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Abstract

We give a formula for s/\/u(l,q,q2, ...)/sx(1,q,¢%,...), which gen-
eralizes a result of Okounkov and Olshanski about f*/f.
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1 Introduction

For the notation and terminology below on symmetric functions, see Stanley

[6] or Macdonald [4]. Let u be a partition of some nonnegative integer. A
reverse tableau of shape p is an array of positive integers of shape p which is
weakly decreasing in rows and strictly decreasing in columns. Let RT(u, n) be

the set of all reverse tableaux of shape p whose entries belong to {1,2,...,n}.

Recall that f* and f»* denote the number of SYT (standard Young
tableaux) of shape A and \/u respectively. Okounkov and Olshanski [5] give
the following surprising formula.
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Lemma 1. Let A = {\, Ao, ..., A\ Emoand = {u1, pa, .., o} B k with
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where c(u) and T'(u) are the content and entry of the square u respectively,
and (m)y =m(m—1)---(m—k+1).

In this paper, we generalize the above result to a g-analogue. Our main
result is the following.

Theorem 2. We have
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2 Proof of the main result

Denote by the symbol (x| k) the k-th falling g-factorial power of a variable
x?

(1 __qx)(l __qx—l),..(l __q:c—k-i-l)7 ifhk=12,...,
(w1 k) = |
1, if k=0.

In particular, for nonnegative integers n and k, we use [k]! to denote (k| k),

and [ 7] :mforn>k
Let A = (Aq,...,\,) and A/ be a skew shape. We define
t)\/u,n(q) = s)\/u(]-a g, q2> . ) H (1 - qn+C(U)) (3)
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Lemma 3 ([6]). Let A= (A\1,...,\,) and v; = \; +n —i. Then:
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The shifted q-Schur function is defined as follows:

det[(z; +n—i|lp; +n—j)]
det[(x; +n —i|ln —j)]

, (4)

¢Sp(T1, .o Ty) =

where 1 <i,5 <n.
Lemma 4. Let A = (A,...,\,). Then we have
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Proof. By Lemma 3 we have
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We first consider the denominator of (4).
Lemma 5.
n 1—2
det [(zi +n—iln— _ H H Titn—i—j H(l _ q(Ei—ZEj—i-l-j) (5)
i=2 j=0 i<j

Proof. For j =1,--- n— 1, we subtract from the j-th column of the deter-
minant in the left hand the (j + 1)-th column, multiplied by (1 —¢***7). The
determinant becomes

n n
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=2 =2
and then the result follows by induction. O

The following lemma is almost the same as Lemma 2.1 in [5], just lifted
to the g-analogue.



Lemma 6. We have
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Since all summands cancel each other except (z+1]k—+1) — (y|k+ 1), the
result follows. O

For two partitions p and v, we write p = v if p; > v; > i, i =1,2,. ...
Thus given a reverse tableau T' € RT(p, n), we can regard it as a sequence

P R C BRI CES Y

where 1) is the shape of the reverse tableau consisting of entries of 7' no
less than .
Now we can give the proof of Theorem 1.

Proof. By Lemma 4, it is equivalent to prove that

S ) =DM L p/v) gsi(Nas o An), n = 1(p). (6)

V=<
Recall that the numerator of ;sy (A1, ..., A,) is
det[(Ni +n—ilp;+n—j)|. (7)



Forall j =1,2,...,n—1, we subtract from the j-th column of (7) the (j+1)-
th column, multiplied by (Ay — ptj+1 + 7 | ptj — pj+1 +1). Then for all j < n,
the (i, j)-th entry of (7) becomes

Nitn =il +n—7—D(N = +7+1—ilp; — pj +1) (8)
— (M = pyar + 5 Ly — pjn + 1))

We can now apply Lemma 6, where we set
r=XA—fj1+Jj—1, k= p; — pje,
y=AN—pip+tij+1l—10, l=v;—pjp.

Then (8) equals
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and thus the determinant (7) equals
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On the other hand, by Lemma 5 we have

det[(Ai +n —iln— )
det[(Nip1 +n—i—1|n—75—1)]"

7,]1

s
':1 »
)’

T
—
~—
kS
&

J
~
=)
<
+
—_

Combining the above two identities together, we then obtain (6). O

Corollary 7. The rational function

S)\/,u(lv q, q27 s )
(1 - Q)W‘S)\(l, q, q2a - )

1s a Laurent polynomial in q with nonnegative integer coefficients.




For the special case when ;i = 1, we give a simple formula for s /1 /(1—¢)s
in Corollary 8 below. Before giving a combinatorial proof of this result, we
first introduce some notation.

The acronym SSY'T stands for a semistandard Young tableau where 0 is
allowed as a part. Jeu de taquin (jdt) is a kind of transformation between
skew tableaux obtained by moving entries around, such that the property of
being a tableau is preserved. For example, given a tableau T of shape A, we
first delete the entry T'(i, 7) for some box (¢,7). If T'(i,5 —1) > T'(i — 1,7),
we then move T'(i, j — 1) to box (i, j); otherwise, we move T'(i — 1, j) to (4, j).
Continuing this moving process, we eventually obtain a tableau of shape A/1.
On the other hand, given a tableau of shape \/1, we can regard (0,0) as an
empty box. By moving entries in a reverse way, we then get a tableau of
shape \ with a empty box after every step. For more information about jdt,
readers can refer to [6, Ch. 7, App. I].

The following result was first obtained by Kerov [2, Thm. 1 and (2.2)]
(after sending ¢ — ¢~ ') and by Garsia and Haiman [1, (I.15), Thm. 2.3]
(setting t = ¢~ ') by algebraic reasoning. For further information see [3,

p. 9].

Corollary 8. We have

sy, q,4%,...) ; :ch(u). (9)

(1 _q>s>\(17q7q27"' we
Proof. We define two sets in the following way:

T ={(T,k)|T is a SSYT of shape A/1, and k € N},
Th={(T,u) | T is a SSYT of shape A, and u € A}.

It suffices to prove that there is bijection ¢ : Ty — Ty, say o(T,u) =
(T, k), such that |T'| + c(u) = |T,| + k.

We define ¢ in the following way. Given (T',u) € Ty, let k = T'(u) + c(u).
To obtain T,,, we first delete the entry T'(u) from 7', and then carry out the
jdt operation. Since T'is a SSYT we have k£ > 0, and thus the definition is
reasonable.

On the other hand, given (7, k) € T\ 1, we carry out the jdt operation to
T, step-by-step in the reverse way. After ¢ steps, if we get a SSY'T by filling
the empty box u; with k — ¢(u;), then we call u; a nice box. It’s obvious
that a nice box exists. Let u = (7,7) be the first nice box and 7' be the
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corresponding SSYT. We just need to prove that u is also the only nice box.
Otherwise, we assume that there exists another nice box v’ = (¢, 5'), and 1"
is the corresponding SSYT. Then we have ¢ > i and j' > j. Let a;; and ay j
be the entries of (z,7) and (¢, j') in 7" respectively. Since 7" is a SSYT, we
must have a; j; > a; ;+14 —i. Since u = (i, j) is a nice box and 7" is a SSYT,
we have a;; > k44— j when j' = j, and a;; > k44— j when j' > j. In
either case we get a contradiction, since ay j = k + ¢ — j' by the definition
of T".
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