
SOME ASPECTS OF (r, k)-PARKING FUNCTIONS

RICHARD P. STANLEY AND YINGHUI WANG

Abstract. An (r, k)-parking function of length n may be defined as a sequence (a1, . . . , an)
of positive integers whose increasing rearrangement b1 ≤ · · · ≤ bn satisfies bi ≤ k+ (i− 1)r.
The case r = k = 1 corresponds to ordinary parking functions. We develop numerous

properties of (r, k)-parking functions. In particular, if F
(r,k)
n denotes the Frobenius charac-

teristic of the action of the symmetric group Sn on the set of all (r, k)-parking functions
of length n, then we find a combinatorial interpretation of the coefficients of the power

series
(
∑

n≥0 F
(r,1)
n tn

)k

for any k ∈ Z. For instance, when k > 0 this power series is just
∑

n≥0 F
(r,k)
n tn. We also give a q-analogue of this result. For fixed r, we can use the sym-

metric functions F
(r,1)
n to define a multiplicative basis for the ring Λ of symmetric functions.

We investigate some of the properties of this basis.

1. Introduction

Parking functions were first defined by Konheim and Weiss as follows. We have n cars
C1, . . . , Cn and n parking spaces 1, 2, . . . , n. Each car Ci has a preferred space ai. The cars go
one at a time in order to their preferred space. If it is empty they park there; otherwise they
park at the next available space (in increasing order). If all the cars are able to park, then
the sequence α = (a1, . . . , an) is called a parking function of length ℓ(α) = n. For instance,
(3, 1, 4, 3) is not a parking function since the last car will go to space 3, but spaces 3 and
4 are already occupied. It is easy to see that (a1, . . . , an) ∈ [n]n (where [n] = {1, 2, . . . , n})
is a parking function if and only if its increasing rearrangement b1 ≤ b2 ≤ · · · ≤ bn satisfies
bi ≤ i.

Let PFn denote the set of all parking functions of length n. A fundamental result of
Konheim and Weiss [2] (earlier proved in an equivalent form by Steck [7]—see Yan [8, §1.4]
for a discussion) states that #PFn = (n + 1)n−1. An elegant proof of this result was given
by Pollak (reported in [3]), which we now sketch since it will be generalized later. Suppose
that we have the same n cars, but now there are n + 1 spaces 1, 2, . . . , n + 1. The spaces
are arranged on a circle. The cars follow the same algorithm as before, but once a car
reaches space n+1 and is unable to park, it can continue around the circle to spaces 1, 2, . . .
until it can finally park. Of course all the cars can park this way, so at the end there will
be one empty space. Note that their preferences (a1, . . . , an) ∈ [n + 1]n will be a parking
function if and only if the empty space is n+ 1. If the empty space is e and the preferences
are changed to (a1 + i, . . . , an + i) for some i, where aj + i is taken modulo n + 1 so that
aj + i ∈ [n + 1], then the empty space becomes e + i. Hence given (a1, . . . , an) ∈ [n + 1]n,
exactly one of the vectors (a1 + i, . . . , an + i) will be a parking function. It follows that
#PFn = 1

n+1
(n + 1)n = (n+ 1)n−1.
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We will use notation and terminology on symmetric functions from [6, Chap. 7]. The
symmetric group Sn acts on PFn by permuting coordinates. Let Fn := ch PFn denote
the Frobenius characteristic of this action of Sn, as defined in [6, §7.18]. Hence Fn is a
homogeneous symmetric function of degree n, called the parking function symmetric function.
If α = (a1, . . . , an) is a sequence of positive integers with mi i’s (so

∑
mi = n), then the

Frobenius characteristic of the action of Sn on the set of permutations of the terms of α
is the complete symmetric function hm1hm2 · · · (with h0 = 1). Hence to compute Fn, take
all vectors (b1, . . . , bn) ∈ PFn with b1 ≤ b2 ≤ · · · ≤ bn (the number of such vectors is the
Catalan number Cn) and add the corresponding hλ for each. For instance, when n = 3 the
weakly increasing parking functions are 111, 112, 113, 122, 123, so F3 = h3 + 3h2h1 + h31.

The symmetric function Fn has many remarkable properties, summarized (in a dual form,
and with equation (1.2) below not included) in [6, Exer. 7.48(f)].

Proposition 1.1. We have

Fn =
∑

λ⊢n

(n + 1)ℓ(λ)−1z−1
λ pλ

=
1

n + 1

∑

λ⊢n

sλ(1
n+1)sλ

=
1

n + 1

∑

λ⊢n

[
∏

i

(
λi + n

λi

)]

mλ

=
∑

λ⊢n

n(n− 1) · · · (n− ℓ(λ) + 2)

d1(λ)! · · ·dn(λ)!
hλ(1.1)

=
∑

λ⊢n

ελ
(n+ 2)(n+ 3) · · · (n + ℓ(λ))

d1(λ)! · · · dn(λ)!
eλ(1.2)

ωFn =
1

n + 1

[
∏

i

(
n+ 1

λi

)]

mλ,

where di(λ) denotes the number of parts of λ equal to i and ελ = (−1)n−ℓ(λ). Moreover,

(1.3) Fn =
1

n+ 1
[tn]H(t)n+1,

where [tn]f(t) denotes the coefficient of tn in the power series f(t), and

H(t) =
∑

n≥0

hnt
n =

1

(1− x1t)(1− x2t) · · ·
.

Note in particular that the coefficient of hλ in equation (1.3) is the number of weakly
increasing parking functions of length n whose entries occur with multiplicities λ1, λ2, . . . .

A further important property of Fn, an immediate consequence of equation (1.3) and the
Lagrange inversion formula, is the following. Let

(1.4) E(t) =
∑

n≥0

ent
n =

∏

i

(1 + xit),
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and let G(t)〈−1〉 denote the compositional inverse of the power series G(t) (which will exist
as a formal power series if G(t) = a1t + a2t

2 + · · · , where a1 6= 0). Then

(1.5)
∑

n≥1

Fnt
n = (tE(−t))〈−1〉.

There are several known generalizations of parking functions. In particular, if u =
(u1, . . . , un) is a weakly increasing sequence of positive integers, then a u-parking function is
a sequence (a1, . . . , an) ∈ Pn (where P = {1, 2, . . . }) such that its increasing rearrangement
b1 ≤ b2 ≤ · · · ≤ bn satisfies bi ≤ ui. Thus an ordinary parking function corresponds to
u = (1, 2, . . . , n). For the general theory of u-parking functions, see the survey [8, §13.4].
We will be interested here in the special case u = (k, r + k, 2r + k, . . . , (n− 1)r + k), where
r, k ≥ 1. We call such a u-parking function an (r, k)-parking function. With this termi-
nology, an ordinary parking function is a (1, 1)-parking function. We call an (r, 1)-parking
function simply an r-parking function.

Note. Our terminology is not universally used. For instance, if (a1, . . . , an) is what we
call an (r, r)-parking function, then Bergeron [1] would call (a1− 1, . . . , an − 1) an r-parking
function.

Pollak’s proof that #PFn = (n+1)n−1 extends easily to (r, k)-parking functions. Namely,
we now have rn cars C1, . . . , Crn and rn + k − 1 spaces 1, 2, . . . , rn + k − 1. We consider
preferences α = (a1, . . . , an), 1 ≤ ai ≤ rn + k − 1, where cars Cr(i−1)+1, . . . , Cri all prefer
ai. The cars use the same parking algorithm as before. It is not hard to check that all the
cars can park if and only if α is an (r, k)-parking function. Now arrange rn + k spaces on
a circle, allow the preferences 1 ≤ ai ≤ rn + k, and park as in Pollak’s proof. Then α is
an (r, k)-parking function if and only if the space rn+ k is empty. Reasoning as in Pollak’s
proof gives the following result, which in an equivalent form is due to Steck [7].

Theorem 1.2. Let PF(r,k)
n denote the set of (r, k)-parking functions of length n. Then

#PF(r,k)
n = k(rn+ k)n−1.

The results in Proposition 1.1 can be extended to (r, k)-parking functions (Theorem 2.1).
Most of them appear in Bergeron [1, Prop. 1] for the case k = r. (Bergeron and his collab-
orators have gone on to generalize their results in a series of papers on rectangular parking
functions.) One of our key results (Theorem 3.1) connects r-parking functions to (r, k)-
parking functions as follows.

Let PF(r,k)
n denote the set of all (r, k)-parking functions of length n, and let F

(r,k)
n denote

the Frobenius characteristic chPF(r)
n of the action of Sn on PF(r,k)

n by permuting coordinates.
Define

P(r,k)(t) =
∑

n≥0

F (r,k)
n tn

P(r)(t) = P(r,1)(t),

Then (Theorem 3.1)

(1.6) P(r)(t)k = P(r,k)(t).

Equation (1.6) suggests looking at P(r)(t)k for negative integers k. We obtain parking func-
tion interpretations of the coefficients of such power series in Section 4. As some motivation
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for what to expect, consider two power series A(t), B(t), with B(0) = 0, that are related by

A(t) =
1

1−B(t)
= 1 +B(t) +B(t)2 + · · · .

Thus

(1.7) B(t) = 1−
1

A(t)
,

and often B(t) will be a generating function for certain “prime” objects, while A(t) will be a
generating function for all objects, i.e., products of primes. See for instance [5, Prop. 4.7.11].
We will see examples of this relationship with our generating functions for parking functions.

For instance, if we set

(1.8) P(r,k)(t)−1 = 1−
∑

n≥1

G(r,k)
n tn,

then G
(1,1)
n is the Frobenius characteristic of the action of Sn on prime parking functions of

length n, i.e., parking functions that remain parking functions when some term equal to 1 is
deleted (a concept due to Gessel [6, Exer. 5.49(f)]). An increasing parking function b1b2 · · · bn
can be uniquely factored β1 · · ·βk, such that (1) if bj is the first term of βi then bj = j, and
(2) if we subtract from each term of βi one less than its first element (so it now begins with
a 1), then we obtain a prime parking function.

As a direct generalization of the previous example, G
(r,1)
n is the Frobenius characteristic

of the action of Sn on sequences a1a2 · · · an such that some ai = 1, and if remove this term

then we obtain an (r, r)-parking function. More generally, if 1 ≤ k ≤ r then G
(r,k)
n is the

Frobenius characteristic of the action of Sn on sequences a1a2 · · · an such that we can remove
some term less than k+1 and obtain an (r, r) parking function (Theorem 4.3). For instance,
when r = 2 and n = 3 the increasing sequences with this property are 111, 112, 113, 114,

122, 123, 124, 222, 223, 224. Hence G
(2,2)
3 = 2h31 + 6h2h1 + 2h3. The situation for P(r,k)(t)−j

when j > r is more complicated (Theorem 4.1).

2. Expansions of F
(r,k)
n

In this section we consider the expansion of F
(r,k)
n into the six classical bases for symmetric

functions. These expresssions are defined even when k is an indeterminate, so we can use any

of them to define F
(r,k)
n in this situation. For later combinatorial applications we will only

consider the case when k is an integer. We use notation from [6, Ch. 7] regarding symmetric
functions. We also use multinomial coefficient notation such as

(
k

d1, . . . , dn, k −
∑
di

)

=
k(k − 1) · · · (k −

∑
di + 1)

d1! · · · dn!
,

where d1, . . . , dn are nonnegative integers and k may be an indeterminate. As usual we
abbreviate

(
k

d,k−d

)
as
(
k

d

)
.
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Theorem 2.1. Recall that di(λ) denotes the number of parts of λ equal to i. Then F
(r,k)
0 = 1,

and for n ≥ 1 we have

F (r,k)
n =

k

rn+ k

∑

λ⊢n

(
rn+ k

d1(λ), . . . , dn(λ), rn+ k − ℓ(λ)

)

hλ(2.1)

=
k

rn+ k

∑

λ⊢n

ελ

(
rn+ k + ℓ(λ)− 1

d1(λ), . . . , dn(λ), rn+ k − 1

)

eλ(2.2)

=
k

rn+ k

∑

λ⊢n

[
∏

i

(
λi + rn+ k − 1

λi

)]

mλ

=
k

rn+ k

∑

λ⊢n

sλ(1
rn+k)sλ

= k
∑

λ⊢n

z−1
λ (rn+ k)ℓ(λ)−1pλ(2.3)

ωF (r,k)
n =

k

rn+ k

∑

λ⊢n

[
∏

i

(
rn+ k

λi

)]

mλ,

Moreover,

(2.4) F (r,k)
n =

k

rn+ k
[tn]H(t)rn+k.

Proof. Define two elements α and β of [rn + k]n to be equivalent if their difference is a
multiple of (1, 1, . . . , 1) mod rn + k. This defines an equivalence relation on [rn + k]n, and
each equivalence class contains rn + k elements. It follows from the proof of Theorem 1.2
that each equivalence class contains exactly k (r, k)-parking functions. Moreover, all the
elements α in each equivalence class have the same multiset of part multiplicities, i.e., the
multiset {d1, . . . , drn+k}, where di is the number of i’s in α.

For n ≥ 1 let D
(r,k)
n denote the Frobenius characteristic of the action of Sn on [rn + k]n

by permuting coordinates. It follows that

F (r,k)
n =

k

rn+ k
D(r,k)

n .

Hence if we set q = 1, k = n, and n = rn+ k in Exercise 7.75(a) of [6] then we get

D(r,k)
n =

∑

λ⊢n

sλ(1
rn+k)sλ.

(Exercise 7.75 deals with Sk acting on submultisets M of {1n, . . . , kn}. Replace M with the
vector (d1, . . . , dk}, where di is the multiplicity of i in M , to get our formulation.) Therefore

F (r,k)
n =

k

rn+ k

∑

λ⊢n

sλ(1
rn+k)sλ.

The remainder of the proof is routine symmetric function manipulation. �

A further important property of F
(r,k)
n in the case k = r, an immediate consequence of

equation (2.4) and the Lagrange inversion formula [6, Thm. 5.4.2], is the following.
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Let E(t) be given by equation (1.4). Then

(2.5)
∑

n≥0

F (r,r)
n tn+1 = (tE(−t)r)〈−1〉

3. A relation between r-parking functions and (r, k)-parking functions

In this section we give a combinatorial proof of the following result.

Theorem 3.1. Let k, r ∈ P. Then P(r)(t)k = P(r,k)(t).

Proof. We need to give a bijection ψ : (PF(r,1)
n )k → PF(r,k)

n such that if ψ(α1, . . . , αk) = β,
then ℓ(α1) + · · · + ℓ(αk) = ℓ(β). Note that we consider the empty sequence ∅ to be an
(r, j)-parking function for any r and j.

Given (α1, . . . , αk) ∈ (PF(r,1)
n )k, define α′

i to be the sequence obtained by adding r(ℓ(α1)+
· · ·+ ℓ(αi−1)) + i− 1 to every term of αi. For instance, if r = 2 and

(α1, . . . , α5) = ((1, 2), ∅, ∅, (1), (1, 3, 4)),

then α′
1 = (1, 2), α′

2 = α′
3 = ∅, α′

4 = (8), and α′
5 = (11, 13, 14).

It is easily seen that ψ is the desired bijection. In particular, the inverse ψ−1 has the
following description. Given β = (b1, . . . , bn) ∈ PF(r,k)

n , let ci = bi − ri + r − 1. (The term
r− 1 could be replaced by any constant independent from i; we made the choice so c1 = 0.)
Let cj1 < · · · < cjr be the left-to-right maxima of the sequence c1, . . . , cn, so j1 = 1. Factor
β (regarded as a word b1 · · · bn) as β1 · · ·βr, where βi begins with bji . Subtract a constant ti
from each term of βi so that we obtain a sequence (or word) β ′

i beginning with a 1. Insert
cji+1

− cji − 1 empty words ∅ between β ′
i and β

′
i+1, and place empty words at the end so that

there are k words in all. These words α1, . . . , αk then satisfy ψ−1(β) = (α1, . . . , αk). �

Example 3.2. Suppose that r = 2, k = 7, and

β = (1, 2, 2, 10, 12, 14, 15, 19, 22).

Then (c1, . . . , c9) = (0,−1,−3, 3, 3, 3, 3, 4, 5). The left-to-right maxima are c1 = 0, c4 = 3,
c8 = 4, c9 = 5. Thus β1 = (1, 2, 2), β2 = (10, 12, 14, 15), β3 = (19), and β4 = (22). Hence
β ′
1 = (1, 2, 2), β ′

2 = (1, 3, 5, 6), β ′
3 = β ′

4 = (1). Between β ′
1 and β

′
2 insert c4− c1−1 = 2 copies

of ∅. Similarly since c8 − c4 − 1 = c9 − c8 − 1 = 0 we insert no further copies of ∅ between
remaining β ′

i’s. We now have the six words β ′
1, ∅, ∅, β

′
2, β

′
3, β

′
4, Since k = 7 we insert one ∅ at

the end, finally obtaining

ψ−1(β) = ((1, 2, 2), ∅, ∅, (1, 3, 5, 6), (1), (1), ∅).

Theorem 3.1 has a natural q-analogue. We simply state the relevant result since the
bijection in the proof of Theorem 3.1 is compatible with our q-analogue, so the proof carries
over. More specifically, using the notation of equation (3.1) below it is easy to check that if

β ∈ PF(r,k)
n and ψ−1(β) = (α1, . . . , αk), then

s(r,k)(β) =
k∑

j=1

(s(r,1)(αj) + (k − j)ℓ(αj)).
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Given an (r, k)-parking function α = (a1, . . . , an) of length n, note that the largest possible
value of

∑
ai is k + (k + r) + · · ·+ (k + (n− 1)r) = kn+

(
n

2

)
r. Define

(3.1) s(r,k)(α) = kn+

(
n

2

)

r −
n∑

i=1

ai.

When k = r this is a well-known statistic on parking functions, sometimes used in the
variant form

∑
ai. See for instance [4][8, §§1.2.2,1.3.3]. Note that the action of Sn on

(r, k)-parking functions α of length n is compatible with this statistic, i.e., if w ∈ Sn then
s(r,k)(w · α) = w · s(r,k)(α).

Given a sequence β = (b1, . . . , bn) ∈ Pn, let Uβ denote the Frobenius characteristic of the
action by permuting coordinates of Sn on all permutations of the terms of β. Hence if mi is
the number of i’s in β then Uβ = hm1hm2 · · · . Given r, k, n ≥ 1, define

F (r,k)
n (q) =

∑

β

qs
(r,k)(β)Uβ,

where β runs over all increasing (r, k)-parking functions of length n. Write

P(r,k)(q, t) =
∑

n≥0

F (r,k)
n (q)tn

P(r)(q, t) = P(r,1)(q, t).

Thus P(r,k)(1, t) = P(r,k)(t).

Theorem 3.3. We have

P(r,k)(q, t) =
k−1∏

i=0

P(r)(q, qit).

Equation (1.7) gives a relationship between a generating function A(t) for all objects
and B(t) for prime objects. There is another basic relationship of this nature between
exponential generating funcions A(t) for all objects andB(t) for “connected” objects, namely,
the exponential formula A(t) = expB(t) or B(t) = logA(t). See [6, §5.1]. Thus we can ask
whether there is a combinatorial interpretation of the coefficients of logP(r,k)(t). Recall that

D
(r,k)
n denotes the Frobenius characteristic of the action of Sn on [rn + k]n by permuting

coordinates, as in the proof of Theorem 2.1. The case k = r is handled by the following
result.

Proposition 3.4. We have

logP(r,r)(t) =
∑

n≥1

D(r,r)
n

tn

n
.

Proof. The proof is a simple consequence of the following variant of the Lagrange inversion
formula appearing in [6, Exer. 5.56]: for any power series F (t) = a1t + a2t

2 + · · · ∈ C[[t]]
with a1 6= 0 we have

(3.2) n[tn] log
F 〈−1〉(t)

t
= [tn]

(
t

F (t)

)n

.

7



Choose F (t) = tE(−t)r, where E(t) is given by equation (1.4). Now

1

E(−t)
= H(t) =

∑

n≥0

hnt
n.

Hence by equation (2.5), we see that equation (3.2) becomes

n[tn] logP(r,r)(t) = [tn]H(t)nr.

It is clear that [tn]H(t)nr = D
(r,r)
n , so the proof follows. �

4. A dual to (r, k)-parking functions

Equation (1.6) suggests looking at P(r)(t)k for negative integers k. We obtain an object
“dual” (in the sense of combinatorial reciprocity) to (r, k)-parking functions.

We define F
(r,k)
n for k ≤ 0 by (2.1) (therefore all the equations in Theorem 2.1 hold for

k ≤ 0). It follows from the definition of P(r,k)(t) and equation (1.6) that

P(r)(t)k = P(r,k)(t) =
∑

n≥0

F (r,k)
n tn

holds for all k > 0. Thus it also holds for all k ≤ 0. Comparing the coefficients of tn with
those in equation (1.8), namely,

P(r)(t)−k = 1−
∑

n≥1

G(r,k)
n tn, for all k ≥ 0,

and combining with (2.1), we see that

(4.1) G(r,k)
n = −F (r,−k)

n =
k

rn− k

∑

λ⊢n

(
rn− k

d1(λ), . . . , dn(λ)

)

hλ, for all k ≥ 0, n ≥ 1.

We then have the following combinatorial interpretation of G
(r,k)
n .

Theorem 4.1. If rn− k > 0, then G
(r,k)
n is the Frobenius characteristic of the action of Sn

on the set S of n-tuples whose increasing rearrangements have the following form:
(
w, . . . , w
︸ ︷︷ ︸

q(w) w’s

, bq(w)+1, bq(w)+2, . . . , bn
)
,(4.2)

where w ∈ [k] and q(w) is the smallest integer such that w ≤ q(w)r, and

(4.3) bj ≤ min{(j − 1)r, w − 1 + rn− k} for j = q(w) + 1, q(w) + 2, . . . , n.

Note that w ≤ min{(j−1)r, w−1+ rn−k} for all j ≥ q(w)+1; therefore (4.3) is equivalent
to

(4.4) bj ≤ min{(j − 1)r, w − 1 + rn− k} whenever bj > w.

In other words, a weakly increasing integer sequence b is in S if and only it satisfies the
following properties.

I. b1 = w for some w ∈ [k], and bn − b1 < rn− k.
II. bq(w) = w.
III. bj ≤ (j − 1)r for all j ∈ [n] whenever bj > w.
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Example 4.2. Let r = 1, k = 2, and n = 5. The coefficient of t5 in −P(1)(t)−2 is

2h3h
2
1 + 2h22h1 + 4h3h2 + 4h4h1 + 2h5.

This symmetric function is the Frobenius characteristic of the action of S5 on all sequences
(a1, . . . , a5) ∈ P5 whose increasing rearrangement b1 ≥ · · · ≥ b5 satisfies either of the condi-
tions (1) b1 = 1, b2 ≤ 1 (so in fact b2 = 1), b3 ≤ 2, b4 ≤ 3, b5 ≤ 3, or (2) b1 = b2 = 2, b3 ≤ 2
(so in fact b3 = 2), b4 ≤ 3, b5 ≤ 4. We get the fourteen increasing sequences (orbit rep-
resentatives) 11111, 11112, 11113, 11122, 11123, 11133, 11222, 11233, 11223, 22222, 22223,
22224, 22233, 22234.

A special case. When k ∈ {1, . . . , r}, for all w ∈ [k] we have q(w) = 1 and (n − 1)r ≤
rn− k ≤ w− 1+ rn− k. Therefore (4.4) becomes bj ≤ (j− 1)r for all j > 1, so b having the
form (4.2) is equivalent to b1 ∈ [k] and (b2, b3, . . . , bn) is a weakly increasing (r, r)-parking
functions of length n− 1. Thus Theorem 4.1 becomes the following result.

Theorem 4.3. If k ∈ {1, . . . , r}, then G
(r,k)
n is the Frobenius characteristic of the action of

Sn on the distinct n-tuples we get by adjoining 1, 2, . . . , or k to (r, r)-parking functions of
length n−1; or equivalently, the n-tuples whose increasing rearrangements start with 1, 2, . . . ,
or k and followed by weakly increasing (r, r)-parking functions of length n− 1.

Theorem 4.1 is a consequence of the following result, which will be proved right below
Proposition 4.6.

Proposition 4.4. Suppose that rn − k > 0. Given a = (a1, . . . , an) ∈ [rn − k]n, let p ∈
[rn − k] be the smallest positive integer i such that the increasing rearrangements of a and
(a+ p) mod rn− k coincide, where a+ i := (a1 + i, . . . , an + i) and aj + i mod rn− k is the
aj + i taken modulo rn− k so that aj + i ∈ [rn− k]; equivalently, p = #Ra, where Ra is the
set of increasing rearrangements of vectors a+ i mod rn− k (i ∈ Z).

Then the number of increasing vectors b ∈ S such that the increasing rearrangement of
(b mod rn− k) is in Ra is pk

rn−k
.

Theorem 4.1 follows as each b ∈ S corresponds to a unique set Ra (the vector a may not
be unique).

Remark 4.5. The reason why we need the vector b mod rn − k is that we may have b ∈
S\[rn− k]n and b mod rn− k ∈ S. For instance, when r = 2, n = 4, k = 3, rn− k = 5, we
have (6, 2, 2, 4) ∈ S\[rn− k]n and (1, 2, 2, 4) ∈ S.

A special case. When k ∈ {1, . . . , r}, it follows from (4.3) that bn ≤ (n− 1)r ≤ rn− k for
all b ∈ S; therefore b mod rn− k = b. In other words, we only need to consider b instead of
b mod rn− k. Thus, combined with Theorem 4.1, Proposition 4.4 becomes as follows.

Proposition 4.6. If k ∈ {1, . . . , r}, then for any given (a1, . . . , an) ∈ [rn − k]n, there are
exactly k i’s (mod rn− k) such that the vector (a1 + i, . . . , an + i) mod rn− k is an (r, r)-
parking function of length n − 1 adjoined by 1, 2, . . . , or k, where aj + i mod rn − k is the
aj + i taken modulo rn− k so that aj + i ∈ [rn− k].

Proof of Proposition 4.4. The case k = 0 is trivial. Assume that k ≥ 1. It suffices to
prove the proposition for a weakly increasing sequence a = (a1, . . . , an) with a1 = 1. For
convenience, let N := rn− k > 0 and denote the increasing rearrangement of a sequence x
by x↑.
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We have two cases: p < N and p = N .

Case 1. p < N .

Then a has the form:
(
1, . . . , 1
︸ ︷︷ ︸

d 1’s

, 1 + p, . . . , 1 + p
︸ ︷︷ ︸

d (1+p)’s

, 1 + 2p, . . . , 1 + 2p
︸ ︷︷ ︸

d (1+2p)’s

, . . . , 1 + (ℓ− 1)p, . . . , 1 + (ℓ− 1)p
︸ ︷︷ ︸

d (1+(ℓ−1)p)’s

)
,(4.5)

where d, ℓ ∈ P with ℓ > 1 such that ℓd = n and ℓp = N . Thus k = rn−N = (rd− p)ℓ.
The following fact can be verified immediately from the definition of S and Ra.

Lemma 4.7. If b ∈ S, then b+i ∈ S for all i ∈ {0,−1, . . . ,−b1+1}. Further, if (b mod N)↑ ∈
Ra, then (b+ i mod N)↑ ∈ Ra.

In particular, when i = −b1 + 1, the smallest coordinate of b+ i is 1. According to (4.4),
we have b + i ∈ [N ]n, and therefore b + i mod N = b + i. If (b mod N)↑ ∈ Ra, then
(b+ i)↑ = (b+ i mod N)↑ ∈ Ra.

We also need the following lemma.

Lemma 4.8. We have a + i ∈ S if and only if i ∈ {0, 1, . . . , rd− p− 1}.

On the strength of Lemmas 4.7 and 4.8 and the fact that Ra =
{
a + i : 0 ≤ i ≤ p − 1

}
,

the number of vectors b ∈ S such that (b mod rn− k)↑ ∈ Ra is rd− p = pk

N
, as desired.

Proof of Lemma 4.8. If a+ i ∈ S with the form (4.2), then applying (4.3) to a+ i and d+1
yields 1 + p+ i ≤ rd, and therefore i ≤ rd− p− 1.

On the other hand, for any i ∈ {0, 1, . . . , rd−p−1}, we have a+ i ∈ S. In fact, the vector

a+ i =
(
w, . . . , w
︸ ︷︷ ︸

d w’s

, w + p, . . . , w + p
︸ ︷︷ ︸

d (w+p)’s

, w + 2p, . . . , w + 2p
︸ ︷︷ ︸

d (w+2p)’s

, . . . , w + (ℓ− 1)p, . . . , w + (ℓ− 1)p
︸ ︷︷ ︸

d (w+(ℓ−1)p)’s

)
,

where w = 1+ i ≤ rd− p ≤ (rd− p)ℓ = k. Property I then follows from (a+ i)n − (a+ i)1 =
(ℓ− 1)p < ℓp = N . Property II holds since q(·) is weakly increasing and q(w) ≤ q(rd) = d.
Finally, Property III is satisfied because (a+i)jd+1 = · · · = (a+i)(j+1)d = w+jp ≤ j(w+p) ≤
j(rd− p+ p) = (jd)r for all j ∈ [ℓ− 1]. �

Case 2. p = N .

Namely, the vectors (a+ i mod N)↑, i ∈ [N ] are distinct. We will determine explicitly the
pk

rn−k
= k vectors in S desired in Proposition 4.4.

For convenience, we denote xj = aj+1 (≤ N), j = 0, . . . , n − 1, and consider the weakly
increasing sequence x = (x0, . . . , xn−1) with x0 = 1. Then x ∈ S if and only if xj ≤ rj for
all j ∈ [n− 1]. In general, a weakly increasing integer sequence y is in S if and only if

I′. y0 = w for some w ∈ [k], and yn−1 − y0 < N .
II′. yq(w)−1 = w.
III′. yj ≤ jr for all j ∈ [n− 1] whenever yj > w.

In the rest of the proof, all variables are integers, and for a vector y, we denote by yj its
(j + 1)-th coordinate.

Let ∆j := rj − xj , j = 0, 1, . . . , n− 1. Then ∆0 = −1, and x ∈ S if and only if ∆j ≥ 0 for
all j ∈ [n− 1].
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Lemma 4.9. There exists i ∈ Z such that the vector (x+ i mod N)↑ ∈ S, with the smallest
coordinate equal to 1. More precisely, if x ∈ S, then we can take i = 0; otherwise, take
i = 1− xj, where j is the largest number in [n− 1] such that ∆j = minj′∈[n−1]∆j′.

Proof. Assume that x /∈ S, then ∆j ≤ −1 and j ∈ [n − 1] for the j taken in the lemma.
Taking i = 1− xj , we get

x+ i mod N

=
(
2− xj +N, x1 − xj + 1 +N, . . . , xj−1 − xj + 1 +N, 1, xj+1 − xj + 1, . . . , xn−1 − xj + 1

)
,

and thus

α := (x+ i mod N)↑

=
(
1, xj+1 − xj + 1
︸ ︷︷ ︸

α1

, . . . , xn−1 − xj + 1
︸ ︷︷ ︸

αn−1−j

, 2− xj +N
︸ ︷︷ ︸

αn−j

, x1 − xj + 1 +N
︸ ︷︷ ︸

αn−j+1

, . . . , xj−1 − xj + 1 +N
︸ ︷︷ ︸

αn−1

)
.

It follows from the definition of j that xj ≥ rj+1, and for j′ > j we have ∆j′ ≥ ∆j+1, and
therefore xj′−xj ≤ r(j′−j)−1; for j′ < j we have ∆j′ ≥ ∆j , and therefore xj′−xj ≤ r(j′−j).
Thus

αu = xj+u − xj + 1 ≤ r(j + u− j)− 1 + 1 = ru, u ∈ [n− 1− j],

αn−j = 2− xj + rn− k ≤ 2− rj − 1 + rn− 1 = r(n− j),

αn−j+u = xu + 1− xj + rn− k ≤ r(u− j + n), u ∈ [j − 1].

Hence α ∈ S. �

On the strength of Lemma 4.9, we can assume that x ∈ S with x0 = 1. The following
result determines the k vectors in S desired in Proposition 4.4.

Lemma 4.10. Let 0 = j0 < j1 < j2 < · · · be the elements of the subset

J∗ := {j ∈ J : ∆j′ > ∆j , for all n− 1 ≥ j′ > j} ⊆ J := {0} ∪ {j ∈ [n− 1] : xj > xj−1}

and m be the nonnegative integer determined by

−1 = ∆j0 < ∆j1 < · · · < ∆jm ≤ k − 2 < ∆jm+1 < · · ·

(if jm+1 does not exist, then set jm+1 and ∆jm+1 to be infinity). In particular, j1 is the largest
number in [n− 1] such that ∆j1 = minj∈[n−1]∆j ≥ 0.

Then y is a weakly increasing sequence in S such that (y mod N)↑ ∈ Rx if and only if

(1) y = x+ i with 0 ≤ i ≤ ∆j1 ∧ (k − 1), where ∧ represents the minimum function; or

(2) y = (x+ i1 mod N)↑ + i2 with
(i) i1 = 1− xjv for some v ∈ [m], and
(ii) 0 ≤ i2 = y0 − 1 ≤ ∆jv+1 ∧ (k − 1)−∆jv − 1 < k − 1.

Further, the k vectors given in (1) and (2) are distinct.

Remark 4.11. Note that (1) is the special case of (2) with i1 = 0 = v and i2 = i.

Proof. As a consequence of p = N , the vectors (x+ i1 mod N)↑ with i1 given in (1) (i1 = i)
and (2), whose smallest coordinates are all 1, are distinct. Thus the k vectors given in (1)
and (2) are distinct.
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(1) If y = x+ i ∈ S, then by definition we have 1 ≤ (x+ i)0 ≤ k and (x+ i)j1 ≤ rj1. Thus
0 ≤ i ≤ ∆j1 ∧ (k − 1).

Conversely, for any y = x + i with 0 ≤ i ≤ ∆j1 ∧ (k − 1), we have (y mod N)↑ ∈ Rx,
yn−1 − y0 = xn−1 − x0 < N , and 1 ≤ w := y0 = (x+ i)0 ≤ (1 + ∆j1) ∧ k ≤ k, and Property
I′ follows.

For Property II′, notice that for any j ∈ [n−1] such that xj ≥ 2, since rj−xj = ∆j ≥ ∆j1 ,
we have j ≥ (2 + ∆j1)/r > w/r, and therefore j ≥ q(w). Hence yq(w)−1 = w.

Finally for Property III′, for all j ∈ [n− 1], since ∆j1 ≤ ∆j , we get xj − xj1 ≤ r(j − j1),
and therefore yj = (x+ i)j = xj + i ≤ r(j − j1) + ∆j1 = rj.

(2) If y is a weakly increasing sequence in S such that (y mod N)↑ ∈ Rx but y does not
have the form described in (1), then by Lemma 4.7 we get α := y − i2 ∈ S, α0 = 1 and
α ∈ Rx, where i2 = y0 − 1 ≥ 0.

Since α 6= x, we have α = (x + i1 mod N)↑ for some i1 ∈ {−1,−2, . . . , 1 − N}. Recall
that α0 = 1, and thus i1 = 1− xj for some j ∈ [n− 1]. If there is more than one j such that
i1 = 1− xj , we choose the smallest one, i.e., the j ∈ J . Then

x+ i1 mod N

=
(
2− xj +N, x1 − xj + 1 +N, . . . , xj−1 − xj + 1 +N, 1, xj+1 − xj + 1, . . . , xn−1 − xj + 1

)
,

and

α := (x+ i1 mod N)↑

=
(
1, xj+1 − xj + 1
︸ ︷︷ ︸

α1

, . . . , xn−1 − xj + 1
︸ ︷︷ ︸

αn−1−j

, 2− xj +N
︸ ︷︷ ︸

αn−j

, x1 − xj + 1 +N
︸ ︷︷ ︸

αn−j+1

, . . . , xj−1 − xj + 1 +N
︸ ︷︷ ︸

αn−1

)
.

Recall that α ∈ S if and only if

αu ≤ ru, for all u ∈ [n− 1].(4.6)

Applying to u = 1, . . . , n− 1− j leads to

xj′ − xj + 1 ≤ r(j′ − j), i.e., ∆j < ∆j′, for all j′ < j ≤ n− 1;

applying to u = n− j leads to

2− xj + rn− k ≤ r(n− j), i.e., ∆j ≤ k − 2.

Therefore j = jv for some v ∈ [m].
Conversely, from the above argument we see that if i1 = 1 − xj with j = jv for some

v ∈ [m], then we have αu ≤ ru for all u ∈ [n− j]. Further, we have

αn−j+u = xu − xj + 1 +N ≤ ru+∆j − rj + 1 + rn− k < r(n− j + u)

for all u ∈ [j − 1]. Hence α ∈ S.

It remains to show that α + i2 ∈ S if only if i2 satisfies the inequality in (ii).
If α + i2 ∈ S, then applying (4.6) to α′ := α + i2 and u = jv+1 − jv (if exists) leads to

xjv+1 − xjv + 1 + i2 ≤ r(jv+1 − jv), i.e., i2 ≤ ∆jv+1 −∆jv − 1;

applying (4.6) to α′ := α + i2 and u = n− jv leads to

2− xjv + rn− k + i2 ≤ r(n− jv), i.e., i2 ≤ k − 2−∆jv .

Recall that i2 = y0 − 1 ≥ 0, and thus i2 satisfies the inequality in (ii).
12



Conversely, if i2 satisfies the inequality in (ii), then α′ ∈ S. In fact, we have 1 ≤ w :=
1 + i2 ≤ k and α′

n−1 − α′
0 = αn−1 − α0 < N , and Property I′ then follows.

For Property II′, by the definition of jv+1, we have ∆u ≥ ∆jv+1 for any jv < u ∈ J , and
hence for any jv < u ≤ n− 1 such that xu > xjv . Thus ru− xu ≥ ∆jv+1 . It follows that

ru ≥ ∆jv+1 + xu > ∆jv+1 + xjv = ∆jv+1 + rjv −∆jv

and
u− jv > (∆jv+1 −∆jv)/r ≥ w/r, i.e., u ≥ q(w) + jv.

Hence α′
q(w)−1 = xq(w)−1+jv − xjv + w = w.

Finally for Property III′, from the above argument we see that α′
u ≤ ru for u = jv+1 −

jv, n− jv. Further, we have

α′
n−jv+u = xu − xjv + 1 +N + i2 ≤ ru− xjv + 1 + rn− k + k − 2−∆jv < r(n− jv + u)

for all u ∈ [jv−1]. For jv+1 ≤ u ≤ n−1 such that xu > xjv and u ∈ J , we have ∆u ≥ ∆jv+1

by the definition of jv+1, and therefore

α′
u−jv

= xu − xjv + w ≤ (ru−∆jv+1)− xjv + (∆jv+1 −∆jv) = r(u− jv).

Hence α′ ∈ S, as desired. �

�

Note. We have been unable to find a satisfactory q-analogue of Theorem 4.1, generalizing
Theorem 3.3.

5. The r-parking function basis

Equation (1.6) and other considerations suggest looking at products of the symmetric

functions F
(r)
n for various values of n. Thus for any partition λ define

F
(r)
λ = F

(r)
λ1
F

(r)
λ2

· · · ,

where F0 = 1.
Recall that Λ denotes the ring of all symmetric functions that can be written as an integer

linear combination of the monomial symmetric functions mλ (or equivalently, sλ, hλ, or eλ).

Proposition 5.1. Fix r ≥ 1. Then the symmetric functions F
(r)
λ , where λ ranges over all

partitions of all n ≥ 0, form an integral basis for the ring Λ.

Proof. We need to show that for each n, the set {F (r)
λ : λ ⊢ n} is an integral basis for the

(additive) group Λn of all homogeneous symmetric functions of degree n contained in Λ. Let
λ1, λ2, . . . be any ordering of the partitions of n that is compatible with refinement, that

is, if λi is a refinement of λj then i ≤ j. Now F
(r)
n = hn + · · · ∈ Λn. Hence F

(r)
λ = hλ+

terms involving hµ where µ refines λ. Hence the transition matrix for expressing the F
(r)
λ ’s

in terms of the hλ’s is lower triangular with 1’s on the main diagonal. Since the hλ’s form

an integral basis, the same is true of the F
(r)
λ ’s. �

Now that for each r ≥ 1 we have this “parking function basis” {F
(r)
λ }, we can ask about

its expansion in terms of other bases and vice versa. If we restrict ourselves to the six
“standard” bases (where the power sums pλ are a basis over Q but not Z), we thus have
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twelve transition matrices to consider. We can also ask about various scalar products such

as 〈F (r)
λ , F

(r)
µ 〉. Moreover, we could also consider the basis {F̃ (r)

λ } dual to {F (r)
λ }, i.e.,

〈F
(r)
λ , F̃ (r)

µ 〉 = δλµ.

However, these dual bases will not yield any new coefficients since the dual basis to a standard
basis is also a standard basis (up to a normalizing factor in the case of pλ). We have not
systematically investigated these problems. Some miscellaneous results are below.

We first consider scalar products 〈F
(r,k)
µ , F

(r,k)
λ 〉. We can give an explicit formula when

µ = (n). In fact, we can give a more general result where F
(r,k)
λ is replaced with a “mixed”

product.

Theorem 5.2. Let λ ⊢ n, and let r, r1, r2, . . . be positive integers. Let k, k1, k2, . . . be integers
or even indeterminates. Then

〈

F (r,k)
n ,

∏

i

F ri,ki
λi

〉

=
k

rn+ k

∏

i≥1

ki
riλi + ki

(
(rn+ k)(riλi + ki) + λi − 1

λi

)

.

First proof. If λ = (λ1, λ2, . . . ) then write [tλ] for the operator that takes the coefficient of
tλ1
1 t

λ2
2 · · · . By equation (2.4) we have
〈

F (r,k)
n ,

∏

i

F ri,ki
λi

〉

=
k

rn+ k

∏ ki
λi + ki

[tλ]
〈
H(1)rn+k, H(t1)

r1λ1+k1H(t2)
r2λ2+k2 · · ·

〉
.

Writing H(u)b =
∏
(1− xiu)

b, taking logarithms, expanding in terms of the power sums pk,
and then exponentiating, we get the well-known result

H(u)b =
∑

µ

z−1
µ bℓ(µ)pµu

|µ|,

where µ ranges over all partitions of all integers j ≥ 0. (For the case b = 1, see [6, (7.22)].)
Since 〈pλ, pµ〉 = zλδλµ, we get
〈

F (r,k)
n ,

∏

i

F
(ri,ki)
λi

〉

=
k

rn+ k

∏

i

(
ki

riλi + ki
·

[tλ]

〈
∑

u⊢n

z−1
µ (rn+ k)ℓ(µ)pµ,

∏

i≥1

(
∑

ν⊢λi

z−1
ν (riλi + ki

)ℓ(ν)

t
|ν|
i pν

〉



=
k

rn+ k

∏

i

ki
riλi + ki

·
∏

i≥1

(
∑

ν⊢λi

z−1
ν (rn+ x)ℓ(ν)(riλi + ki)

ℓ(ν)

)

.(5.1)

Now in general (equivalent for instance to [5, Prop. 1.3.7]),

∑

ν⊢m

z−1
ν uℓ(ν) =

(
u+m− 1

m

)

.

Hence the proof follows immediately from equation (5.1).
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Second proof. From equation (2.4) we see that

〈

F (r,k)
n ,

∏

i

F ri,ki
λi

〉

=
k

rn+ k

(
∏

i≥1

ki
riλi + ki

)

·

〈
∑

a1+···+arn+k=n

ha1 · · ·harn+k
,
∏

i




∑

bi,1+···+bi,rin+ki
=λi

hbi,1 · · ·hbi,rin+ki





〉

,

where ai, bi,j ≥ 0. Let

Z =
k

rn+ k

∏

i≥1

ki
riλi + ki

.

Now 〈hλ, hµ〉 is equal to the number of matrices (aij)i,j≥1 of nonnegative integers with row

sum vector λ and column sum vector µ [6, (7.31)]. Hence 1
Z

〈

F
(r,k)
n ,

∏

i F
ri,ki
λi

〉

is equal to the

total number of (rn+ j)× (
∑

i(ri + n+ ki)) matrices of nonnegative integers whose entries
sum to n, such that the first r1λ1 + k1 columns sum to λ1, the next r2λ2 + k2 columns sum
to λ2, etc. Since

∑
λi = n, if the conditions on the columns is satisfied then the entries will

automatically sum to n. By elementary and well-known reasoning, the number of ways to
write λi as an ordered sum of (rn+ k)(rin+ ki) nonnegative integers is

(
(rn+k)(riλi+ki)+λi−1

λi

)
,

and the proof follows. �

We now consider the expansion of the symmetric functions pλ, hλ, and eλ in terms of the

basis F
(r)
n (for fixed r, which we may even regard as an indeterminate).

Proposition 5.3. For n ≥ 1 we have

F (r,−rn−1)
n = (−1)n(rn+ 1)en

F (r,−rn)
n = −rpn

F (r,−rn+1)
n = (1− rn)hn.

Proof. Putting k = −rn− 1 in equation (2.3) gives (−1)n(rn + 1)
∑

λ⊢n z
−1
λ (−1)n−ℓ(λ)pλ. It

is well-known that this sum is just en, and the proof of the first equation follows. (We could
also substitute k = −rn − 1 in equation (2.2) and simplify.) The other two equations are
similar. �
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Now by Proposition 5.3 we have (writing di = di(λ))

(−1)n(rn+ 1)en = F (r,−rn−1)
n

= [tn]

(
∑

i≥0

F
(r)
i ti

)−rn−1

= [tn]
∑

j≥0

(−1)j
(
rn+ j

j

)(
∑

i≥1

F
(r)
i ti

)j

=
∑

a1+···aj=n

(−1)j
(
rn+ j

j

)

F (r)
a1

· · ·F (r)
aj

=
∑

λ⊢n

(−1)ℓ(λ)
(

rn+ ℓ(λ)

d1, d2, . . . , rn

)

F
(r)
λ ,

where the penultimate sum is over all 2n−1 compositions of n. We have therefore expressed

en as a linear combination of F
(r)
λ ’s. In exactly the same way we obtain

−rpn =
∑

λ⊢n

(−1)ℓ(λ)
(

rn + ℓ(λ)− 1

d1, d2, . . . , rn− 1

)

F
(r)
λ

−(rn− 1)hn =
∑

λ⊢n

(−1)ℓ(λ)
(

rn + ℓ(λ)− 2

d1, d2, . . . , rn− 2

)

F
(r)
λ .

(For r = n = 1, the last equation becomes 0 = 0, but it is clear that h1 = F
(r)
1 .) Since

{eµ}, {pµ}, {hµ} and {F
(r)
λ } are multiplicative bases, we have in principle expressed each

eµ, pµ, and hµ as a linear combination of F
(r)
λ ’s. We leave open, however, whether there is

some more elegant form of these expansions, e.g., a simple combinatorial interpretation of
the coefficients.

Similarly, since Theorem 2.1 in the case k = 1 gives the expansion of F
(r)
n in terms of the

multiplicative bases pµ, hµ, and eµ, we in principle also have an expansion of F
(r)
λ in terms

of these bases, but perhaps a better description is available. We cannot expect a simple
product formula for the coefficients in general since for instance the coefficient of p3p6 in the

power sum expansion of F
(1)
(3,2,1,1,1,1) is equal to 2 · 7 · 157/3.
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