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1 Introdu
tion.

Algebrai
 
ombinatori
s is alive and well at the dawn at the new millenium.

Algebrai
 
ombinatori
s is diÆ
ult to de�ne pre
isely; roughly speaking it in-

volves obje
ts that 
an be interpreted both 
ombinatorially and algebrai
ally,

e.g., as the 
ardinality of a 
ombinatorially de�ned set and the dimension of

an algebrai
ally de�ned ve
tor spa
e. Sometimes the 
ombinatorial inter-

pretation is used to obtain an algebrai
 result, and sometimes vi
e versa.

Mathemati
ians have been engaged in algebrai
 
ombinatori
s at least sin
e

Euler (in parti
ular, his work on partitions), but it wasn't until the 1960's,

primarily under the in
uen
e of Gian-Carlo Rota, that there was a systemati


attempt to establish the foundations of algebrai
 
ombinatori
s and bring it

into the mathemati
al mainstream. This e�ort has been highly su

essful,

and algebrai
 
ombinatori
s has by now be
ome a mature and thriving dis-


ipline.

We have 
hosen three major breakthroughs to highlight re
ent work in

algebrai
 
ombinatori
s. All three areas have initiated a 
urry of further

work and suggest many further dire
tions of resear
h to keep pra
titioners

of algebrai
 
ombinatori
s o

upied well into the new 
entury. Our 
hoi
e

of topi
s was partially in
uen
ed by the relative ease in des
ribing the main

results to nonexperts in algebrai
 
ombinatori
s. Mu
h other outstanding

work has been done that is not dis
ussed here.
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2 The saturation 
onje
ture.

The saturation 
onje
ture 
on
erns 
ertain integers known as Littlewood-

Ri
hardson 
oeÆ
ients. Given the theme of this paper, it is not surprising

that they have both an algebrai
 and a 
ombinatorial de�nition. First we

dis
uss the algebrai
 de�nition, whi
h is more natural than the 
ombinatorial

one.

Let GL(n; C ) denote the group of all invertible transformations from an n-

dimensional 
omplex ve
tor spa
e V to itself. After 
hoosing an ordered basis

for V we may identify GL(n; C ) with the group of n�n nonsingular matri
es

over the 
omplex numbers (with the operation of matrix multipli
ation).

Consider the map ' : GL(2; C ) ! GL(3; C ) de�ned by

'

�

a b


 d

�

=

2

4

a

2

2ab b

2

a
 ad+ b
 bd




2

2
d d

2

3

5

:

This 
an be 
he
ked to be a group homomorphism (and hen
e a representa-

tion of GL(2; C ) of degree 3). Moreover, the entries of '(A) are polynomial

fun
tions of the entries of A. Hen
e ' is a polynomial representation of

GL(2; C ). If A 2 GL(2; C ) has eigenvalues x; y, then it 
an also be 
he
ked

that '(A) has eigenvalues x

2

; xy; y

2

. De�ne the 
hara
ter 
har' of ' to be

the tra
e of '(A), regarded as a fun
tion of the eigenvalues x; y of A. Hen
e


har' = x

2

+ xy + y

2

:

It was �rst shown by S
hur that the polynomial representations of GL(n; C )

are 
ompletely redu
ible, i.e., a dire
t sum of irredu
ible representations. The

nequivalent irredu
ible polynomial representations '

�

of GL(n; C ) are in-

dexed by partitions � = (�

1

; : : : ; �

n

) of length at most n, i.e., �

i

2 Z and

�

1

� � � � � �

n

� 0. Moreover, 
har'

�

is a symmetri
 fun
tion s

�

(x

1

; : : : ; x

n

)

that had been originally de�ned by Cau
hy and Ja
obi and is now known as

a S
hur fun
tion. A well-known property of S
hur fun
tions is their stability :

s

�

(x

1

; : : : ; x

n

; 0) = s

�

(x

1

; : : : ; x

n

):

For this reason we 
an let n ! 1 and 
onsider the S
hur fun
tion s

�

in

in�nitely many variables x

1

; x

2

; : : : and spe
ialize to x

1

; : : : ; x

n

when deal-

ing with GL(n; C ). For more information on symmetri
 fun
tions and the

representation theory of GL(n; C ), see [8℄[30℄[37℄.

2



If A : V ! V and B : W ! W are linear transformations on �nite-

dimensional ve
tor spa
es, then

tr(A
 B) = tr(A) � tr(B);

where A
 B denotes the tensor (or Krone
ker) produ
t of A and B, a
ting

on V 
W . Hen
e if �, �, and � are partitions and we set




�

��

= mult('

�

; '

�


 '

�

);

the multipli
ity of '

�

in the tensor produ
t '

�


'

�

(when written as a dire
t

sum of irredu
ible representations), then

s

�

s

�

=

X

�




�

��

s

�

:

The nonnegative integers 


�

��

are known as Littlewood-Ri
hardson 
o-

eÆ
ients, and the Littlewood-Ri
hardson rule [8, Ch. 5℄[30, xI.9℄[37, Ap-

pendix A1.3℄ gives a 
ombinatorial interpretation of them (whi
h we will not

state here). If m is a positive integer and � = (�

1

; �

2

; : : :) a partition, then

write m� = (m�

1

; m�

2

; : : :).

Saturation 
onje
ture. If 


m�

m�;m�

6= 0, then 


�

��

6= 0.

The saturation 
onje
ture was proved re
ently by Allen Knutson and

Teren
e Tao [26℄[27℄ using a new honey
omb model for des
ribing Littlewood-

Ri
hardson 
oeÆ
ients. An elegant exposition of the proof was given by

Anders Bu
h [5℄, and a detailed survey of all the material in this se
tion (and

more) was given by William Fulton [9℄. A proof of the saturation 
onje
ture

based on representations of quivers was later given by Harm Derksen and

Jerzy Weyman [7℄.

Why is the proof of the saturation 
onje
ture an important breakthrough?

The answer is that it is related in a surprising way to a number of other topi
s.

The �rst 
on
erns the eigenvalues of hermitian matri
es. Let A;B;C be n�n

hermitian matri
es. Hen
e their eigenvalues are real. Denote the eigenvalues

of A as

� : �

1

� � � � � �

n

;
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and similarly � and 
 for B and C. Considerable attention has been given

to the following problem.

Problem. Chara
terize those triples (�; �; 
) for whi
h there exist her-

mitian matri
es A +B = C with eigenvalues �, �, and 
.

By taking tra
es we see that

X




i

=

X

�

i

+

X

�

i

: (1)

After mu
h work by a number of resear
hers, A. Horn 
onje
tured a 
omplete


hara
terization of triples (�; �; 
), 
onsisting of (1) together with linear

inequalities of the form

X

k2K




k

�

X

i2I

�

i

+

X

j2J

�

j

; (2)

for 
ertain sets

I; J;K � f1; : : : ; ng; jIj = jJ j = jKj:

For instan
e, when n = 2 Horn's inequalities (whi
h are easy to show that

together with (1) 
hara
terize (�; �; 
) in this 
ase) be
ome




1

� �

1

+ �

1




2

� �

2

+ �

1




2

� �

1

+ �

2

:

For n = 3 there are twelve inequalities, as follows:




1

� �

1

+ �

1




2

� min(�

1

+ �

2

; �

2

+ �

1

)




3

� min(�

1

+ �

3

; �

2

+ �

2

; �

3

+ �

1

)




1

+ 


2

� �

1

+ �

2

+ �

1

+ �

2




1

+ 


3

� min(�

1

+ �

2

+ �

1

+ �

3

; �

1

+ �

3

+ �

1

+ �

2

)




2

+ 


3

� min(�

1

+ �

2

+ �

2

+ �

3

; �

1

+ �

3

+ �

1

+ �

3

; �

2

+ �

3

+ �

1

+ �

2

):

The 
onne
tion between the Saturation Conje
ture and Horn's 
onje
ture

was given by Alexander Klya
hko [24℄.
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Theorem. The Saturation Conje
ture implies Horn's 
onje
ture.

A more pre
ise 
onne
tion between Littlewood-Ri
hardson 
oeÆ
ients

and eigenvalues of hermitian matri
es is provided by the following result,

impli
it in the work of He
kman [22℄ and more expli
it in Klya
hko [24℄.

Theorem. Let �; �, and 
 be partitions of length at most n. The Sat-

uration Conje
ture implies that the following two 
onditions are equivalent:

� 





��

6= 0.

� There exist n�n hermitian matri
es A+B = C with eigenvalues �; �,

and 
.

Sin
e equation (2) 
onsists of linear inequalities, the two theorems above

show that the nonvanishing of 





��

depends on (expli
it) linear inequalities

among the 
oordinates of �; �; 
. Thus for �xed n the points (�; �; 
) 2 R

3n

for whi
h 





��

6= 0 are the integer points in a 
ertain 
onvex 
one. Hen
e the

subje
t of polyhedral 
ombinatori
s is 
losely asso
iated with the theory of

Littlewood-Ri
hardson 
oeÆ
ients. For further information on this point of

view, see [41℄.

The theorems stated above involve hermitian matri
es. It is known [9,

Thm. 3℄ that exa
tly the same results hold for the 
lass of real symmetri


matri
es.

There are a number of other situations in whi
h Littlewood-Ri
hardson


oeÆ
ients play a surprising role. These situations are thoroughly dis
ussed

in [9℄. We mention one of them here. Given a partition � = (�

1

; �

2

; : : :) and

a prime p, let G be a (�nite) abelian p-group of type �, i.e.,

G

�

=

�

Z=p

�

1

Z

�

�

�

Z=p

�

2

Z

�

� � � � :

Given further partitions � and �, let g

�

��

(p) denote the number of subgroups

H of G of type � su
h that the quotient group G=H has type �.

Theorem. (a) g

�

��

(p) is a polynomial fun
tion of p with integer 
oeÆ-


ients.
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(b) For any prime p we have that g

�

��

(p) 6= 0 if and only if 


�

��

6= 0.

The polynomial g

�

��

(t) is 
alled a Hall polynomial after the pioneering

work of Philip Hall [20℄. Hall established the above theorem, ex
ept that in

part (b) he only showed that g

�

��

(t) vanishes identi
ally (as a polynomial in

t) if and only if 


�

��

= 0. Subsequently Miller Maley [31℄ showed that the

polynomial g

�

��

(t + 1) has nonnegative 
oeÆ
ients, from whi
h (b) follows.

For an exposition of the basi
 properties of Hall polynomials, see [30, Chs. II

and III.2℄. The theory of Hall polynomials holds in the more general 
ontext

of the ring of integers (i.e., the unique maximal order) of a division algebra

of �nite rank over a p-adi
 �eld [30, Remark 3, p. 179℄ or even more generally

for q-primary latti
es [38, Thm. 4.81℄.

3 The n! and (n + 1)

n�1


onje
tures.

The n! and (n+1)

n�1


onje
tures 
on
ern the a
tion of the symmetri
 group

S

n

on two sets (x

1

; : : : ; x

n

) and (y

1

; : : : ; y

n

) of n variables. In order to appre-


iate these 
onje
tures, knowledge of the situation for one set of n variables

is of value. We therefore �rst review this theory (for whi
h the proofs are

mu
h easier). S

n

a
ts on the polynomial ring A = C [x

1

; : : : ; x

n

℄ by permut-

ing variables, i.e., for w 2 S

n

let w � x

i

= x

w(i)

and extend to all of A in the

obvious way. Let

A

S

n

= ff 2 A : w � f = f 8w 2 S

n

g;

the ring of invariants of the a
tion of S

n

on A. The invariant polynomials

f 2 A

S

n

are the symmetri
 polynomials in the variables x

1

; : : : ; x

n

(over C ).

The \fundamental theorem of symmetri
 fun
tions" asserts that

A

S

n

= C [e

1

; : : : ; e

n

℄;

a polynomial ring in the algebrai
ally independent elementary symmetri


fun
tions

e

k

=

X

1�i

1

<���<i

k

�n

x

i

1

� � �x

i

k

:

Regard n as �xed and de�ne the ring

R = A=(e

1

; : : : ; e

n

):

6



The ring R inherits the usual grading from A, i.e.,

R = R

0

� R

1

� � � � ;

where R

i

is spanned by (the images of) all homogeneous polynomials of

degree i in the variables x

1

; : : : ; x

n

. Be
ause the generators e

1

; : : : ; e

n

of R

S

n

are algebrai
ally independent of degrees 1; 2; : : : ; n, it is easy to see that

dim

C

R = n!;

and more generally,

X

i

dim

C

(R

i

) q

i

= (1 + q)(1 + q + q

2

) � � � (1 + q + � � �+ q

n�1

); (3)

the standard \q-analogue" of n!.

Sin
e the ideal (e

1

; : : : ; e

n

) of R is S

n

-invariant, S

n

a
ts on R. Moreover,

this a
tion respe
ts the grading of R, i.e., w � R

i

= R

i

for all w 2 S

n

. Thus

R is in fa
t a graded S

n

-module, and we 
an ask, as a re�nement of (3),

for the multipli
ity of ea
h irredu
ible representation of S

n

in R

i

. For the

a
tion on R as a whole the situation is simple to des
ribe (and not diÆ
ult

to prove): R a�ords the regular representation of S

n

, i.e., the multipli
ity of

ea
h irredu
ible representation is its degree (or dimension).

To des
ribe the S

n

-module stru
ture of R

i

, we need some understanding

of the (inequivalent) irredu
ible representations of S

n

. They are indexed

by partitions � of n (denoted � ` n), i.e, � = (�

1

; : : : ; �

`

) 2 Z

`

where

�

1

� � � � � �

`

> 0 and

P

�

i

= n. The dimension of the irredu
ible S

n

-

module M

�

indexed by � ` n is denoted by f

�

and is equal to the number

of standard Young tableaux (SYT) of shape �, i.e., the number of ways to

insert the numbers 1; 2; : : : ; n (without repetition) into an array of shape �

(i.e., left-justi�ed with �

i

entries in row i) so that every row and 
olumn is

in
reasing. For instan
e f

(3;2)

= 5, as shown by the �ve SYT

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5

4 5 3 5 3 4 2 5 2 4

:

There is also a simple expli
it formula (e.g., [30, Exam. I.5.2℄[37, Cor. 7.21.6℄),

known as the hook-length formula, for f

�

.
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Sin
e R a�ords the regular representation of S

n

, the multipli
ity of M

�

in R is equal to f

�

. Thus we would like to des
ribe the multipli
ity of M

�

in R

i

as the number of SYT T of shape � with some additional property

depending on i. This property is the value of the major index of T , denoted

MAJ(T ). It is de�ned by

MAJ(T ) =

X

i+1below i inT

i;

where the sum ranges over all entries i of T su
h that i + 1 appears in a

lower row than i. For instan
e, the SYT of shape (3; 2; 2) shown below has

MAJ(T ) = 2 + 3 + 6 = 11.

T =

1 26

3 5

4 7

:

The following result is due independently to Lusztig (unpublished) and Stan-

ley [36, Prop. 4.11℄.

Theorem. Let � ` n. Then

mult(M

�

; R

i

) = #fSYT T : shape(T ) = �; MAJ(T ) = ig:

For example, let n = 5. There are three SYT with �ve entries and major

index 3, namely,

1 2 3 5 1 2 3 1 4 5

4 4 5 2

3

:

It follows that

R

3

�

=

M

41

�M

32

�M

311

:

There is another des
ription of R whi
h leads to a di�erent generalization to

two sets of n variables. Given any polynomial P (x

1

; : : : ; x

n

) over C , de�ne �P

to be the 
omplex ve
tor spa
e spanned by P and all its partial derivatives

of all orders. For instan
e �(x + y)

2

has dimension three, one basis being

f(x+ y)

2

; x+ y; 1g. Let

V

n

=

Y

1�i<j�n

(x

i

� x

j

): (4)
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It is easy to see that

R

�

=

�V

n

as graded S

n

-modules. In parti
ular, dim(�V

n

) = n! and �V

n

a�ords the

regular representation of S

n

.

Adriano Garsia and Mark Haiman had the idea of generalizing the above


onstru
tions of R and �V

n

to two sets x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

)

of n variables. For the �rst generalization, let S

n

a
t diagonally on B =

C [x; y℄, i.e.,

w � x

i

= x

w(i)

; w � y

i

= y

w(i)

:

Let

B

S

n

= ff 2 B : w � f = f 8w 2 S

n

g;

the ring of invariants of the a
tion of S

n

on B. It is no longer the 
ase

that B

S

n

is generated by algebrai
 independent elements. (For general in-

formation about rings of invariants of �nite groups, see for instan
e [35℄[36℄.)

However, we 
an still de�ne

R

(2)

= S=I;

where I is the ideal of B generated by elements of B

S

n

with zero 
onstant

term. The (n+ 1)

n�1


onje
ture of Garsia and Haiman [12℄[13℄ was re
ently

proved by Haiman [19℄, based on te
hniques he developed to prove the n!


onje
ture dis
ussed below, together with a theorem of Bridgeland, King,

and Reid on the M
Kay 
orresponden
e.

Theorem ((n + 1)

n�1


onje
ture). dim

C

R

(2)

= (n+ 1)

n�1

Just as R had the additional stru
ture of a graded S

n

-module, similarly

R

(2)

is a bigraded S

n

-module. In other words,

R

(2)

=

M

i;j

R

(2)

ij

(ve
tor spa
e dire
t sum);

where R

(2)

ij

is the subspa
e of R

(2)

spanned by (the images of) polynomials

that are homogeneous of degree i in the x variables and degree j in the y

variables, and moreover R

(2)

ij

is invariant under the a
tion of S

n

on R

(2)

. For

instan
e, when n = 4 it 
an be 
omputed that

R

(2)

2;1

�

=

2M

211

�M

22

�M

31

:

9



In parti
ular,

dim

C

R

(2)

2;1

= 2f

211

+ f

22

+ f

31

= 2 � 3 + 2 + 3 = 12:

Garsia and Haiman stated in [11℄ (see also [17, Conj. 7.5℄) a 
ompli
ated


onje
tured formula for mult(M

�

; R

(2)

ij

). Haiman's proof of the (n + 1)

n�1


onje
ture mentioned above a
tually establishes this stronger 
onje
ture of

Garsia and Haiman. A 
onsequen
e of Haiman's result asserts the following

[11℄[17, p. 246℄. Let � be the anti-invariant subspa
e of R

(2)

, i.e.,

� = ff 2 R

(2)

: w � f = sgn(w)f 8f 2 S

n

g;

where sgn(w) denotes the sign of the permutation w. Then

dim

C

� =

1

n + 1

�

2n

n

�

;

a Catalan number. James Haglund [16℄ 
onje
tured and Garsia and Haglund

[10℄ proved a 
ombinatorial interpretation of the � bigrading, i.e., a 
om-

binatorial interpretation of the numbers dim

C

�

ij

. For some information

on the ubiquitious appearan
e of Catalan (and related) numbers through-

out mathemati
s, see [37, Exer. 6.19{6.38℄ and the addendum at www-

math.mit.edu/�rstan/e
.html.

The number dim

C

R

(2)

= (n+1)

n�1

has a number of 
ombinatorial inter-

pretations, e.g., it is the number of forests of rooted trees on n verti
es [37,

Prop. 5.3.2℄ or the number of parking fun
tions of length n [37, Exer. 5.49℄.

It is natural to ask whether one 
an give a 
ombinatorial interpretation of

dim

C

R

(2)

ij

that re�nes some known interpretation of (n + 1)

n�1

. At present

this question is open.

We turn to the se
ond generalization of R due to to Garsia and Haiman.

First we need to de�ne a generalization of the Vandermonde produ
t (4) to

two sets of variables. Let � ` n. Coordinatize the squares of the diagram of

� by letting (i� 1; j � 1) be the 
oordinate of the square in the ith row and

jth 
olumn. For instan
e, the 
oordinates of the squares of the diagram of

� = (3; 2) are given by

10



0,0 0,1 0,2

1,0 1,1

Let (i

1

; j

1

); : : : ; (i

n

; j

n

) be the 
oordinates of the squares of the diagram

of � (in some order), and de�ne the n� n determinant

D

�

=

�

�

x

i

s

r

y

j

s

r

�

�

r;s=1;:::;n

:

For instan
e,

D

32

=

�

�

�

�

�

�

�

�

�

�

1 y

1

y

2

1

x

1

x

1

y

1

1 y

2

y

2

2

x

2

x

2

y

2

1 y

3

y

2

3

x

3

x

3

y

3

1 y

4

y

2

4

x

4

x

4

y

4

1 y

5

y

2

5

x

5

x

5

y

5

�

�

�

�

�

�

�

�

�

�

:

Note that if � 
onsists of a single row (i.e., � 
onsists of the single part n)

then D

�

= V

n

(y), while if � 
onsists of a single 
olumn then D

�

= V

n

(x).

The n! 
onje
ture of Garsia and Haiman [12℄[13℄, later proved by Haiman

[18℄, is the following assertion.

Theorem (n! 
onje
ture). For any � ` n, we have

dim

C

�D

�

= n!:

The spa
e �D

�

, just as R

(2)

, is a bigraded S

n

-module. For ea
h i; j � 0

and � ` n, we 
an ask for a \des
ription" of the integer mult

�

M

�

; (D

�

)

ij

�

.

Garsia and Haiman [12℄[13℄ gave su
h a des
ription, and Haiman [17, Thm.

5.4℄ showed that it a
tually followed from the n! 
onje
ture. The Garsia-

Haiman des
ription involves the theory of Ma
donald symmetri
 fun
tions,

a generalization of S
hur fun
tions due to I. G. Ma
donald [29℄[30, Ch. VI℄

and 
urrently of great interest in several di�erent areas, su
h as the represen-

tation theory of quantum groups, aÆne He
ke algebras, and the Calegero-

Sutherland model in parti
le physi
s (see [18℄ for referen
es). We won't

11



de�ne Ma
donald symmetri
 fun
tions here but will give a brief indi
ation

of Haiman's result.

Let �; � ` n. The 
oeÆ
ient of x

�

= x

�

1

1

x

�

2

2

� � � in the S
hur fun
tion s

�

is known as a Kostka number, denoted K

��

, and has a simple 
ombinato-

rial interpretation in terms of semistandard Young tableaux [30, (5.13)℄[37,

x7.10℄. In the theory of Ma
donald polynomials there arises naturally a two-

parameter generalizationK

��

(q; t) of the Kostka number K

��

= K

��

(0; 1). A

priori K

��

(q; t) is only a rational fun
tion of q and t, but Ma
donald 
onje
-

tured that it was a polynomial with nonnegative integer 
oeÆ
ients. In 1996{

98 several independent proofs were given that K

��

(q; t) was indeed a poly-

nomial with integer 
oeÆ
ients, but nonnegativity remained open. Haiman

showed the remarkable fa
t that K

��

(q; t) is essentially the bigraded Hilbert

series for the �-isotypi
 
omponent of D

�

. More pre
isely,

t

b(�)

K

��

(q; 1=t) =

X

r;s�0

mult

�

M

�

; (D

�

)

r;s

�

t

r

q

s

;

where b(�) =

P

(i � 1)�

i

. This formula establishes the nonnegativity of

the 
oeÆ
ients of K

��

(q; t), though a 
ombinatorial interpretation of these


oeÆ
ients remains open.

Hamian's proof is based on the geometry of the Hilbert s
heme Hilb

n

(C

2

)

of n points in the plane. (Claudio Pro
esi suggested to Haiman the possible

relevan
e of the Hilbert s
heme.) Let X and Y be indeterminates. We 
an

de�ne Hilb

n

(C

2

) as a set by

Hilb

n

(C

2

) = fI � C [X; Y ℄ : dim

C

C [X; Y ℄=I = ng;

i.e., all ideals I of C [X; Y ℄ su
h that the quotient ring C [X; Y ℄=I is an n-

dimensional ve
tor spa
e. Suppose that Z = fz

1

; : : : ; z

n

g is a set of n distin
t

points in C

2

. Let

I

Z

= ff 2 C [X; Y ℄ : f(z

1

) = � � � = f(z

n

) = 0g:

Then I

Z

is an ideal of C [X; Y ℄ su
h that C [X; Y ℄=I

Z


an be identi�ed with

the spa
e of all fun
tions f : Z ! C , so I

Z

2 Hilb

n

(C

2

). This explains

why Hilb

n

(C

2

) is 
alled the Hilbert s
heme of n points in the plane | it is

a 
losure of the spa
e of all n-element subsets of C

2

. In fa
t, Hilb

n

(C

2

) has

the stru
ture of a smooth irredu
ible algebrai
 variety, of dimension 2n.

12



The remarkable 
onne
tions between Hilb

n

(C

2

) and the n! and (n+1)

n�1


onje
tures are too te
hni
al to dis
uss here, but let us give a vague hint or

two. Write H

n

= Hilb

n

(C

2

). Given a partition � ` n, let U

�

be the set of all

ideals I 2 H

n

su
h that a basis for C [x; y℄=I 
onsists of the (images of the)

monomials x

h

y

k

, where the (h; k)'s are the 
oordinates for the squares of the

diagram of �. Then the sets U

�

are open, aÆne, and 
over H

n

, suggesting

the possible relevan
e of H

n

to the n! 
onje
ture. Moreover, for ea
h I 2 H

n

there is a natural way to asso
iate an n-element multiset �(I) � C

2

. The

n-element multisets 
ontained in C

2

form an aÆne variety Sym

n

(C

2

), viz.,

Sym

n

(C

2

) = (C

2

)

n

=S

n

= Spe
 C [x

1

; : : : ; x

n

; y

1

; : : : ; y

n

℄

S

n

;

suggesting the possible relevan
e of H

n

to the (n+1)

n�1


onje
ture. See the

papers [17℄ and [18℄ for details.

It is natural to ask about generalizing the work of Garsia and Haiman to

more than two sets of variables. However, all obvious 
onje
tures turn out

to be false. One diÆ
ult is that the Hilbert s
heme Hilb

n

(C

k

) is no longer

smooth for k > 2.

The (n + 1)

n�1

and n! 
onje
tures are just the beginning of an amazing

edi�
e of 
onje
tures due to Garsia, Haiman, and their 
ollaborators. For

instan
e, we de�ned a determinant D

�

when � is a partition of n, regarded as

a 
ertain subset of N �N (where N = f0; 1; 2; : : :g). In exa
tly the same way

we 
an de�ne D

X

for any n-element subset X of N � N . Bergeron, Garsia,

and Tesler [3℄ then 
onje
ture (and prove in some spe
ial 
ases) for several


lasses of subsets X that dim

C

(�D

X

) = k

X

n! for some positive integer k

X

;

and in fa
t �D

X

, regarded as an S

n

-module, a�ords k

X


opies of the regular

representation.

4 Longest in
reasing subsequen
es.

Let w = a

1

a

2

� � �a

n

2 S

n

. An in
reasing subsequen
e of w is a subsequen
e

a

i

1

a

i

2

� � �a

i

k

of w for whi
h a

i

1

< a

i

2

< � � � < a

i

k

. Let is

n

(w) denote the

length of the longest in
reasing subsequen
e of w 2 S

n

. For instan
e, if w =

274163958 2 S

9

then is

9

(w) = 4, exempli�ed by the in
reasing subsequen
es

13



2469 and 1358. There has been mu
h re
ent interest in the behavior of the

fun
tion is

n

(w). A survey of mu
h of this work has been given by Per
y Deift

[6℄.

The �rst question of interest is the expe
ted value E(n) of is

n

(w), where

w ranges uniformly over S

n

. Thus

E(n) =

1

n!

X

w2S

n

is

n

(w):

Elementary arguments show that

1

2

p

n � E(n) � e

p

n;

and Hammersley [21, Thm. 4℄ showed in 1972, using subadditive ergodi


theory, that the limit


 = lim

n!1

E(n)

p

n

exists. Vershik and Kerov [40℄ (with the diÆ
ult dire
tion 
 � 2 shown

independently by Logan and Shepp [28℄) showed in 1977 that 
 = 2.

The proof of Vershik-Kerov and Logan-Shepp is based on the identity

E(n) =

1

n!

X

�`n

�

1

�

f

�

�

2

; (5)

where � = (�

1

; �

2

; : : :) and f

�

denotes the number of SYT of shape � as in

Se
tion 3. Equation (5) is due to Craige S
hensted [34℄ and is an immediate


onsequen
e of the Robinson-S
hensted-Knuth algorithm; see also [37, Exer.

7.109(a)℄.

The work of Vershik-Kerov and Logan-Shepp only determines the asymp-

toti
 behavior of the expe
tation of is

n

(w). What about stronger results? A

major breakthrough was made by Jinho Baik, Per
y Deift, and Kurt Johans-

son [1℄, and has inspired mu
h further work. To des
ribe their results, let

Ai(x) denote the Airy fun
tion, viz., the unique solution to the se
ond-order

di�erential equation

Ai

00

(x) = xAi(x);

14



subje
t to the 
ondition

Ai(x) �

e

�

2

3

x

3=2

2

p

�x

1=4

as x!1:

Let u(x) denote the unique solution to the nonlinear third order equation

u

00

(x) = 2u(x)

3

+ xu(x); (6)

subje
t to the 
ondition

u(x) � �Ai(x); as x!1:

Equation (6) is known as the Painlev�e II equation, after Paul Painlev�e (1863{

1933)

2

. Painlev�e 
ompletely 
lassi�ed di�erential equations (from a 
ertain


lass of se
ond order equations) whose \bad" singularities (bran
h points and

essential singularities) were independent of the initial 
onditions. Most of the

equations in this 
lass were already known, but a few were new, in
luding

equation (6).

Now de�ne the Tra
y-Widom distribution to be the probability distribu-

tion on R given by

F (t) = exp

�

�

Z

1

t

(x� t)u(x)

2

dx

�

: (7)

It is easily seen that F (t) is indeed a probability distribution, i.e., F (t) � 0

and

R

1

�1

F (t)dt = 1. Let � be a random variable with distribution F , and

let �

n

be the random variable on S

n

de�ned by

�

n

(w) =

is

n

(w)� 2

p

n

n

1=6

:

We 
an now state the remarkable results of Baik, Deift, and Johansson.

Theorem. As n!1, we have

�

n

! � in distribution;

2

In addition to being a distinguished mathemati
ian, in 1908 Painlev�e was the �rst

passenger of Wilbur Wright, during whi
h they set a 
ight duration re
ord of 70 minutes,

and in 1917 and 1925 he held a position equivalent to Prime Minister of Fran
e.

15



i.e., for all t 2 R,

lim

n!1

Prob(�

n

� t) = F (t):

Theorem. For any m = 0; 1; 2; : : :,

lim

n!1

E(�

m

n

) = E(�

m

):

Corollary. We have

lim

n!1

Var(is

n

)

n

1=3

=

Z

t

2

dF (t)�

�

Z

t dF (t)

�

2

= 0:8132 � � � ;

where Var denotes varian
e, and

lim

n!1

E(is

n

)� 2

p

n

n

1=6

=

Z

t dF (t) (8)

= �1:7711 � � � :

The above theorems are a vast re�nement of the Vershik-Kerov and Logan-

Shepp results 
on
erning E(n), the expe
tation of is

n

(w). The �rst theorem

gives the entire limiting distribution (as n ! 1) of is

n

(w), while the se
-

ond theorem gives an asymptoti
 formula for the mth moment. Note that

equation (8) may be rewritten

E(n) = 2

p

n + �n

1=6

+ o

�

n

1=6

�

;

where � =

R

t dF (t), thereby giving the se
ond term in the asymptoti
 be-

havior of E(n).

We will say only a brief word on the proof of the above results, explaining

how 
ombinatori
s enters into the pi
ture. Some kind of analyti
 expression

is needed for the distribution of is

n

(w). Su
h an expression is provided by

the following result of Ira Gessel [14℄, later proved in other ways by various

persons.

Theorem. Let

u

k

(n) = #fw 2 S

n

: is

n

(w) � kg

16



U

k

(x) =

X

n�0

u

k

(n)

x

2n

n!

2

B

i

(x) =

X

n�0

x

2n+i

n! (n+ i)!

:

Then

U

k

(x) = det

�

B

ji�jj

(x)

�

k

i;j=1

:

Example. We have

U

2

(x) =

�

�

�

�

B

0

(x) B

1

(x)

B

1

(x) B

0

(x)

�

�

�

�

= B

0

(x)

2

� B

1

(x)

2

:

From this it is easy to dedu
e that

u

2

(n) =

1

n+ 1

�

2n

n

�

;

a Catalan number. This result was �rst stated by John Mi
hael Hammersley

in 1972, with the �rst published proofs by Knuth [25, x5.1.4℄ and Rotem [33℄.

There is a more 
ompli
ated expression for u

3

(n) due to Gessel [14, x7℄[37,

Exer. 7.16(e)℄, namely,

u

3

(n) =

1

(n + 1)

2

(n+ 2)

n

X

j=0

�

2j

j

��

n+ 1

j + 1

��

n+ 2

j + 2

�

;

while no \ni
e" formula for u

k

(n) is known for �xed k > 3.

Gessel's theorem redu
es the theorems of Baik, Deift, and Johansson to

\just" analysis, viz., the Riemann-Hilbert problem in the theory of integrable

systems, followed by the method of steepest des
ent to analyze the asymp-

toti
 behavior of integrable systems. For further information see the survey

[6℄ of Deift mentioned above.

The asymptoti
 behavior of is

n

(w) (suitably s
aled) turned out to be

identi
al to the Tra
y-Widom distribution F (t) of equation (7). It is natural

to ask how the Tra
y-Widom distribution arose in the �rst pla
e. It seems

17



surprising that su
h an \unnatural" looking fun
tion as F (t) 
ould have

arisen independently in two di�erent 
ontexts. Originally the Tra
y-Widom

distribution arose in 
onne
tion with the Gaussian Unitary Ensemble (GUE).

GUE is a 
ertain natural probability distribution on the spa
e of all n � n

hermitian matri
es M = (M

ij

), namely,

Z

�1

n

e

�tr(M

2

)

dM;

where Z

n

is a normalization 
onstant and

dM =

Y

i

dM

ii

�

Y

i<j

d(ReM

ij

)d(ImM

ij

):

Let the eigenvalues of M be �

1

� �

2

� � � � � �

n

. The following result

marked the eponymous appearan
e [39℄ of the Tra
y-Widom distribution:

lim

n!1

Prob

��

�

1

�

p

2n

�

p

2n

1=6

� t

�

= F (t): (9)

Thus as n!1, is

n

(w) and �

1

have the same distribution (after s
aling).

It is natural to ask, �rstly, whether there is a result analogous to equa-

tion (9) for the other eigenvalues �

k

of the GUE matrix M , and, se
ondly,

whether there is some 
onne
tion between su
h a result and the behavior

of in
reasing subsequen
es of random permutations. A generalization of (9)

was given by Tra
y and Widom [39℄ (expressed in terms of the Painlev�e II

fun
tion u(x)). The 
onne
tion with in
reasing subsequen
es was 
onje
-

tured in [1℄ and proved independently by Borodin-Okounkov-Olshanski [4℄,

Johannson [23℄, and Okounkov [32℄. Given w 2 S

n

, de�ne integers �

1

; �

2

; : : :

by letting �

1

+ � � �+ �

k

be the largest number of elements in the union of k

in
reasing subsequen
es of w. For instan
e, let w = 247951368. The longest

in
reasing subsequen
e is 24568, so �

1

= 5. The largest union of two in
reas-

ing subsequen
es is 24791368 (the union of 2479 and 1368), so �

1

+ �

2

= 8.

(Note that it is impossible to �nd a union of length 8 of two in
reasing subse-

quen
es that 
ontains an in
reasing subsequen
e of length �

1

= 5.) Finally w

itself is the union of the three in
reasing subsequen
es 2479, 1368, and 5, so

�

1

+ �

2

+ �

3

= 9. Hen
e (�

1

; �

2

; �

3

) = (5; 3; 1) (and �

i

= 0 for i > 3). Read-

ers familiar with the theory of the Robinson-S
hensted-Knuth algorithm will

re
ognize the sequen
e (�

1

; �

2

; : : :) as the shape of the two standard Young

tableaux obtained by applying this algorithm to w, a well-known result of

18



Curtis Greene [15℄[37, Thm. A1.1.1℄. (In parti
ular, �

1

� �

2

� � � �, a fa
t

whi
h is by no means obvious.) The result of [4℄[23℄[32℄ asserts that as as

n!1, �

k

and �

k

are equidistributed, up to s
aling.

The Tra
y-Widom distribution arose 
ompletely independently in the be-

haviour of is

n

(w) and GUE matri
es. Is this 
onne
tion just a 
oin
iden
e?

The work of Okounkov [32℄ provides a 
onne
tion, via the theory of random

topologies on surfa
es.
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