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Supersolvability and freeness for ψ-graphical arrangements
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Abstract Let G be a simple graph on the vertex set {v1, . . . , vn} with edge set
E. Let K be a field. The graphical arrangement AG in Kn is the arrangement
xi − xj = 0, vivj ∈ E. An arrangement A is supersolvable if the intersection lat-
tice L(c(A)) of the cone c(A) contains a maximal chain of modular elements. The
second author has shown that a graphical arrangement AG is supersolvable if
and only if G is a chordal graph. He later considered a generalization of graph-
ical arrangements which are called ψ-graphical arrangements. He conjectured a
characterization of the supersolvability and freeness (in the sense of Terao) of a
ψ-graphical arrangement. We provide a proof of the first conjecture and state some
conditions on free ψ-graphical arrangements.
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1 Introduction

A finite hyperplane arrangement A is a finite set of affine hyperplanes in some
vector space V ∼= Kn, where K is a field. The intersection poset L(A) of A is
the set of all nonempty intersections of hyperplanes in A, including V itself as
the intersection over the empty set, ordered by reverse inclusion. Define the order
relationship x ≤ y in L(A) if x ⊇ y in V .

Let G be a graph with vertex set V = {v1, . . . , vn} and edge set E. The graphical

arrangement AG in Kn is the arrangement with hyperplane xi − xj = 0, vivj ∈ E.
We will use poset notation and terminology from [7, Ch. 3]. In particular, the
intersection poset of the graphical arrangementAG (or of any central arrangement)
is geometric. (An arrangement A is central if

⋂
H∈A

H 6= ∅.) Let 2P denote the set

of all subsets of P, and let ψ : V → 2P satisfy |ψ(v)| < ∞ for all v ∈ V . Define
the ψ-graphical arrangement AG,ψ to be the arrangement in Rn with hyperplanes
xi = xj whenever vivj ∈ E, together with xi = αj if αj ∈ ψ(vi).

In general,AG,ψ is not a central arrangement and the intersection poset L(AG,ψ)
of AG,ψ is not a geometric lattice. Instead of AG,ψ we consider the cone c(AG,ψ)
with coordinates x1, . . . , xn, y. The cone ψ-graphical arrangement c(AG,ψ) is the ar-
rangement with hyperplanes xi = xj whenever vivj ∈ E, together with y = 0 and
xi = αjy if αj ∈ ψ(vi).

An element x of a geometric lattice L is modular if rk(x) + rk(y) = rk(x ∧ y) +
rk(x∨y) for all y ∈ L, where rk denotes the rank function of L. A geometric lattice
L is supersolvable if there exists a modular maximal chain, i.e., a maximal chain
0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xn = 1̂ such that each xi is modular. A central arrangement A
is supersolvable if its intersection lattice L(A) is supersolvable.

A graph is chordal if each of its cycles of four or more vertices has a chord,
which is an edge that is not part of the cycle but connects two vertices of the cycle.
Equivalently, every induced cycle in the graph should have exactly three vertices.
A graphical arrangement AG is supersolvable if and only if G is a chordal graph
[6, Cor. 4.10].

It is well known that the elements Xπ of L(AG) correspond to the connected
partitions π of V (G), i.e., the partitions π = {B1, . . . , Bk} of V (G) such that the
restriction of G to each block Bi is connected.

We have Xπ ≤ Xσ in L(AG) if and only if every block of π is contained in
a block of σ. Hence L(AG) is isomorphic to an induced subposet LG of Πn, the
lattice of partitions of the set {1, 2, . . . , n}. From the definition of L(c(AG,ψ)) it is
easy to see that L(AG) is an interval of L(c(AG,ψ)), namely, the interval from the

bottom element 0̂ (the ambient space Kn) to the intersection of all the hyperplanes
xi = xj of c(AG,ψ). For brevity, an element

Xσ = (x1, . . . , xi−1, αiy, xi+1, . . . , xj−1, αiy, xj+1, . . . , xn, y)
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(αi ∈ ψ(vi) or αi ∈ ψ(vj)) of L(c(AG,ψ)) is written as σ : vi = vj = αiy, or more
briefly as σ = {vivjαiy}, and an element

Xδ = (x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . , xn, 0)

is written as δ : vi = vj = y = 0, or more briefly as δ = {vivjy0}. The following
sufficient condition for the supersolvability of a ψ-graphical arrangement is stated
in [8] without proof.

Theorem 1 Let (G,ψ) be as above. Suppose that we can order the vertices of G as

v1, v2, . . . , vn such that:

(1) vi+1 connects to previous vertices along a clique (so by Lemma 1 below G is

chordal).

(2) If i < j and vi is adjacent to vj , then ψ(vj) ⊆ ψ(vi).

Then AG,ψ is supersolvable.

Proof To prove that AG,ψ is supersolvable we need to find a modular maximal
chain in L(c(AG,ψ)). We will show that a modular maximal chain is given by

0̂ < π1 < · · · < πn < 1̂, where πi = {v1v2 · · · vi−1y0}. First we prove that πn =
{v1v2 · · · vn−1y0} is a modular element. For any σ = {B1, B2, . . . , Bt} ∈ L(c(AG,ψ)),
we only need to consider the block Bi which contains vn. If Bi = {vn} then σ < πn.
Hence rk(πn) + rk(σ) = rk(πn ∧ σ) + rk(πn ∨ σ).

If Bi = {vi1 · · · vimvn} then πn ∨ σ = 1̂. Since vn connects to previous vertices
along a clique, the blockB′

i = {vi1 · · · vim} exists. Then πn∧σ = {B1, . . . , Bi−1, Bi+1,

. . . , Bt, B
′
i, vn}. Hence rk(πn ∧ σ) = rk(σ) − 1 and rk(πn) + rk(σ) = rk(πn ∧ σ) +

rk(πn ∨ σ).

If Bi = {vi1 · · · vimvny0} then πn ∨ σ = 1̂ and

πn ∧ σ = {B1, . . . , Bi−1, Bi+1, . . . , Bt, vi1 · · · vimy0, vn}.

Hence rk(πn ∧ σ) = rk(σ)− 1 and rk(πn) + rk(σ) = rk(πn ∧ σ) + rk(πn ∨ σ).

If Bi = {vi1 · · · vimvnαjy} (αj ∈ ψ(vij ), 1 ≤ j ≤ m, or αj ∈ ψ(vn)) then πn∨σ =

1̂. Since ψ(vn) ⊆ ψ(vij ) if vij vn ∈ E, i.e., if αj ∈ ψ(vn), we have αj ∈ ψ(vij ). Hence
the blockB′

i = {vi1 · · · vimαjy} exists and πn∧σ = {B1, . . . , Bi−1, Bi+1, . . . , Bt, B
′
i, vn}.

Then rk(πn ∧ σ) = rk(σ)− 1 and rk(πn) + rk(σ) = rk(πn ∧ σ) + rk(πn ∨ σ).

Hence we get that πn = {v1v2 · · · vn−1y0} is a modular element. Now if πn−1 =
{v1v2 · · · vn−2y0} is modular in the interval [0̂, πn], then it is modular in L(c(AG,ψ))
[6, Prop. 4.10(b)]. Therefore we just need to show that πn−1 is modular in the
interval [0̂, πn].

Since all elements σ in [0̂, πn] must satisfy that σ has a block Bi = {vn},
we can ignore the block Bi = {vn}. In the same way we can get that πn−1 =
{v1v2 · · · vn−2y0} is a modular element in the interval [0̂, πn]. Continuing the pro-
cedure, we get the modular maximal chain 0̂ < π1 < · · · < πn < 1̂.

Our main result is the converse to Theorem 1.
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Theorem 2 The sufficient condition in Theorem 1 for the supersolvability of AG,ψ is

also necessary.

Before we prove Theorem 2, the following two results of Dirac [1] are required.
A vertex is simplicial in a graph if its neighbors form a complete subgraph. A
graph is recursively simplicial if it consists of a single vertex, or if it contains a
simplicial vertex v and when v is removed the subgraph that remains is recursively
simplicial. It is well-known and easy to see that if G is recursively simplicial and
v is any vertex, then G− v is recursively simplicial

Lemma 1 G is chordal if and only if G is recursively simplicial.

Lemma 2 Every chordal graph G that is not a complete graph has at least two non-

adjacent simplicial vertices.

Proof (of Theorem 2) Condition (1) is easy to check, because L(AG) is an interval
of L(c(AG,ψ)). Since intervals of supersolvable lattices are supersolvable ([5, Prop.
3.2]), we have that L(c(AG)) is supersolvable. Hence by [5, Prop. 2.8] G is chordal.

By Lemma 2 we know that there are at least two nonadjacent simplicial vertices
in the chordal graph G. Suppose that there is a simplicial vertex, say vin , which
satisfies the following condition:

ψ(vin) ⊆ ψ(vij ) for all vij vin ∈ E. (1.1)

Then we label vin as vn and remove this vertex. By Lemma 1 we know that the
remaining graph is still recursively simplicial. Continuing in this way, suppose that
there is a simplicial vertex, which we label as vn−1 and then remove it. Continue
this procedure. If condition (2) is not necessary then that means there exists one
step m in the above procedure such that all remaining simplicial vertices do not
satisfy the condition (1.1). Then we will show that there is no modular maximal
chain in L(c(AG,ψ)).

Next, we show that among all the coatoms only σi = {vi1vi2 · · · vin−1
y0} and

δi = {v1v2 · · · vnαiy}, αi ∈ ψ(vi), 1 ≤ i ≤ n could be modular elements of L(c(AG,ψ)).
We claim that a coatom is not modular if it has more than two blocks or it has
two blocks but the cardinalities of both of the blocks are greater than 1.

First, it is easy to check that any coatom σ is not modular if it has more
than two blocks. Suppose σ = {A,B,C} is a coatom. Since rk(σ) = n − 1, i.e.,
dim(σ) = 1, A,B and C can only be {vi1vi2 · · · vijiαiy} where i = 1, 2,3 and
αi ∈ ψ(vim),m = 1,2, . . . , ji. Then γ = {v1v2 · · · vn, y0}, rk(σ) = rk(γ) = n − 1,
rk(σ ∨ γ) = n but rk(σ ∧ γ) < n− 2. Hence σ is not modular.

Moreover if σ = {A,B} is a coatom such that |A| > 1 and |B| > 1 then σ

is also not modular. Without loss of generality assume that there exist u, v ∈ A

and u′, v′ ∈ B such that u 6= v′ and u′ 6= v, uu′ ∈ E(G), and vv′ ∈ E(G). Let
γ = {(A ∪ u′)\v, (B ∪ v)\u′}. Then rk(σ) = rk(γ) = n − 1, rk(σ ∨ γ) = n but
rk(σ ∧ γ) < n− 2. Hence σ is not modular.
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Therefore, among all coatoms, only σi = {vi1vi2 · · · vin−1
y0} and

δi = {v1v2 · · · vnαiy,αi ∈ ψ(vi), 1 ≤ i ≤ n}

could be modular elements. Similarly, among all the elements which σi covers, only
{(vi1vi2 · · · vin−1

\vij )y0} could be modular.

If vin is not a simplicial vertex then we show that σi is not modular. Without
loss of generality assume visvin ∈ E and vitvin ∈ E but visvit /∈ E. Let γ =
{(vi1vi2 . . . vin−1

\visvit)y0, visvitvin}. Then rk(σ) = rk(γ) = n − 1, rk(σ ∨ γ) = n

but rk(σ ∧ γ) < n− 2. Hence σi is not modular if vin is not a simplicial vertex.

We now show that if vin is a simplicial vertex but does not satisfy condition
(1.1), then σi is not modular. Without loss of generality assume that αi ∈ ψ(vin)
but αi /∈ ψ(vij ) for vij vin ∈ E. Then γ = {vij vinαiy}, rk(σi) = n − 1, rk(γ) =
2, rk(σi ∨ γ) = n but rk(σi ∧ γ) = 0. From the above discussion, if condition (2)
is not necessary then there exists one step m such that all remaining simplicial
vertices do not satisfy condition (1.1). That means that all {vi1vi2 · · · vin−m

y0} are

not modular elements. Hence there is no modular maximal chain from 0̂ to σi.

We now show that if δi is modular then αi ∈ ψ(vi) for all i ∈ [n]. Equivalently,
we show that if there exists some vm such that αi /∈ ψ(vm), then δi is not modular.
Let γ = {v1v2 · · · vn\vm, vmy0}. Hence rk(δi) = rk(γ) = n − 1, rk(δi ∨ γ) = n but
rk(δi ∧ γ) < n − 2. From the above discussion, if condition (2) is not necessary
then there are at least two nonadjacent simplicial vertices, say vs and vt, which
do not satisfy condition (1.1). It means that there exist αs ∈ ψ(vs), αt ∈ ψ(vt)
and αs, αt 6= αi. If αs = αt then let γ = {(v1v2 · · · vn\vsvt)αiy, vsvtαsy}. Hence
rk(δi) = rk(γ) = n− 1, rk(δi ∨ γ) = n but rk(δ ∧ γ) < n− 2, so δi is not modular.

If αs 6= αt then let γ = {vtαty, vsαsy, (v1v2 · · · vn\vtvs)αiy}. Now rk(δi) =
rk(γ) = n− 1, rk(δi ∨ γ) = n but rk(δi ∧ γ) < n− 2, so δi is not modular.

Therefore if there does not exist a labeling such that conditions (1) and (2)
holds, then we can’t find a modular maximal chain in L(c(AG)). Hence the proof
is complete.

We call v1, . . . , vn a vertex elimination order for G if vi+1 connects to previ-
ous vertices along a clique. For any supersolvable arrangement A of rank n the
characteristic polynomial of A (defined, e.g., in [6, §1.3] or [7, §3.11.2]) factors as
χG(q) =

∏n
i=1

(q − ai), where a1, . . . , an are nonnegative integers, called the expo-

nents of A. There is a simple combinatorical interpretation of the exponents of
A(G) when G is chordal.

Proposition 1 [2, Lemma 3.4] Let G be a chordal graph with vertex elimination order

{v1, . . . , vn}. For 1 6 i 6 n let bi be the degree of vi in the graph G − {vn, . . . , vi+1}.

Then {b1, . . . , bn} are the exponents of the supersolvable arrangement A(G).

It is not hard to get a similar property for the supersolvable arrangementAG,ψ.
We omit the proof of this proposition.
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Proposition 2 Let (G,ψ) be a chordal graph with vertex elimination order {v1, . . . , vn}.

Assume that for any vivj ∈ E(G) such that if i < j, we have ψ(vj) ⊆ ψ(vi). For 1 6

i 6 n let bi be the sum of |ψ(vi)| and the degree of vi in the graph G− {vn, . . . , vi+1}.

Then {b1, . . . , bn} are the exponents of the supersolavable arrangement AG,ψ.

There is another conjecture in [8]. It is well known that every supersolvable
arrangement is free (in the sense of Terao [3, §6.3]) and every free graphical arrange-
ment is supersolvable. Thus the second author proposed the following conjecture.

Conjecture 1 If AG,ψ is a free ψ-graphical arrangement, then AG,ψ is supersolvable.

We are unable to prove this conjecture, but we do have the following weaker
result, which we simply state without proof. The proof involves the inheritance of
freeness under localization of arrangements and a result of Yoshinaga [9] on the
freeness of 3-arrangements.

Theorem 3 The ψ-graphical arrangement AG,ψ is not free if there is an edge vivj ∈

E(G) such that ψ(vi) * ψ(vj) and ψ(vj) * ψ(vi).
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