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Abstract

A parking function is a sequence (a

1

; : : : ; a

n

) of positive integers such that

if b

1

� b

2

� � � � � b

n

is the increasing rearrangement of a

1

; : : : ; a

n

, then b

i

� i.

A noncrossing partition of the set [n] = f1; 2; : : : ; ng is a partition � of the set

[n] with the property that if a < b < c < d and some block B of � contains

both a and c, while some block B

0

of � contains both b and d, then B =

B

0

. We establish some connections between parking functions and noncrossing

partitions. A generating function for the 
ag f -vector of the lattice NC

n+1

of

noncrossing partitions of [n + 1] is shown to coincide (up to the involution !

on symmetric function) with Haiman's parking function symmetric function.

We construct an edge labeling of NC

n+1

whose chain labels are the set of all

parking functions of length n. This leads to a local action of the symmetric

group S

n

on NC

n+1

.

MR primary subject number: 06A07

MR secondary subject numbers: 05A15, 05E05, 05E10, 05E25

1. Introduction. A parking function is a sequence (a

1

; : : : ; a

n

) of positive

integers such that if b

1

� b

2

� � � � � b

n

is the increasing rearrangement of

a

1

; : : : ; a

n

, then b

i

� i.

1

Parking functions were introduced by Konheim and

Weiss [14] in connection with a hashing problem (though the term \hashing"

was not used). See this reference for the reason (formulated in a way which

1

Minor variations of this de�nition appear in the literature, but they are equivalent to the de�-

nition given here. For instance, in [31] parking functions are obtained from the de�nition given here

by subtracting one from each coordinate.

1



the electronic journal of combinatorics 3 (1996), #R20 2

now would be considered politically incorrect) for the terminology \parking

function." Parking functions were subsequently related to labelled trees and

to hyperplane arrangements. For further information on these connections see

[31] and the references given there. In this paper we will develop a connection

between parking functions and another topic, viz., noncrossing partitions.

A noncrossing partition of the set [n] = f1; 2; : : : ; ng is a partition � of

the set [n] (as de�ned e.g. in [29, p. 33]) with the property that if a < b <

c < d and some block B of � contains both a and c, while some block B

0

of

� contains both b and d, then B = B

0

. The study of noncrossing partitions

goes back at least to H. W. Becker [1], where they are called \planar rhyme

schemes." The systematic study of noncrossing partitions began with Kreweras

[15] and Poupard [22]. For some further work on noncrossing partitions, see

[5][21][25][28] and the references given there.

A fundamental property of the set of noncrossing partitions of [n] is that it

can be given a natural partial ordering. Namely, we de�ne � � � if every block

of � is contained in a block of �. In other words, � is a re�nement of �. Thus

the poset NC

n

of all noncrossing partitions of [n] is an induced subposet of the

lattice �

n

of all partitions of [n] [29, Example 3.10.4]. In fact, NC

n

is a lattice

with a number of remarkable properties. We will develop additional properties

of the lattice NC

n

which connect it directly with parking functions.

2. The parking function symmetric function. Let P be a �nite

graded poset of rank n with

^

0 and

^

1 and with rank function �. (See [29,

Ch. 3] for poset terminology and notation used here.) Let S be a subset of

[n � 1] = f1; 2; : : : ; n � 1g, and de�ne �

P

(S) to be the number of chains

^

0 =

t

0

< t

1

< � � � < t

s

=

^

1 of P such that S = f�(t

1

); �(t

2

); : : : ; �(t

s�1

)g. The

function �

P

is called the 
ag f -vector of P . For S � [n� 1] further de�ne

�

P

(S) =

X

T�S

(�1)

jS�T j

�

P

(T ):

The function �

P

is called the 
ag h-vector of P . Knowing �

P

is the same as

knowing �

P

since

�

P

(S) =

X

T�S

�

P

(T ):

For further information on 
ag f -vectors and h-vectors (using a di�erent ter-

minology), see [29, Ch. 3.12].

There is a kind of generating function for the 
ag h-vector which is often

useful in understanding the combinatorics of P . Regarding n as �xed, let

S � [n � 1] and de�ne a formal power series Q

S

= Q

S

(x) = Q

S

(x

1

; x

2

; : : :) in

the (commuting) indeterminates x

1

; x

2

; : : : by

Q

S

=

X

i

1

�i

2

�����i

n

i

j

<i

j+1

if j2S

x

i

1

x

i

2

� � � x

i

n

:

Q

S

is known as Gessel's quasisymmetric function [10] (see also [16, x5.4][18][24,

Ch. 9.4]). The functions Q

S

, where S ranges over all subsets of [n � 1], are

linearly independent over any �eld. For our ranked poset P we then de�ne

F

P

=

X

S�[n�1]

�

P

(S)Q

S

:
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This de�nition (in a di�erent but equivalent form) was �rst suggested by R.

Ehrenborg [6, Def. 4.1] and is further investigated in [30]. One of the results

of [30] (Thm. 1.4) is the following proposition (which is equivalent to a simple

generalization of [29, Exercise 3.65]).

2.1 Proposition. Let P be as above. If every interval [u; v] of P is rank-

symmetric (i.e., [u; v] has as many elements of rank i as of corank i), then F

P

is a symmetric function of x

1

; x

2

; : : :.

We now consider the case P = NC

n+1

. (We take NC

n+1

rather than NC

n

because NC

n+1

has rank n.) It is well-known that every interval in NC

n+1

is

self-dual and hence rank-symmetric. (This follows from the fact that NC

n+1

is itself self-dual [15, x3][27, Thm. 1.1] and that every interval of NC

n+1

is a

product of NC

i

's [21, x1.3].) Hence F

NC

n+1

is a symmetric function, and we

can ask whether it is already known. In fact, F

NC

n+1

has previously appeared

in connection with parking functions, as stated below in Theorem 2.3. First we

provide some background information related to parking functions.

Let P

n

denote the set of all parking functions of length n. The symmetric

group S

n

acts on P

n

by permuting coordinates. Let PF

n

= PF

n

(x) denote the

Frobenius characteristic of the character of this action [17, Ch. 1.7]. Thus if

PF

n

=

X

�`n

�

�;n

s

�

is the expansion of PF

n

in terms of Schur functions, then �

�;n

is the multiplicity

of the irreducible character of S

n

indexed by � in the action of S

n

on P

n

. The

symmetric function PF

n

was �rst considered in the context of parking functions

by Haiman [13, xx2.6 and 4.1]. Following Haiman, we will give a formula for

PF

n

from which its expansion in terms of various symmetric function bases

is immediate. The key observation (due to Pollak [8, p. 13] and repeated in

[13, p. 28]) is the following (which we state in a slightly di�erent form than

Pollak). Let Z

n+1

denote the set f1; 2; : : : ; n+1g, with addition modulo n+1.

Then every coset of the subgroup H of Z

n

n+1

generated by (1; 1; : : : ; 1) contains

exactly one parking function. From this it follows easily that

PF

n

=

1

n+ 1

[t

n

]H(t)

n+1

; (1)

where [t

n

]G(t) denotes the coe�cient of t

n

in the power series G(t), and where

H(t) = 1 + h

1

t+ h

2

t

2

+ � � � =

1

(1� x

1

t)(1� x

2

t) � � �

;

the generating function for the complete symmetric functions h

i

. (Throughout

this paper we adhere to symmetric function terminology and notation as in

Macdonald [17].)

The following proposition summarizes some of the properties of PF

n

which

follow easily from equation (1).

2.2 Proposition. (a) We have the following expansions.

PF

n

=

X

�`n

(n+ 1)

`(�)�1

z

�1

�

p

�

(2)
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=

X

�`n

1

n+ 1

s

�

(1

n+1

)s

�

(3)

=

X

�`n

1

n+ 1

"

Y

i

�

�

i

+ n

n

�

#

m

�

(4)

=

X

�`n

n(n� 1) � � � (n� `(�) + 2)

m

1

(�)! � � �m

n

(�)!

h

�

: (5)

!PF

n

=

X

�`n

1

n+ 1

"

Y

i

�

n+ 1

�

i

�

#

m

�

: (6)

Here s

�

(1

n+1

) denotes s

�

with n+1 variables set equal to 1 and the others to 0,

and is evaluated explicitly e.g. in [17, Example 4, p. 45]. Moreover, `(�) is the

number of parts of �; z

�

is as in [17, p. 24]; m

i

(�) denotes the number of parts

of � equal to i; and ! is the standard involution [17, pp. 21{22] on symmetric

functions.

(b) We also have that

X

n�0

PF

n

t

n+1

= (tE(�t))

h�1i

; (7)

where E(t) =

P

n�0

e

n

t

n

, e

n

denotes the nth elementary symmetric function,

and

h�1i

denotes compositional inverse.

Proof. (a) Let C(x; y) =

Q

i;j

(1 � x

i

y

j

)

�1

, the well-known \Cauchy prod-

uct." Then H(t)

n+1

is obtained by setting n + 1 of the y

i

's equal to t and

the others equal to 0. From this all the expansions in (a) follow from (1) and

well-known expansions for C(x; y) and !

x

C(x; y) (where !

x

denotes ! acting

on the x variables only). To give just one example (needed in the �rst proof of

Theorem 2.3), we have

!

x

C(x; y) =

X

�

m

�

(x)e

�

(y):

Hence

!PF

n

=

X

�`n

1

n+ 1

e

�

(1

n+1

)m

�

:

Equation (6) now follows from the simple fact that e

k

(1

n+1

) =

�

n+1

k

�

. We

should point out that (2) appears (in a dual form) in [11, (9)], (3) appears in

[13, (28)], and (5) appears (again in dual form) in [13, (82)][17, Example 24(a),

p. 35]. A q-analogue of PF

n

and of much of our Proposition 2.2 appears in [9].

(b) This is an immediate consequence of (1), the fact that

1

H(t)

= E(�t); (8)

and the Lagrange inversion formula, as in [13, x4.1]. See also [17, Examples

2.24{2.25, pp. 35{36]. 2

Let P be a Cohen-Macaulay poset with

^

0 and

^

1 such that every interval is

rank-symmetric. Thus F

P

is a symmetric function. In [30, Conj. 2.3] it was
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conjectured that F

P

is Schur positive, i.e., a nonnegative linear combination of

Schur functions. Equation (3) con�rms this conjecture in the case P = NC

n+1

.

However, it turns out that the conjecture is in fact false. A counterexample

is provided by the following poset P . The elements of P consist of all integer

vectors (a

1

; a

2

; b

1

; b

2

; b

3

; b

4

) such that 0 � a

1

� 5, 0 � a

2

� 1, 0 � b

1

� 3,

0 � b

2

; b

3

; b

4

� 1, and a

1

+ a

2

= b

1

+ b

2

+ b

3

+ b

4

, ordered componentwise. It

can be shown that P is lexicographically shellable and hence Cohen-Macaulay,

and it is easy to see that P is locally rank-symmetric (even locally self-dual).

Moreover,

F

P

= s

6

+7s

51

+6s

42

+2s

33

+18s

411

+10s

321

�s

222

+20s

3111

+5s

2211

+8s

21111

:

The symmetric functions PF

n

also have an unexpected connection with the

multiplication of conjugacy classes in the symmetric group (the work of Farahat-

Higman [7]). For further details see [11][17, Ch. I, Example 7.25, pp. 132{134].

This connection was exploited by Goulden and Jackson [11] to compute some

connection coe�cients for the symmetric group.

The expansion (5) of PF

n

in terms of the h

�

's has a simple interpretation in

terms of parking functions. Suppose that a = (a

1

; : : : ; a

n

) 2 P

n

. Let r

1

; : : : ; r

k

be the positive multiplicities of the elements of the multiset fa

1

; : : : ; a

n

g (so

r

1

+ � � � + r

k

= n). Then the action of S

n

on the orbit S

n

a has characteristic

h

r

1

� � � h

r

k

. For instance, a set of orbit representatives in the case n = 3 is

(1; 1; 1); (2; 1; 1); (3; 1; 1); (2; 2; 1), and (3; 2; 1). Hence PF

3

= h

3

+h

2

h

1

+h

2

h

1

+

h

2

h

1

+ h

3

1

= h

3

+ 3h

21

+ h

111

. In general it follows that the coe�cient q

�

of h

�

in PF

n

is equal to the number of orbits of parking functions of length n such

that the terms of their elements have multiplicities �

1

; �

2

; : : : (in some order).

Equation (5) then gives an explicit formula for this number. The total number

of parking functions whose terms have multiplicities �

1

; �

2

; : : : is q

�

times the

size of the orbit, i.e., q

�

�

n

�

1

;�

2

;:::

�

.

We are now ready to discuss the connection between PF

n

and noncrossing

partitions. The basic result is the following.

2.3 Theorem. For any n � 0 we have

F

NC

n+1

= !PF

n

:

Proof. Let � = (�

1

; : : : ; �

`

) be a partition of n with �

`

> 0. It is immediate

from the de�nition of F

P

in Section 1 (see [30, Prop. 1.1]) that if F

P

is symmetric

and F

P

=

P

�

c

�

m

�

, then

c

�

= �

P

(�

1

; �

1

+ �

2

; : : : ; �

1

+ �

2

+ � � �+ �

`�1

): (9)

The proof now follows by comparing equation (6) with the evaluation of �

NC

n+1

(S)

due to Edelman [4, Thm. 3.2]. 2

It follows from the above discussion that PF

n

encodes in a simple way the


ag f -vector and 
ag h-vector of NC

n+1

, viz., (1) the coe�cient of Q

S

in

the expansion of PF

n

in terms of Gessel's quasisymmetric function is equal to

�

NC

n+1

(S), and (2) if the elements of S � [n � 1] are j

1

< � � � < j

r

and if � is

the partition whose parts are the numbers j

1

; j

2

� j

1

; j

3

� j

2

; : : : ; n � j

r

, then

the coe�cient of m

�

in the expansion of PF

n

in terms of monomial symmetric
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functions is equal to �

NC

n+1

(S). There is a further statistic on NC

n+1

closely

related to PF

n

, namely, the number of noncrossing partitions of [n+ 1] of type

�, i.e., with block sizes �

1

; �

2

; : : :.

2.4 Proposition. Let � be a partition of n. The coe�cient of h

�

in the

expansion of PF

n

in terms of complete symmetric functions is equal to the

number u

�

of noncrossing partitions of type �.

First proof. Compare equation (5) with the explicit value of the number

of noncrossing partitions of type � found by Kreweras [15, Thm. 4]. 2

Second proof. Our second proof is based on the following noncrossing

analogue of the exponential formula due to Speicher [28, p. 616]. (For a more

general result, see [21].) Given a function f : N ! R (where R is a commutative

ring with identity) with f(0) = 1, de�ne a function g : N ! R by g(0) = 1 and

g(n) =

X

�=fB

1

;:::;B

k

g2NC

n

f(#B

1

) � � � f(#B

k

): (10)

Let F (t) =

P

n�0

f(n)t

n

. Then

X

n�0

g(n)t

n+1

=

�

t

F (t)

�

h�1i

: (11)

In equation (10) take f(n) = h

n

, the complete symmetric function. Then g(n)

becomes

P

�`n

u

�

h

�

. But Proposition 2.2(b), together with equations (11) and

(8), shows that g(n) = PF

n

, and the proof follows. 2

Note the curious fact that Theorem 2.3 refers to NC

n+1

, while Proposi-

tion 2.4 refers to NC

n

. Proposition 2.4, together with the de�nition of PF

n

,

show that the number of noncrossing partitions of type � ` n is equal to the

number of S

n

-orbits of parking functions of length n and part multiplicities

�. It is easy to give a bijective proof of this fact (shown to me by R. Simion),

which we omit.

3. An edge labeling of the noncrossing partition lattice. If P is a

locally �nite poset, then an edge of P is a pair (u; v) 2 P �P such that v covers

u (i.e., u < v and no element t satis�es u < t < v). An edge labeling of P is

a map � : E(P ) ! Z, where E(P ) is the set of edges of P . Edge labelings of

posets have many applications; in particular, if P has what is known as an EL-

labeling, then P is lexicographically shellable and hence Cohen-Macaulay [2][3].

An EL-labeling of NC

n+1

was de�ned by Bj�orner [2, Example 2.9] and further

exploited by Edelman and Simion [5]. Here we de�ne a new labeling, which

up to an unimportant reindexing is EL and is intimately related to parking

functions.

Let (�; �) be an edge of NC

n+1

. Thus � is obtained from � by merging

together two blocks B and B

0

. Suppose that minB < minB

0

, where minS

denotes the minimum element of a �nite set S of integers. De�ne

�(�; �) = maxfi 2 B : i < B

0

g; (12)

where i < B

0

denotes that i is less than every element of B

0

. For instance,

if B = f2; 4; 5; 15; 17g and B

0

= f7; 10; 12; 13g, then �(�; �) = 5. Note that

�(�; �) always exists since minB < B

0

.
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The labeling � of the edges of NC

n+1

extends in a natural (and well-known)

way to a labeling of the maximal chains. Namely, if m :

^

0 = �

0

< �

1

< � � � <

�

n

=

^

1 is a maximal chain of NC

n+1

, then set

�(m) = (�(�

0

; �

1

);�(�

1

; �

2

); : : : ;�(�

n�1

; �

n

)):

3.1 Theorem. The labels �(m) of the maximal chains of NC

n+1

consist of

the parking functions of length n, each occuring once.

Proof. If �(�

j

; �

j+1

) = i, then the block of �

j+1

containing i also contains

an element k > i. Hence the number of j for which �(�

j

; �

j+1

) = i cannot

exceed n+ 1� i, from which it follows that �(m) is a parking function.

Suppose that m and m

0

are maximal chains of NC

n+1

for which �(m) =

�(m

0

). We will prove by induction on n that m = m

0

. The assertion is clear

for n = 0. Assume true for n � 1. Let the elements of m be

^

0 = �

0

< �

1

<

� � � < �

n

=

^

1. Suppose that �(m) = (a

1

; : : : ; a

n

). Let r = maxfa

i

: 1 � i � ng,

and let s = maxfi : a

i

= rg. We claim that one of the blocks of �

s�1

is just

the singleton set fr + 1g. If r and r + 1 are in the same block of �

s�1

, then

we can't have �(�

s�1

; �

s

) = r, contradicting a

s

= r. Hence r and r + 1 are in

di�erent blocks of �

s�1

. If the block B of �

s�1

containing r+1 contained some

element t < r, then by the noncrossing property and the fact that a

s

= r we

have that B is merged with the block B

1

of �

s�1

containing r to get �

s

. But

minB � t < r 2 B

1

, contradicting a

s

= r. Hence every element of B is greater

than r. If B contained some element t > r + 1, then (since r + 1 = minB) we

would have a

k

= r + 1 for some k < r, contradicting maximality of r. This

proves the claim.

We next claim that �

s

is obtained from �

s�1

by merging the block B

1

containing r with the block fr+1g. Otherwise (since a

s

= r) �

s

is obtained by

merging B

1

with some block B

2

all of whose elements are greater than r + 1.

For some t > s we must obtain �

t

from �

t�1

by merging the block B

3

containing

r + 1 with the block B

4

containing r. Now B

3

can't contain an element less

than r + 1 by the noncrossing property of �

s�1

(since B

4

contains both r and

an element greater than r + 1). It follows that �(�

t�1

; �

t

) = r, contradicting

the maximality of s and proving the claim.

It is now clear by induction that the chain m can be uniquely recovered

from the parking function �(m) = (a

1

; : : : ; a

n

). Namely, let a

0

be the sequence

obtained from �(m) by removing a

s

. Then a

0

is a parking function of length

n � 1. By induction there is a unique maximal chain m

�

:

^

0 = �

�

0

< �

�

1

<

� � � < �

�

n�1

=

^

1 of NC

n

such that �(m

�

) = a

0

. By the discussion above we can

then obtain m uniquely from m

�

by (1) replacing each element i > r of the

ambient set [n] with i + 1, (2) adjoining a singleton block fr + 1g to each �

�

i

for i � s� 1, (3) inserting between �

�

s�1

and �

�

s

a new element obtained from

�

�

s�1

by merging the block containing r with the singleton block fr + 1g, and

(4) for i > s adjoining the element r+1 to the block of �

�

i

containing r. Hence

we have shown that if �(m) = �(m

0

), then m = m

0

. But it is known [15, Cor.

5.2][4, Cor. 3.3] that NC

n+1

has (n+ 1)

n�1

maximal chains, which is just the

number of parking functions of length n [14, Lemma 1 and x6][8]. Thus every

parking function of length n occurs exactly once among the sequences �(m),

and the proof is complete. 2
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The above proof of the injectivity of the map � from maximal chains to

parking functions is reminiscent of the proof [20, p. 5] that the Pr�ufer code of

a labelled tree determines the tree. Our proof \cheated" by using the fact that

the number of maximal chains is the number of parking functions. We only

gave a direct proof of the injectivity of �. However, our proof actually su�ces

to show also surjectivity since the argument of the above paragraph is valid for

any parking function, the key point being that removing an occurrence of the

largest element of a parking function preserves the property of being a parking

function.

If we de�ne a new labeling �

�

of NC

n+1

by

�

�

(�; �) = j�j � �(�; �);

where j�j is the number of blocks of �, then it is easy to check (using the fact

that every interval of NC

n+1

is a product of NC

i

's) that every interval [�; � ]

has a unique maximal chain m : � = �

0

< �

1

< � � � < �

j

= � such that

�

�

(�

0

; �

1

) � �

�

(�

1

; �

2

) � � � � � �

�

(�

k�1

; �

k

):

In other words, �

�

is an R-labeling in the sense of [29, Def. 3.13.1]. Moreover,

this maximal chain m has the lexicographically least label �

�

(m) of any maximal

chain of the interval [�; � ]. Thus �

�

is in fact an EL-labeling, as de�ned in [2,

Def. 2.2] (though there it is called just an \L-labeling."). For the signi�cance

of the EL-labeling property, see the �rst paragraph of this section. Here we will

just be concerned with the weaker R-labeling property.

De�ne the descent set D(a) of a parking function a = (a

1

; : : : ; a

n

) by

D(a) = fi : a

i

> a

i+1

g:

From the fact that �

�

is an R-labeling and [29, Thm. 3.13.2], we obtain the

following proposition.

3.2 Proposition. (a) Let S � [n� 1]. The number of parking functions a

of length n satisfying D(a) = S is equal to �

NC

n+1

([n� 1]� S).

(b) Let S � [n�1]. The number of parking functions a of length n satisfying

D(a) � S is equal to �

NC

n+1

([n � 1] � S). This number is given explicitly by

[4, Thm. 3.2] or by equations (4) and (9).

The labeling � is closely related to a bijection between the maximal chains

of NC

n+1

and labelled trees, di�erent from the earlier bijection of Edelman

[4, Cor. 3.3]. Let m :

^

0 = �

0

< �

1

< � � � < �

n

=

^

1 be a maximal chain of

NC

n+1

. De�ne a graph �

m

on the vertex set [n+1] as follows. There will be an

edge e

i

for each 1 � i � n. Suppose that �

i

is obtained from �

i�1

by merging

blocks B and B

0

with minB < minB

0

. Then the vertices of e

i

are de�ned to

be �(�

i�1

; �

i

) and minB

0

. It is easy to see that �

m

is a tree. Root �

m

at the

vertex 1 and erase the vertex labels. If v

i

is the vertex of e

i

farthest from the

root, then move the label i of the edge e

i

from e

i

to the vertex v

i

. Label the

root with 0 and unroot the tree. We obtain a labelled tree T

m

on n+1 vertices,

and one can easily check that the map m 7! T

m

is a bijection between maximal

chains of NC

n+1

and labelled trees on n+ 1 vertices.

4. A local action of the symmetric group. Suppose that P is a graded

poset of rank n with

^

0 and

^

1 such that F

P

is a symmetric function. If F

P
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is Schur positive, then it is the Frobenius characteristic of a representation

of S

n

whose dimension is the number of maximal chains of P . Thus we can

ask whether there is some \nice" representation of S

n

on the vector space V

P

(over a �eld of characteristic zero) whose basis is the set of maximal chains

of P . This question was discussed in [30, x5]. A \nice" representation should

somehow re
ect the poset structure. With this motivation, an action of S

n

on

V

P

is de�ned to be local [30, x5] if for every adjacent transposition �

i

= (i; i+1)

and every maximal chain

m :

^

0 = t

0

< t

1

< � � � < t

n

=

^

1; (13)

we have that �

i

(m) is a linear combination of maximal chains of the form

t

0

< t

1

< � � � < t

i�1

< t

0

i

< t

i+1

< � � � < t

n

, i.e., of maximal chains which agree

with m except possibly at t

i

.

Now let P = NC

n+1

. Every interval [�; � ] of NC

n+1

of length two contains

either two or three elements in its middle level. In the latter case, there are three

blocks B

1

; B

2

; B

3

of � such that � is obtained from � by merging B

1

; B

2

; B

3

into a single block. Moreover, any two of these blocks can be merged to form a

noncrossing partition. Let �

ij

be the noncrossing partition obtained by merging

B

i

and B

j

, so that the middle elements of the interval [�; � ] are �

12

; �

13

; �

23

.

Exactly one of these partitions �

ij

will have the property that �(�; �

ij

) =

�(�

ij

; �), where � is de�ned by (12). Let us call this partition �

ij

the special

element of the interval [�; � ]. Now de�ne linear transformations �

0

i

: V

NC

n+1

!

V

NC

n+1

, 1 � i � n � 1 as follows. Let m be a maximal chain of NC

n+1

with

elements

^

0 = �

0

< �

1

< � � � < �

n

=

^

1.

Case 1. The interval [�

i�1

; �

i+1

] contains exactly two middle elements �

i

and �

0

i

. Then set �

0

i

(m) = m

0

, where m

0

is given by �

0

< �

1

< � � � < �

i�1

<

�

0

i

< �

i+1

< � � � < �

n

.

Case 2. The interval [�

i�1

; �

i+1

] contains exactly three middle elements, of

which �

i

is special. Then set �

0

i

(m) = m.

Case 3. The interval [�

i�1

; �

i+1

] contains exactly three middle elements

�

i

; �

0

i

, and �

00

i

, of which �

00

i

is special. Then set �

0

i

(m) = m

0

, where m

0

is given

by �

0

< �

1

< � � � < �

i�1

< �

0

i

< �

i+1

< � � � < �

n

.

4.1 Proposition. The action of each �

0

i

on V

NC

n+1

de�ned above yields

a local action of S

n

on V

NC

n+1

. Equivalently, there is a homomorphism ' :

S

n

! GL(V

NC

n+1

) satisfying '(�

i

) = �

0

i

. The Frobenius characteristic of this

action is given by PF

n

.

Proof. Each maximal chain m corresponds to a parking function �(m) via

Theorem 3.1. Thus the natural action of S

n

on P

n

de�ned in Section 2 may

be \transferred" to an action  of S

n

on the set of maximal chains of NC

n+1

.

It is easy to check that  and ' agree on the �

i

's, and the proof follows. 2

The action ' does not quite have the property mentioned at the beginning of

this section that its characteristic is F

NC

n+1

. By Theorem 2.3, the characteristic

is actually !F

NC

n+1

. However, we only have to multiply ' by the sign character

(equivalently, de�ne a new action '

0

by '

0

(�

i

) = �'(�

i

)) to get the desired

property.

It is rather surprising that the simple \local" de�nition we have given of

' de�nes an action of S

n

. Perhaps it would be interesting to look for some
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more examples. (We need to exclude trivial examples such as w(m) = m for all

w 2 S

n

and all maximal chains m.) A few other examples appear in the next

section and in [30, x5]. A further example (the posets of shu�es of C. Greene

[12]) is discussed in [26] together with the rudiments of a systematic theory of

such actions, but much work needs to be done for a satisfactory understanding

of local S

n

-actions.

5. Generalizations. In this section we will brie
y discuss two general-

izations of what appears above. All proofs are entirely analogous and will be

omitted. Fix an integer k 2 P. A k-divisible noncrossing partition is a non-

crossing partition � for which every block size is divisible by k. Thus � is a

noncrossing partition of a set [kn] for some n � 0. Let NC

(k)

n

be the poset of all

k-divisible noncrossing partitions of [kn]. (NC

(k)

n

is actually a join-semilattice

of NC

kn

. It has

^

1 but not a

^

0 when k > 1.) The combinatorial properties of

the poset NC

(k)

n

were �rst considered by Edelman [4, x4]. If a pair (�; �) is an

edge of NC

(k)

n

(i.e., � covers � in NC

(k)

n

), then (�; �) is an edge of NC

n

. Hence

the edge-labeling � of NC

n

restricts to an edge-labeling of NC

(k)

n

.

De�ne a k-parking function of length n to be a sequence (a

1

; : : : ; a

n

) of

positive integers such that if b

1

� b

2

� � � � � b

n

is the increasing rearrangement

of a

1

; : : : ; a

n

, then b

i

� ki. Let P

(k)

n

denote the set of all k-parking functions of

length n. The argument of Pollak mentioned in Section 2 that #P

n

= (n+1)

n�1

easily extends to P

(k)

n

. Namely, let Z

k(n+1)

denote the set f1; 2; : : : ; k(n +

1)g with addition modulo k(n + 1). Then every coset of the subgroup H of

Z

n

k(n+1)

generated by (1; 1; : : : ; 1) contains exactly k k-parking functions. Hence

#P

(k)

n

= k(k(n+ 1))

n�1

. The symmetric group S

n

acts on P

(k)

n

by permuting

coordinates, and we can consider its Frobenius characteristic PF

(k)

n

just as we

did for P

n

. The above generalization of Pollak's argument shows that

PF

(k)

n

=

1

n+ 1

[t

n

]H(t)

k(n+1)

:

Proposition 2.2 generalizes straightforwardly to the case of PF

(k)

n

. In particular,

Proposition 2.2(b) takes the form

X

n�0

PF

(k)

n

t

n+1

=

�

tE(�t)

k

�

h�1i

:

Theorem 3.1 generalizes as follows.

5.1 Theorem. The labels �(m) of the maximal chains of NC

(k)

n+1

consist of

the k-parking functions of length n, each occuring once.

Proposition 3.2 requires some modi�cation when extended to k-parking

functions because the posets NC

(k)

n+1

do not have a

^

0 when k > 1. For these

posets we regard the minimal elements as having rank 0, and we de�ne �

NC

(k)

n+1

(S)

and �

NC

(k)

n+1

(S) for S � f0; 1; : : : ; n � 1g. Thus for instance �

NC

(k)

n+1

(;) =

�

NC

(k)

n+1

(;) = 1, and �

NC

(k)

n+1

(0) is the number of minimal elements of NC

(k)

n+1

.

Write [0; n� 1] = f0; 1; : : : ; n� 1g.
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5.2 Proposition. (a) Let S � [n� 1]. The number of k-parking functions

a of length n satisfying D(a) = S is equal to

�

NC

(k)

n+1

([n� 1]� S) + �

NC

(k)

n+1

([0; n� 1]� S):

(b) Let S � [n � 1]. The number of k-parking functions a of length n

satisfying D(a) � S is equal to �

NC

(k)

n+1

([0; n � 1] � S). This number is given

explicitly by [4, Thm. 4.2].

Note, however, that there does not seem to be a nice generalization of

Theorem 2.3. The quasisymmetric function F

NC

(k)

n+1

is not a symmetric function

when k > 1, and we know of no simple connection between the 
ag f -vector

of NC

(k)

n+1

and the symmetric function PF

(k)

n

, nor between the number of k-

divisible noncrossing partitions of a given type and PF

(k)

n

.

Proposition 4.1 extends straightforwardly to NC

(k)

n+1

. The natural action of

S

n

on P

(k)

n

is transferred via Theorem 5.1 to an action on V

NC

(k)

n+1

. This action

is a permutation representation on the maximal chains, and is readily seen to

be local. Its characteristic is PF

(k)

n

.

There is a di�erent generalization of noncrossing partitions due to Reiner

[23] (a special case had earlier appeared in a di�erent guise in [19], as explained

in [23]) that we have not looked at very closely. Reiner regards ordinary non-

crossing partitions as corresponding to the root system A

n

and constructs ana-

logues for the root systems B

n

and D

n

. Actually, for every subset S � [n] he

constructs a lattice NC

BD

n

(S) interpolating between the B

n

analogue (the case

S = ;) and the D

n

analogue (the case S = [n]). The lattices NC

BD

n

(S) do not

always have self-dual intervals [23, Remark on p. 13], but at least every interval

is rank-symmetric. Thus by Proposition 2.1, this implies that NC

BD

n

(S) is a

symmetric function. This symmetric function only depends on the cardinality

s of S, so we write F

BD

n

(s) for F

NC

BD

n

(S)

. We also write F

B

n

for F

BD

n

(0).

Let [n]

n

denote the set of all sequences (a

1

; : : : ; a

n

) of positive integers with

a

i

� n. We call such a sequence a B

n

-parking function, for the following reason.

Let PF

B

n

be the Frobenius characteristic of the action of S

n

on [n]

n

obtained

by permuting coordinates. It follows from [23, Prop. 7] that

F

B

n

= !PF

B

n

:

Thus in analogy with Theorem 2.3 it makes sense to think of the elements of

[n]

n

as B

n

-parking functions. Reiner's result [23, Prop. 7] makes it easy to give

an analogue of Proposition 2.2. Let us simply mention the formula

PF

B

n

= [t

n

]H(t)

n

;

from which the analogues of all parts of Proposition 2.2 follow easily. In par-

ticular, the analogue of Proposition 2.2(b) takes the form

X

n�1

PF

B

n

t

n

n

= log

(tE(�t))

h�1i

t

: (14)
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Comparing Proposition 2.2 with equation (14) yields the curious result that

exp

X

n�1

PF

B

n

t

n

n

=

X

n�0

PF

n

t

n

:

What is missing from the analogy between A

n

and B

n

noncrossing partitions

is the analogue of Theorem 3.1, i.e., a labeling of NC

B

n+1

such that the labels of

the maximal chains are the B

n

-parking functions. We have not looked at this

question and recommend it as an interesting open problem.

For the general case of NC

BD

n

(S), it follows from [23, Thm. 11] that

F

BD

n

(s) = F

B

n

� s � PF

0

n

;

where PF

0

n

is the Frobenius characteristic of the action of S

n

on all sequences

(a

1

; : : : ; a

n

) of positive integers whose increasing rearrangement b

1

� � � � � b

n

satis�es b

1

= 1 and b

i

� i � 1 for 2 � i � n. We have not considered further

properties of the symmetric function F

BD

n

(s).
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