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tionThe fo
al point of this paper is the n-dimensional polytope�n(x) := fy 2 Rn : yi � 0 and y1 + � � �+ yi � x1 + � � �+ xi for all 1 � i � ngfor arbitrary x := (x1; : : : ; xn) with xi > 0 for all i. The n-dimensional volumeVn(x) := Vol(�n(x))is a homogeneous polynomial of degree n in the variables x1; : : : ; xn, whi
h we 
all thevolume polynomial. This polynomial arises naturally in several di�erent settings: inthe 
al
ulation of probabilities derived from empiri
al distribution fun
tions or the or-der statisti
s of n independent random variables (see x2), and in the study of parkingfun
tions and plane partitions (see x5). See also Mar
kert and Chassaing [15℄ regardingsimilar 
onne
tions between the theories of parking fun
tions, empiri
al pro
esses, androoted trees.Trivially, V1(x) = x1. The formulaV2(x) = x1x2 + 12x21has two natural interpretations by a subdivision of �2(x) into 2 pie
es of areas x1x2and 12x21, as shown in Figure 1 for horizontal 
oordinate x1 = 1 and verti
al 
oordinatex2 = 2.The 5 terms of V3(x) = x1x2x3 + 12x21x2 + 12x1x22 + 12x21x3 + 16x31 (1)
an be interpreted in two ways as the volumes determined by two di�erent subdivisionsof �3(x) into 5 
hambers, as in the perspe
tive diagrams of Figure 2 where xi = i fori = 1; 2; 3, the �rst 
oordinate points out of the page, the se
ond to the right and thethird up, and the viewpoint is (5;�2; 4).A 
entral result of this paper is the general formula for the volume polynomial whi
hwe present in the following theorem. Se
tion 2 o�ers a simple probabilisti
 proof of this2



Figure 1: �2(x) and its two subdivisions

Figure 2: �3(x) and its two subdivisions
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theorem. We show in Se
tion 4 how this argument 
an also be interpreted geometi
allyby a subdivision of �n(x) into a 
olle
tion of n-dimensional 
hambers, with the volumeof ea
h 
hamber 
orresponding to a term of the volume polynomial. This generalizes thesubdivisions of �2 and �3 shown in the right hand panels of Figures 1 and 2. Te
hni
ally,by a subdivision of �n(x) we mean a polytopal subdivision in the sense of Ziegler [39, p.129℄, and we 
all the n-dimensional polytopes involved the 
hambers of the subdivision.The subdivision of �n(x) des
ribed in Se
tion 4 is a spe
ialization of a result presentedin Se
tion 3 in the general 
ontext of \se
tions of order 
ones". Se
tion 6 shows howthe subdivisions shown in the left hand panels of Figures 1 and 2 
an be generalized toarbitrary n. The 
hambers of this subdivision of �n(x) are indexed in a natural way byrooted binary plane trees with n+1 leaf verti
es, and the 
on�guration of these 
hambersprovides a representation of another interesting polytope with many appli
ations, knownas the asso
iahedron.Theorem 1 For ea
h n = 1; 2; : : :,Vn(x) = Xk2Kn nYi=1 xkiiki! = 1n! Xk2Kn� nk1; : : : ; kn�xk11 � � �xknn ; (2)where Kn := fk 2 Nn : jXi=1 ki � j for all 1 � j � n� 1 and nXi=1 ki = ng (3)with N := f0; 1; 2; : : :g.In parti
ular, the number of nonzero 
oeÆ
ients in Vn is the number of elements ofKn, whi
h is well known to be the nth Catalan number Cn (see e.g. [34, Exer. 6.19(w)℄for a simple variant), the �rst few of whi
h are 1; 2; 5; 14; 42; 132; : : ::#Kn = Cn := 1n+ 1�2nn �: (4)Formula (2) should be 
ompared with the following alternate formula, whi
h as in-di
ated in Se
tion 2 
an be read from a formula of Ste
k [36, 37℄ for the 
umulativedistribution fun
tion of the random ve
tor of order statisti
s of n independent randomvariables with uniform distribution on an interval:Vn(x) = det241(j � i+ 1 � 0)(j � i+ 1)!  iXh=1 xh!j�i+1351�i;j�n (5)4



where det [aij℄1�i;j�n denotes the determinant of the n � n matrix with entries aij, and1(� � �) equals 1 if � � � and 0 else. See [23℄ for an elementary probabilisti
 proof of (5). Thisformula allows the expansion of Vn(x) into monomial terms to be generated for arbitaryn by just few lines of Mathemati
a 
ode.Another formula of Ste
k [36, 37℄, with an elementary proof in [23℄, gives the number#(b; 
) of j 2 Zn with j1 < j2 < � � � < jn and bi < ji < 
i for all 1 � i � n for arbitraryb; 
 2 Zn with b1 � b2 � � � � < bn and 
1 � 
2 � � � � < 
n:#(b; 
) = det �1(j � i+ 1 � 0; 
i � bj > 1)�
i � bj + j � i� 1j � i + 1 ��1�i;j�n : (6)We explain after the proof of Theorem 12 how these formulae (5) and (6) 
an be dedu
edfrom a result of Ma
Mahon on the enumeration of plane partitions.In Se
tion 2 we dedu
e the following spe
ial evaluations of the volume polynomialfrom some well known results in the theory of empiri
al distributions: for a; b � 0n!Vn(a; b; : : : ; b) = a(a + nb)n�1 (7)while for n � 3 and a; b; 
 � 0n!Vn(a; n�2pla
esz }| {b; : : : ; b ; 
) = a(a+ nb)n�1 + na(
� b)(a + (n� 1)b)n�2 (8)and for n � 3, 1 � m � n� 2 and a; b; 
 � 0n!Vn(a; n�m�1 pla
esz }| {b; : : : ; b; 
; m�1 pla
esz }| {0; : : : ; 0 ) = a mXj=0 �nj�(
� (m+ 1� j)b)j(a+ (n� j)b)n�j�1: (9)As we indi
ate in Se
tion 5, these formulae read from the theory of empiri
al distributionshave interesting 
ombinatorial interpretations in terms of parking fun
tions and planepartitions.2 Uniform Order Statisti
s and Empiri
al Distribu-tion Fun
tionsLet (Un;i; 1 � i � n) be the order statisti
s of n independent uniform (0; 1) variablesU1; U2; : : : ; Un. That is to say, Un;1 � Un;2 � � � � � Un;n are the ranked values of the5



Ui; 1 � i � n. Be
ause the random ve
tors (Un;j; 1 � j � n) and (1�Un;n+1�j; 1 � j � n)have the same uniform distribution with 
onstant density n! on the simplexfu 2 Rn : 0 � u1 � � � � � un � 1g (10)for arbitrary ve
tors r and s in this simplex there are the formulaeP (Un;j � sj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := sj � sj�1 (11)where s0 := 0 andP (Un;j � rj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := rn+2�j � rn+1�j (12)where rn+1 := 1. Thus the probabilityPn(r; s) := P (rj � Un;j � sj for all 1 � j � n) (13)
an be evaluated in terms of Vn if either r = 0 or s = 1. See [30, x9.3℄ for a reviewof results involving these probabilities, in
luding various re
ursion formulae whi
h areuseful for their 
omputation.Proof of Theorem 1. By homogeneity of Vn, it suÆ
es to prove the formula whensn � 1. Fix x and 
onsider the probability (11). For 1 � i � n + 1 let Ni denotethe number of Un;j that fall in the interval (si�1; si℄, with the 
onventions s0 = 0 andsn+1 = 1: Ni := nXi=1 1(si�1 < Un;j � si) = nXi=1 1(si�1 < Uj � si): (14)The se
ond expression for Ni shows that the random ve
tor (Ni; 1 � i � n + 1) has themultinomial distribution with parameters n and (x1; : : : ; xn; xn+1) for xi := si � si�1,meaning that for ea
h ve
tor of n + 1 nonnegative integers (ki; 1 � i � n + 1) withPn+1i=1 ki = n, we have P (Ni = ki; 1 � i � n+ 1) = n! n+1Yi=1 xikiki! : (15)By de�nition of the Un;j and (14), the events (Un;j � sj) and (�ji=1Ni � j) are identi
al.Thus P (Un;j � sj for all 1 � j � n) = P (�ji=1Ni � j for all 1 � j � n)= Xk2Kn P (Ni = ki; 1 � i � n;Nn+1 = 0) = n! Xk2Kn nYi=1 xikiki!6



by appli
ation of (15) with kn+1 = 0. Compare the result of this 
al
ulation with (11)to obtain (2). 2It is easily seen that the de
omposition of the event (11) 
onsidered in the aboveargument 
orresponds to a polytopal subdivision of �n(x) whi
h for n = 2 and n = 3is that shown in the right hand panels of Figures 1 and 2. See Se
tion 4 for furtherdis
ussion of this subdivision of �n(x).The following 
orollary of Theorem 1 spells out two more probabilisti
 interpretationsof Vn.Corollary 2 Let (Ni; 1 � i � n + 1) be a random ve
tor with multinomial distributionwith parameters n and (p1; : : : ; pn+1), as if Ni is the number of times i appears in asequen
e of n independent trials with probability pi of getting i on ea
h trial for 1 � i �n+ 1, where Pn+1i=1 pi = 1. ThenP (�ij=1Nj � i for all 1 � i � n) = n!Vn(p1; p2; : : : ; pn): (16)and P (�ij=1Nj < i for all 1 � i � n) = n!Vn(pn+1; pn; : : : ; p2): (17)Proof. The �rst formula is read from the previous proof of (2). The se
ond is just the�rst applied to ( bN1; : : : ; bNn+1) := (Nn+1; : : : ; N1) instead of (N1; : : : ; Nn+1), be
ausejXi=1 bNi = jXi=1 Nn+2�i = n� n+1�jXi=1 Niso that jXi=1 bNi � j i� n+1�jXi=1 Ni < n + 1� j;and hen
e the event that Pji=1 bNi � j for all 1 � j � n is identi
al to the event thatPmi=1Ni < m for all 1 � m � n. 2Let Fn(t) := 1n nXi=1 1(Ui � t) = 1n nXi=1 1(Un;i � t)
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be the usual empiri
al distribution fun
tion asso
iated with the uniform random sampleU1; : : : ; Un. So Fn rises by a step of 1=n at ea
h of the sample points. It is well known[30℄ that for any for 
ontinuous in
reasing fun
tions f and g, the probabilityP (f(t) � Fn(t) � g(t) for all t)equals Pn(r; s) as in (13) where r and s are easily expressed in terms of values of theinverse fun
tions of f and g at i=n for 0 � i � n. As an example, Daniels [3℄ dis
overedthe remarkable fa
t that for 0 � p � 1 the probability that the empiri
al distributionfun
tion does not 
ross the line joining (0; 0) to (p; 1) equals 1 � p, no matter whatn = 1; 2; : : :: P (Fn(t) � t=p for all 0 � t � 1) = 1� p (18)whi
h 
an be rewritten asP (Un;i � ip=n for all 1 � i � n) = 1� p: (19)As observed in [24, Chapter X℄, Daniels' formula (18) 
an be understood without 
al-
ulation by an argument whi
h gives the stronger result of T�aka
s [38, Theorem 13.1℄that this formula holds with Fn repla
ed by F for any random right-
ontinuous non-de
reasing step fun
tion F with 
y
li
ally ex
hangeable in
rements and F (0) = 0 andF (1) = 1. Essentially, this is a 
ontinuous parameter form of the ballot theorem. Manyother proofs of Daniels' formula are known: see [30, x9.1℄ and papers 
ited there. Theform (19) of Daniels' formula is equivalent via (12) ton!Vn(1� p; p=n; : : : ; p=n) = 1� p (20)for 0 � p � 1. By homogeneity of Vn, this amounts to the identity (7) of polynomials intwo variables a and b.Pyke [25, Lemma 1℄ found the following formula: for all real b and x with0 � b � 1 and 0 � nb� x � 1; (21)P �max1�i�n(bi� Un;i) � x� = (1 + x� nb) bx=a
Xj=0 �nj�(jb� x)j(1 + x� jb)n�j�1: (22)As indi
ated in [30, p. 354, Exer
ise 2℄, this formula gives an expression for the prob-ability that the empiri
al 
umulative distribution fun
tion based on a sample of n in-dependent uniform (0; 1) variables 
rosses an arbitrary straight line through the unit8



square. See [30, x9.1℄ for proof of an equivalent of (22), various related results, andfurther referen
es. The identity in distribution(Un;i; 1 � i � n) d= (1� Un;n+1�i; 1 � i � n)shows that the probability in (22) equalsP (Un;i � 1 + x� nb + b(i� 1) for all 1 � i � n) (23)whi
h a

ording to (11) is equal in turn ton!Vn(x1; : : : ; xn) for xi = 8>><>>: 1 + x� nb if i = 1b if 2 � i < n� bx=a
 + 1(n� i+ 2)b� x if i = n� bx=a
 + 10 if i > n� bx=a
 + 1: (24)For a := 1 + x � nb and b subje
t to (21), that is 0 < a � 1 and 0 � b � 1, the abovedis
ussion gives us equality of (22) and (24) with x = a+nb� 1. In parti
ular, provided0 � x < a there is only a term for j = 0 in (22), so the equality of (22) and (24) redu
esto (7). Similarly, for a � x < 2a there are only terms for j = 0 and j = 1 in (22). Forn � 3 this allows us to dedu
e (8) from (22) �rst for a; b; 
 > 0 with a+ (n� 2)b+ 
 = 1and 
 < b, then
e as an identity of polynomials in a; b; 
. Similarly, for n � 3 and1 � m � n� 2 when bx=a
 = m we obtain the identity (9) of polynomials in a; b; 
.A

ording to Ste
k [36, 37℄, for r; s in the simplex (10) there is the following deter-minantal formula for Pn(r; s) as in (13):Pn(r; s) = n! det �1(j � i+ 1 � 0)(j � i+ 1)! (si � rj)j�i+1+ �1�i;j�n : (25)The spe
ial 
ase of (5) when sn � 1 
an be read from (11), (13) and the spe
ial 
ase of(25) with r = 0 and s the ve
tor of partial sums of x. The general 
ase of (5) followsby homogeneity of Vn from the spe
ial 
ase, with xi repla
ed by xi=� for arbitrary � �Pni=1 xi. See also Niederhausen [22℄, where probabilities of the form (25) are expressedin terms of She�er polynomials.3 Se
tions of order 
onesWe will obtain some results for a 
lass of polytopes we 
all \se
tions of order 
ones"and then show in the next se
tion how these results apply dire
tly to �n(x). Let P be9
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Figure 3: A partially ordered seta partial ordering of the set f�1; : : : ; �pg, su
h that if �i < �j then i < j. A linearextension of P is an order-preserving bije
tion � : P ! [p℄ = f1; 2; : : : ; pg, so if z < z0in P then �(z) < �(z0). We will identify � with the permutation (written as a word)a1 � � �ap of [p℄ de�ned by �(�ai) = i. In parti
ular, the identity permutation 12 � � �pis a linear extension of P . Let L(P ) denote the set of linear extensions of P . Given� = a1 � � �ap 2 L(P ) de�ne A� to be the set of all order-preserving maps f : P ! Rsu
h that f(�a1) � f(�a2) � � � � � f(�ap)f(�aj) < f(�aj+1); if aj > aj+1:A basi
 property of order-preserving maps f : P ! R is given by the followingtheorem, whi
h is equivalent to [32, Lemma 4.5.3(a)℄.Theorem 3 The set of all order-preserving maps f : P ! R is a disjoint union of thesets A� as � ranges over L(P ).For instan
e, if P is given by Figure 3 then the order-preserving maps f : P ! R arepartitioned by the following seven 
onditionsf(�1) � f(�2) � f(�3) � f(�4) � f(�5) � f(�6)f(�1) � f(�2) � f(�3) � f(�5) < f(�4) � f(�6)f(�1) � f(�3) < f(�2) � f(�4) � f(�5) � f(�6)f(�1) � f(�3) < f(�2) � f(�5) < f(�4) � f(�6)f(�1) � f(�3) � f(�5) < f(�2) � f(�4) � f(�6)f(�2) < f(�1) � f(�3) � f(�4) � f(�5) � f(�6)f(�2) < f(�1) � f(�3) � f(�5) < f(�4) � f(�6) (26)
De�ne the order 
one C(P ) of the poset P to be the set of all order-preserving mapsf : P ! R�0 . Thus C(P ) is a pointed polyhedral 
one in the spa
e RP . Assume nowthat P has a unique maximal element 1̂, and let t1 < � � � < tn = 1̂ be a 
hain C in P .10



(With a little more work we 
ould relax the assumption that C is a 
hain. The 
onditionthat tn = 1̂ entails no real loss of generality sin
e we 
an just adjoin a 1̂ to P andin
lude it in C.) Let x1; : : : ; xn be nonnegative real numbers. Set ui = x1 + � � �+ xi andu = (u1; : : : ; un). Let Wu denote the subspa
e of RP de�ned by f(ti) = ui for 1 � i � n.De�ne the order 
one se
tion CC(P;u) to be the interse
tion C(P )\Wu, restri
ted to the
oordinates P � C. (The restri
tion to the 
oordinates P � C merely deletes 
onstant
oordinates and has no e�e
t on the geometri
 and 
ombinatorial stru
ture of C(P )\Wu.)Equivalently, CC(P;u) is the set of all order-preserving maps f : P �C ! R�0 su
h thatthe extension of f to P de�ned by f(ti) = ui remains order-preserving. Note thatCC(P;u) is bounded sin
e for all s 2 P �C and all f 2 CC(P;u) we have 0 � f(s) � un.Thus CC(P;u) is a 
onvex polytope 
ontained in RP�C . Moreover, dimCC(P;u) = jP�Cjprovided ea
h xi > 0 (or in 
ertain other situations, su
h as when no element of P � Cis greater than t1).There is an alternative way to view the polytope CC(P;u). Let P1; : : : ;Pn be 
onvexpolytopes (or just 
onvex bodies) in the same ambient spa
e Rm , and let x1; : : : ; xn 2 R�0 .De�ne the Minkowski sum (or more a

urately, Minkowski linear 
ombination)x1P1 + � � �+ xnPn = fx1X1 + � � �+ xnXn : Xi 2 Pig:ThenQ = x1P1+� � �+xnPn is a 
onvex polytope that was �rst investigated by Minkowski(at least for m � 3) and whose study belongs to the subje
t of integral geometry (e.g.,[29℄). In parti
ular, the m-dimensional volume of Q has the formVol(Q) = Xa1+���+an=mai2N � ma1; : : : ; an�V (Pa11 ; : : : ;Pann )xa11 � � �xann ;where V (Pa11 ; : : : ;Pann ) 2 R�0 . These numbers are known as the mixed volumes of thepolytopes P1; : : : ;Pn and have been extensively investigated.Now suppose that P1; : : : ;Pn are integer polytopes (i.e., their verti
es have integer
oordinates) in Rm , and let x1; : : : ; xn 2 N . Given any integer polytope P � Rm , writeN(P) = #(P \ Zm);the number of integer points in P. Then we 
all N(x1P1 + � � � + xnPn), regarded asa fun
tion of x1; : : : ; xn 2 N , the mixed latti
e point enumerator of P1; : : : ;Pn. It wasshown by M
Mullen [16℄ (see also [17℄[18℄ for two related survey arti
les) that N(x1P1+� � � + xnPn) is a polynomial in x1; : : : ; xn (with rational 
oeÆ
ients) of total degree atmost m. Moreover, the terms of degree m are given by Vol(x1P1 + � � �+ xnPn). Hen
ethe 
oeÆ
ients of the terms of degree m are nonnegative, but in general the 
oeÆ
ients11



of N(x1P1 + � � �+ xnPn) may be negative. In the spe
ial 
ase n = 1, the mixed latti
epoint enumerator N(xP) is 
alled the Ehrhart polynomial of the integer polytope P andis denoted i(P; x). An introdu
tion to Ehrhart polynomials appears in [32, pp. 235{241℄.De�ne the order polytope O(P ) of the �nite poset P to be the set of all order-preserving maps f : P ! [0; 1℄ = fx 2 R : 0 � x � 1g. Thus O(P ) is a 
onvex polytopein RP of dimension jP j. The basi
 properties of order polytopes are developed in [31℄.Theorem 4 Given P , C, and u as above, so ui = x1 + � � �+ xi, letPi = fs 2 P � C : s 6< ti�1g(with P1 = P �C). Regard the order polytope O(Pi) as lying in RP�C by setting 
oordi-nates indexed by elements of (P � C)� Pi equal to 0. ThenCC(P;u) = x1O(P1) + x2O(P2) + � � �+ xnO(Pn):Proof. We 
an regard O(Pi) as the set of order preserving maps f : P � C ! [0; 1℄su
h that f(s) = 0 if s < ti�1. From this it is 
lear that every element of x1O(P1) +x2O(P2) + � � � + xnO(Pn) is an order-preserving map g : P � C ! R�0 su
h that theextension of g to P de�ned by g(ti) = x1 + � � �+ xi remains order-preserving. Hen
eCC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn):For the 
onverse, we may assume (by deleting elements of P if ne
essary) that ea
h xi > 0.let f 2 CC(P;u). Let s 2 PC and de�ne g1(s) = f(s) and f1(s) = min(1; x�11 g1(s)). Setg2(s) = g1(s)� x1f1(s) = max(g1(s)� x1; 0):Now let f2(s) = min(1; x�12 g2(s)) and setg3(s) = g2(s)� x2f2(s) = max(g2(s)� x2; 0):Continuing in this way gives fun
tions f1; f2; : : : ; fn, for whi
h it 
an be 
he
ked thatfi 2 O(Pi) and f = x1f1 + � � �+ xnfn;so CC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn): 212



We now want to give a formula for the number of integer points in CC(P;u), whi
hby Theorem 4 is just the mixed latti
e point enumerator of the polytopes O(Pi). Let Cbe the 
hain t1 < � � � < tn = 1̂ as above. Given � = a1 � � �ap 2 L(P ), write hi(�) for theheight of ti in �, i.e., ti = ��1(ahi(�)). Thus 1 � h1(�) < � � � < hn(�) = p. Also writedi(�) = #fj : hi�1(�) � j < hi(�); aj > aj+1g;where we set h0(�) = 0 and a0 = 0. Thus di(�) is the number of des
ents of � appearingbetween hi�1(�) and hi(�). Re
all (e.g., [32, x1.2℄) that the number of ways to 
hoose jobje
ts with repetition from a set of k obje
ts is given by��kj�� = �k + j � 1j � = k(k + 1) � � � (k + j � 1)j! : (27)Regarding ��kj�� as a polynomial in k 2 Z, note that ��kj�� = 0 for �j + 1 � k � 0.Theorem 5 We haveN(CC(P;u)) = X�2L(P ) n�1Yi=1 �� xi � di(�) + 1hi(�)� hi�1(�)� 1�� : (28)Proof. Fix � = a1 � � �ap 2 L(P ). Write hi = hi(�) and di = di(�). Let f : P ! R bean order-preserving map su
h that (a) f 2 A�, (b) f(ti) = ui = x1+ � � �+xi, and (
) therestri
tion f jP�C of f to P �C satis�es f jP�C 2 CC(P;u). If we write 
i = f(�ai), thenfor �xed � it follows from Theorem 3 that the integer points f jP�C 2 CC(P;u), where fsatis�es (a) and (b), are given by0 � 
1 � 
2 � � � � � 
h1 = x1 � 
h1+1 � � � � � 
h2 = x1 + x2� � � � � 
p = x1 + � � �+ xn (29)
j < 
j+1 if aj > aj+1: (30)Let �; �;m 2 N and 0 � j1 < j2 < � � � < jq � m. Elementary 
ombinatorial reasoningshows that the number of integer ve
tors (r1; : : : ; rm) satisfying� = r0 � r1 � � � � � rm � rm+1 = � + �rji < rji + 1 for 1 � i � q13



is equal to ����q+1m ��. Hen
e the number of integer sequen
es satisfying (29) and (30) isgiven by ��x1 � d1 + 1h1 � 1 ����x2 � d2 + 1h2 � h1 � 1�� � � ��� xn � dn + 1hn � hn�1 � 1�� :Summing over all � 2 L(P ) yields (28). 2Example 6 Let P be given by Figure 3, and let t1 = �1, t2 = �3, and t3 = �6. The
onditions in equation (26) be
ome in the notation of the above proof as follows:0 � 
1 = x1 � 
2 � 
3 = x1 + x2 � 
4 � 
5 � 
6 = x1 + x2 + x30 � 
1 = x1 � 
2 � 
3 = x1 + x2 � 
4 < 
5 � 
6 = x1 + x2 + x30 � 
1 = x1 � 
2 = x1 + x2 < 
3 � 
4 � 
5 � 
6 = x1 + x2 + x30 � 
1 = x1 � 
2 = x1 + x2 < 
3 � 
4 < 
5 � 
6 = x1 + x2 + x30 � 
1 = x1 � 
2 = x1 + x2 � 
3 < 
4 � 
5 � 
6 = x1 + x2 + x30 � 
1 < 
2 = x1 � 
3 = x1 + x2 � 
4 � 
5 � 
6 = x1 + x2 + x30 � 
1 < 
2 = x1 � 
3 = x1 + x2 � 
4 < 
5 � 
6 = x1 + x2 + x3;yielding N(CC(P;u)) = ��x2 + 11 ����x3 + 12 ��+ ��x2 + 11 ����x32 �� + ��x33 ��+��x3 � 13 �� + ��x33 �� + ��x11 ����x3 + 12 ��+ ��x11 ����x32 �� :We mentioned earlier that the terms of highest degree (here of degree jP � Cj) ofN(x1P1 + � � � + xnPn) are given by Vol(x1P1 + � � � + xnPn). Hen
e we obtain fromTheorem 5 the following result.Corollary 7 The volume of CC(P;u) is given byVol(CC(P;u)) = X�2L(P ) nYi=1 xhi(�)�hi�1(�)i(hi(�)� hi�1(�))! : (31)Thus if m = jP � Cj then the mixed volume m! � V (O(P1)a1 ; : : : ;O(Pn)an) is equal tothe number of linear extensions � 2 L(P ) su
h that ti has height a1 + � � �+ ai in �, for1 � i � n. 14



The 
ase n = 2 of Corollary 7 (or equivalently the 
ase n = 1 where t1 
an be anyelement of P , not just the top element) appears in [31, (16)℄.The produ
t of two polytopes P 2 Rp and Q 2 Rq is de�ned to be their 
artesianprodu
t P �Q 2 Rp+q . If �L(P) denotes the poset of nonempty fa
es of P, then �L(P �Q) = �L(P)� �L(Q) (see Ziegler [39, pp. 9{10℄). If P is a d-simplex, then �L(P) is just aboolean algebra of rank d with the minimum element removed. Moreover, the produ
tof n one-dimensional simpli
es is 
ombinatorially equivalent (even aÆnely equivalent)to a d-
ube. If � = a1 � � �ap 2 LP , then de�ne �� to be the subset of CC(P;u) givenby equation (29). Thus when ea
h xi > 0 we have that �� is a produ
t of simpli
es ofdimensions h1 � 1, h2 � h1 � 1; : : : ; hp � h1 � 1, andVol(��) = nYi=1 xhi(�)�hi�1(�)i(hi(�)� hi�1(�))! :Moreover, the ��'s form the 
hambers of a polyhedral de
omposition 
C(P;u) of CC(P;u).We regard 
C(P;u) as the set of all fa
es of the ��'s (in
luding the ��'s themselves),partially ordered by in
lusion. Note that the formula (31) 
orresponds to an expli
itde
omposition of CC(P;u) into \ni
e" pie
es (produ
ts of simpli
es) whose volumes arethe terms in (31).Our next result 
on
erns the 
ombinatorial stru
ture of the de
omposition of CC(P;u)into the 
hambers ��. First we review some information from [31, x5℄ about the 
oneC(P ) of all order-preserving maps f : P ! R�0 . (The paper [31℄ a
tually deals with theorder 
omplex O(P ) rather than the 
one C(P ), but this does not a�e
t our arguments.)Re
all (e.g., [32, p. 100℄) that an order ideal I of P is a subset of P su
h that if t 2 Iand s < t, then s 2 I. The poset (a
tually a distributive latti
e) of all order ideals of P ,ordered by in
lusion, is denoted J(P ). Given a 
hain K : ; = I0 < I1 < � � � < Ik = P inJ(P ), de�ne CK(P ) to 
onsist of all f : P ! R�0 satisfying0 � f(I1) � f(I2 � I1) � � � � � f(Ik � Ik�1); (32)where f(S) denotes the 
ommon value of f at all the elements of the subset S of P .Clearly CK(P ) is a k-dimensional 
one in RP . It is not hard to see that the set 
(P ) =fCK(P ) : K is a 
hain in J(P ) 
ontaining ; and Pg is a triangulation of C(P ). The
hambers (maximal fa
es) of 
(P ) 
onsist of the 
ones0 � f(�a1) � � � � � f(�ap);where � = a1 � � �ap 2 L(P ). Moreover, CK(P ) is an interior fa
e of 
(P ) (i.e., does notlie on the boundary) if and only if ea
h subset Ii� Ii�1 of equation (32) is an anti
hain,15



i.e., no two distin
t elements of Ii� Ii�1 are 
omparable. Su
h 
hains of J(P ) are 
alledLoewy 
hains. Let 
Æ(P ) denote the set of interior fa
es of 
(P ) regarded as a partiallyordered set under in
lusion. Thus 
Æ(P ) is isomorphi
 to the set of Loewy 
hains ofJ(P ), ordered by in
lusion. Similarly, we let 
ÆC(P;u) denote the set of interior fa
es ofthe polyhedral de
omposition 
C(P;u).Theorem 8 Let Wu denote the subspa
e of RP given by f(ti) = ui, 1 � i � n. De�nea map � : 
Æ(P ) ! 
ÆC(P;u) by letting �(CK(P )) equal �K(P ) \Wu restri
ted to the
oordinates P � C. Then � is an isomorphism of posets.Proof. Let (32) de�ne an interior fa
e CK(P ) of C(P ), so ; = I0 < I1 < � � � < Ik = Pis a Loewy 
hain. Thus ea
h set Ij � Ij�1 
ontains at most one element of the 
hainC : t1 < � � � < tn. Let ti 2 Iji � Iji�1. (In parti
ular, jn = k sin
e tn = 1̂.) Then�(CK(P )) is de�ned by the equations0 � f(I1) � f(I2 � I1) � � � � � f(Ij1 � Ij1�1) = u1� f(Ij1+1 � Ij1) � � � � � f(Ij2 � Ij2�1) = u2 � � � � � f(Ik � Ik�1) = un:It follows immediately that � is a bije
tion, and that two Loewy 
hains K and K 0 satisfyK � K 0 if and only if �(CK(P )) � �(CK0(P )). Hen
e � is a poset isomorphism. 2The point of Theorem 8 is that it gives a simple 
ombinatorial des
ription (namely,the poset 
Æ(P ), whi
h is isomorphi
 to the set of Loewy 
hains of J(P ) under in
lusion)of the geometri
ally de�ned poset 
ÆC(P;u). Note that 
Æ(P ) depends only on P , noton the 
hain C.4 �n(x) as a se
tion of an order 
oneIn this se
tion we will apply the theory developed in the previous se
tion to �n(x). Letus say that two integer polytopes P � Rk and Q � Rm are integrally equivalent if thereis an aÆne transformation ' : Rk ! Rm whose restri
tion to P is a bije
tion ' : P ! Q,and su
h that if a� denotes aÆne span, then ' restri
ted to Zk \ a�(P) is a bije
tion' : Zk\a�(P)! Zm\a�(Q). It follows that P and Q have the same 
ombinatorial typeand the same \integral stru
ture," and hen
e the same volume, Ehrhart polynomial, et
.Now let i denote an i-element 
hain, and let Qn = 2 � n, the produ
t of a two-element 
hain with an n-element 
hain. We regard the elements of Qn as �1; : : : ; �2nwith �1 < � � � < �n, �n+1 < � � � < �2n, and �i < �n+i for 1 � i � n. Let ti = �n+i, andlet C be the 
hain t1 < � � � < tn. As in the previous se
tion let x1; : : : ; xn � 0, and set16



ui = x1 + � � � + xi. The polytope CC(Qn;u) � RQn�C �= Rn thus by de�nition is givenby the equations 0 � f1 � � � � � fnfi � ui; 1 � i � n:Let yi = fi � fi�1 (with f0 = 0). Then the above equations be
omeyi � 0; 1 � i � ny1 + � � �+ yi � x1 + � � �+ xn:These are just the equations for �n(x). The transformation yi = fi � fi�1 indu
esan integral equivalen
e between CC(Qn;u) and �n(u). Hen
e the results of the abovese
tion, when spe
ialized to P = Qn, are dire
tly appli
able to �n(x).Theorem 4 expresses CC(P;u) as a Minkowski linear 
ombination of order polytopesO(Pi). In the present situation, where P = 2 � n, the poset Pi is just the 
hain�i < �i+1 < � � � < �n. The order polytope O(Pi) is de�ned by the 
onditionsf1 = � � � = fi�1 = 0; 0 � fi � � � � � fn � 1:This is just a simplex of dimension n� i+1 with verti
es (0j; 1n�j), i�1 � j � n, where(0j; 1n�j) denotes a ve
tor of j 0's followed by n� j 1's. Swit
hing to the y 
oordinates(i.e., yi = fi � fi�1) yields the following result.Theorem 9 Let �i be the (n� i+ 1)-dimensional simplex in Rn de�ned byy1 = � � � = yi�1 = 0yi � 0; : : : ; yn � 0yi + � � �+ yn � 1;with verti
es (0j�1; 1; 0n�j) for i � j � n, and (0; 0; : : : ; 0). Then�n(x) = x1�1 + x2�2 + � � �+ xn�n:Consider the set L(Qn) of linear extensions of Qn. A linear extension � = a1 : : : a2n 2L(Qn) is uniquely determined by the positions of n+1; : : : ; 2n (sin
e 1; : : : ; nmust appearin in
reasing order). If aji = n+i for 1 � i � n, then 1 � j1 < � � � < jn = 2n and ji � 2i.The number of su
h sequen
es is just the Catalan number Cn = 1n+1�2nn � (see e.g. [34,Exer
ise 6.19(t)℄, whi
h is a minor variation). If we set ki = ji� ji�1 (with j0 = 0), thenthe sequen
es k = (k1; : : : ; kn) are just those of equation (3). Moreover, in the linear17
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Figure 4: The poset Q3 = 2� 3extension a1 � � �a2n there are no des
ents to the left of n + 1, and there is exa
tly onedes
ent between n + i and n + i + 1 provided that ki+1 � ki � 2. (If ki+1 � ki = 1 thenthere are no des
ents between n+ i and n+ i + 1.) By Theorem 5 we 
on
ludeN(�n(x)) = Xk2Kn��x1 + 1k1 �� nYi=2 ��xiki�� ; (33)where Kn is given by (3). Taking terms of highest degree yields Theorem 1. Thuswe have obtained an expli
it de
omposition of �n(x) into produ
ts of simpli
es whosevolumes are the terms in (2). (A 
ompletely di�erent su
h de
omposition will be given inSe
tion 6.) Moreover, Theorem 8 gives the 
ombinatorial stru
ture of the interior fa
esof this de
omposition.Note. Equation (33) was obtained independently by Ira Gessel (private 
ommuni-
ation) by a di�erent method.Let us illustrate the above dis
ussion with the 
ase n = 3. The poset Q3 is shownin Figure 4. The linear extensions of Q3 are given as follows, with the elements 4; 5; 6
orresponding to the 
hain C shown in boldfa
e:123456124356124536142356142536Hen
e the points (y1; y2; y3) 2 �3(x) are de
omposed into the sets0 � y1 � y2 � y3 � x10 � y1 � y2 � x1 < y3 � x1 + x20 � y1 � y2 � x1 � x1 + x2 < y3 � x1 + x2 + x30 � y1 � x1 < y2 � y3 � x1 + x20 � y1 � x1 < y2 � x1 + x2 < y3 � x1 + x2 + x3; (34)18
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Figure 5: The latti
e J(Q3) of order ideals of Q3yielding N(�3(x)) = ��x1 + 13 ��+ ��x1 + 12 ����x21 �� + ��x1 + 12 ����x31 ��+��x1 + 11 ����x22 ��+ ��x1 + 11 ����x21 ����x31 �� :Theorem 8 allows us to des
ribe the in
iden
e relations among the fa
es of the de
om-position of �3(x) whose 
hambers are the 
losures of the �ve sets in equation (34). Thelatti
e J(Q3) of order ideals of Q3 has �ve maximal 
hains. This latti
e is shown inFigure 5, with elements labeled a; b; : : : ; j. The elements a; b; i; j appear in every Loewy
hain of J(Q3) and 
an be ignored. The simpli
ial 
omplex of 
hains of J(P ) (witha; b; i; j removed) is shown in Figure 6(a). The Loewy 
hains 
orrespond to the interiorfa
es, of whi
h �ve have dimension 2, �ve have dimension 1, and one has dimension0. Figure 6 shows the \dual 
omplex" of the interior fa
es. This gives the in
iden
erelations among the �ve 
hambers of the de
omposition of �3(x) into �ve produ
ts ofsimpli
es obtained from 
ÆC(P;u) by the 
hange of 
oordinates yi = fi � fi�1 dis
ussedabove. For a pi
ture, see the se
ond subdivision of �3(x) in Figure 2.We mentioned earlier that in general the 
oeÆ
ients of the mixed latti
e point enu-merator N(x1P1 + � � � + xnPn) may be negative. The polytope �n(x) is an ex
eption,however, and in fa
t satis�es a slightly stronger property.Corollary 10 The polynomial N(�n(x1 � 1; x2; : : : ; xn)) has nonnegative 
oeÆ
ients.19
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cFigure 6: The order 
omplex of J(Q3) with a; b; i; j omitted, and the interior fa
e dual
omplexProof. Immediate from equation (33), sin
e the polynomial �� ti�� has nonnegative 
oef-�
ients. 2Note. One 
an also think of CC(Qn;u) as the \polytope of fra
tional shapes 
on-tained in the shape (un; un�1; : : : ; u1)." In general, let � = (�1; : : : ; �n) be a partition,i.e., �i 2 N and �1 � � � � � �n, whi
h we also 
all a shape. We say that a shape� = (�1; : : : ; �n) is 
ontained in � if �i � �i for all i. (This partial ordering on shapesde�nes Young's latti
e [32, Exer. 3.63℄. Additional properties of Young's latti
e may befound in various pla
es in [34℄.) If we relax the 
onditions that the �i's are integers butonly require them to be real (with �1 � � � � � �n � 0), then we 
an think of � as a\fra
tional shape." Thus CC(Qn;u) just 
onsists of the fra
tional shapes 
ontained inthe shape (un; un�1; : : : ; u1).5 Conne
tions with parking fun
tions and plane par-titions.There are two additional interpretations of the volume and latti
e point enumerator of�n(x) that we wish to dis
uss. The �rst 
on
erns the subje
t of parking fun
tions,originally de�ned by Konheim and Weiss [9℄. A parking fun
tion of length n may bede�ned as a sequen
e (a1; : : : ; an) of positive integers whose in
reasing rearrangementb1 � � � � � bn satis�es bi � i. For the reason for the terminology \parking fun
tion,"as well as additional results and referen
es, see [34, Exer
ise 5.49℄. A basi
 result ofKonheim and Weiss is that the number of parking fun
tions of length n is (n+ 1)n�1.Write park(n) for the set of all parking fun
tions of length n. For x = (x1; : : : ; xn) 2Nn de�ne an x-parking fun
tion to be a sequen
e (a1; : : : ; an) of positive integers whose20



in
reasing rearrangement b1 � � � � � bn satis�es bi � x1 + � � � + xi. Thus an ordinaryparking fun
tion 
orresponds to the 
ase x = (1; 1; : : : ; 1). Let Pn(x) denote the numberof x-parking fun
tions. Note that Pn(x) = 0 if x1 = 0.Theorem 11 Pn(x) = X(a1;:::;an)2park(n) xa1 � � �xan = n!Vn(x) (35)Proof. Given (a1; : : : ; an) 2 park(n), repla
e ea
h i by an integer in the set fx1 +� � �+ xi�1 + 1; : : : ; x1 + � � �+ xig. The number of ways to do this is given by the middleexpression in (35), and every x-parking fun
tion is obtained exa
tly on
e in this way.This yields the �rst equality. The se
ond equality follows from the expansion (2) ofVn(x), sin
e a parking fun
tion is obtained by 
hoosing k 2 Kn, forming a sequen
e withki i's, and permuting its elements in � nk1;:::;kn� ways. 2Take xi = 1 for all i in (35) and apply (7) for a = b = 1 to re
over the result of [9℄that the number of parking fun
tions of length n is (n+1)n�1. We note that formula (7)
an be given a simple 
ombinatorial proof generalizing the proof of Pollak [5, p. 13℄ forthe 
ase of ordinary parking fun
tions; see [33, p. 10℄ for the 
ase a = b. We note thatTheorem 11 also gives enumerative interpretations of formulae (8) and (9). Presumablythese formulae too 
ould be derived 
ombinatorially in the setting of parking fun
tions,but we will not attempt that here.An interesting spe
ial 
ase of Theorem 11 arises when we take xi = qi�1 for someq > 0. In this 
ase we haven!Vn(1; q; q2; : : : ; qn�1) = X(a1;:::;an)2park(n) qa1+���+an�n:It follows from a result of Kreweras [11℄ (see also [34, Exer. 5.49(
)℄) that alson!Vn(1; q; q2; : : : ; qn�1) = q(n2)In(1=q);where In(q) is the inversion enumerator of labeled trees.We 
an generalize equation (7) by giving a simple produ
t formula for the Ehrhartpolynomial i(�n(x); r) of �n(x) in the 
ase x = (a; b; b; : : : ; b) (see Theorem 13). Firstwe need to dis
uss another way to interpret N(�n(x)).Let � = (�1; : : : ; �`) be a partition, so �i 2 N and �1 � � � � � �` � 0. A plane partitionof shape � and largest part at most m is an array � = (�ij) of integers 1 � �ij � m,21



de�ned for 1 � i � ` and 1 � j � �i, whi
h is weakly de
reasing in rows and 
olumns.For instan
e, the plane partitions of shape (2; 1) and largest part at most 2 are given by11 21 22 21 221 1 1 2 2 ;where we only display the positive parts �ij > 0. Basi
 information on plane partitionsmay be found in [34, xx7.20{7.22℄. If x = (x1; : : : ; xn) 2 Nn then setu = (u1; : : : ; un) = (x1; x1 + x2; � � � ; x1 + � � �+ xn)and write ~u = (un; : : : ; u1), so that ~u is a partition.Theorem 12 Let x 2 Nn . Then N(�n(x)) is equal to the number of plane partitions ofshape ~u and largest part at most 2.Proof. If (y1; : : : ; yn) 2 �n(x) \ Zn, then de�ne the plane partition � of shape u tohave y1 + � � �+ yi 2's in row n+ 1� i and the remaining entries equal to 1. This sets upa bije
tion between the integer points in �n(x) and the plane partitions of shape ~u andlargest part at most 2. 2Note. Be
ause of the 
onne
tion given by Theorem 12 between integer points in�n(x) and plane partitions, a number of results 
on
erning �n(x) appear already (some-times impli
itly) in the plane partition literature. In parti
ular, 
onsider the determi-nantal formula (6) of Ste
k. Let j 0i = ji � i, b0i = bi � i + 1, and 
0i = 
i � i � 1. Weare then 
ounting sequen
es j 01 � j 02 � � � � � j 0n satisfying b0i � j 0i � 
0i. If b0i > b0i+1then we 
an repla
e b0i+1 by b0i without a�e
ting the sequen
es j 01 � � � � � j 0n being
ounted. Similarly if 
0i > 
0i+1 we 
an repla
e 
0i with 
0i+1. Moreover, 
learly the numberof sequen
es being 
ounted is not 
hanged by adding a �xed integer k to ea
h b0i and
0i. Hen
e it 
osts nothing to assume that 0 � b01 � � � � � b0n and 0 � 
01 � � � � � 
0n(with b0i � 
0i). Let � = (
0n; : : : ; 
01) and � = (b0n; : : : ; b01). Then � and � are partitions,and � � � in the sense of 
ontainment of diagrams (see [34, x7.2℄). Let Y denote theposet (a
tually a distributive latti
e) of all partitions of all nonnegative integers, orderedby diagram 
ontainment. The latti
e Y is just Young's latti
e mentioned above. Interms of Young's latti
e, we see that that the number #(b; 
) of equation (6) is just thenumber of elements (j 0n; : : : ; j 01) in the interval [�; �℄ of Y . Alternatively, #(b; 
) is thenumber of multi
hains � = �0 � �1 � �2 = � of length two in the interval [�; �℄ ofY . Kreweras [10, x2.3.7℄ gives a determinantal formula for the number of multi
hains ofany �xed length k in the interval [�; �℄. (See also [32, Exer. 3.63℄.) Su
h a multi
hain is22



easily seen to be equivalent to a plane partition of shape �=� with largest part at mostk. When spe
ialized to k = 2, Kreweras' formula be
omes pre
isely our equation (25).Moreover, the spe
ial 
ase � = ; of Kreweras' formula was already known to Ma
Mahon(put x = 1 in the implied formula for GF (p1p2 � � � pm;n) in [14, p. 243℄). By Theorem 12the number of elements of the interval [;; �℄ is just N(�n(x)), where � is the partition ~uof Theorem 12. Hen
e in some sense Ma
Mahon already knew a determinantal formulafor N(�n(x)) and thus also (by taking leading 
oeÆ
ients of N(�n(rx)) regarded as apolynomial in r) for the volume Vn(x).Theorem 13 Let a; b 2 N and x = (a; b; b; : : : ; b) 2 Nn . Then the Ehrhart polynomiali(�n(x)) is given byi(�n(x); r) = 1n! (ra+ 1)(r(a+ nb) + 2)(r(a+ nb) + 3) � � � (r(a+ nb) + n): (36)In parti
ular, the number N(�n(x)) of integer points in �n(x) satis�esN(�n(x)) = 1n! (a+ 1)(a+ nb + 2)(a+ nb + 3) � � � (a + nb+ n):First proof. The theorem is simply a restatement of a standard result in the subje
tof ballot problems and latti
e path enumeration, going ba
k at least to Lyness [13℄, andwith many proofs. A good dis
ussion appears in [19, xx1.4{1.6℄. See also [20, x1.3,Lemma 3B℄.Se
ond proof. We give a proof di�erent from the proofs alluded to above, be
auseit has the virtue of generalizing to give Theorem 14 below. The polytope r�n(x) isjust �n(rx). Hen
e by Theorem 12 i(�n(x); r) is just the number of plane partitionsof shape ru and largest part at most 2. Identify the partition u with its diagram,
onsisting of all pairs (i; j) with 1 � i � n and 1 � j � ~ui = a + (n � i)b. De�ne the
ontent 
(s) of s = (i; j) 2 ~u by 
(s) = j � i (see [34, p. 373℄). An expli
it formula forthe number of plane partitions of shape u and any bound on the largest part was �rstobtained by Pro
tor and is dis
ussed in [34, Exer. 7.101℄ (as well as a generalization dueto Krattenthaler). Pro
tor's formula for the 
ase at hand givesi(�n(x); r) = Ys=(i;j)2r~un+
(s)�r~ui 1 + n + 
(s)n+ 
(s) Ys=(i;j)2r~un+
(s)>r~ui rb+ 1 + n+ 
(s)n + 
(s) :When all the fa
tors of the above produ
ts are written out, there is 
onsiderable 
an
el-lation. The only denominator fa
tors that survive are those indexed by (i; 1), 1 � i � n,23



yielding the denominator n!. The surviving numerator fa
tors are ra + 1 (indexed by(n; ra)) and r(a+ nb) + k, 2 � k � n (indexed by (1; r(a+ (n� 1)b)� n+ k)), the lastn� 1 squares in the �rst row of ~u). 2Note from (36) that the leading 
oeÆ
ient of i(�n(x); r) (and hen
e the volume Vn(x)of �n(x)) is given by a(a + nb)n�1, agreeing with equation (7).There is a straightforward generalization of Theorems 12 and 13 involving planepartitions of shape u with largest part at most m+1 (instead of just m+1 = 2). Givenx 2 Nn as before, let �mn (x) � Rnm be the polytope of all n�m matri
es (yij) satisfyingyij � 0 and vi1 � vi2 � � � � � vim � x1 + � � �+ xi;for 1 � i � n, where vij = yi1 + yi2 + � � �+ yij:Thus �1n(x) = �n(x). Then the proof of Theorem 12 
arries over mutatis mutandisto show that N(�mn (x)) is the number of plane partitions of shape ~u and largest partat most m + 1. The result of Pro
tor mentioned above gives an expli
it formula forthis number when x = (a; b; b; : : : ; b). Repla
ing x by rx and 
omputing the leading
oeÆ
ient of the resulting polynomial in r gives a formula for the volume V mn (x) of�mn (x). This 
omputation is similar to that in the proof of Theorem 13, though thedetails are more 
ompli
ated. We merely state the result here without proof. Is therea dire
t 
ombinatorial proof similar to the proofs of Theorem 13 (the 
ase m = 1 ofTheorem 14) appearing in [19℄ and [20℄?Theorem 14 Let x = (a; b; b; : : : ; b) 2 Nn . Then(nm)!V mn (x) = 1! 2! � � �m! f hmni(n +m)n�1(n+m� 1)n�2 � � � (n+ 1)n�m;where f hmni denotes the number of standard Young tableaux of shape hmni = (m;m; : : : ;m)(n m's in all), given expli
itly by the \hook-length formula" [34, Cor. 7.21.6℄.6 A subdivision of �n(x) 
onne
ted with the asso
i-ahedronIn this se
tion we des
ribe a polyhedral subdivison (�̂n(k;x); k 2 Kn) of �n(x) di�erentfrom the subdivision dis
ussed in Se
tion 3. This subdivision is 
losely related to a
onvex polytope known as the asso
iahedron, de�ned as follows. Let En+2 be a 
onvex24



(n + 2)-gon. A polygonal de
omposition of En+2 
onsists of a set of diagonals of En+2that do not 
ross in their interiors. Hen
e the maximal polygonal de
ompositions are thetriangulations, and 
ontain exa
tly n�1 diagonals. Let de
(En+2) denote the poset of allpolygonal de
ompositions of En+2, ordered by in
lusion, with a top element 1̂ adjoined.It was �rst shown by C. W. Lee [12℄ and M. Haiman [7℄ that de
(En+2) is the fa
e latti
eof an (n� 1)-dimensional 
onvex polytope An+2, known as the asso
iahedron or Stashe�polytope. (Earlier Stashe� [35℄ de�ned the asso
iahedron as a simpli
ial 
omplex and
onstru
ted a geometri
 realization as a 
onvex body but not as a polytope. Some authors(e.g., [39, p. 18℄ refer to the dual of An+2 as the asso
iahedron.) A vast generalization isdis
ussed in [6, Ch. 7℄. For some further information see [34, Exer. 6.33℄.We next give a somewhat di�erent des
ription of the asso
iahedron (or more pre
isely,of its fa
e latti
e) that is most 
onvenient for our purposes. A fan in Rm is a (�nite)
olle
tion F of pointed polyhedral 
ones (with verti
es at the origin) satisfying the two
onditions:� If C; C 0 2 F then C \C 0 is a fa
e (possibly 
onsisting of just the origin) of C and C 0.� If C 2 F and C 0 is a fa
e of C, then C 0 2 F .A fan F is 
alled 
omplete if SC2F = Rm .In analogy to subdivisions of polytopes, the m-dimensional 
ones of a 
omplete fanin Rm are 
alled 
hambers. We will de�ne a fan whose 
hambers are indexed by planebinary trees with n internal verti
es. The de�nition of a plane tree may be found forinstan
e in [32, Appendix℄. The key point is that the subtrees of any vertex are linearlyordered T1; : : : ; Tk, indi
ated in drawing the tree (with the root on the bottom) by pla
ingthe subtrees in the order T1; : : : ; Tk from left to right. A binary plane tree is a plane treefor whi
h ea
h vertex v has zero or two subtrees. In the latter 
ase we 
all the vertex aninternal vertex. Otherwise v is a leaf or endpoint. We will always regard plane trees asbeing drawn with the root at the bottom.Let T be a plane binary tree with n internal verti
es (so n + 1 leaves). The numberof su
h trees is the Catalan number Cn [34, 6.19(d)℄. Do a depth-�rst sear
h through T(as de�ned e.g. in [34, pp. 33{34℄) and label the internal verti
es 1; 2; : : : ; n in the orderthey are �rst en
ountered from above. Equivalently, every internal vertex is greater thanthose in its left subtree, and smaller than those in its right subtree. We 
all this labelingof the internal verti
es of T the binary sear
h labeling. Figure 7 gives an example whenn = 4. Let y2; : : : ; yn�1 denote the 
oordinates in Rn�1 . If the internal vertex i of T(using the labeling just de�ned) is the parent of vertex j and i < j, then asso
iate withthe pair (i; j) the inequality yi+1 + yi+2 + � � �+ yj � 0; (37)25
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���� ����\\\\ �������\\\\ \\\\ ����31 2 4Figure 7: A plane tree with the binary sear
h labeling of its internal verti
eswhile if i > j then asso
iate with (i; j) the inequalityyj+1 + yj+2 + � � �+ yi � 0: (38)We get a system of n � 1 homogeneous linear inequalities that de�ne a simpli
ial 
oneCT in Rn�1 . For example, the inequalities 
orresponding to the tree of Figure 7 are givenby y2 � 0y2 + y3 � 0y4 � 0:Lemma 15 The Cn 
ones CT , as T ranges over all plane binary trees with n internalverti
es, form the 
hambers of a 
omplete fan Fn in Rn�1 . (For instan
e, Figure 8 showsthe fan F3.)Proof. Given 1 � i � n, let Di be the 
one in Rn�1 de�ned byy2 + y3 + � � �+ yi � 0y3 + � � �+ yi � 0� � �yi � 0yi+1 � 0yi+1 + yi+2 � 0� � �yi+1 + yi+2 + � � �+ yn � 0:26



Note thatDi = �(y2; : : : ; yn) 2 Rn�1 : y2 + y3 + � � �+ yi = maxfy2 + y3 + � � �+ yk : 1 � k � ng	 :In parti
ular,D1 = f(y2; : : : ; yn) 2 Rn�1 : y2 + y3 + � � �+ yk � 0; 2 � k � ng:Claim: Let Ti 
onsist of all plane binary trees with n internal verti
es and with root i(in the binary sear
h labeling). ThenDi = [T2Ti CT : (39)The proof of the 
laim is by indu
tion on n, the 
ases n = 1 and n = 2 being trivialto 
he
k. Let n � 3, and assume the 
laim for all m < n. Let T 2 Ti. Hen
e by theindu
tion hypothesis, the set of all possible left subtrees T1 with root j of the root i ofT de�nes all points (y2; y3; : : : ; yi�1) 2 Ri�1 su
h that y2 + y3 + � � �+ yj is the maximumpartial sum of the sequen
e (y2; : : : ; yi�1). Sin
e generi
ally vertex j will be the left 
hildof the root i (be
ause the maximum partial sum y2+ y3+ � � �+ yk will o

ur for a uniquek), we obtain the additional inequality yj+1 + yj+2 + � � � + yi � 0. This means thaty2 + y3 + � � �+ yi is the maximum partial sum of the sequen
e (y2; y3; : : : ; yi). Similarly,the set of all possible right subtrees T2 with root j of the root i of T de�nes all points(yi+1; yi+2; : : : ; yn) 2 Rn�i su
h that yi+1 + yi+2 + � � � + yj is the maximum partial sumof the sequen
e (yi+1; yi+2; : : : ; yn). Sin
e generi
ally j will be a 
hild of the root i, weobtain the additional inequality yi+1 + yi+2 + � � �+ yj � 0. This means thaty2 + y3 + � � �+ yk � y2 + y3 + � � �+ yi; for all i+ 1 � k � n:Hen
e Di = ST2Ti CT , so the proof of the 
laim follows by indu
tion.From the de�nition of Di it is 
lear thatn[i=1Di = Rn�1 : (40)The proof of the lemma then follows from equations (39) and (40). 2Theorem 16 The fa
e poset P (Fn) of the fan Fn, with a top element 1̂ adjoined, isisomorphi
 to the fa
e latti
e de
(En+2) of the asso
iahedron An+2.27
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Proof. The fa
e latti
e of a 
omplete fan is 
ompletely determined by the in
iden
esbetween the 
hambers and rays (one-dimensional fa
es). (See [32, Exer. 3.12℄ for astronger statement.) The 
hambers of Fn (proved to be a 
omplete fan in Lemma 15)have already been des
ribed in terms of plane binary trees. There is a well-knownbije
tion between plane binary trees on 2n + 1 verti
es and triangulations of a 
onvex(n+2)-gon En+2. This bije
tion is explained for instan
e in [34, Cor. 6.2.3℄. In parti
ular,to de�ne the bije
tion we �rst need to �x an edge " of En+2, 
alled the root edge. Wehope that Figure 9 will make this bije
tion 
lear; see the previous referen
e for furtherdetails. Thus we have a bije
tion between the 
hambers C of Fn and the triangulationsof the 
onvex (n+ 2)-gon En+2.We now des
ribe the rays R of Fn. We 
an des
ribe R uniquely by spe
ifying onenonzero point on R. We will index these points by the diagonalsD of a 
onvex (n+2)-gonEn+2. Label the verti
es of En+2 as 0; 1; : : : ; n + 1 
lo
kwise beginning with one vertexof " and ending with the other. Let ei denote the unit 
oordinate ve
tor 
orrespondingto the 
oordinate yi in the spa
e Rn�1 with 
oordinates y2; : : : ; yn. Given the diagonalD between verti
es i < j of En+2, asso
iate a point pD 2 Rn�1 as follows:pD = 8<: ej; if i = 0�ei+1; if j = n + 1ej � ei+1; otherwise:We 
laim that the ray f�pD : � 2 R�0g is the ray of Fn that is the interse
tion of allthe 
hambers of Fn 
orresponding to the triangulations of En+2 that 
ontain D. Fromthis 
laim the proof of the theorem follows (using the fa
t that Fn is a simpli
ial fan,i.e., every fa
e is a simpli
ial 
one).Consider �rst the diagonal D with verti
es 0 and j. Let � be a triangulation of En+2
ontaining D. The internal verti
es of T 
orresponding to the regions (triangles) of thetriangulation �. Be
ause of our pro
edure for labeling the internal verti
es of a planebinary tree T , it follows that the labels of the internal verti
es \above" D (i.e., on theopposite side of D as the root edge ") will be 1; 2; : : : ; j � 1, while the internal verti
esbelow D will be labeled j; j + 1; : : : ; n. (See Figure 9 for an example with n = 8. Thediagonal D in question is labeled D1 and 
onne
ts vertex 0 to vertex j = 6. The planebinary tree T is drawn with dashed lines.) Consider the internal edges of T that give rise(via equations (37) and (38)) to 
hambers whose equations involve yj. No su
h edge 
anappear below D, sin
e j is the least vertex label appearing below D. Similarly no su
hedge 
an appear above D, sin
e only verti
es less than j appear above D. Hen
e su
h anedge must 
ross D. The top (farthest from the root) vertex a of this edge is < j, while thebottom vertex b is � j. Hen
e the 
hamber equation is given by ya+1+ya+2+� � �+yb � 0,29
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εFigure 9: A triangulated 10-gon and the 
orresponding plane binary tree Twhere a < j and b � j. Hen
e the point ej lies on this 
hamber, and so the ray throughej is the interse
tion of the 
hambers 
orresponding to triangulations 
ontaining D.A 
ompletely analogous argument holds for the diagonal D with verti
es i and n+1.Finally suppose that D has verti
es i; j where 0 < i < j < n+1. The internal verti
esof T appearing above D will be labeled i+1; i+2; : : : ; j� 1, while the remaining vertexlabels appear below D. (See Figure 9, where the diagonal D in question is labeled D2,and where i = 2 and j = 6.) Consider an internal edge of T whose vertex labels are aand b where a � i and i+1 � b < j. These are pre
isely the edges whose 
orresponding
hamber equation (either ya+1 + ya+2 + � � � + yb � 0 or ya+1 + ya+2 + � � � + yb � 0)involves yi+1 but not yj. Sin
e b appears above D and a below, the 
hamber equation isin fa
t ya+1 + ya+2 + � � �+ yb � 0. In parti
ular, the point ej � ei+1 lies on the 
hamber.30



Similarly, 
onsider an internal edge of T whose labels are a and b where i+1 � a < j andj � b. These are pre
isely the edges whose 
orresponding 
hamber equation (again eitherya+1 + ya+2 + � � �+ yb � 0 or ya+1 + ya+2 + � � �+ yb � 0) involves yj but not yi+1. Sin
e bappears below D and a above, the 
hamber equation is in fa
t ya+1+ ya+2+ � � �+ yb � 0.In parti
ular, the point ej � ei+1 lies on the 
hamber. Every other 
hamber equationeither involves neither yi+1 nor yj, or else involves both (with a 
oeÆ
ient 1). Hen
eei+1 � ej lies on every 
hamber 
orresponding to a triangulation 
ontaining D, so theinterse
tion of these 
hambers is the ray 
ontaining ej � ei+1. This 
ompletes the proofof the 
laim, and with it the theorem. 2The 
onne
tion between �n(x) and the fan Fn is provided by the 
on
ept of a planetree with edge lengths. If we asso
iate with ea
h edge e of the plane tree T a positivereal number `(e), then we 
all the pair (T; `) a plane tree with edge lengths. Su
h a tree
an be drawn by letting the length of ea
h edge e be `(e).Now �x a real number s > 0, whi
h will be the sum of the edge lengths of a planetree. Let x = (x1; : : : ; xn) 2 Rn+ with P xi < s. Let y = (y1; : : : ; yn) 2 Rn+ withy1 + � � � + yi � x1 + � � � + xi for 1 � i � n. We asso
iate with the pair (x;y) a planetree with edge lengths '(x;y) = ( �T ; `) as follows. Start at the root and traverse the treein preorder (or depth-�rst order) [34, pp. 33{34℄. First go up a distan
e x1, then downa distan
e y1, then up a distan
e x2, then down a distan
e y2, et
. After going downa distan
e yn, 
omplete the tree by going up a distan
e xn+1 = s � x1 � � � � � xn andthen down a distan
e yn+1 = s � y1 � � � � � yn. Generi
ally we obtain a planted planebinary tree with edge lengths, i.e, the root has degree one (or one 
hild), and all otherinternal verti
es have degree two. Figure 10 shows the planted plane binary tree withedge lengths asso
iated with s = 16 and x = (6; 2; 7), y = (1; 4; 3). If �T is a plantedplane tree, then we let T denote the tree obtained by \unplanting" (uprooting?) �T , i.e.,remove from �T the root and its unique in
ident edge e (letting the other vertex of ebe
ome the root of T ).Fix the sequen
e x = (x1; : : : ; xn) withP xi < s. For a plane binary tree T (withoutedge lengths) with n internal verti
es (and hen
e n + 1 leaves), de�ne �T = �T (x) tobe the set of all y = (y1; : : : ; yn) 2 Rn+ su
h that '(x;y) = ( �T ; `) for some `. Let Tndenote the set of plane binary trees with n internal verti
es. Let T 2 Tn with the binarysear
h labeling of its internal verti
es as de�ned earlier in this se
tion. We now de�ne asequen
e k(T ) = (k1; : : : ; kn) 2 Nn as follows: (1) ki = 0 if the left 
hild of vertex i is aninternal vertex. (2) If the left 
hild of vertex i is an endpoint, then let ki be the largestinteger r for whi
h there is a 
hain i = j1 < j2 < � � � < jr of internal verti
es su
h thatjh is a left 
hild of jh+1 for 1 � h � r� 1. For instan
e, if T is the tree of Figure 11 then31
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Figure 10: A planted plane binary tree with edge lengthsk(T ) = (2; 3; 0; 1; 0; 1; 0; 2; 0).Lemma 17 The map T 7! k(T ) is a bije
tion from Tn to the set Kn de�ned by equation(3).Proof. Let k(T ) = (k1; : : : ; kn). The 
hains i = j1 < j2 < � � � < jr des
ribed abovepartition the internal verti
es of T , so P ki = n. Sin
e kj2 = � � � = kjr = 0, it followsthat kh+1 + kh+2 + � � � + kn � n � h for 0 � h � n � 1. Hen
e k1 + � � � + kh � h, sok(T ) 2 Kn.It remains to show that given k = (k1; : : : ; kn) 2 Kn, there is a unique T 2 Tn su
hthat k(T ) = k. We 
an 
onstru
t the subtree of internal verti
es of T as follows. Let T1be de�ned by starting at the root and making k1�1 steps to the left. (Ea
h step is froma vertex to an adja
ent vertex.) Hen
e we have k1 verti
es in all, and we are lo
ated atthe vertex furthest from the root. Suppose that Ti has been 
onstru
ted for i < n, andthat we are lo
ated at vertex vi. If ki+1 > 0, then move one step to the right and ki+1�1steps to the left, yielding the tree Ti+1 and the vertex vi+1 at whi
h we are lo
ated. Ifki+1 = 0, then move down the tree (toward the root) until we have traversed exa
tly oneedge in a southeast dire
tion. This gives the tree Ti+1 = Ti and a new present lo
ationvi+1. Let T = Tn. It is easily 
he
ked that the de�nition of Kn ensures that T is de�ned(and, though not really needed here, that vn is the root vertex) and k(T ) = k. Sin
ethere are Cn = 1n+1�2nn � plane binary trees with n internal verti
es and sin
e #Kn = Cn,32
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7Figure 11: A plane binary tree T with k(T ) = (2; 3; 0; 1; 0; 1; 0; 2; 0)it follows that the map T 7! k(T ) is a bije
tion as 
laimed. (It is also easy to see dire
tlythat T is unique, i.e., if k(T ) = k(T 0) then T = T 0.) 2Now given t 2 R+ , let �k(t) denote the k-dimensional simplex of points (t1; : : : ; tk)satisfying 0 � t1 � t2 � � � � � tk � t. ThusVol(�k(t)) = tkk! :By 
onvention �0(t) is just a point, with Vol(�0(t)) = 1. De�ne two 
omapa
t subsetsX and Y of Rn to be unimodularly equivalent if there is an aÆne transformation ofdeterminant �1 that maps X onto Y. (Hen
e Vol(X ) = Vol(Y).) We 
an now state themain result of this se
tion.Theorem 18 (a) The sets �T (x), for T 2 Tn, form the maximal fa
es (
hambers) of apolyhedral de
omposition �n of �n(x).(b) Let k(T ) = (k1; : : : ; kn), where T 2 Tn. Then �T (x) is unimodularly equivalentto the produ
t �k1(x1)� � � � � �kn(xn), so in parti
ularVol(�T (x)) = xk11k1! � � � xknnkn! :33



(
) The interior fa
e 
omplex �Æn of �n is 
ombinatorially equivalent to the asso
iahe-dron, i.e., the set of interior fa
es of �n, ordered by in
lusion, in isomorphi
 to the fa
elatti
e of the asso
iahedron.Proof of (a). The 
onstru
tion of the plane tree with edge lengths '(x;y) = ( �T ; `) isde�ned if and only if y 2 �n(x). Sin
e generi
ally '(x;y) is a planted plane binary tree,it follows that the sets �T (x), T 2 Tn, form the 
hambers of a polyhedral de
ompositionof �n(x). 2Proof of (b). Let '(x;y) = ( �T ; `) as above. Call a vertex v of �T a left leaf if it is a leaf(endpoint) and is the left 
hild of its parent. Similarly a right edge is an edge that slantsto the right as we move away from the root. Let P (v) be the path from the left leaf vtoward the root that terminates after the �rst right edge is traversed (or terminates atthe root if there is no su
h right edge). Let 
(v) be the label of the (internal) vertexthat is the parent of v. Then the length of the path P (v) is just x
(v). If 
(v) = i,then exa
tly ki of the paths P (u) end at the path P (v). Suppose that these paths areP (u1); : : : ; P (uki) where u1 < � � � < uki. Then the paths P (uj) interse
t the path P (v)in the order P (u1); : : : ; P (uki) from the bottom up. Hen
e for ea
h i with ki > 0, we 
anindependently pla
e on a path of length xi the ki points that form the bottoms of thepaths P (uj). The pla
ement of these points de�nes a point in a simplex unimodularlyequivalent to �ki(xi), so �T (x) is unimodularly equivalent to �k1(x1)� � � � � �kn(xn) as
laimed. 2Example 19 Let �T be the planted plane binary tree of Figure 12. On the path of lengthx1 from the root r to v1 we 
an pla
e verti
es 1 and 3 in bije
tion with the points ofthe simplex 0 � t3 � t1 � x1 of volume x21=2. On the path of length x2 from 1 tov2 we 
an pla
e vertex 2 in bije
tion with the points of the simplex 0 � t2 � x2, ofvolume x2. Finally on the path of length x4 from 3 to v3 we 
an pla
e verti
es 4; 5; 6in bije
tion with the points of the simplex 0 � t6 � t5 � t4 � x4, of volume x34=6.Hen
e �T is unimodularly equivalent to the produ
t �2(x1)� �1(x2)� �3(x4), of volumex21x2x34=2! 1! 3!.It is easy to make the unimodular equivalen
e between �T and �k1(x1)�� � ���kn(xn)
ompletely expli
it. For instan
e, in the above example t3 is the distan
e between verti
esr and 3, so t3 = x1 � y1 + x2 � y2 + x3 � y3:Similarly, t1 = x1 � y1:34
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rFigure 12: A planted plane binary treeNow t2 is the distan
e between verti
es 1 and 2, sot2 = x2 � y2:In the same way we obtaint6 = x4 � yy + x5 � y5 + x6 � y6t5 = x4 � y4 + x5 � y5t4 = x4 � y4:Proof of (
). Let '(x;y) = ( �T ; `). Then the height (or distan
e from the root) ofvertex i is just x1 + � � �+ xi � y1� � � � � yi = ui� vi. Hen
e if vertex i is the parent of jthen ui � vi < uj � vj. If i < j we get the equation(yi+1 � xi+1) + � � �+ (yj � xj) � 0; (41)while if i > j we get (yj+1 � xj+1) + � � �+ (yi � xi) � 0: (42)35



Thus these n � 1 equations, together with yi � 0 and y1 + � � � + yi � x1 + � � � + xi,determine ��T .Note that if we repla
e ea
h yk by yk � xk in the inequalities (37) and (38) de�ningthe 
hambers of the fan Fn of Theorem 16, then we obtain pre
isely the inequalities (41)and (42). From this we 
on
lude the following. Given x = (x1; : : : ; xn) 2 Rn�0 , translatethe fan Fn so that the 
enter of the translated fan eFn is at (x2; : : : ; xn). Add a new y1axis and lift eFn into Rn , giving a \nonpointed fan" (i.e., a de
omposition of Rn satisfyingthe de�nition of a fan ex
ept that the 
ones are nonpointed) whi
h we denote by R� eFn.(Thus ea
h 
one C 2 eFn lifts to the nonpointed 
one R � C.) Finally interse
t ea
h
hamber (maximal 
one) R �C of R � eFn with the polytope �n(x). Then the polytopesC \ �n(x) are just the 
hambers �̂(k;x) of the polyhedral de
omposition Pn of �n(x).Moreover, the interior fa
es of this de
omposition are just the interse
tions of arbitrary
ones in R � eFn with �n(x). Hen
e the interior fa
e poset of Pn is isomorphi
 to thefa
e poset of the fan Fn, whi
h by Theorem 16 is the fa
e latti
e of the asso
iahedron.2 Notes.The de
omposition of �n(x) given by Theorem 16 is fundamentally di�erent (i.e.,has a di�erent 
ombinatorial type) than that of Theorem 8. For instan
e, when n = 3Figure 6 shows that the interior fa
e dual 
omplex des
ribed by Theorem 8 is not ade
omposition of a 
onvex polytope, unlike the situation in Theorem 16. In that 
asewhen n = 3 the interior fa
e dual 
omplex is just a solid pentagon. The two subdivisionsfo �3(x) are shown expli
itly in Figure 2.We are grateful to Vi
tor Reiner for pointing out to us that Theorem 16 is related tothe 
onstru
tion of the asso
iahedron appearing in the papers [12℄ and [26℄, and that aBn-analogue of this 
onstru
tion appears in [1, x3℄. Note that the proof of Theorem 16shows that the rays of the fan Fn are the ve
tors ei and �ei for 1 � i � n � 1, andei � ej for 1 � i < j � n� 1. As pointed out to us by Reiner, it follows from [12℄ thatwe 
an res
ale these ve
tors (i.e., multiply them by suitable positive real numbers) sothat their 
onvex hull is 
ombinatorially equivalent (as de�ned in the next se
tion) tothe asso
iahedron An+2.Some of the results of this se
tion 
an be interpreted probabilisti
ally in terms ofthe kind of random plane tree with edge lengths derived from a Brownian ex
ursion byNeveu and Pitman [21℄. It was in fa
t by 
onsideration of su
h random trees that we were�rst led to the formula (2) for the volume polynomial, with the geometri
 interpretationprovided by Theorem 18. 36



7 The fa
e stru
ture of �n(x)In this se
tion we determine the stru
ture of the fa
es of �n(x), i.e., a des
ription ofthe latti
e of fa
es of �n(x) (ordered by in
lusion). This des
ription will depend on the\degenera
y" of �n(x), i.e., for whi
h i we have xi = 0. Thus let ui = x1 + � � �+ xi asusual, and de�ne integers 1 � a1 < a2 < � � � < ak = n byu1 = � � � = ua1 < ua1+1 = � � � = ua2 < � � � < uak�1+1 = � � � = uak :We say that two 
onvex polytopes are 
ombinatorially equivalent or have the same 
om-binatorial type if they have isomorphi
 fa
e latti
es.Theorem 20 Let a1; : : : ; ak be as above, and set bi = ai � ai�1 (with a0 = 0). Assume(without loss of generality) that x1 > 0. Then �n(x) is 
ombinatorially equivalent to aprodu
t �b1 � � � � � �bk , where �j denotes a j-simplex. In parti
ular, if ea
h xi > 0 then�n(x) is 
ombinatorially equivalent to an n-
ube.Proof. For 1 � i � k, let Si = fCi0; Ci1; : : : ; Ci;big denote the set of the following bi+1
onditions Cij on a point y 2 �n(x):(Ci0) yai�1+1 = yai�1+2 = � � � = yai = 0(Ci1) yai�1+1 = ui; yai�1+2 = yai�1+3 = � � � = yai = 0(Ci2) yai�1+2 = ui; yai�1+1 = yai�1+3 = � � � = yai = 0� � �(Ci;bi) yai = ui; yai�1+1 = yai�1+2 = � � � = yai�1 = 0:Note that ea
h of the 
onditions Cij 
onsists of bi 
hambers of �n(x); we regard Cij asbeing the set of these 
hambers. Let Si denote any subset of Si, and let \Si = TC2Si C.A little thought shows that we 
an �nd a point y 2 �n(x) lying on all the 
hambers inea
h \Si, but not lying on any other 
hamber of �n(x). Moreover, no point of �n(x)
an lie on any other 
olle
tion of 
hambers of �n(x) but on no additional 
hambers.From the above dis
ussion it follows that �n(x) is 
ombinatorially equivalent toa produ
t of simpli
es of dimensions b1; : : : ; bk, as desired. In parti
ular, �n(x) has(b1 + 1)(b2 + 1) � � � (bk + 1) verti
es v, obtained by 
hoosing 0 � ji � bi for ea
h i andde�ning v to be the interse
tion of the 
hambers in all the Ciji's. 2Although �n(x) is 
ombinatorial equivalent to a produ
t of simpli
es, it is not the
ase that �n(x) is aÆnely equivalent to su
h a produ
t. For instan
e, Figure 1 shows37



�2(x1; x2) when x1; x2 > 0. We see that �2(x1; x2) is a quadrilateral and hen
e 
ombi-natorially equivalent to a square. However, �2(x1; x2) is not a parallelogram and hen
enot aÆnely equivalent to a square. Similarly Figure 2 shows that �3(x1; x2; x3) is 
om-binatorially equivalent but not aÆnely equivalent to a 3-
ube when ea
h xi > 0.Referen
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