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Abstract

We give a formula for sλ/µ(1, q, q2, . . . )/sλ(1, q, q2, . . . ), which gen-

eralizes a result of Okounkov and Olshanski about fλ/µ/fλ.
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1 Introduction

For the notation and terminology below on symmetric functions, see Stanley
[6] or Macdonald [4]. Let µ be a partition of some nonnegative integer. A
reverse tableau of shape µ is an array of positive integers of shape µ which is
weakly decreasing in rows and strictly decreasing in columns. Let RT(µ, n) be
the set of all reverse tableaux of shape µ whose entries belong to {1, 2, . . . , n}.

Recall that fλ and fλ/µ denote the number of SYT (standard Young
tableaux) of shape λ and λ/µ respectively. Okounkov and Olshanski [5] give
the following surprising formula.
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Lemma 1. Let λ = {λ1, λ2, . . . , λn} ⊢ m and µ = {µ1, µ2, . . . , µn} ⊢ k with
µ ⊆ λ. Then

(m)k fλ/µ

fλ
=

∑

T∈RT(µ,n)

∏

u∈µ

(λT (u) − c(u)) (1)

where c(u) and T (u) are the content and entry of the square u respectively,
and (m)k = m(m − 1) · · · (m − k + 1).

In this paper, we generalize the above result to a q-analogue. Our main
result is the following.

Theorem 2. We have

sλ/µ(1, q, q2, . . . )

sλ(1, q, q2, . . . )
=

∑

T∈RT(µ,n)

∏

u∈µ

(

q1−T (u)(1 − qλT (u)−c(u))
)

. (2)

2 Proof of the main result

Denote by the symbol (x ⇂ k) the k-th falling q-factorial power of a variable
x,

(x⇂k) =

{

(1 − qx)(1 − qx−1) · · · (1 − qx−k+1), if k = 1, 2, . . . ,

1, if k = 0.

In particular, for nonnegative integers n and k, we use [k]! to denote (k ⇂k),

and
[

n
k

]

= [n]!
[k]![n−k]!

for n ≥ k.

Let λ = (λ1, . . . , λn) and λ/µ be a skew shape. We define

tλ/µ,n(q) = sλ/µ(1, q, q2, . . . )
∏

u∈λ/µ

(1 − qn+c(u)). (3)

Lemma 3 ([6]). Let λ = (λ1, . . . , λn) and νi = λi + n − i. Then:

(1) tλ/µ,n(q) = det

[[

n + λi − i

λi − µj − i + j

]]n

i,j=1

(2)
∏

u∈λ

(1 − qn+c(u)) =

n
∏

i=1

[νi]!

[n − i]!
.
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The shifted q-Schur function is defined as follows:

qs
∗
µ(x1, . . . , xn) =

det[(xi + n − i⇂µj + n − j)]

det[(xi + n − i⇂n − j)]
, (4)

where 1 ≤ i, j ≤ n.

Lemma 4. Let λ = (λ1, . . . , λn). Then we have

sλ/µ(1, q, q2, . . . )

sλ(1, q, q2, . . . )
= qs

∗
µ(λ1, . . . , λn).

Proof. By Lemma 3 we have

sλ/µ(1, q, q2, . . . )

sλ(1, q, q2, . . . )
=

tλ/µ,n(q)

tλ,n(q)

∏

u∈µ

(1 − qn+c(u))

=
det

[[

n+λi−i
λi−µj−i+j

]]

det
[[

n+λi−i
λi−i+j

]]

n
∏

j=1

[µj + n − j]!

[n − j]!

= qs
∗
µ(λ1, . . . , λn)

We first consider the denominator of (4).

Lemma 5.

det [(xi + n − i⇂n − j)] =
n

∏

i=2

i−2
∏

j=0

qxi+n−i−j ·
∏

i<j

(1 − qxi−xj−i+j) (5)

Proof. For j = 1, · · · , n − 1, we subtract from the j-th column of the deter-
minant in the left hand the (j +1)-th column, multiplied by (1− qx1+j). The
determinant becomes

n
∏

i=2

(1 − qx1−xi−1+i)
n

∏

i=2

qxi+n+2−2i · det[(xi+1 + n − i − 1⇂n − j − 1)]n−1
i,j=1,

and then the result follows by induction.

The following lemma is almost the same as Lemma 2.1 in [5], just lifted
to the q-analogue.
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Lemma 6. We have

(x + 1⇂k + 1) − (y ⇂k + 1)

qy − qx+1
=

k
∑

l=0

q−l(y ⇂ l)(x− l ⇂k − l).

Proof. We have

(qy−qx+1)

k
∑

l=0

q−l(y ⇂ l)(x − l ⇂k − l)

=
k

∑

l=0

(qy−l − qx+1−l)(y ⇂ l)(x − l ⇂k − l)

=

k
∑

l=0

(y ⇂ l)(x− l ⇂k − l)(1 − qx+1−l) −
k

∑

l=0

(y ⇂ l)(x− l ⇂k − l)(1 − qy−l)

=

k
∑

l=0

(y ⇂ l)(x− l + 1⇂k − l + 1) −
k

∑

l=0

(y ⇂ l + 1)(x − l ⇂k − l).

Since all summands cancel each other except (x + 1⇂k + 1)− (y ⇂k + 1), the
result follows.

For two partitions µ and ν, we write µ ≻ ν if µi ≥ νi ≥ µi+1, i = 1, 2, . . . .
Thus given a reverse tableau T ∈ RT(µ, n), we can regard it as a sequence

µ = µ(1) ≻ µ(2) ≻ · · · ≻ µ(n+1) = ∅,

where µ(i) is the shape of the reverse tableau consisting of entries of T no
less than i.

Now we can give the proof of Theorem 1.

Proof. By Lemma 4, it is equivalent to prove that

qs
∗
µ(λ1, . . . , λn) =

∑

ν≺µ

q−|ν|(λ1 ⇂µ/ν) qs
∗
ν(λ2, . . . , λn), n ≥ l(µ). (6)

Recall that the numerator of qs
∗
µ(λ1, . . . , λn) is

det[(λi + n − i⇂µj + n − j)]. (7)
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For all j = 1, 2, . . . , n−1, we subtract from the j-th column of (7) the (j+1)-
th column, multiplied by (λ1 − µj+1 + j ⇂µj − µj+1 + 1). Then for all j < n,
the (i, j)-th entry of (7) becomes

(λi + n − i⇂µj+1 + n − j − 1)((λi − µj+1 + j + 1 − i⇂µj − µj+1 + 1)

− (λ1 − µj+1 + j ⇂µj − µj+1 + 1)).
(8)

We can now apply Lemma 6, where we set

x = λ1 − µj+1 + j − 1, k = µj − µj+1,
y = λi − µj+1 + j + 1 − i, l = νj − µj+1.

.

Then (8) equals

−(1 − qλ1−λi+i−1)qλi−µj+1+j+1−i

µj
∑

νj=µj+1

{qµj+1−νj(λ1 − νj + j − 1⇂µj − νj)

· (λi + n − i⇂νj + n − j − 1)},

and thus the determinant (7) equals

n
∏

i=2

((1 − qλ1−λi+i−1)qλi−i)

n−1
∏

j=1

qj+1−νj

∑

ν≺µ

((λ1 ⇂µ/ν)

det[(λi+1 + n − i − 1⇂νj + n − j − 1)]n−1
i,j=1).

On the other hand, by Lemma 5 we have

det[(λi + n − i⇂n − j)]ni,j=1

det[(λi+1 + n − i − 1⇂n − j − 1)]n−1
i,j=1

=
n

∏

i=2

(

(1 − qλ1−λi+i−1)qλi−i
)

n−1
∏

j=1

qj+1.

Combining the above two identities together, we then obtain (6).

Corollary 7. The rational function

sλ/µ(1, q, q2, . . . )

(1 − q)|µ|sλ(1, q, q2, . . . )

is a Laurent polynomial in q with nonnegative integer coefficients.
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For the special case when µ = 1, we give a simple formula for sλ/1/(1−q)sλ

in Corollary 8 below. Before giving a combinatorial proof of this result, we
first introduce some notation.

The acronym SSYT stands for a semistandard Young tableau where 0 is
allowed as a part. Jeu de taquin (jdt) is a kind of transformation between
skew tableaux obtained by moving entries around, such that the property of
being a tableau is preserved. For example, given a tableau T of shape λ, we
first delete the entry T (i, j) for some box (i, j). If T (i, j − 1) > T (i − 1, j),
we then move T (i, j−1) to box (i, j); otherwise, we move T (i−1, j) to (i, j).
Continuing this moving process, we eventually obtain a tableau of shape λ/1.
On the other hand, given a tableau of shape λ/1, we can regard (0, 0) as an
empty box. By moving entries in a reverse way, we then get a tableau of
shape λ with a empty box after every step. For more information about jdt,
readers can refer to [6, Ch. 7, App. I].

The following result was first obtained by Kerov [2, Thm. 1 and (2.2)]
(after sending q 7→ q−1) and by Garsia and Haiman [1, (I.15), Thm. 2.3]
(setting t = q−1) by algebraic reasoning. For further information see [3,
p. 9].

Corollary 8. We have

sλ/1(1, q, q
2, . . . )

(1 − q)sλ(1, q, q2, . . . )
=

∑

u∈λ

qc(u). (9)

Proof. We define two sets in the following way:

Tλ/1={(T, k) | T is a SSYT of shape λ/1, and k ∈ N},

Tλ={(T, u) | T is a SSYT of shape λ, and u ∈ λ}.

It suffices to prove that there is bijection ϕ : Tλ → Tλ/1, say ϕ(T, u) =
(Tϕ, k), such that |T | + c(u) = |Tϕ| + k.

We define ϕ in the following way. Given (T, u) ∈ Tλ, let k = T (u)+ c(u).
To obtain Tϕ, we first delete the entry T (u) from T , and then carry out the
jdt operation. Since T is a SSYT we have k ≥ 0, and thus the definition is
reasonable.

On the other hand, given (Tϕ, k) ∈ Tλ/1, we carry out the jdt operation to
Tϕ step-by-step in the reverse way. After t steps, if we get a SSYT by filling
the empty box ut with k − c(ut), then we call ut a nice box. It’s obvious
that a nice box exists. Let u = (i, j) be the first nice box and T be the
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corresponding SSYT. We just need to prove that u is also the only nice box.
Otherwise, we assume that there exists another nice box u′ = (i′, j′), and T ′

is the corresponding SSYT. Then we have i′ ≥ i and j′ ≥ j. Let ai,j and ai′,j′

be the entries of (i, j) and (i′, j′) in T ′ respectively. Since T ′ is a SSYT, we
must have ai′,j′ ≥ ai,j + i′− i. Since u = (i, j) is a nice box and T is a SSYT,
we have ai,j > k + i − j when j′ = j, and ai,j ≥ k + i − j when j′ > j. In
either case we get a contradiction, since ai′,j′ = k + i′ − j′ by the definition
of T ′.
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