)JTλ become polynomials in y with coefficients in the field F = Q(q),
we can ask for the SNF over the PID F [y]. The proof of Theorem 1.1 carries over, mutatis
mudandis, to this q-version.

Theorem 3.1. Let Mλ denote the matrix obtained from ϕn(q)JTλ by substituting qn = y.
Let the SNF of Mλ over the ring Q(q)[y] have main diagonal (β1, β2, . . . , βt), where t ≥ ℓ(λ).
Then we can take

βi =
∏

u∈Dt−i+1

(1− qc(u)y).

Perhaps this result still seems to be an unsatisfactory q-analogue (or in this case, a y-
analogue) since we cannot substitute y = 1 to reduce to ϕnJTλ. Instead, however, make the
substitution

(3.1) y →
1

(1− q)y + 1
.

For any k ∈ Z write (k) = (1 − qk)/(1 − q). For instance, (−3) = −q−1 − q−2 − q−3 and
(0) = 0. Under the substitution (3.1) we have for any k ∈ Z,

1− qky →
(1− q)(y + (k))

(1− q)y + 1
.

For any symmetric function f let ϕ∗f denote the substitution qn → 1/((1 − q)y + 1) after
writing f(1, q, . . . , qn−1) as a polynomial in q and qn. Let A be a square submatix of JTλ.
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Since detA is a homogeneous symmetric function, say of degree d, the specialization ϕ∗ detM

will equal
(

1−q
(1−q)y+1

)d

times the result of substituting

(3.2) 1− qky → y + (k)

in M and then taking the determinant. It follows that the proof of Theorem 1.1 also carries
over for the substitution (3.2). We obtain the following variant of Theorem 3.1, which is
clearly a satisfactory q-analogue of Theorem 1.1.

Theorem 3.2. For k ≥ 1 let

f(k) =
y(y + (1))(y + (2)) · · · (y + (k − 1))

(1)(2) · · · (k)
.

Set f(0) = 1 and f(k) = 0 for k < 0. Define

JT(q)λ = [f(λi − i+ j)]ti,j=1 ,

where ℓ(λ) ≤ t. Let the SNF of JT(q)λ over the ring Q(q)[y] have main diagonal (γ1, γ2, . . . , γt).
Then we can take

γi =
∏

u∈Dt−i+1

(y + c(u)).
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