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Abstract. We look at the asymptotic behavior of the coefficients of the q-binomial coef-

ficients (or Gaussian polynomials)
(

a+k

k

)

q
, when k is fixed. We give a number of results in

this direction, some of which involve Eulerian polynomials and their generalizations.

1. Introduction

The purpose of this note is to investigate the asymptotic behavior of the coefficients of the

q-binomial coefficient (or Gaussian polynomial)
(

a+k
k

)

q
. While much of the previous work in

this area has focused on the case where both a and k get arbitrarily large (see e.g. [11]),

in this paper we will be concerned with asymptotic estimates for the coefficients of
(

a+k
k

)

q

when k is fixed.

Besides the intrinsic relevance of studying the combinatorial, analytic or algebraic prop-

erties of q-binomial coefficients, our work is also motivated by a series of recent papers that

have revived the interest in analyzing the behavior of the coefficients of
(

a+k
k

)

q
, as well as

their applications to other mathematical areas. See for instance [7], where I. Pak and G.

Panova have first shown algebraically the strict unimodality of
(

a+k
k

)

q
, as well as the subse-

quent combinatorial proofs of the Pak-Panova result by the second author of this paper [13]

and by V. Dhand [3]. See also another interesting recent work by Pak and Panova [8] (as

well as their extensive bibliography), where the coefficients of
(

a+k
k

)

q
have been investigated

in relation to questions of representation theory concerning the growth of Kronecker coef-

ficients. Further, one of the results of this note, Theorem 2.2, has also been motivated by,

and finds a first useful application in the study of the unimodality of partitions with distinct

parts that are contained inside certain Ferrers diagrams (see our own paper [10]).

For m = ⌊ak/2⌋ (the middle exponent of
(

a+k
k

)

q
when k or a are even, and the smaller

of the two middle exponents otherwise), define gk,c(a) to be the coefficient of degree m − c

of
(

a+k
k

)

q
, and let fk,c(a) = gk,c(a) − gk,c+1(a). Our first main result is a description of

the generating functions (in two variables, referring to a and c) of gk,c(a) and fk,c(a). In
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particular, it follows from our result that both gk,c(a) and fk,c(a) are quasipolynomials in a,

for any given k and c.

Our next result, Theorem 2.4, is an asymptotic estimate of the coefficient of degree ⌊αa⌋−c

of
(

a+k
k

)

q
, when a → ∞, for any given integer c, positive integer k, and nonnegative real

number α. Quite surprisingly, this result connects in a nice fashion to Eulerian numbers

and, more generally, to Euler-Frobenius numbers, as we will discuss extensively after the

proof of the theorem.

Finally, our last main result, Theorem 2.6, presents an asymptotic estimate of the differ-

ence between consecutive coefficients of
(

a+k
k

)

q
, again for k fixed.

We will wrap up this note with a brief remark, in order to highlight an interesting con-

nection of our last result with Kostka numbers and to present some suggestions for further

research.

2. Some asymptotic properties of the coefficients of
(

a+k
k

)

q

In this section, we study the asymptotic behavior of the coefficients of
(

a+k
k

)

q
for fixed k.

Given k ≥ 1, c ≥ 0, and a ≥ 0, set m = ⌊ak/2⌋. Define

gk,c(a) = [qm−c]

(

a + k

k

)

q

,

fk,c(a) = gk,c(a)− gk,c+1(a),(1)

where [qn]F (q) denotes the coefficient of qn in the polynomial (or power series) F (q).

Lemma 2.1. Let F (q) ∈ C[[q]], and c, j, i ∈ Z with j > i ≥ 0. We have:

(a)

∑

a≥0

[qaj−c]qaiF (q)xa =
1

j − i

∑

ζj−i=1

(ζx)cF (ζx)

∣

∣

∣

∣

∣

∣

x→x1/(j−i)

(b)

∑

a≥0

∑

c≥0

[qaj−c]qaiF (q)xatc =
1

j − i

∑

ζj−i=1

F (ζx)

1− ζxt

∣

∣

∣

∣

∣

∣

x→x1/(j−i)

.

Proof. For any G(q) =
∑

aiq
i ∈ C[[q]] and h ≥ 1, write

DhG(q) =
∑

ahix
hi,

the hth dissection of G(q). It is an elementary and standard result (see e.g. [9, Exercise

1.60]) that

DhG(q) =
1

h

∑

ζh=1

G(ζx).

(The sum is over all h complex numbers ζ satisfying ζh = 1.) Hence (a) follows.
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Part (b) is the generating function (in t) with respect to c of the formula of part (a). We

have:
∑

a≥0

∑

c≥0

[qaj−c]qaiF (q)xatc =
∑

a≥0

∑

c≥0

[qa(j−i)]qcF (q)xatc

=
∑

a≥0

[qa(j−i)]
F (q)

1− qt
xa

=
1

j − i

∑

ζj−i=1

F (ζx)

1− ζxt

∣

∣

∣

∣

∣

∣

x→x1/(j−i)

,

and the proof follows. �

From Lemma 2.1, it is easy to describe the form of the generating functions for gk,c(a) and

fk,c(a), when k and c are fixed. For this purpose, define a quasipolynomial to be a function

h : N → C (where N = {0, 1, 2 . . .}) of the form

h(n) = cd(n)n
d + cd−1(n)n

d−1 + · · ·+ c0(n),

where each ci(n) is a periodic function of n. If cd(n) 6= 0 then we call d the degree of h. For

more information on quasipolynomials, see for instance [9, §4.4].

Write

Fk(x, t) =
∑

a≥0

∑

c≥0

fk,c(a)x
atc

Gk(x, t) =
∑

a≥0

∑

c≥0

gk,c(a)x
atc.

Theorem 2.2. Fix k ≥ 1 and set j = ⌊k/2⌋. If we denote both Fk and Gk by Hk, then

Hk(x, t) =















Nk(x, t)

Dk(x)(1− tx)(1− t2x)(1− t3x) · · · (1− tjx)
, k even

Nk(x, t)

Dk(x)(1− tx2)(1− t3x2)(1− t5x2) · · · (1− tkx2)
, k odd.

where Nk(x, t) ∈ Z[x, t] and Dk(x) is a product of cyclotomic polynomials. In particular, for

fixed k and c we have that gk,c(a) and fk,c(a) are quasipolynomials.

Proof. Case 1: k = 2j. We have m = ⌊ak/2⌋ = aj . Write

(2) (1− qa+1)(1− qa+2) · · · (1− qa+k) =
k
∑

i=0

(−1)iPi(q)q
ai,

where Pi(q) is a polynomial in q independent of a. Specifically, we have

(3) Pi(q) =
∑

S⊆[k]
#S=i

q
∑

s∈S s.
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Writing [k]! = (1− q)(1− q2) · · · (1− qk), we get

Gk(x, t) =
∑

a≥0

∑

c≥0

[qm−c]

(

a+ k

k

)

q

xatc

=
∑

a≥0

∑

c≥0

[qaj−c]
1

[k]!

k
∑

i=0

(−1)iPi(q)q
aixatc

=
k
∑

i=0

∑

a≥0

∑

c≥0

[qaj−c]
1

[k]!
(−1)iPi(q)q

aixatc.

The proof now follows from Lemma 2.1(a). Note in particular that the expression F (ζx) in

Lemma 2.1 will produce cyclotomic polynomials in the denominator of Fk(x, t), while the

denominator 1−ζxt in part (b) will lead to the factor 1−tj−ix in the denominator of Fk(x, t).

The proof for Fk(x, t) is completely analogous.

Case 2: k = 2j+1. The proof is analogous to Case 1. Now we have to look at a = 2b and

a = 2b+ 1 separately. When a = 2b we get that the part of Gk(x, t) with even exponent of

x is Gk(x, t) =
∑

a≥0

∑

c≥0[q
bk−c]

(

2b+k
k

)

x2btc. When we apply Lemma 2.1, the denominator

term becomes 1 − ζx2t, where ζj−i = 1 and j − i is odd. This produces a factor 1 − tj−ix2

(where j − i is odd) in the denominator of Fk(x, t). Exactly the same reasoning applies to

a = 2b+ 1, so the proof follows. �

Example 2.3. Write Φm(x) for the mth cyclotomic polynomial normalized to have constant

term 1. Hence Φ1(x) = 1 − x, Φ2(x) = 1 + x, Φ3(x) = 1 + x + x2, etc.. One can compute

the following:

F3(x, t) =
1 + tx+ tx3 + t3x4

(1− x)(1 + x)(1 + x2)(1− tx2)(1− t3x2)

G3(x, t) =
N3(x, t)

(1− x)2(1− x4)(1− tx2)(1− t3x2)

F4(x, t) =
1− tx+ t2x2

(1− x2)(1− x3)(1− tx)(1 − t2x)
(4)

G4(x, t) =
1− x+ (1 + t)x2 − (t+ t2)x3

(1− x)2(1− x2)(1− x3)(1− tx)(1− t2x)

F5(x, 0) =
1− x5 − x6 + x7 + x12

Φ3
1Φ

3
2Φ3Φ2

4Φ6Φ8

G5(x, 0) =
B5(x)

(1− x)2(1− x4)(1− x6)(1− x8)

F6(x, t) =
M6(x, t)

Φ4
1 Φ

2
2Φ3 Φ4Φ5 (1− tx)(1 − t2x)(1− t3x)

G6(x, t) =
N6(x, t)

Φ6
1 Φ

3
2Φ3 Φ4Φ5 (1− tx)(1 − t2x)(1− t3x)

,
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where

N3(x, t) = 1− (1− t)x+ (1− t+ t2)x2 + (t− t2)x3 − (t− t2)x4 − (t2 + t3)x5

B5(x) = 1− x+ 2x2 + x3 + 2x4 + 3x5 + x6 + 5x7 + x8 + 3x9 + 2x10 + x11 + 2x12

−x13 + x14 + 3x10 + x12 − x13 + 2x14 − x15 + x17 − 2x18 + x19

M6(x, t) = 1 + (1− t− t2)x− (t− t3 − t4)x2 − (1− t− t2 − t3 − t4 + t5)x3

−(1− 2t− t2 + t5)x4 − (1− 2t− t2 + t3 + t4)x5 + (t+ t2 − t3 − 2t4 + t5)x6

+(1− t3 − 2t4 + t5)x7 + (1− t− t2 − t3 − t4 + t5)x8 − (t+ t2 − t4)x9

+(t3 + t4 − t5)x10 − t5x11

N6(x, t) = 1 + (1 + 2t+ t2)x2 + (3 + 2t− t2 − 2t3 − t4)x3 + (4− 2t2 − 3t3 − t4 + t5)x4

+(4− 3t2 − 4t3 − t4 + 2t5)x5 + (4− t− 4t2 − 4t3 − t4 + 3t5)x6

+(3− t− 5t2 − 4t3 + 3t5)x7 + (1− t− 4t2 − 3t3 + t4 + 4t5)x8

−(2t2 + t3 − t4 − 3t5)x9 + (1− t2 − t3 + 3t5)x10

−(t + t2 + t3 − t4 − 2t5)x11 + (t3 + t4 + t5)x12.

The denominator of F8(x, t) is given by

Φ6
1Φ

3
2 Φ

2
3Φ4 Φ5Φ7 (1− tx)(1 − t2x)(1− t3x)(1 − t4x),

and that of G8(x, t) by

Φ8
1Φ

3
2 Φ

2
3Φ4 Φ5Φ7 (1− tx)(1 − t2x)(1− t3x)(1 − t4x).

Let us also note that

F8(x, 0) =
∑

a≥0

([q4a]− [q4a−1])

(

a+ 8

8

)

q

xa

=
1 + x− x3 − x4 + x6 + x7 + x8 + x9 + x10 − x12 − x13 + x15 + x16

(1 + x)(1− x2)(1− x3)2(1− x4)(1− x5)(1− x7)

= 1 + x2 + x3 + 2x4 + 2x5 + 4x6 + 4x7 + 7x8 + 8x9 + 12x10 + · · · .

This generating function appears in a paper [5, p. 847] of Igusa, stated in terms of the

representation theory of SL(n,C). Igusa also computes F2(x, 0), F4(x, 0), and F6(x, 0).

From the techniques for computing Fk(x, t) and Gk(x, t), we can determine asymptotic

properties of some of the coefficients of
(

a+k
k

)

q
, for k fixed. The coefficients of

(

a+k
k

)

q
have

been considered for a, k → ∞ by Takács [11] and others, but the computation for k fixed

seems to be new.
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Theorem 2.4. Fix α ≥ 0 (α ∈ R), c ∈ Z, and k a positive integer. Then

[q⌊αa⌋−c]

(

a + k

k

)

q

=
1

(k − 1)! k!
C(α, k)ak−1 +O(ak−2),

where

C(α, k) =

⌊α⌋
∑

i=0

(−1)i
(

k

i

)

(α− i)k−1.

Proof. First assume that α is rational, say α = u/v. Fix 0 ≤ r < v and consider only those

a of the form a = vb+ r. Set d = ⌊ur/v⌋. Thus

(5)
[

q⌊ua/v⌋−c
]

(

a+ k

k

)

q

= [qub+d−c]
(1− qvb+r+k)(1− qvb+r+k−1) · · · (1− qvb+r+1)

(1− qk)(1− qk−1) · · · (1− q)
.

Write

Gα,k,r(x) =
∑

a≥0
a≡r (mod v)

[

q⌊ua/v⌋−c
]

(

a+ k

k

)

q

xa

=
∑

b≥0

[qub+d−c]

(

vb+ r + k

k

)

q

xvb+r.

We now apply equation (5), expand the numerator and apply Lemma 2.1(a). We obtain

a linear combination of expressions like

(6)
1

s

∑

ζs=1

(ζx)e

(1− ζx)(1− ζ2x2) · · · (1− ζkxk)

∣

∣

∣

∣

x→x1/s

= G(x)|x→x1/s ,

say. Let ζs = e2πi/s, a primitive sth root of unity. The order to which 1 is a pole in

equation (6) is thus at most the order to which ζs is a pole of G(x). Now any term indexed

by ζ 6= 1 has ζs as a pole of G(x) of order less than k, while the term indexed by ζ = 1 has

a pole of order at most k at x = 1. Hence if in the end we have a pole of order k, then it

suffices to retain only the term in (6) indexed by ζ = 1. Therefore if, for any integer e,

1

s

∑

ζs=1

(ζx)e

(1− ζx)(1− ζ2x2) · · · (1− ζkxk)

∣

∣

∣

∣

x→x1/s

=
c0

(1− x)k
+O

(

1

(1− x)k−1

)

,

then

c0 = lim
x→1

(1− xs)k
xe

s(1− x)(1− x2) · · · (1− xk)
=

sk−1

k!
.

Write

(1− qvb+r+k)(1− qvb+r+k−1) · · · (1− qvb+r+1) =

∑k
i=0(−1)iQi(q)q

bvi

[k]!
,
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where Qi(q) is a polynomial independent of b and v, so Qi(1) =
(

k
i

)

. Note that u− vi ≥ 0 if

and only if i ≤ ⌊α⌋. It follows that

Gα,k,r(x) =
∑

b≥0

[

qub+d−c
]

∑k
i=0(−1)iQi(q)q

bvi

[k]!
xbv+r

=
∑

b≥0

[q(u−vi)b]

∑k
i=0(−1)iQi(q)q

c−d

[k]!
xbv+r

=





1

k!

⌊α⌋
∑

i=0

(−1)i
(

k

i

)

(u− vi)k−1





xr

(1− xv)k
+O

(

1

(1− x)k−1

)

=





1

k!

⌊α⌋
∑

i=0

(−1)i
(

k

i

)

(u− vi)k−1





1

vk(1− x)k
+O

(

1

(1− x)k−1

)

.

Now sum over 0 ≤ r < v. Since we have v terms in the sum, we pick up an extra factor

of v on the right, giving

∑

a≥0

[q⌊ua/v⌋]

(

a+ k

k

)

q

xa =





1

k!

⌊α⌊
∑

i=0

(−1)i
(

k

i

)

(u− vi)k−1





1

vk−1(1− x)k
+O

(

1

(1− x)k−1

)

=





1

k!

⌊α⌋
∑

i=0

(−1)i
(

k

i

)

(α− i)k−1





1

(1− x)k
+O

(

1

(1− x)k−1

)

.

Now

[xa]
1

(1− x)k
=

(

k + a− 1

k − 1

)

=
ak−1

(k − 1)!
+O(ak−2),

completing the proof for α rational.

The proof for general α now follows by a simple continuity argument, using the unimodality

and symmetry of the coefficients of
(

a+k
k

)

q
. �

The numbers C(α, k) have appeared before and are known as Euler-Frobenius numbers,

denoted Ak−1,⌊α⌋,α−⌊α⌋. For a discussion of the history and properties of these numbers, see

Janson [6]. Some special cases are of interest. Recall that the Eulerian number A(d, i)

can be defined as the number of permutations w of 1, 2, . . . , d with i − 1 descents (e.g. [9,

§1.4]). Similarly the MacMahon number B(d, i) can be defined as the number of elements

in the hyperoctahedral group Bn according to the number of type B descents. For further

information, see [1]. Standard results about these numbers imply that for integers 1 ≤ j < k,

C(j, k) = A(k − 1, j),

2k−1C((2j − 1)/2, k) = B(k − 1, j).
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There is an alternative way to show the above formula for C(α, k) (done with assistance

from Fu Liu). Write β = ⌊α⌋. Since the coefficient of qaβ in
(

a+k
k

)

q
is the number of partitions

of aβ into at most a parts of length at most k, equivalently, it is equal to the number of

solutions (m1, . . . , mk) in nonnegative integers to

m1 + 2m2 + · · ·+ kmk = aβ,

m1 + · · ·+mk ≤ a.

Set xi = mi/a and let a → ∞. Standard arguments (see e.g., [9, Proposition 4.6.13])

show that C(α, k) is the (k−1)-dimensional relative volume (as defined in [9, p. 497]) of the

convex polytope:

xi ≥ 0, 1 ≤ i ≤ k,

x1 + 2x2 + · · ·+ kxk = β,

x1 + x2 + · · ·+ xk ≤ 1.

Set yi = xi + xi+1 + · · ·+ xk. The matrix of this linear transformation has determinant 1,

so it preserves the relative volume. We get the new polytope Pk defined by

y1 + y2 + · · ·+ yk = β,

0 ≤ y1 ≤ y2 ≤ · · · ≤ yk ≤ 1.

By symmetry, the relative volume of Pk is 1/k! times the relative volume of the polytope

y1 + y2 + · · ·+ yk = β,

0 ≤ yi ≤ 1, 1 ≤ i ≤ k.

This polytope is a cube cross-section, whose relative volume is computed e.g. in [6, Theo-

rem 2.1], completing the proof.

When α ∈ Q, C(α, k) is related to the Eulerian polynomial Ak−1(x) via the following

result.

Proposition 2.5. Let v ∈ P. Then

(7) vk−1
∑

u≥0

C(u/v, k)xu = (1 + x+ x2 + · · ·+ xv−1)kAk−1(x).

Proof. We have

(8) vk−1
∑

u≥0

C(u/v, k)xu =
∑

u≥0

⌊u/v⌋
∑

i=0

(−1)i
(

k

u

)

(u− vi)k−1xi.

A fundamental property of Eulerian polynomials is the identity (see [9, Proposition 1.4.4])

∑

n≥0

nk−1xn =
Ak−1(x)

(1− x)k
.
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Hence,

(9) Ak−1(x)(1 + x+ · · ·+ xv−1)k = (1− xv)k
∑

n≥0

nk−1xn.

It is now routine to compute the coefficient of xm on the right-hand sides of equations (8)

and (9) and see that they agree term by term. �

Note that if j ∈ P and we take the coefficient of xjv on both sides of equation (7), then

we obtain the identity

vk−1A(k − 1, j) = [xvj ](1 + x+ x2 + · · ·+ xv−1)kAk−1(x).

It is not difficult to give a direct proof of this identity.

Let us now turn to the difference between two consecutive coefficients of
(

a+k
k

)

q
, i.e., the

function fk,c(a) of equation (1). We consider here only the coefficients near the middle (i.e.,

qaj) when k = 2j, though undoubtedly our results can be extended to other coefficients.

Note that, by the previous theorem, we have

[qaj−c]

(

a+ k

k

)

q

∼ [qaj−c−1]

(

a+ k

k

)

q

∼
1

(k − 1)! k!
C(α, k)ak−1, a → ∞.

Thus we might expect that the difference ([qaj−c]− [qaj−c−1])
(

a+k
k

)

q
grows like ak−2. How-

ever, the next result shows that the correct growth rate is ak−3.

Theorem 2.6. Let c ∈ N and k = 2j, where j ∈ P. Then for j ≥ 3 we have

(

[qaj−c]− [qaj−c−1]
)

(

a + k

k

)

q

=
2c+ 1

(k − 3)! k!
D(k)ak−3 +O(ak−4),

where

D(k) =
1

2

j−1
∑

i=0

(−1)i+1

(

k

i

)

(j − i)k−3.

Proof. Write

Fk(x, t) =
∑

a≥0

∑

c≥0

([qaj−c]− [qaj−c−1])

(

a + k

k

)

q

xatc

=
∑

j≥0

[qaj ]
(1− qa+k) · · · (1− qa+1)

(1− qk) · · · (1− q2)(1− qt)
xatc.

When k ≥ 6, the order to which a primitive sth root of unity x = ζs 6= 1 is a pole of

Fk(x, t) is at most k−3. Thus we need to show that the pole at x = 1 contributes the stated

result.

Let

Fk(x, t) = αk(t)
1

(1− x)k−1
+ βk(t)

1

(1− x)k−2
+O

(

1

(1− x)k−3

)

.
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First we show that αk(t) = 0. Reasoning as in the proof of Theorem 2.4 gives

αk(t) =
1

(k − 2)! k!(1− t)

j−1
∑

i=0

(−1)i
(

k

i

)

(j − i)k−2.

Since k is even, the summand (−1)i
(

k
i

)

(j − i)k−2 remains the same when we substitute

k − i for i. Moreover, when i = j the summand is 0. Hence

αk(t) =
1

2(k − 2)! k!(1− t)

k
∑

i=0

(−1)i
(

k

i

)

(j − i)k−2.

This sum is the kth difference at 0 of a polynomial of degree k − 2, and is therefore equal

to 0 (see [9, Proposition 1.9.2]), as desired.

We now need to find the coefficient β of (1 − x)k−2 in the Laurent expansion at x = 1 of

linear combinations of rational functions of the type

H =
P (x)

(1− x2) · · · (1− xk)(1− xt)
=

α

(1− x)k−1
+

β

(1− x)k−2
+ · · · ,

where P (x) is a polynomial in x. Write (i)x = 1 + x+ x2 + · · ·+ xi−1. It is easy to see that

α = P (1)/k!(1− t). Thus

β = lim
x→1

(1− x)k−2

(

P (x)

(1− x2) · · · (1− xk)(1− xt)
−

P (1)

k!(1− t)(1− x)k−1

)

= lim
x→1

1

1− x
·
P (x)k!(1− t)− P (1)(2)x · · · (k)x(1− xt)

(2)x · · · (k)x(1− xt)k!(1− t)

= −
1

k!2(1− t)2
d

dx
(P (x)k!(1− t)− P (1)(2)x · · · (k)x(1− xt))|x=1

= −
1

k!2(1− t)2

(

P ′(1)k!(1− t)− k!P (1)

(

1

2
+

3

3
+ · · ·+

(

k
2

)

k

)

(1− t) + P (1)t

)

= −
1

k!(1 − t)2

(

P ′(1)(1− t)−
1

2
P (1)

(

k

2

)

(1− t) + P (1)t

)

=
1

k!(1− t)2

(

−P ′(1)(1− t) +
1

4
P (1)(−k + kt + k2 − k2t)− P (1)t)

)

.

Let us apply this result to P (x) = Pi(x), where Pi is defined by equation (3). Clearly

Pi(1) =
(

k
i

)

, while

P ′
i (1) =

∑

S⊆[k]
#S=i

∑

s∈S

s.

The element i ∈ [k] appears in
(

k−1
i−1

)

i-element subsets of [k]. Hence

P ′
i (1) =

k
∑

i=1

i

(

k − 1

i− 1

)

=

(

k + 1

2

)(

k − 1

i− 1

)

,
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where when i = 0 we set
(

k−1
−1

)

= 0. Arguing as in the proof of Theorem 2.4 now gives

βk(t) =
1

k!(1− t)2

j−1
∑

i=0

(−1)i+1(j − i)k−3

×

((

k

i

)(

1

2
(1− t)(k − 1)(j − i− 1) + t−

1

4
(1− t)k(k − 1)

)

(10) + (1− t)

(

k + 1

2

)(

k − 1

i− 1

))

.

If we set t = −1 on the right-hand-side of equation (10), then a straightforward computa-

tion shows that the sum is 0. If we set t = 1, then another computation gives

j−1
∑

i=0

(j − i)k−3(−1)i+1

(

k

i

)

.

Since
1 + t

(1− t)2
=
∑

c≥0

(2c+ 1)tc,

the proof now follows. �

Remark 2.7. (a) It follows from work of Verma [12] and of Hering and Howard [4] that

D(k) also satisfies

(11) Ka(k/2,k/2),a·1k =
1

(k − 3)!
D(k)ak−3 +O(ak−4),

where Kλµ is a Kostka number and a · 1k denotes the partition of ak with k a’s. Is

the appearance of D(k) in both Theorem 2.6 and equation (11) just a coincidence?

(b) Theorem 2.6 is false for j = 2. Indeed, it follows from equation (4) that

F4(x, t) =
1− t + t2

6(1− t)(1− t2)
·

1

(1− x)2
+O

(

1

1− x

)

and

(

[q2a−c]− [q2a−c−1]
)

(

a+ 4

4

)

q

=
1

24
(2c+ 1 + 3 · (−1)c)a +O(1), a → ∞.

(c) An obvious problem arising from our work is the extension of Theorem 2.4 to addi-

tional terms. Can such a computation be automated?
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