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Abstract

We show that the density u of the Smith normal form (SNF) of a random integer matrix exists and equals
a product of densities s of SNF over Z/p*Z with p a prime and s some positive integer. Our approach
is to connect the SNF of a matrix with the greatest common divisors (gecds) of certain polynomials of
matrix entries, and develop the theory of multi-gcd distribution of polynomial values at a random integer
vector. We also derive a formula for p,s and compute the density ;v for several interesting types of sets.
Finally, we determine the maximum and minimum of u,s and establish its monotonicity properties and
limiting behaviors.

1. INTRODUCTION

Let M be a nonzero n X m matrix over a commutative ring R (with identity), and r be the rank
of M. If there exist invertible n x n and m x m matrices P and () such that the product PM(Q
is a diagonal matrix with diagonal entries dy,ds, . ..,d,,0,0,...,0 satisfying that d; | d;4; for all
1 <i<r—1, then PMQ is the Smith normal form (SNF) of M. In general, the SNF does not
exist. It does exist when R is a principal ideal ring, i.e., a ring (not necessarily an integral domain)
for which every ideal is principal. This class of rings includes the integers Z and their quotients
Z./qZ, which are the rings of interest to us here. In fact, for the rings Z/qZ we will be particularly
concerned with the case ¢ = p®, a prime power. For principal ideal rings, the diagonal entries are
uniquely determined (up to multiplication by a unit) by g;_1d; = ¢; (1 <1i <), where gy = 1 and g;
is the greatest common divisor (ged) of all i x4 minors of M. We have the following correspondence
between the SNF and the cokernel of M: coker M ~ R/diR® R/dyR& ---® R/d, R & R"".

There has been a huge amount of research on eigenvalues of random matrices over a field (see,
e.g., [1], [2], [10], [12]). Less attention has been paid to the SNF of a random matrix over a
principal ideal ring (or more general rings for which SNF always exists). Some basic results in this
area are known, but they appear in papers not focused on SNF per se. We develop the theory
in a systematic way, collecting previous work in this area, sometimes with simplified proofs, and
providing some new results.

We shall define the density p of SNF of a random n x m integer matrix as the limit (if exists)
as k — oo of u®, the density of SNF of a random n x m matrix with entries independent and
uniformly distributed over {—k, —k + 1,...,k} (see Definition 3] below for a precise definition).

As a motivating example, the probability that d; = 1 for a random n X m integer matrix is
the probability that the nm matrix entries are relatively prime, or equivalently, that nm random
integers are relatively prime, and thus equals 1/{(nm), where ((-) is the Riemann zeta function.

If we regard the minors of an n x m matrix as polynomials of the nm matrix entries with integer
coefficients, then the SNF of a matrix is uniquely determined by the geds of the values of these
polynomials (recall the definition of SNF from the beginning). This inspires us to study the theory
of multi-ged distribution of polynomial values.
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Given a collection of relatively prime polynomials in Z[z, xs, . .., z4], let g(x) be the ged of the
values of these polynomials at = = (x1,29,...,24). We shall define the density A of g(x) of a
random d-dimensional integer vector o as the limit (if exists) as k — oo of A*), the density of g(x)
with z uniformly distributed over {—k, —k+1,...,k}? (see Definition 1Tl for a precise definition).

In the spirit of previous work in number theory such as [6], [13], [14] and the Cohen-Lenstra
heuristics ([4], [5]), one might conjecture that A exists and equals the product of density A, of g(x)
over (Z/pZ)? over all primes p. In fact, we will prove this conjecture with the more general density
Aps of g(x) over Z/p°Z for sets of form (2.5) (see Theorem 2.§), with the aid of a result in number
theory [14, Lemma 21]. Note that the special case that s = 0 or 1 follows from [6, Theorem 2.3]
directly. In particular, this result applies to the probability that g(z) = 1, in other words, that
the polynomial values are relatively prime. Furthermore, all these results hold for the multi-gcd
distribution of polynomial values, namely, when g(x) is a vector whose components are the geds
of the values of given collections of polynomials at z.

Then we apply this theory to the SNF distribution of a random integer matrix to show that the
density p (of SNF of a random n x m integer matrix) equals a product of some densities ji,s of
SNF over Z/p°Z for sets of form (8.4) (Theorem B.8). We also derive a formula for j,s (Theorem
3.2]), which allows us to compute p,: and hence p explicitly (Theorem 3]). Some special cases of
this formula coincide with [15, Exercise 1.192(b)] and [9, pp. 233, 236].

On the strength of these results, we determine the value of i for some interesting types of
sets, specifically, matrices with first few diagonal entries given, matrices with diagonal entries all
equal to 1, and square matrices with at most ¢ (= 1,2,...,n) diagonal entries not equal to 1, i.e.,
whose corresponding cokernel has at most ¢ generators; further, for the last set we establish the
asymptotics of u as £ — oo. In the case of ¢ = 1, our results echo those in [6] Section 3|, via a
slightly different approach. We also show that the probability that a random integer matrix is full
rank is 1, and that p of a finite set is 0.

Additionally, we find the maximum and minimum of p,:(D) over all diagonal matrices D;
whereas regarding it as a function of p,s,m,n and D, we find its monotonicity properties and
limiting behaviors.

The remainder of this paper is organized as follows. Section Pl develops the theory of multi-
gcd distribution of polynomial values. Section [3] applies this theory to the SNF distribution and
derives a formula for fi,s. Section dl computes the density p for several types of sets. Finally,
Section [l determines the maximum and minimum of y,s and discusses its monotonicity properties
and limiting behaviors.

We shall assume that throughout this paper, p represents a prime, p; is the j-th smallest prime,
and Hp means a product over all primes p.

2. MULTI-GCD DISTRIBUTION OF POLYNOMIAL VALUES

Suppose that d and h are positive integers and Fi, Fy, ..., F), € Z[r1,x,...,x4) are nonzero
polynomials. Let

9(z) 1= ged(Fy(z), By(a), -, Fu(x), @€
be the ged of the values Fi(x), Fo(x), ..., Fp(z), and g(z) = 0if F;(z) =0forall 1 <j <h.
We shall define the density of g(z) of a random d-dimensional integer vector x as the limit (if
exists) of the density of g(x) with x uniformly distributed over {—k,—k + 1,...,k}? := Z‘(ik) as
k — oo, precisely as follows.

Definition 2.1. (i) For Z C Z, we denote by A¥)(Z) the probability that g(z) € Z with =
uniformly distributed over Z‘(ik). If limy_o0 A#)(Z) = M\(Z2) exists, then we say that the probability
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that g(x) € Z with x a random d-dimensional integer vector is A(Z). If this is the case, then
AMZ) €0,1] since A\#)(Z) € [0, 1] for all k.

(ii) We define similarly the ged distribution over the ring of integers mod p°: for prime p
and positive integer s, we denote by )\gz)(Z) the probability that g(x) € Z (mod p°) (up to
multiplication by a unit) with x uniformly distributed over Z?k), and by A\,s(Z) the probability
that g(z) € Z (mod p*) (up to multiplication by a unit) with 2 uniformly distributed over (Z/p*Z)?.

More generally, for a finite set P of prime and positive integer pairs (p,s) (with p a prime and
s a positive integer), we denote
Pp = H ps

(p,s)eP

and by Aﬁijﬁ(Z) the probability that g(z) € Z (mod Pp) (up to multiplication by a unit) with
uniformly distributed over Z‘(ik), and by Ap,(Z) the probability that ¢g(z) € Z (mod Pp) (up to
multiplication by a unit) with z uniformly distributed over (Z/PpZ)?. Note that Ap,(Z) is the
number of solutions to g(z) € Z (mod Pp) (up to multiplication by a unit) divided by Pg. The
situation discussed in the previous paragraph is the special case that P consists of only one element
(p,s) and Pp = p°.

(iii) The above definitions also extend to the distribution of multi-geds. Suppose that U =
{U;}% is a collection of w nonempty subsets U; of {Fi, Fy, ..., Fy}. Let

(2.1) gi(x) :=ged (F(z) : FeUy), xe€Z?
and
9(z) == (91,92, -, gu)(x) € Z",

then we adopt the above definitions of functions A®), X, )\gﬁ and Ap, for Z C Z¢ with only one
slight modification: replace “up to multiplication by a unit” with “up to multiplication of the
components of g by units”.

For convenience, we shall always assume that the notion ¢g(z) € Z (mod Pp) implies the equiv-
alence of multiplication of its components by units and that the random vector x is uniformly
distributed on its range (if known, e.g., Z?k) or (Z)PpZ)?).

Remark 2.2. The density A,(-) defined above in Definition 2T](ii) is consistent with the normalized
Haar measure on Z , as in [14].

In this section, we establish the properties of Ap, and A, the existence of )\, and a connection
between A and the A,s’s. Then we apply these results to determine the probability that the
polynomial values are relatively prime.

2.1. Multi-gcd Distribution over Z/PpZ .
We show that the density Aﬁi‘jﬁ() over Z?k) (defined above in Definition 2.1)) converges to the
density Ap, () over Z/PpZ as k — 0o, and that Ap,(-) equals J](, ;cp Aps(*).

Theorem 2.3. For any Z C Z", we have

(2.2) Aen(Z2)= Y Az

z€Z (mod Pp)

(2.3) lim A5 (2) = Ap(2) = [ Me(2).

k—o0
(p,s)EP
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Proof. (1) The first equality (Z2]) follows directly from Definition 211

(2) For the second equality of ([2.3), we let Np,(Z) be the number of x € (Z/PpZ)? for which
g(x) € Z (mod Pp). The Chinese remainder theorem along with Definition 2] then gives

Pirp,(2)=Np.(2)= [] N(2)= [] "M (2)=P8 ] M
(p,s)eP (p,s)eP (p,s)eP
Dividing both sides by P4 leads to the desired equality.

(3) For the first equality of (2.3]), we first observe that if p |2k + 1, then )\Q(Z) = App(2)
by definition. If p ¥ 2k + 1, then we proceed by approximating 2k + 1 by a multiple of Pp and

estimating Agﬁ(Z) using Ap, (Z).
Let k € Z such that K := 2k + 1 > Pp, then there exists ¢ € Z, such that
(2.4) q-Pp<K<(qg+1) Pp.

It follows that for any integer y, there are either ¢ or ¢ + 1 numbers among Z; that equal y mod
Pp. Thus the number of z € Zflk) for which for which g(z) € Z (mod Pp) is between ¢*N’ and

(¢ + 1)?N’, where N’ := Np,(Z), therefore
d N/ d nT/
k) ¢‘N" (¢ +1)°N
)\PP(Z) € [ Kd ) Kd
qu/ (q+ l)dN/

o ] R

whose left and right endpoints both converge to N'/P3 as ¢ — oo. Hence

AD(2) = N'/PE = Ap,(2),

= Jk

Thanks to (2.4)), we have

Y

as ¢ — 0o, or equivalently, as k — oo, as desired. O]

2.2. Multi-gcd Distribution over Z.
We show some properties of the density A of set unions, subtractions and complements. They
will be very useful in determining the value of A for specific sets (such as in Remark 2.9(iii)).

Theorem 2.4. Suppose that {Z,}aca are pairwise disjoint subsets of Z" such that \(Z,) exists
forallao € A. If A is a finite set, then

aEAZ Z)\

acA
Proof. By Definition 2.1l we have

Z )\(Za) = Z kli)rrolo )‘(k)( = kh_{go Z )‘(k = hm Ak ( a€A Za)

acA acA acA

and the conclusion follows. U

Theorem 2.5. Suppose that Z' C Z C Z" such that A\(Z') and N(Z) both exist, then
AMZ\Z)=XNZ)-\Z).

In particular, for the complement Z¢ of Z in 7, we have

A2 =1-A(2).
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Proof. By Definition 2.1l we have
AZ) = AN2) = lim A®(2) - lim AP (2) = lim (A\®(2) = AP(2")) = lim \P(2\ 2')
k—o0 k—o0 k—o00 k—o0

and the conclusion follows. O

Theorem 2.6. Suppose that Y € Z* such that \(Y) =0, then for any Z C Y, we have \(Z) =0
as well.

Proof. Since A¥)(Z) >0, Z C Y and limj_,oc A*)(Y) = A()) = 0, we obtain
0 < lim inf AR (2) <limsup A (2) < limsup AF(P) = A(Y) =0.

k—oo k—o0
Therefore
lim \®(2) =0,
k—o0
as desired. ]

2.3. Connection between A and \,.
We show that the density A exists and in fact, equals the product of some A,s’s.

Assumption 2.7. For all 1 <i < w, we have
ged(Fy, By, ... Fy) =ged (F: F eU;)=11in Q[xy, 22, ..., 124

Theorem 2.8. Suppose that Assumption[2.7 holds. Given positive integers r < w and y;, 1 <i <
r, lety = H;‘;lp;j with p; the j-th smallest prime and s; nonnegative integers, j = 1,2,... such
that y; |y for all 1 <1i <r, then the probability \(Z) exists for

(25) Z:{(Zl,ZQ,,Zw)€Z$ ZZ:’yZ,\V/ZS’I"},

and in fact

(2.6) ANZ) = )\psjﬂ(Z) .
j=t1 '
Remark 2.9. (i) The right-hand side of (2.6]) is well-defined since A, (-) € [0, 1] for all p and s.
(ii) The special case that all s;’s are either 0 or 1 follows from [6, Theorem 2.3].
(iii) We have assumed that the y;’s are positive. In fact, in the case that y; = 0 for some i, we
have A(Z) = 0 on the strength of Theorem and that the probability that a nonzero polynomial
at a random integer vector equals zero is 0 (see Theorem 2.I5](ii) below).

To prove Theorem 2.8 we need Theorem and the following two lemmas.

Lemma 2.10. ([I3, Lemma 5.1] or [14, Lemma 21)) Suppose that F,G € Z[xy,xa,...,x4) are

relatively prime as elements of Q[z1, xa, ..., xq]. Let Vék) be the probability that p| F(z), G(x) for
some prime p > { with x uniformly distributed over Z?k), i.€e.,

I/ék) =#{z e Z‘(ik) : Jprime p > ¢ s.t. p|F(z),G(z)} / (2k + 1)~
Then

lim lim sup ulf’“) =0.

=00 koo

Lemma 2.11. Suppose that Gy, ..., Gy € Q[x1, 22, ..., x4] (h > 2) are relatively prime, then there
exists v = (vs,...,v) € Z"72 such that

h
gcd (Gl,Gg + ZUZGZ) =1.

1=3
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Proof. We prove by induction on h. The case h = 2 is trivial since ged(G1, Gy) = 1.

Base case: h = 3.
We prove by contradiction. Assume the contrary that

ged(G,Go+2Gs) #1, VzeZ.

Suppose that the polynomial factorization of Gy is ¢1¢o - - - ¢, , then each Gy + z G5 is a multiple
of some factor ¢,y of G4 (1 < u(z) < ). Since there are infinitely many z’s, by the pigeonhole
principle, at least two of the u(z)’s are the same, say u(z) = u(2’) (z # z’). Then

¢u(z) ‘ (GQ -+ ZG3) - (G2 + Z/G3) = (Z — Z/) Gg

thus ¢,y | Gs and hence ¢, | (G2 + 2G3) — 2Gs = Go. Recall that ¢, |Gy as well. This
contradicts with the condition that G, G5 and G3 are relatively prime.
Inductive step: from h — 1 to h (> 4). Assume that the statement holds for h — 1.

Let H := (G2,Gs,...,Gp) and H; := G;/H (2 <i < h), then
(2.7) ged(Gy, H) = ged(Gy, Ge, - -+ ,Gy) = 1 = ged(Hy, Hs, -+, Hy) .

According to the induction hypothesis for Hy, Hs, - - - , Hy, there exists v = (v4,...,v,) € Z"73
such that

h

(2.8) Hf:= Hy+ > vH,

i=4

satisfies
ged(Hy, HY) = 1.
Combining with (2.7)) gives
ged(Gy, Gy, HyH) = ged(Gh, HoH, HyH) = ged(Gy, ged(HoH, HyH)) = ged(Gh, H) = 1.
Thus we can apply the base case h = 3 to Gy, G, H{H to get an integer z such that
ged(Gy, Gy + zH H) = 1.
Finally, we represent H;H back to a linear combination of the G;’s with integer coefficients by

definition (2.8)):

h h
H{H = HyH + Y viHH = G+ 0,Gi

i=4 i=4
therefore
h
ged <G1, Go+ 2G5 + ZZU,'GZ') =1,
i=4
namely, the statement holds for h with the new v = (2, zvy, . .., zvp). O

Now we are ready to prove Theorem 2.8

Proof of Theorem[2.8. Let
Pr={(p;,s; + 1)}?21, e,
then Theorem [2.3] gives

¢
Arn (2) =]] A s (Z).
=1
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Since )\pst(Z) € [0,1] for all j, we can let £ — oo

J

{—00

(2.9) lim Ap, (2) =[] A (Z) = RES of 28).
j=1

Therefore it suffices to show that
. (k) T
(2.10) kll_{glo)\ (Z) élinglo App, (Z).
Since y is finite, there exists j* € Z, such that s; = 0 for all j > j*. Let
I= {(21,2’2,...,Zw) GZEﬁ:zl:zQ:---:zr:l}

then for any j > j*, the sets Z and 7 are equivalent mod p; under multiplication of the components
by units.
We define for ¢ > j*,

All) :={z €2 g(x) € Z (mod Pp,)}, AW(0):={z ¢ Z‘(ik) :g(x) € Z (mod Pp,)},
Ak = {:E € Z‘(ik) 1g(z) € Z} (Q A(k)(f)) ,

and
B®(0) .= AW (1) \ A®),
then
5 #AK) (k) H#AW(0)  #A® L #BB(()
(2.11) )\()(Z):W, N (2) = = = =

with K := 2k + 1. Therefore

(2.12) App,(2) = lim A

Combining with the first equation in (ZIT]) leads to

AW o 1 g
lim sup A®) (Z) < lim sup # + f ()
k—o0 k—o0 K

= \pp, (2)
and
AR B (7)
.. (k) > Timi # L = \"J g N7
Ul XTE) 2 it T e T S <

Once we show that

- #BW(0)
(2.13) élggo hlgl—igp Tgd = 0,

taking ¢ — oo in the above two inequalities will yield (210]).

Now let us prove (ZI3). For any # € B®)(¢), there exists j > £ (> j*) such that g(z) ¢ Z (mod
Py = p;) (recall that Z and 7 are equivalent). Hence p; | g,(x) for some n < r.

Recall that g, is the ged of some relatively prime Fj’s. If two or more Fj’s are involved, then
applying Lemma .11l to these F;’s leads to two relatively prime linear combinations G, and H,, of
these F;’s with integer coefficients. If there is only one F; involved, then it must be a constant since
the ged of itself is 1 in Q[z1, o, . . ., 24). In this case, we take G, = H,, = F; so that ged(G,, H,) =1
still holds.

Since p; | g,(x), we have p; | G,(z), H,(x). Hence

(2.14) B®(1) C U BY (),
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where _(k)
B, (¢ —{:EGZ 3> 0 st p]}gn ()}
Applying Lemma 210 to G, and H,, gives
lim lim su Fff) () =0, V
{—00 k_mop Kd - -
Combining with (2.14]), we obtain
r - (k) r - (k)
. . #B® (1) . #B, ({) #B, ({)
lim sup lim su < lim sup lim su -1 < lim sup lim sup —+——~- =0.
z->oop k—)oop G e—mp k—)oop ; K4 Z z->oop k—o00 Pga
On the other hand, since #B® (¢) > 0, we have
L #B®(()
LRSS
llen_l>(l)ilf hgf:ip Tod >0.
Hence (2.I3) indeed holds. O

2.4. Relatively Prime Polynomial Values.
An interesting application of Theorem 2.8 is to determine the probability that the polynomial
values are relatively prime.

Theorem 2.12. Let w =1 and Uy = {{F1, Fy, ..., Fy}} in Definition 21l
(a) If F1, Fy, ..., Fy are not relatively prime in Q[z1, xo, . .., x4, then A({1}) =0;
(b) If Fy, Fs, ..., Fy, are relatively prime, i.e.,

(215) ng(Fl, FQ, ooy Fh) =1 in @[I‘l,LEQ, e ,.led] .
then we have
(i) A({1}) ewists and

A({1}) = HA {1});

(ii) the asymptotic result

(2.16) A({0}) = 0(™);

(iii) AM({1}) = 0 if and only if \,({1}) = 0 for some prime p, i.e., if and only if there exists a prime
p such that Fy(z), F5(x), ..., Fy(z) are multiples of p for all x ; in words, the probability that the
values of relatively prime polynomials at a random integer are relatively prime is 0 if and only if
there exists a prime p such that these polynomials are all always multiples of p.

Remark 2.13. Theorem [2.12/(b)(ii) and Lemma 214 in the proof below are special cases of the
Lang-Weil bound [II, Theorem 1]. We present a considerably simpler and more approachable
proof. As mentioned in Remark 2.9 and [14] Remark of Lemma 21], Theorem 2.12/(b)(i) follows
from [6, Theorem 2.3]; whereas its special case h = 2 was shown in [I3, Theorem 3.1].

Proof. (a) Let G = ged(Fy, Fy, ..., FL), then G is a non-constant polynomial. If the ged g(z) = 1,
then G(x) = 1. Thus A ({1}) < UG)l + (kl_l — 0 as kK — oo on the strength of Theorem
2.151(ii), where O’G)C (¢ = £1) is the probability that G(z) = ¢ with z uniformly distributed over
Z(k) Hence A({1}) =0.

(b) (i) follows directly from Theorem 2.8 For (ii), we prove by induction on d. First, we notice
the following facts:

1. If h = 1, then F} must be a constant due to Assumption (2.I5)). Hence A\,({0}) = 0 for all
p > |Fi| and (2.16)) follows.
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2. If h > 2, by Lemma P.I1] there exist two linear combinations G and H of the F;’s with
integer coefficients such that ged(G,H) = 1 in Q[zy,x9,...,24]. Then p|g(xz) implies that
p| ged(G(x), H(x)), so it suffices to prove for the case h = 2.

3. Assume that h = 2. Let L be the greatest total degree of the F;’s. If L = 0, then F}, F; and
thus g are nonzero constants. Thus o, = 0 for any p > |g| and (2.I0]) follows, so we only need to
prove for L > 1.

Base case: d = 1. Assume that h = 2.

Thanks to Assumption (2.15), there exist Hy, Hy € Z[x1] such that H{Fy + HyFy = C with C
a positive integer constant. If p|g(z), then p|C as well. Hence o, = 0 for all p > C' and (2.10])
follows.

Inductive step: from d — 1 to d (> 2). Assume that the statement holds for d — 1 and that h = 2
and L > 1.

Since L > 1, without loss of generality, we can assume that F} is not a constant and x; appears
in F7. We recast F; as a univariate polynomial G; € (Z[xs, ..., x4])[x1] of degree L;, i = 1,2, then
Ly > 1. Let v, j € Z[xo, ..., x4 (0 < j < L;) be the coefficients of x{ in G .

Since F} and F; are relatively prime in Q[z1, z, . .., z4] by Assumption (2I5), we have

ged (75, :1<i<2,0<5<L;) =1=ged(Gy,G2) in (Qlze, ..., z4])[z1].

As a result, there exist Hy, Hy € (Z[za, ..., x4))[x1] and Hy € Z[x,,. .., x4) such that H1G; +
H2G2 = H3 and (Hl, Hg, Hg) =1in Q[l’l, To, ... ,Id].

If p|g(x), then p| (Gi(xs, ..., xq)) (1) (V i), H3(za, ..., z4) and either
(1) p|vij(z2,...,zq) for all ¢ and j; or
(2) ptij(za, ..., zq) for some i, j.

Case (1). Recall that L; > 1. By the induction hypothesis for the at least two polynomials:
Yij(T2, .. xq) (1 <0 <2,0<j <L;), the probability that Case (1) happens with (za,...,z4)
uniformly distributed on (Z/pZ)¢! is O(p~2).

Case (2). We need the following asymptotic result.

Lemma 2.14. Let G € Z[xy, xa, . .., x4 be a nonzero polynomial, p a prime, and o, the probability
that p| G(z) with x uniformly distributed over (Z/pZ)?, then we have

(2.17) o, =07 ).

Proof. Let L be the total degree of G. If L = 0, then G is a nonzero constant. For any prime
p > G, we have o, = 0, thus (2.1I7) holds.
Now we assume that L > 1. We prove by induction on d.

Base case: d = 1.
Since the number of roots of G mod p is at most L, we get 0, < L/p and hence (2.17).

Inductive step: from d — 1 to d (> 2). Assume that the statement holds for d — 1.

We recast G as a univariate polynomial Gy € (Z[za, x3, ..., z4|)[z1]. Let v € Z]xs ..., z4) be the
leading coefficient of G1. Observe that the total degree of Gy is at most L. If vi(zg,...,24) Z 0
(mod p), then the probability that p|Gi(x;) with z; uniformly distributed over Z/pZ is no
greater than L/p, according to the base case d = 1. On the other hand, the probability that
plyi(xa, ..., zq) with (2, ..., 24) uniformly distributed over (Z/pZ)4~1 is O(p~!) by the induction
hypothesis for 7; . Combining these two cases, we conclude that the probability that p | G(x1, za, . .., z4)
with (21, 29, ..., x4) uniformly distributed over (Z/pZ)? is at most L/p+ O(p~!) = O(p~!). Hence
the statement holds for d, as desired. O
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Now we go back to the proof of Theorem 2I2I(b)(ii). Thanks to Lemma [2T4] the probabil-
ity that p| Hz(za, ..., zq) with (xa,...,24) uniformly distributed on (Z/pZ)¢~! is O(p~!); more-
over, for each (z,...,74) that satisfies p 1 v;;(z2,...,24) for some i7,j, the probability that
p| (Gi(xa,...,14)) (x1) with z; uniformly distributed on Z/pZ is O(p~'). Hence the probabil-
ity that Case (2) happens with (z1, 23, ..., z4) uniformly distributed on (Z/pZ)¢ is (O(p~1))? =
O(p~?).

Combining Cases (1) and (2), we conclude that the statement holds for d as well, as desired.

(iii) If A\, ({1}) = 0 for some prime p, then A({1}) = 0 by (i).

Now assume that A\,({1}) > 0 for all prime p. On the strength of (ii), there exist a positive
constant ¢ and a positive integer j* such that

pir > 1+c>ve, A, ({0}) <cep;?, Viji=>j~
Thus

]:"o[ A, ({01) 1_'[(1——) 1—%%21—2@%

J=J J=J J=j* 1=pjx
= 1 1 c
>1-— —— | =1-
= .ZC<¢—1 z) =1
i=p;x
where in the second inequality, we take advantage of the well-known inequality:
(2.18) (1=6)1=08) - (1—=06,)>1=6 —dg—---— 0y
for d1,d2,...,0, € [0,1], which can be proved easily by induction on u (base cases: u = 1,2;
inductive step from w to u 4+ 1: (1 —d1)(1 — )« (1 — duq1) > (1 = 01)(1 — 0y — -+ — Jyi1) >
L =01 =0y — = duy1)
Hence
et oo
H)‘p({l}> = H )\Pj({l} H {0} )
P Jj=1 Jj=3*
O

2.5. Zero Polynomial Values.

Remark [2.9/(iii) used a well-known result that the probability that a nonzero polynomial at a
random integer vector equals zero is 0 ([I3, Lemma 4.1]). We conclude this section with a different
proof by estimating this probability from above by o, and applying Lemma 2.14]

Theorem 2.15. Let G € Zlxy, za, ..., x4) be a nonzero polynomial, p a prime, Up ) the probability
that p|G(z) with x uniformly distmbuted over Zd y» and o, the probability that p|G(x) with x
uniformly distributed over (Z/pZ)?, then
(i) we have

O'I()k) — o0, as k— oo, and al()k) <2, Yk>(p—1)/2;

(ii) the probability o'® that G(z) = 0 with x uniformly distributed over Z?k) goes to 0 as k — 0o ;
in words, the probability that a nonzero polynomial at a random integer vector equals zero is 0. As
a consequence, for any given integer c, the probability that G(x) = c is either 0 or 1 (consider the
polynomial G(x) — ¢).

Proof. (i) We follow a similar approach as in the proof of the first equality of ([23]). Let k € Z
such that K := 2k + 1 > p. Then there exists ¢ € Z, such that

(219) q-Pp§K<(q+1)'Pp.
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It follows that for any integer y, there are either ¢ or ¢ + 1 numbers among Z, that equal y mod
p. Further, the number of x € (Z/pZ)? for which p| G(x) is p?o,, thus the number of z € Z‘(ik) for

which p| G(x) is between ¢%po, and (q + 1)%p?o, . Therefore
dd 1)dpd
(2.20) o) € {q oy (gt 1)p Up} =

Ki ' Kd
q'po, (Q+1)dpd0'p}: ( q )da (q+1)dg
[(g+Dpl4"  (gp)* q+1) "\ ¢ il

whose left and right endpoints both converge to o, as ¢ — oco. Hence

Thanks to (2.19), we have

(2.21) S C [

O—I(f) — 0,, asq— oo, or equivalently, as k — oo .

Additionally, we deduce a},’“) < 2%, from (220) and [221]) along with ¢ > 1.

(ii) The probability ¢*) is no greater than a;,(,k), which by virtue of (i) and Lemma[2.14] converges

to0asp,k — oo with k> (p—1)/2. O

3. SNF DISTRIBUTION

Let m < n be two positive integers. We shall define the density of SNF of a random n x m
integer matrix as the limit (if exists) of the density of SNF of a random n x m matrix with entries
independent and uniformly distributed over Z) as k — oo (see Definition B.1l below for a precise
definition).

If we regard the minors of an n x m matrix as polynomials of the nm matrix entries with integer
coefficients, then the SNF of a matrix is uniquely determined by the values of these polynomials.
Specifically, let @1, zo, ..., Zpnm be the nm entries of an n x m matrix, F}’s be the minors of an n xm
matrix as elements in Z[xy, Za, ..., Tpm], U; be the set of ¢ x ¢ minors (1 <4 < m), then the SNF
of this matrix is the diagonal matrix whose i-th diagonal entry is 0 if g;(x) = 0 and g¢;(z)/g;—1(x)
otherwise, where x = (x1, Z2, ..., Zpy) and g;(z) is defined in (2.1]).

In this spirit, the multi-ged distribution as well as the results in Sections have analogues
for the SNF distribution of a random integer matrix. This section presents these analogues and
the next section will use them to compute the density p for some interesting types of sets.

Conventionally, the SNF is only defined for a nonzero matrix; however, for convenience, we shall
define the SNF of a zero matrix to be itself, so that SNF is well-defined for all matrices. This
definition does not change the density (if exists) of SNF of a random n x m integer matrix since
the probability of a zero matrix with entries from Zyy is 1/(2k + 1), which converges to 0 as
k— oo.

We denote the SNF of an n x m matrix M by SNF(M) = (SNF(M); ;)nxm and let S be the
set of all candidates for SNF of an n x m integer matrix, i.e., the set of n x m diagonal matrices
whose diagonal entries (dy,ds, . .., d,,) are nonnegative integers such that d;,; is a multiple of d;,
i=1,2,...,m—1.

For ease of notation, we shall always assume that the matrix entries are independent and uni-
formly distributed on its range (if known, e.g., Z) or Z/PpZ), and that the notion SNF(M) € S or
SNF(M) = D (mod Pp) for some S C S, D € Sand Pp =[], ;cpp® € Z; implies the equivalence
of multiplication of the entries of M by units in Z/PpZ , thus we can assume for convenience that
the entries of SNF(M) (mod Pp) are zero or divisors of Pp.

Definition 3.1. (i) For S C S, we denote by p*)(S) the probability that SNF(M) € S with
entries of M from Zgy. If limg e p®(S) = u(S) exists, then we say that the probability that
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SNF(M) € S with M a random n x m integer matrizis u(S). If this is the case, then u(S) € [0, 1]
since ¥ (S) € [0, 1] for all k.

(ii) We define similarly the SNF distribution over the ring of integers mod p®: for prime p and
positive integer s, we denote by ugz)(S) the probability that the SNF(M) € S (mod p®) with
entries of M from Zy, and by p,:(S) the probability that SNF(M) € S (mod p®) with entries of
M from Z/p°Z.

More generally, for a finite set P of prime and positive integer pairs (p, s) (with p a prime and s
a positive integer), we denote by ,ugfg (S) the probability that SNF(M) € S (mod Pp) with entries
of M from Zy, and by pp, (S) the probability that SNF(M) € S (mod Pp) with entries of M from
Z]PpZ . Note that pp,(S) is the number of matrices M over Pp such that SNF(M) € S (mod Pp)
divided by Pg™. The situation discussed in the previous paragraph is the special case that P
consists of only one element (p,s) and Pp = p®.

In this section, we establish a formula for p,s, discuss the properties of pp, and p, show the
existence of ;1 and represent it as a product of ji,s’s.

3.1. SNF Distribution over Z/PpZ .
We have the following formula for p,s and analogue of Theorem for SNF's.

Theorem 3.2. (i) Given a prime p, a positive integer s and a sequence of integers 0 = ag < a3 <
o <ag < agyp = m, let a = (ay,a9,...,a5) and Dg € S be the diagonal matriz with exactly

(a; — a;_1) p=1’s, i.e., a; non-p'-multiples, 1 <i < s on its diagonal. Then we have
=57 —a; —a; [pvn][pvm]
31 pe((Da)) = p T s ,
! [p,n — as][p,m — ag] [T, [p, ai — a;1]
where

.0 =1, [pa=]]0-p7), ez,

j=1
(ii) For any S C'S, we have
pep(S) = Y ue({D})
DeS (mod Pp)
and

(3.2) lim ) = ppo(S) = [ me(S).

k—o0
(p,s)EP

Proof. (ii) and (iii) are direct applications of Theorem to SNFs. For (i), we compute the
number of n x m matrices over Z/p°Z whose SNF is Dgq by [7, Theorem 1] (or [8, Theorem 2])
and simplify it to

Sioq[(ntm)ai—a?] | H?ial(l — p_""‘j)(l _ p—m-i-j)

& R =: N.
ITis Hj:l (1—p7)

(3.3) P

Thus

1-({Da}) = p~*"™N = RHS of @I).
Ol

Remark 3.3. In the case of s = 1, the formula (33) gives the number of n X m matrices over
Z]pZ of rank a; and is consistent with [I5, Exercise 1.192(b)]; whereas in the case of n = m, a
calculation shows that (B.3]) is consistent with the results in [9, pp. 233, 236] (their |Aut H| is our
N).
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3.2. SNF Distribution over Z.

The properties of A of set unions, subtractions and complements in Section also carry over
to SNFs. They will be useful in determining the value of i for some specific sets (for instance, the
singleton set of the identity matrix as in Section [A.3]).

Theorem 3.4. Suppose that {S,}aca are pairwise disjoint subsets of S such that u(S,) ezists for
alla e A. If A is a finite set, then

K (UocEA Sa) = Z ILL(SOC) .
acA

Theorem 3.5. Suppose that &' C S C S such that u(S") and p(S) both exist, then
w(S\S) = u(S) — u(S").

In particular for the complement 8¢ of S in S, we have
w(8) =1-u(S).

Theorem 3.6. Suppose that T € S such that u(T) = 0, then for any S C T, we also have
w(S)=0.

3.3. Connection between ;i and fis.
Theorem [2Z.8 has an analogue for SNF's as well, by virtue of the following well-known lemma (see
[3, Theorem 61.1] for an easy proof).

Lemma 3.7. Fizx a positive integer r. The determinant of an r X r matriz as a polynomial of its
2

% entries Ty, Ta, ..., T2 is irreducible in Qlxy, xa, ..., x,2].

For any i < m A (n — 1) (i.e,, min{m,n — 1}, which is m if m < n, and n — 1 if m = n,
recalling that m < n), the set U; contains at least two different minors, which are both irreducible
as polynomials of the entries on the strength of Lemma [3.7] and therefore relatively prime. Hence
Assumption 2.7] holds with w = m A (n — 1). This allows us to apply Theorem 2.8 to SNFs and
obtain the following analogue. In addition, we will compute the density u(S) explicitly later in

Section .11

Theorem 3.8. Given positive integers r < m A (n —1) and dy |dy | ---|d,, let z = [[}2, p; with
p; the j-th smallest prime and s; nonnegative integers, j = 1,2,... such that d, |z, then the
probability p(S) exists for
(34) S = {D = (Di,j)nxm eS: Di,i = di, Y i < 7’},
and in fact
(3.5) u(S) = [Lrpn(S).

j=1

Remark 3.9. (i) The right-hand side of (3.5]) is well-defined since p,:(-) € [0, 1] for all p and s.

(ii) We have assumed that r < m A (n — 1); in fact, we have p(S) = 0 otherwise. Recall that
m < n and note that » < m, thus in the case of r > m A (n — 1), we must have r = m = n.
As a result, any matrix M with SNF(M) € S satisfies |M| = +d,,. We will show later that the
probability that the determinant of a random n x n integer matrix equals +c¢ is 0 for all constant
¢ (Theorem [L.H).

(iii) We have also assumed that the d;’s are positive; in fact, we have u(S) = 0 otherwise. If
d; = 0 for some i, then all ¢ X i minors of any matrix M with SNF(M) € S are zero. Applying
Theorem to ¢ = 0 yields the desired result.
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4. APPLICATIONS

Now we apply Theorems and 3.8 to compute the density p explicitly for the following subsets
of S: matrices with first few diagonal entries given (i.e., with the form of (3.4))), full rank matrices,
a finite subset, matrices with diagonal entries all equal to 1, and square matrices with at most
((=1,2,...,n) diagonal entries not equal to 1.

4.1. Density of the Set (3.4)).

For the set S of (B.4), i.e., of matrices with first r diagonal entries given, we take z = d, in
Theorem 3.8 then it suffices to compute p,s+1(S) for each (p,s) = (pj,s;). In mod p**?, the set
S has m —r + 1 elements (see (LI2) below). Further, since formula B gives the density ps+1
of each element of S, one can take the sum over S to get an expression for pi,s+1(S) (Theorem
B.2), and compute this sum explicitly when m —r is small, such as in Theorems [4.8 and below.
However, this sum is hard to compute when m — r is large, for example, when m is large and r is
fixed; in this case, we recast S as the difference between a subset of S and the union of other r — 1
subsets such that for each of these r sets, its density p,s+1 is given directly by (B.1I).

We work out two examples to illustrate this idea, and then deal with the general case.

4.1.1. The First Example: Relatively Prime Entries.
Our approach reproduces the following result mentioned at the beginning of this paper.

Theorem 4.1. Let S be the set of B.4) withr =1 and dy = 1, then we have

(4.1) wS) = <<nlm> ,

where ((-) is the Riemann zeta function.

Proof. Applying Theorem B.8 with r =1,dy =1 and s; =0, j =1,2,... gives
(4.2) w(S) =[] m(S),
p

therefore it reduces to computing p,(S) for each p.

Recall the equivalence of multiplication by units, therefore we only have two choices for matrix
entries in mod p: 1 and 0. The set S (mod p) consists of all the matrices in S whose first
diagonal entry is 1, thus & = {Dq : @ = (a1) > 1} (mod p) (recall from Theorem that
a := (ai,as,...,a,) and that Dg € S is the diagonal matrix with exactly a; non-p’-multiples on
its diagonal). Therefore

pp(S) =1~ ,Up({D(O)}) .

We apply B.1) to get p,({Doy}) = p~™™, thus p,(S) = 1 — p~™™. Plugging into {.2)) along with
the Euler product formula

(4.3) H(l—p‘i)zﬁe((),l), Vi>2

yields (E1]). O
4.1.2. Another Example.

Theorem 4.2. Let S be the set of (B.4) withr =2, dy =2 and dy = 6, then we have
(4.4) 1u(S) = 122(8) ps(S) [ [ 1(S)

p>3
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where
1-2")(1 -2

(4.5) 132(8) = 277 (1 _ g _g-t-nm-n) , { 1 ) (2_1 )) ,

_ o—(n—1)(m—1) _ a—(n—1)(m-1) (1 - 3—n) (1 — 3—m)
(46) () =3 (1-3 yLs s,

_ _ (n=1)m nm—1
—nm —(n—1)(m— (1 — P n) (1 — P m) —i —i
(A7) pyl8) =1y —pr Vo) S P P S e Y
(n—1)(m—1) n(m—1)+1

Proof. The first equation ([.4]) follows directly from Theorem withr=2,d,=2,dy,=2=6,
s1 =8y =1,5; =0, 75 > 3. Therefore it reduces to calculating (,:(S) for (p,s) = (2,2), (3,2)
and (p,1) with p > 3.

Case 1. p>3and s =1.

Recall the equivalence of multiplication by units, therefore we only have two choices for matrix
entries in mod p: 1 and 0. The set S (mod p) consists of all the matrices in S whose first two
diagonal entries are 1, thus S = {Dgq : @ = (a1) > 2} (mod p) (recall a again from Theorem [3.2)).
Therefore

1p(S) =1 = 1,({Dwy}) — 1p({Dy }) -

We then apply (B.I) to get p,({Do)}) and p1,({D1y}), and @7 follows.

Case 2. p=2and s =2.

We have three choices for matrix entries in mod 22: 1, 2 and 0. The set S (mod 22) consists of
all the matrices in S whose first two diagonal entries are 2, thus S = {Dg=(a;,a) : @1 = 0, ag > 2}
(mod 22). Therefore

(4.8) 1122(S) = p22({ Diay,a2) @1 = 0}) — po2({D0,0)}) — pra2({ D01y }) -

Notice that the set {D(4, 4,) : @1 = 0} (mod 2?) consists of all the matrices in S whose diagonal
entries are all multiples of 2 (i.e., either 2 or 0); in other words, in mod 2, it contains only one
element — the zero matrix. Hence

1122({ Dy a0) : a1 = 0}) = p2({ Dy }) -
Plugging into (.8) and applying 8.1)) to get p2({D(0)}), p22({D(0,0)}) and pio2({ D01y }), we obtain

Case 3. p=3 and s =2.

We have three choices for matrix entries in mod 3%: 1, 3 and 0. The set S (mod 3?) consists of all
the matrices in S whose first two diagonal entries are 1 and 3, respectively, thus S = {Da—(a, ,as) :
a; =1, ay > 2} (mod 32). Therefore

(4.9) 1132(S) = p32({ Dayaz) : @1 = 1}) — pz({Dany }) -

Notice that the set {D(4, q,) : a1 = 1} (mod 3?) consists of all the matrices in S whose first diagonal
entry is 1 and all other diagonal entries are multiples of 3 (i.e., either 3 or 0); in other words, in
mod 3, it contains only one element — the diagonal matrix whose diagonal entries are 1,0,0,...,0.
Hence

p32({ Dar.an) - a1 = 13) = ps({ Dy }) -
Plugging into (4.9) and applying B.I) to get us({D)}) and ps2({Da,1)}), we obtain (4.6). O



16 YINGHUI WANG AND RICHARD P. STANLEY

4.1.3. The General Case.

Theorem 4.3. Let S be the set of [B.4) in Theorem with d. = [[;2,p;, then for (p,s) =
(pj,sj), 7=1,2,..., we have

=38 (n—ag)(m—a;) [P, n] [p> m]
/"L s+1 8 frd p =1 . — — 5 — —
r(5) pon—adlpm — ] [T o — ]
r—1
e e =50 (i) (e p,nl[p, m]
4.10 _ N7 (0 m—O) =S () ) [ m_
( ) Z [p>n_€”p>m_€][ ag_a's] Hi:l[p>ai_ai—l]

l=is

where a; (0 <14 < s) is the number of non-p*-multiples among dy,ds, ..., d, (thus a, <r—1). In
particular, when s = 0 (which holds for all but finitely many j’s), we have

r—1
411 S)=1— p_(n_z)(m_z) ) [p, nl[p, m] .
Ay i) =12, o= llp.m— .0
The value of u(S) is then given by Theorem[3.8 with z = d,. .

Proof. Recalling from Theorem the notation of Dq, we recast S as
(4.12) S ={Da=(a1,a2,...a021) 1 @& = @i, 1 <1< 5, ag41 > 1} (mod P,

and therefore

r—1
(413> Hps+1 (S> = :U'ps“({DGJ:(al,az,m,asH) rap=a;, 1 <i< 8}) - Z :U’ps“({D(51,527~~~,ﬁs,5)}) .
=i,
Notice that the set {Da—(a1.as,...a0,1) : @ = @i, 1 <i < s} (mod p**') in the first term on the right-
hand side of ([£I3)) consists of all the matrices in S with exactly @; (1 < i < s) non-p-multiples on
its diagonal; in other words, in mod p®, it contains only one element — the diagonal matrix with
exactly @; non-pi-multiples, i.e., (a; — a;—1) p'~'’s, 1 <i < s on its diagonal. Hence

(4.14) tpst1({ Da=(a1,az,..a0s1) @i = @iy 1 <0 < 8}) = pps({ D@y ao,.de) ) -
Plugging into (@I3)) and applying 1) to get jips({D(a,.a,...a.) }) and pipet1({ D@y as,..a0,00})s 1 <
¢ <r—1, we obtain (4.10). O

Remark 4.4. We notice that the density p,s({Da}) of [BI) is a polynomial of p~! with integer
coefficients since m — a; + >;_,(a; — a;—1) = m. The p,(S) of (L)) is also a polynomial of p~!
with integer coefficients and with constant term 1 (see the y,(S) of (A7) as an example). If we
replace each occurrence of p by p?, where z is a complex variable, and plug into (3.5]) of Theorem
B.8, we get an Euler product for some kind of generalized zeta function.

For instance, when m = n = 3, for the set S in Theorem 2], we apply (A7) to get

p(S)=1—pt=p?—p P +p T +pt=(1-p?) (1-p?) (1+p2+p7").
Taking the product over all primes p and applying the Euler product formula (4.3]), we obtain

1 2, 3
1;[/@(5) = W];[(lﬂﬂ +p7?).

Plugging into ([&4), we see that to obtain the density u(S), it reduces to computing [T, (1 +p~> +
p~?), or to understanding the Euler product [] (1 4+ p~* +p~%%).

It would be interesting to study whether such an Euler product for some generalized zeta function
(1) has any interesting properties relevant to SNF; (2) extends to a meromorphic function on all
of C; (3) satisfies a functional equation.
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4.2. The Determinant.

The determinant of an m x m matrix can be regarded as a polynomial G of its m? entries. Note
that G is not a constant since it takes values 1 and 0 for the identity matrix and the zero matrix,
respectively. Thus we can apply Theorem to G and obtain the following.

Theorem 4.5. Let ¢ be an integer. The probability that the determinant equals ¢ for an m X m
matriz with entries from Z goes to 0 as k — oo ; in other words, the density of the determinant
of a random m X m integer matrix is always 0.

This result plays an important role in the next two theorems. The first of them shows that the
probability that a random n X m integer matrix is full rank is 1.

Theorem 4.6. If S C S satisfies Dy, = 0 for all D = (D; j)nxm € S, then we have u(S) =0 ;
in other words, the probability that an n X m matriz with entries from Zyy 1s full rank goes to 1
as k — 0o

Proof. If SNF(M),,,m = 0, then all m x m minors of M are zero. Therefore the result follows from
Theorem 4.5 with ¢ = 0. O

When m = n, we can generalize Theorem .6 to S with finitely many values of D,, ,,,’s.

Theorem 4.7. Suppose that m = n and S C S, then we have (S) = 0 if the set {D,,,, : D =
(Dij)nxn € S} is finite; in particular, this holds for any finite subset S C S .

Proof. For any M such that SNF(M) = D € S, we have |M| = £D;1Ds5---D,,,,. As a conse-
quence, if D,,,, =0, then |M| = 0; if D, , # 0, then the D,;’s are divisors of D, ,, and therefore
| M| has finitely many choices. The result then follows from Theorem U

If D, ,, # 0for all D € S, then we have another proof of Theorem [£.7] without invoking Theorem
45l We cannot take advantage of (8.2) from Theorem B.8 since r = m =mn > m A (n — 1) in this

case. Instead, we will start from the observation that u®(S) < ,ugf()e)({l}) with P(¢) a product of

primes and [ the identity matrix, then bound M%({f 1) from above by 2" tpey({1}) through a

similar idea as in the proof of (2.3)) (approximating 2k + 1 by a multiple of P(¢)), and finally show
that pupe)({/}) — 0 as £ — oo.

Another Proof of Theorem [{.7] with D,,,, # 0 for all D € §. Let I be the n x n identity matrix
and j* € Zy such that p; > ¢ for all j > j*. Then for any j > j*, SNF(M) € S (mod p;) only if
SNF (M) = I (mod p;).
Applying (3.3) with s =1 and a; = n (or [I5, Exercise 1.192(b)]), we get the number of n x n
non-singular matrices over Z/p;Z:
’I’L2
p; [pjvn] = ﬁj :
Set
P(l) := pjepjeyr---pe, £ 25"
Then SNF(M) € S (mod P(¢€)) only if SNF(M) = I (mod P(()). Hence puf), (S) < ph, ({1}).
By the Chinese remainder theorem, the number of n X n matrices over Z/P(¢)Z whose SNF
equals I mod P(?) is
¢ ¢
(4.15) BisBjes1- B =[] p} lpssnl = PO™ ] lpj.n] := B().
j=5* j=5*
For any integer k with K := 2k + 1 > P({), there exists ¢ € Z, such that
(4.16) qg-Pl)< K <(qg+1)-P(().
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Then for any integer z, there are at most ¢ + 1 numbers among Z, that equal z mod P(¢).
Therefore the number of n X n matrices with entries from Z,) whose SNF is equal to I mod P(¢)

is at most (¢ + 1)"*B(¢). Hence

(q+D7B(0) _ (a+D)"B0)  (¢+1\" BO) _ otr.
e e e L

(417)  WB (1)) <

on the strength of ([@I06) and EI5) (note that P(¢)~""B(¢) = tpe({1}) by (AI15) and (B.2)).

Notice that
(4.18) 11—z <exp(—z), Vaxel0,1].

(To see this, let W(z) := 1 — 2 —exp(—=x), x € [0,1], then W'(z) = —1 + exp(—x) < 0. Hence
W(z) <W(0)=0.)
Applying (4I8) with = = p{l (j* < j < {), we obtain

[pj,n] <1 —p;* <exp(—p;').
Plugging into (4.17) yields
k n? _ on?
i) <27 TT exp (=p;") = 2% exp < S opp ) 50 as £— o0
1<5<e J*<i<e

with 2k + 1 (= K) > P({), by the well-known result that

Z p]-_1—>oo as { — 00.
1<5<¢
Since p*)(S) < ,ugf()z) S) < uﬁfgz)({[}), we deduce that u®)(S) — 0 as k — 0o, as desired. O
4.3. Probability that All Diagonal Entries of the SNF Are 1.
Theorem (4.7 (along with Theorem [B.6]) implies that the probability that all diagonal entries of

an SNF are 1 is 0 if m = n; however, as we will see soon, this probability is positive if m < n.
We will need Theorems and [3.8] to determine its value.

Theorem 4.8. Let E be the n x m diagonal matriz whose diagonal entries are all 1. If m < n,
then we have

W((E)) = 1 - . {1, if m is fixed

1 . ) , as n— 0o.
HlanC TENIOR if n —m is fixed

Proof. Apply Theorem B8 with S ={E},r=m,d; =z =1,s; =0 for all 4, j, and then Theorem
B2 with s=1,a; =m:

wtt2)) = Totte) =TT 2y =11 [T a-»- 11 T0-»

p i=n—m+l1l i=n—m+1 p
1
a H?:n—m-i—l C(Z) 7

on the strength of n —m + 1 > 2 and the Euler product formula (£.3]).
Finally, thanks to the fact that {(i) | 1 as i — oo, we obtain the limits of u({£}) as desired. [




SMITH NORMAL FORM DISTRIBUTION OF A RANDOM INTEGER MATRIX 19

4.4. Probability that At Most ¢ Diagonal Entries of the SNF Are Not 1.

In this section, we assume that m = n. We provide a formula for the probability that an SNF
has at most ¢ diagonal entries not equal to 1 and a formula for the limit of this probability as
n — oo. In particular, when ¢ = 1, this limit is the reciprocal of a product of values of the
Riemann zeta function at positive integers and equals 0.846936. For bigger ¢, we prove that this
limit converges to 1 as ¢ — oo and find its asymptotics (see (L.38)).

4.4.1. Cyclic SNFs ( =1).

We shall say that an SNF is cyclic if it has at most one diagonal entry not equal to 1, i.e., if
the corresponding cokernel is cyclic. Denote the set of n x n cyclic SNFs by 7,,. We will compute
the probability u(7,) of having a cyclic SNF, and show that this probability strictly decreases to
0.846936 as n — oo.

Theorem 4.9. We have

(i)

1 1
(4.19) W(T,) = (14 5o+t o) =2
(i) Z, is strictly decreasing in n;
(iii)
1 90
Ly = ——=—0.92 ;
= i = 0923938
(iv)
lim Z, = ; ~ 0.846936 .

oo C(6) T2, C()
Proof. (i) Apply Theorem B8 with S =7,,r=n—1,d, = z=1, s; =0 for all ¢, j, and then

Theorem B2l with s =1, a; =n, n — 1, respectively:
B . p~'p,n)? p, 1] p~'p, ]
4200 u(T) = 1 L7 = 1] (o ) S (b iRl

_ 1 Looptl=-pm)\ 1 1 1 1\
‘H;;zca)l;[(l‘p e )‘H?:2<<z’>1;[<”z¥+ﬁ+“'+ﬁ)‘Z"‘

Here in the fourth equality we used the fact that

HH 1-p :ﬁH(l_p_i):H?:iC(i)’

p =2 i=2 p
by virtue of the Euler product formula (4.3]).
(ii) We consider the ratio:

(4.21)

Zn+1 = H (1 _ p—(n+1)) ) 1 +p_2 +p—3 4+ .. +p—(n+1)
Zn ]_—|—p_2_‘_p—3_‘_‘_._‘_p_n

Y

p
thus it suffices to show
p )y L+p?+p 4 p Y
L+p2+p3+--+pm
for all p. For ease of notation, we denote p~! by ¢ throughout this paper, then

n tn+1 n n n
LHS of @22) = (11 +1).<1+1+t2+t3+‘_‘+tn) < (1= P (14 ) = g2 ) <1

(4.22) (1- <1
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(iii) When n = 2, it follows from definition (£I9) that
1

Z=1]0-p?) 0 =102 = 5

p p

(iv) Now assume that n > 3. According to the definition ([A.I9) of Z, , it suffices to prove that

i R IR CINC))
JEEOEI(HPWFPWL +p") ¢6)

In fact, we will show that
¢(2)¢(3) ( 1 1 ) ) ( 1 1 1 )
4.23 = 1+ =+—=+---|=lim 1+=+—=+--+—=].
(4.23) ¢(6) 1;[ P’ P "%01;[ P P pr
We adopt the notation ¢ := p~t. For the left equality of (#.23]), we observe that
2 1—t+ 1+t 1—1¢°
1—t 1—-t  (A+H1-t) (Q-=-)(1-1)

Taking the product of this equation over all reciprocals t of primes and applying the Euler product
formula (43)) yields the desire equality.

For the right equality of ([£23), since

(4.24) 142 =1

1+t2+t3++tn tn+1+tn+2+"' tn+1_|_tn+2_‘_‘_‘ -
0<1-— = < =1,
L+ 4+ 4 L+ 4+ 4 24134
combining with (£.3)), we obtain
1+ +8°+ ) 1
1> > (1-t"=—r=x—1 —
H 1+ +6+ H C(n—1) T el

and complete the proof, where ], represents a product over all reciprocals t of primes.
One can also show the right equality of (£23]) using the fact that

(4.25) I1<1l4p24p32 4+ 4+p "1t 14+p24+p 3+, asn— oo

and the following version of monotone convergence theorem (which will also be very useful later
in proving Theorem FT3](iii)).

Theorem 4.10. If real numbers x;; (i,j =1,2,...) satisfy 1 < z;; T x; as j — oo for all i, then
we have

(4.26) Jlggo ﬁz” = ﬁ T .
i=1 i=1

Here we allow the products and the limit to be infinity.

Proof. Applying the monotone convergence theorem to logx; ; (> 0) gives

lim logx; ; = log x; .
Thus
lim lo z; . =lo xi,

and (£.20) follows. O
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Thanks to ([#2H), we can apply Theorem EI0 with @;; = 1+ p; 2 4+ p;® +--- +p;? and 2; =
1+p;2+p;®+---, and arrive at the desire equality. O

Remark 4.11. (1) The proof of Theorem [.9(iv) is reminiscent of (though not directly related to)
[15, Exercise 1.186 (c)].

(2) Theorem [4.9(i), (iv) and the numerical value of (iii) are obtained in [6, Section 3] via a
slightly different approach. We have provided a complete and more detailed proof.

4.4.2. More Generators (General ().

Now we consider the SNFs with at most ¢(< n) diagonal entries not equal to 1, i.e., whose
corresponding cokernel has at most ¢ generators. Denote the set of such n x n SNFs by 7,(¢). In
particular, when ¢ = n, we have u(7,(n)) = 1. The above discussion on cyclic SNFs is for the
case £ = 1. We will compute the density p(7,(¢)) and its limit as n — oo, show that this limit
increases to 1 as £ — oo, and establish its asymptotics.

We start with a lemma which will play an important role in our proof (as well as in Section
below).

Lemma 4.12. For any positive number x < 1/2, the positive sequence {[1/x, k|}32, is decreasing
and thus has a limit as k — 00:

(4.27) Clx)=(1-2)(1—-2%) € [0 1),
This also implies that C(z) — 1 as x — 0 and that [1/z, k] € [e72/(=) 1) for all x € (0,1/2] and
k>1.
In particular, when x = 1/p, we have
(4.28) p, k] L C,:=C(1)p) € [6_2/(”_1), 1) C [e?1), as k— oo,
C,—1asp— oo, and [p, k] € [e=¥®=V 1) for all p and k > 1.

Proof. The sequence [1/z, k] is strictly decreasing in k because 0 < 1 — 27 < 1 for all j > 1.
To get the lower bound for C'(x), we will use the following inequality:

1 —
(4.29) 1nyz—7y, Yy e (0,1].

(To see this, let ¥(y) :=Iny + (1 —y)/y, then ¢/'(y) = 1/y — 1/y?> < 0. Hence ¢(y) < (1) =0.)

Applying (#29) with y =1 — 27 (j > 1) yields
| j |
(4.30) In(1—27) > ———— > 20

as 27 < 1/2. Summing up ([&30) over j from 1 to k, we get

In[l/x, k] > ZQ:C” —i2xj:—
=1

Hence C(x) = limy_,oo[1/x, k] > e‘h/(l_m). O
Theorem 4.13. We have

(i)

(4.31) W) = [[ Zolp,0) = <) 1Y 0) = Zu(0),

where



22 YINGHUI WANG AND RICHARD P. STANLEY

(4.32) Y. (p,t) =

¢ 1
(483 N0 TR o = Y00 e n oo, Y00 T “’C—] as £ oo,
and
(4.34) 11p(Tr(0)) = Zy(p, £) — [pC 7 ~C, Z p,l) as n— oo,
where Cpy = (1—p™ (1 —p~2)--- as defined in (E2]) and (M), then it follows from ([E33)) that
(4.35) Z(p,0)T1 asl — oo;
(iii)

(4.36) wT0) = Zu) = =71 < HY p.0) =12 0) = Z(t) as n— oo,

and Z(0) T 1 as £ — oo

(iv)
2 2
’ S A =1-Gpp 1= " P as { — 00}
4.37 lim g, (75 (¢ l C; (£+1) o , o ,
more precisely, this O (p~) € (0,2p~%) ;
(v)
43%) lim p(To(0)) = Z() =1 - C;t- 27V 1274 O (47)] as £ 00,

n—o0

where Oy ' ~ 3.46275 .
Parts (ii) and (iv) also hold with p = 1/x for any x € (0,1/2].

Figure [Mland Table Ml below illustrate the asymptotics (A38]) of Z(¢) and fast rate of convergence.

FIGURE 1. Asymptotics of Z(¥)

3.6 12040 (1 - 2(0)) —In(1 - G520V (1-2(¢))) / In2
3‘4” ................ 207 ..
[ J
3.2 1 * 15 + .o.
3| ° )
10 | o
2.8 1 . o
[ ]
2.6 1 o .
® g 0.. f
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TABLE 1. Asymptotics of Z(¢)

23

Z(0) 1 - Z(0)

2+ (1—Z(0)) —In[l — Cy 2D*(1—Z(£))] / In2

0.846935901735 1.53064098265 x 10~!
0.994626883543 5.37311645734 x 1073
0.999953295075 4.67049248389 x 107°
0.999999903035 9.69645493161 x 1078

14

1 2.44902557224
2

3

4

5 0.999999999951 4.88413458245 x 10~
6

7

8

9

0

2.75103562616
3.06085395424
3.25359037644
3.35635172814
3.40909705378
3.43580813230
3.44924885316
3.45599059345
3.45936681921

1.000000000000 6.05577286766 x 10715
1.000000000000 1.86255532064 x 10~
1.000000000000 1.42657588960 x 10724
1.000000000000 2.72629586798 x 10730

1.000000000000 1.30126916909 x 10736

1.77225611430
2.28255339912
3.10703467197
4.04926385851
5.02441603986
6.01220652280
7.00610418193
8.00305233425
9.00152622794
10.0007631292

Remark 4.14. The convergence result (£35) in Theorem HI3(ii) with p = 1/ implies Euler’s

identity:
o0 gin 1
ZZ:; (1—2)2(1—22)2---(1—29)2 (1—2)(1—22) -

Proof. (i) The first equality follows from Theorem B8 with S = T,({), r=n—4{(,d; =2 =1,

s; = 0 for all 4, j, and Theorem B.2 with s =1, a; =n,n—1,...
The second equality follows from definition (4.32) and (4.21]).
(ii) We observe that

,n — £, respectively.

[p, n] ] _ (1 —p_") (1 _p—(n—l)) . (1 _p—("_”l)) 1 as n— o0.

[pa n—1
This leads to the first result of (Z33]).

Since Y,,(p, ¢) is also increasing in ¢ by definition (£32), so is Y(p, ¢), and for all £ < n, we have

(4.39)

Further, we derive from

Yi(p,€) < Ya(p,£) < Ya(p,n).

that o1 o
b, . D,
Y,.(p,n) = and similarly, Y,(p,?) =
(#:7) [p, n] ¥, Yelo.d) [p, €]
Plugging into (£39)), we obtain
[p, 1] p,1] _ [p 1]
<Y,.(pt) < <
p =S5 g
Taking n — oo yields
p, 1] P, 1]
— <Y(p, ) < ——.
[p> E] ( ) Cp

Then taking ¢ — oo and applying Lemma leads to the second result of (£33).

Finally, on the strength of (£33)) and Lemma .12, we obtain (£34]) from definition (£32):

Zop ) = 2y (0.0) 5 Sy (p ) as n— oo,

[p, 1] [p, 1]
This proof also carries over to p = 1/x for any = € (0,1/2].
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(iii) It follows from definitions (£3T]) and (432) that

(4.40) Zo(0) = [ Zutw.0) = ] [[Z ’ 71’]] [Tv(.0).
By virtue of (£.21]), we have
P, _ L L ~ as n — 0o
(4.41) 11 b SIS0 S 0.435757 — 0.

Further, this limit

Hence

(4.42) 1T

We can also deduce (4.42)) from Theorem .10 with =, ; = [p;, 1]/[ps, j] since

A [p. 1]
[p,n] Cp

—

1<

4

as n — oo

by Lemma

For the second product on the right-hand side of (£40), from (£20) in the proof of Theorem
2.9(i), we see that Y, (p,1) = 14+p24+p3+---+p~™ > 1. Since Y, (p, {) is increasing in ¢, we have
Y,(p,£) > 1 as well. In conjunction with (£.33), we can apply Theorem .10 with z; ; = Y;(p;, ()
to obtain

(4.43) HYn(p, ) 1 HY(p, () as n — 0.

Plugging (4.41), (@Z{D and (£.42)) into (4.40) along with definition ([A.34]) yields (£.36)):

C p
(4.44)  Z,(0) — ch HYp, —H[pjl]HY(p,E):H[p Y (p, ) HZp,

p p

as n — 00.
Since Y,,(p, ¢) > 1 and Y,,(p, £) is increasing in ¢, so is Y (p, ¢) (recall (£33)). Thus we can apply
Theorem A.T0l with z; ; = Y (p;, j) to obtain

HY(p,ﬁ) 0 H% as { — 00.

Finally, we plug this into the second expression of the limit of Z,,(¢) in (A.44):

Z(0) = lim Z,(¢ H HYp, 1+ 1 as £ — o00.

n—oo

(iv) We prove for the more general case p = 1/x with x € (0,1/2]. Let

i2

[1/x,1]?

J4
Vi, 0):=Z(1)z,0) = Z

=0

Recall that C(z) = (1 —2)(1 —2?)--- and [1/z,i] = (1 —2)(1 — 2?) - - - (1 — 2%).
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Since V(z,0) = Z(1/z,0) T 1 as £ — oo by ([f35]), we have

0 -2 L -2 00 xiQ
ZZ: [1/x,i]? ZZ:; [1/x,1]? +i§1 [1/x,1]? a + Z@; 1/:17 i]?

Thus for any x € (0,1/2], we obtain

O [L =V (x, 0)] = 2~ O (a) { Lo V(I’g)} _ (e i C(w)a”

12
= Z g (er)? H (1 —:)sj)2 = H 1 —xj Z P G H (1 —xj)2
i=0+1 j=it+1 j=b+2 i=0+2 j=it+1
0 ] 2x6+2
(445) = I—QZI’J—I—A:[ —I—Agzl—l —|—A1+A2,
=042 N
where
00 25—1—3
(4.46)  0< Ay := Z 2T ( 1—a/)” Z gD < Z at < 2
i=0+2 Jj=i+1 =042 1=20+3

and

00 N fp 204 Ny
(4.47) ogAI::'H (1—a/)” 1—22;& <4 > PV = 1_9})23;5 ,

j=0+2 J=L+2 5,4’ >0+2

as 0 < z < 1/2, thanks to the inequality:

ogﬁa—@)— (“i@) < )b

1<i<j<u

for 61,02,...,d, € [0,1], which can be proved easily by induction on u (the left inequality was
proved in (ZI8). For the right inequality, base cases: u = 1,2; inductive step from u to u + 1:

(1—=0us1) H?:l(l —0;) < (1=dus1)(1 _Zz 1 0 +Zl<z<]<u5 0; ) =1- ZuH 0; +Zl§i<j§u+1 0305 —
Out1 Zl§i<j§u 5@'5]' <1- Z?:Jrll o + Zl§2<3§u+1 0i0; )

Plugging (£40) and (447) into (A45]) yields (£37).

(v) Since Z(¢) =[], Z(p, ) by definition ([A.36) and 0 < Z(p,£) <1 for all p, we have Z({) <
Z(2,0). Thus it follows from (iv) that

4.48 ZW) < Z(2,0) =1-Cy'27 W 127+ O (47)] as € — oo,
(4.48) (6) < Z(2,0) 2
On the other hand, we notice that when ¢ > 2, the O(p~%) in (&37) satisfies
2 2
Op™)<2p ™<= pl<5—p",

p 2

thus
Z(p,l) >1— C'p_lp_(”l)2 .

Hence

(449) Z(g) = HZ(]D, 6) > Z(2’£) H ( C 1 —(Z—l—l ) >1— (1 . Z(27€>> . ch)_lp_(£+l)2.

p p=>3 p>3
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Here we took advantage of the inequality (2.I8). Thanks to (£28]), the positive sum

(0+1)? (6+1)? (t+1)? 2 0 (t+1)? 2 ‘ 2\
—1, —(f+1 2 —(41)2 _ 29— (0+1 2 o—(0+1
E Cp P <e E P =e“2 E ( ) < e°2 E (3) ( )

p=>3 p>3 p>3 p p>3 p

2

52
< 62 2—(@4—1)2 (5) L4 = 2—(Z+1)20(4—€) ]

Finally, combining with (£48]) and (£.49) leads to (4.38). O

Remark 4.15. When ¢ = 1, in the proof of Theorem .9 we wrote Y (1/z,1) as (1—2%)/(1—2?)(1—
%) (see ([E24)) in order to represent Z(1) = [[ Y (p,1)/[;2,¢(4) as the reciprocal of a product
of values of the Riemann zeta function at positive integers. However, this is not the case when
¢ > 1; in fact, in general Y (1/x,¢) is not even a symmetric function in z, for instance,
v i,2 _ 1—:z:—x2+2x3—x5+x67
(1 —2)3(1 + x)?

1 l—az—a22422* +2° =225 — 27 + 28 + 2% — 21 4 212
v (=3 = .

x (1—2)(1+2)2(1+z+ x2)?

X

5. PROPERTIES OF THE SNF DISTRIBUTION FUNCTION /1,5

In this section, we first fix p,s,m,n and find the maximum and minimum of the probability
density function p,s of (B.I)). Then we free p,s,m,n and study the monotonicity properties and
limiting behaviors of p,:({Dqa}), as a function of p,s,m,n and a (recall from Theorem the
notation of vector @ = (ay, as, ..., as) as well as its corresponding diagonal matrix Dg € S).

For convenience, we replace m — a; by b; (0 < i < s) in ([B.) to get a simpler expression for

pps({Da}):

o 12 /
(5.1) f(p,s,m,n',b) = p~ Zima (Wb, [p, ' + m]lp, m]

[p, 1 + bsl[p, bs] T Ty [P, iy — bi]
Here and throughout this section, we shall assume that p is a prime, that s,m and n are positive

integers, that n > n’ := n —m > 0, and that b := (b, by, ...,bs) is an integer vector satisfying
m=0by>b >->bs>0.

5.1. The Maximum and Minimum.
We show that f(p, s, m,n’, ) attains its maximum at either (0,0,...,0) or (1,1,...,1) depending
on p,s,m and n’, and its minimum at (m,m, ..., m).

Theorem 5.1. For fized p,m,n and s, the mazimum and minimum of f(p,s,m,n’,-) are given
as follows.

(i) Ifp>2,s>1o0rn" >0, then

/
mng f(p,s,m,n',b) - %
and the mazximum is achieved if and only if b = (0,0,...,0) := 0, in other words, if the corre-
sponding matriz Dq s full rank;
(i) Ifp=2,s=1,n"=0and m > 1, then
2, m)?
!/ b — [ U
max f(p, s,m,n',b) = e =y

and the maximum is achieved if and only if b= (1);
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(iii) In both Case (i) and Case (ii), we have
mbin f(p, s,m, n/’ b) _ p—s(n/+m)m :

and the minimum is achieved if and only if b = (m,m,...,m), in other words, if the corresponding
matric Dq s the zero matriz.

(iv) Ifp=2,s=1,n"=0and m =1, then b = (1) or (0), and they have the same value of
f:1/2.
Proof. (i) We proceed by the following two lemmas which show that the b;’s are all equal at the

maximum of f(p,s,m,n’;-), and that b; = 0 or 1 depending on p, s, m and n’.
Let b= (b1, by, ...,bs) be an arbitrary s-tuple with m =by > by > --- > by > 0.

Lemma 5.2. Ifb; > b4y for somei € {1,2,...,s—1} (s > 2), then we have
f(p7 S7m’ nl? b,) > f(p7 S7m’ n,’ b)’

where b = (b, by, ... b,) with b; = b; — 1 and b, = b; for all j # i. Note that b" still satisfies
m==by >t > >0 >

0.
Lemma 5.3. Let p(b) ::f(p,s,m,n’, (b, b,...,b)), 0 <b<m, then for all 0 < b < m, we have
<1, ifp=2,s=1,n"=0, m>1and b=0
=1, ifp=2,s=1,n=0, m=1and b=0.
> 1, otherwise

©(b)
pb+1)

These lemmas are proved right below this proof. Thanks to Lemma [5.2] the maximum point of
f(p,s,m,n’,-) must have the form (b,b,...,b) with 0 < b < m. Therefore it reduces to finding
the maximum of ¢(-).

Since p > 2, s > 1 or n’ > 0, it follows from Lemma [5.3] that

(5.2) ©(0) > (1) > - > p(m).
Hence the maximum of ¢(-) is ¢(0) = £ ’[Z/::,?L} , as desired.
(ii)) When p=2,s=1,n' =0 and m > 1, it follows from Lemma [5.3] that
(5.3) p(0) < (1) and ¢(1) > > p(m).
Hence the maximum of ¢(-) is ¢(1) = % , as desired.

(iii) We proceed by the following lemma (proved right below this proof) which shows that at
the minimum of f(p,s,m,n’,-), all the b;’s (i > 1) equal m.
Lemma 5.4. Ifb; < b,y for somei € {1,2,...,s—1} (s > 2), then we have

f(p7 S7m’ nl? b,) < f(p7 S7m’ n,’ b)’

where b = (b, b, ..., 0,) with b; = b; + 1 and V; = b; for all j # i. Note that b' still satisfies
m=b >V > > >0.

Thanks to Lemma [5.4] the minimum point of f(p, s, m,n’, ) must have the form (m,m, ..., m,b)
with 0 < b < m. Further, since f(p, s,m,n',(m,m,...,m, b)) = p- =D Mmoo (b (by )
where ¢ is defined in Lemma [5.3 with s = 1, it reduces to finding the minimum of ¢(+).

Case (i) When p > 2 or n/ > 0, it follows from (5.2)) that the minimum of ¢(-) is ¢(m) =
—(n/+m)m

Case (ii) When p = 2, n’ = 0 and m > 1, it follows from (5.3]) that the minimum of ¢(-) is
min {(0), p(m)}. Since
p(0)=[2,m] > (1—27H)" =27 > 27" = y(m),

Y

p
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the minimum of ¢(-) is still ¢(m).

Hence the minimum of f is always p~*("*™™ and achieved at (m,m,...,m). O

Proof of Lemma[5.2. 1t follows from definition (5.1]) that

.f(p7 S) m, n/, b,) _ p(n,“l‘bi)bi—(n/-l-b;)b; ) [ , b’i—l — bl] [p’ bl _ b’i—i—l]
f(p, s,m, ', b) [p, bi—1 — V] [p, b; — bit]
[pa bi—1 — bi][p, b; — bi-‘,—l] B 1— p_(bi—biJrl)

-1\ _ .
zp.[ _p'1_p—(bi71—bi+1)>p(1_p J=p—1>1,

ybic1 — by +1][p, by — 1 — big1]

as desired, where in the second last inequality, we used the condition that b; > b;11 to get 1 —

Proof of Lemma[5.3. By the definition of ¢ and (51I), we obtain

ﬂ — o s[( FbH1) (b 1) — (0 +b)b] p,n +b+1][p,b+ 1][p,m — b —1]
pb+1) (o + t][p, lp, m — b
—(n'+b —(b
(5.4) = ps(n/”bﬂ) ) (1 Y H)) (1 v +1)) > ps(n’+2b+1) (1 - p—1)2 )

1— p—(m—b)
where we used the fact that
1— p—(n’-l-b—i-l)’ 1— p—(b—i-l) >1— p—l and 1 — p—(m—b) <1.

Case 1. s(n’ +2b+1) > 2.
The right-hand side of (5.4]) is at least

Pl-p ) =@p-1?2>1.

Case 2. p> 3.
The right-hand side of (5.4]) is at least

p(1-p ) >301-31"=4/3>1.

Case 3. p=2 and s(n' 4+ 2b+ 1) = 1, which requires that s =1 and n’=b=0.
Plugging into (5.4]) yields

o) 2(1—271? 1 {<1, if m>1

olb+1) 1—2m 2-20m =1, if m=1

and completes the proof. O]

Proof of Lemma[5.4 By definition (5.I]), we obtain

i

f(pa s,m,n’, b/) _ p(n,+bi)bi_(’ﬂ/+b;)b, ) [ ,biog — bi][pa bi — bi-i-l]

f(p,S,m, n/> b) [ abi—l - b;][ ab; - bi+1]
- (D, bi—1 — b][p, b; — bit1] 1 1 — p~bima=bi) <l 1 _ 1 <1
=F [p,bi—1 — by — 1)[p, b + 1 — by 1] Pz p~(biti=bir1) b1z pt p—17 "

as desired, where in the second last inequality, we used the condition that b; > b;; 1 to get 1 —
p_(bi+1—bi+1) Z 1 J— p_l . |:|
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5.2. Monotonicity Properties and Limiting Behaviors.

Now we free p, s,m and n’. We will see that the monotonicity properties and limiting behaviors
of f of (5I) when b = 0 (i.e., the corresponding matrix Dgq is full rank) differ tremendously
from those when b # 0. Specifically, we show that f is increasing in n/, p and decreasing in m
when b = 0 (Theorem [5.5]), but decreasing in n’ and increasing in m when b # 0 (Theorem [5.6]).
Further, with regard to limiting behaviors, when b = 0, the limit of f as p,m or n’ — oo is
positive (note that f is independent of s) (Theorem [E.H); whereas when b # 0, the limit of f
is still positive as m — oo or s — oo with >, b; bounded (Theorems G.I0, 5.1T]), but zero as
max {p,n’,> > b;} — oo (Theorems 5.7, (.9). Lemma is crucial in the analysis of limiting
behaviors of f.

5.2.1. The Case of b=0.

Let
’ n’'+m
(5.5) folp,m, ') == f(p,s,m,n',0) = % = 1[I -»7).
’ j=n'+1

We derive the following monotonicity properties and limiting behaviors of f, with the help of
Lemma [4.12]

Theorem 5.5. The function fo(p,m,n’) of (BA) is strictly increasing in p,n’ while strictly de-
creasing in m, and satisfies

<1, lim inf fo(p,m,n') =1 and lim inf fo(p,m,n') =1,

li S

ml—l;I(l)o fO (p7 m, ) [p, n’] n’—oo m p—o0 m,n

where Cp, = (1 —p~')(1 —p~2)--- as defined in Lemma[{-13. In particular, we have
lim fo(p,m,0)=C, and lim fo(p,m,n’)=1= lim fo(p,m,n’);
m—00 n/—00 p—0o0

the first equality characterizes C,, as the limit of the probability that a random m x m integer matrix
over Z/p°Z is nonsingular as m — oo .

Proof. Utilizing the expression on the right-hand side of (5.5]), we obtain the monotonicities. Then
we apply Lemma [1.12] to get

and
inf fo(p,m,n') = lim fo(p,m,0)=C, =1 as p— o0.
m,n’ m—00

5.2.2. The Case of b#0.
We first present the monotonicity properties of f(p, s, m,n’,b) in n’ and m.

Theorem 5.6. Suppose that b # 0. The function f(p,s,m,n’,b) is strictly decreasing in n’ while
strictly increasing i m.

Proof. Recall that by > by > ---by > 0. Since b # 0, we have b; > 1. Thus the ratio
f(p’ s,m,n’ + 1, b) = i (0 140 bi D05 (0 4D0)b; [p’ w1 m] [p’ n'+ bs]

.f(p> S>man,> b) —F [p,n’+m][p,n’+1+b8]

1 — p~('+1+m) 1 1
p < p—l . — < 1’

= p_ Zf:l bi .

1 — p~(n/+14bs)
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and
f(p,s,m+1,0/,b) [p,n'+m+1][p,m+1][p,m — bi]
f(p,s,m,n’,b) [pan/+m][pam][pam+1_bl]
1 — p—('+1+m) _ = (m+1) _ - (m+1))? _ 9p—(m+1)
_(-» ) (L—p ™) (L —p ™) 1y
1— p—(m—l—l—bl) — 1— p—m 1— p—m -
asp>2. ]

Recall from definition (5.]) that f is the product of a power of p

-fl (pa S,m, n/, b) =p > ie1 (0 +bi)b;

and a fraction

[p, n" +m][p, m]
5.6 fa(p,s,m,n',b) == < .
(56) A ) [p, " + bs][p, bs] Hi:l[ ,bic1 — by

When s is fixed, thanks to Lemma [£.12] the function fs defined in (5.6) is bounded regardless
of the values of other variables. Moreover, when m (instead of s) is fixed, this result also holds
since » o, (b1 —b;) =m — b, < m implies that

s s bi—1—b;

H[p7 b1 = bz] = H H (1 _p—j) > (1 _p—l)m > 9m

i=1
These observations lead to the following zero limiting probabilities.
Theorem 5.7. We have

lim max f(p,s,m,n’,b) =0 when s is fived
max {p,’ﬂ/, :L_s‘:l bz}—ﬂ)o,b#o m

and

lim f(p,s,m,n',b) =0 when m is fized.
max {p7 n, i bi}—>oo,b7é0

Proof. When s or m is fixed, we have shown that f, is bounded. On the other hand, we have

! S

fl <p7 S, M, n/v b) = p_ = (bt = p_n =1 b2 b? — 0

as long as b # 0 and

(5.7) max{p,n'Zbi—FZb?} — 0.
i=1 i=1

Noticing that

S S S S S 2
nY b <y by <’y bi+ (Z@-) :
=1 i=1 i=1 =1 i=1

thus (5.7)) is equivalent to max {p,n’,> ;_, b;} — cc. O

Remark 5.8. Let 7 (< s) be the number of nonzeroes in {by,bs,...,bs}, i.e., b, > 0 = b1 (we
define byyy = 0), then 7b,,b; < > b; < rb; due to the decreasing property of the b;’s. Hence
> i, by = oo if and only if max {b;, 7} — oo . In particular, when s is fixed, we have > 7 b; — oo
if and only if b, — oc.

Moreover, if we free s,m,n’ but fix p and let >, b; — oo, then f also goes to 0.
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Theorem 5.9. For a fized prime p, we have

lim max f(p,s,m,n’,b) =0.
21 bi—o0 m,n’

Proof. Since 7 b; — oo, we can assume that b # 0. Moreover, if r (< s) is the number of
nonzeroes in {by,bs,...,bs}, then max {b;,r} — oo (see Remark [5.8)), which is equivalent to that
by — oo or r — oo holds.

Case 1. by — o©.
For any fixed p, s, m and n, from Lemma we see that for b = (by, by, bs, ..., bs),
f(p787m7n/7b> S f(p787m7n/7b/)
_ (b~ (s 00 [p, 0’ + m][p, m] <yt L
[p>n/+bs][ abs][p>m_bl][pa bl _bS] - (6_2)4
on the strength of Lemma [£.121 Hence

maxf(p,s,m,n’,b)gp_bl. —)O, as bl—>OO.
m,n’

‘ (e-2)?
Case 2. r — 00.
For any fixed p,s,m and n, from Lemma we see that for & = (b,,b,,..., b, bs, b, ..., 0s)
(with 7 b,’s and (s — r) bs’s),
f(p7s7m7n/7b) S f(p7s7m7n/7b/)
_ p—r(n’+br)br—(s—r)(n’—l—bs)bs . [p> n' + m] [p> m] < p—r . 1
[p, " + bs][p, bs][p, m — b, [p, b — bs] — (e=2)*’
on the strength of Lemma [£.121 Hence

{%EB( .f(p> S>man/? b) S p—T ’ (6_2)4

All the limits of f we have found so far equal zero. To attain a nonzero limit, we must have a
bounded max {p,n’, Y ;_, b;}. We may fix p,s,n’,b, let m — oo and apply Lemma .12

Theorem 5.10. For fized p,s,n’ and b # 0, we have

S 4 C
lim f(p,s,m,n’,b) = p~ 2= (W Fbibi . P .
m—00 ( ) [p’ n' + bs][ ,bs] Hi:Q[ ,bi—l - b,]
We may also weaken the constraints by fixing p,n’ and > ;_, b; only. A natural way to achieve

this is to fix the first few b;’s, say by, ba, ..., b, (r < s fixed), and set the rest to be zero no matter
how big s is. According the definition (5.1)) of f, for b = (b1, b, ...,0,,0,0,...,0), we have

[p, 7" + mi[p, m]
[pa nl] H::ll[ ) bi—l - bz] 7
which is independent of s. Coupling with Theorem gives the following.

(58) f(p’ s, m, n/7 b) =p S (n/4bi)b;

Theorem 5.11. When m,n’ and p are fixed, for any given infinite integer sequence {by, by, ...}
withm =0by>by >--->b;>b1 >--->0, we have

lim f(p,s,m,n',b%) =

S—00 - Z:: (n,+bi)bi . [p,n'-l—m][p,m] : 9
S D 1 P I e b1 otherwise
where b® := (by, by, ..., bs) and in the second case, r is the number of nonzeroes in {by, by, ...} and

finite (see Remark[5.8), and b1 = 0.
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