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THE SMITH NORMAL FORM DISTRIBUTION OF A RANDOM INTEGER

MATRIX

YINGHUI WANG AND RICHARD P. STANLEY

Abstract

We show that the density µ of the Smith normal form (SNF) of a random integer matrix exists and equals
a product of densities µps of SNF over Z/psZ with p a prime and s some positive integer. Our approach
is to connect the SNF of a matrix with the greatest common divisors (gcds) of certain polynomials of
matrix entries, and develop the theory of multi-gcd distribution of polynomial values at a random integer
vector. We also derive a formula for µps and compute the density µ for several interesting types of sets.
Finally, we determine the maximum and minimum of µps and establish its monotonicity properties and
limiting behaviors.

1. Introduction

Let M be a nonzero n×m matrix over a commutative ring R (with identity), and r be the rank
of M . If there exist invertible n × n and m ×m matrices P and Q such that the product PMQ
is a diagonal matrix with diagonal entries d1, d2, . . . , dr, 0, 0, . . . , 0 satisfying that di | di+1 for all
1 ≤ i ≤ r − 1, then PMQ is the Smith normal form (SNF) of M . In general, the SNF does not
exist. It does exist when R is a principal ideal ring, i.e., a ring (not necessarily an integral domain)
for which every ideal is principal. This class of rings includes the integers Z and their quotients
Z/qZ, which are the rings of interest to us here. In fact, for the rings Z/qZ we will be particularly
concerned with the case q = ps, a prime power. For principal ideal rings, the diagonal entries are
uniquely determined (up to multiplication by a unit) by gi−1di = gi (1 ≤ i ≤ r), where g0 = 1 and gi
is the greatest common divisor (gcd) of all i×i minors ofM . We have the following correspondence
between the SNF and the cokernel of M : cokerM ≃ R/d1R ⊕R/d2R⊕ · · · ⊕ R/drR ⊕Rn−r.

There has been a huge amount of research on eigenvalues of random matrices over a field (see,
e.g., [1], [2], [10], [12]). Less attention has been paid to the SNF of a random matrix over a
principal ideal ring (or more general rings for which SNF always exists). Some basic results in this
area are known, but they appear in papers not focused on SNF per se. We develop the theory
in a systematic way, collecting previous work in this area, sometimes with simplified proofs, and
providing some new results.

We shall define the density µ of SNF of a random n ×m integer matrix as the limit (if exists)
as k → ∞ of µ(k), the density of SNF of a random n × m matrix with entries independent and
uniformly distributed over {−k,−k + 1, . . . , k} (see Definition 3.1 below for a precise definition).

As a motivating example, the probability that d1 = 1 for a random n × m integer matrix is
the probability that the nm matrix entries are relatively prime, or equivalently, that nm random
integers are relatively prime, and thus equals 1/ζ(nm), where ζ(·) is the Riemann zeta function.

If we regard the minors of an n×m matrix as polynomials of the nm matrix entries with integer
coefficients, then the SNF of a matrix is uniquely determined by the gcds of the values of these
polynomials (recall the definition of SNF from the beginning). This inspires us to study the theory
of multi-gcd distribution of polynomial values.
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Given a collection of relatively prime polynomials in Z[x1, x2, . . . , xd], let g(x) be the gcd of the
values of these polynomials at x = (x1, x2, . . . , xd). We shall define the density λ of g(x) of a
random d-dimensional integer vector x as the limit (if exists) as k → ∞ of λ(k), the density of g(x)
with x uniformly distributed over {−k,−k+1, . . . , k}d (see Definition 2.1 for a precise definition).

In the spirit of previous work in number theory such as [6], [13], [14] and the Cohen-Lenstra
heuristics ([4], [5]), one might conjecture that λ exists and equals the product of density λp of g(x)
over (Z/pZ)d over all primes p. In fact, we will prove this conjecture with the more general density
λps of g(x) over Z/p

sZ for sets of form (2.5) (see Theorem 2.8), with the aid of a result in number
theory [14, Lemma 21]. Note that the special case that s = 0 or 1 follows from [6, Theorem 2.3]
directly. In particular, this result applies to the probability that g(x) = 1 , in other words, that
the polynomial values are relatively prime. Furthermore, all these results hold for the multi-gcd
distribution of polynomial values, namely, when g(x) is a vector whose components are the gcds
of the values of given collections of polynomials at x.

Then we apply this theory to the SNF distribution of a random integer matrix to show that the
density µ (of SNF of a random n × m integer matrix) equals a product of some densities µps of
SNF over Z/psZ for sets of form (3.4) (Theorem 3.8). We also derive a formula for µps (Theorem
3.2), which allows us to compute µps and hence µ explicitly (Theorem 4.3). Some special cases of
this formula coincide with [15, Exercise 1.192(b)] and [9, pp. 233, 236].

On the strength of these results, we determine the value of µ for some interesting types of
sets, specifically, matrices with first few diagonal entries given, matrices with diagonal entries all
equal to 1, and square matrices with at most ℓ (= 1, 2, . . . , n) diagonal entries not equal to 1, i.e.,
whose corresponding cokernel has at most ℓ generators; further, for the last set we establish the
asymptotics of µ as ℓ → ∞ . In the case of ℓ = 1, our results echo those in [6, Section 3], via a
slightly different approach. We also show that the probability that a random integer matrix is full
rank is 1, and that µ of a finite set is 0.

Additionally, we find the maximum and minimum of µps(D) over all diagonal matrices D;
whereas regarding it as a function of p, s,m, n and D, we find its monotonicity properties and
limiting behaviors.

The remainder of this paper is organized as follows. Section 2 develops the theory of multi-
gcd distribution of polynomial values. Section 3 applies this theory to the SNF distribution and
derives a formula for µps. Section 4 computes the density µ for several types of sets. Finally,
Section 5 determines the maximum and minimum of µps and discusses its monotonicity properties
and limiting behaviors.

We shall assume that throughout this paper, p represents a prime, pj is the j-th smallest prime,
and

∏

p means a product over all primes p.

2. Multi-gcd Distribution of Polynomial Values

Suppose that d and h are positive integers and F1, F2, . . . , Fh ∈ Z[x1, x2, . . . , xd] are nonzero
polynomials. Let

g(x) := gcd(F1(x), F2(x), · · · , Fh(x)) , x ∈ Zd

be the gcd of the values F1(x), F2(x), . . . , Fh(x), and g(x) = 0 if Fj(x) = 0 for all 1 ≤ j ≤ h.
We shall define the density of g(x) of a random d-dimensional integer vector x as the limit (if

exists) of the density of g(x) with x uniformly distributed over {−k,−k + 1, . . . , k}d := Zd
(k) as

k → ∞ , precisely as follows.

Definition 2.1. (i) For Z ⊆ Z , we denote by λ(k)(Z) the probability that g(x) ∈ Z with x
uniformly distributed over Zd

(k). If limk→∞ λ(k)(Z) = λ(Z) exists, then we say that the probability
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that g(x) ∈ Z with x a random d-dimensional integer vector is λ(Z). If this is the case, then
λ(Z) ∈ [0, 1] since λ(k)(Z) ∈ [0, 1] for all k.

(ii) We define similarly the gcd distribution over the ring of integers mod ps: for prime p

and positive integer s, we denote by λ
(k)
ps (Z) the probability that g(x) ∈ Z (mod ps) (up to

multiplication by a unit) with x uniformly distributed over Zd
(k), and by λps(Z) the probability

that g(x) ∈ Z (mod ps) (up to multiplication by a unit) with x uniformly distributed over (Z/psZ)d.

More generally, for a finite set P of prime and positive integer pairs (p, s) (with p a prime and
s a positive integer), we denote

PP :=
∏

(p,s)∈P

ps

and by λ
(k)
PP

(Z) the probability that g(x) ∈ Z (mod PP) (up to multiplication by a unit) with x

uniformly distributed over Zd
(k), and by λPP

(Z) the probability that g(x) ∈ Z (mod PP) (up to

multiplication by a unit) with x uniformly distributed over (Z/PPZ)
d. Note that λPP

(Z) is the
number of solutions to g(x) ∈ Z (mod PP) (up to multiplication by a unit) divided by P d

P . The
situation discussed in the previous paragraph is the special case that P consists of only one element
(p, s) and PP = ps.

(iii) The above definitions also extend to the distribution of multi-gcds. Suppose that U =
{Ui}wi=1 is a collection of w nonempty subsets Ui of {F1, F2, . . . , Fh}. Let
(2.1) gi(x) := gcd (F (x) : F ∈ Ui) , x ∈ Zd

and

g(x) := (g1, g2, . . . , gw)(x) ∈ Zw,

then we adopt the above definitions of functions λ(k), λ, λ
(k)
PP

and λPP
for Z ⊆ Zd with only one

slight modification: replace “up to multiplication by a unit” with “up to multiplication of the
components of g by units”.

For convenience, we shall always assume that the notion g(x) ∈ Z (mod PP) implies the equiv-
alence of multiplication of its components by units and that the random vector x is uniformly
distributed on its range (if known, e.g., Zd

(k) or (Z/PPZ)
d).

Remark 2.2. The density λp(·) defined above in Definition 2.1 (ii) is consistent with the normalized
Haar measure on Zd

p , as in [14].

In this section, we establish the properties of λPP
and λ, the existence of λ, and a connection

between λ and the λps’s. Then we apply these results to determine the probability that the
polynomial values are relatively prime.

2.1. Multi-gcd Distribution over Z/PPZ .

We show that the density λ
(k)
PP

(·) over Zd
(k) (defined above in Definition 2.1) converges to the

density λPP
(·) over Z/PPZ as k → ∞ , and that λPP

(·) equals
∏

(p,s)∈P λps(·).
Theorem 2.3. For any Z ⊆ Zw, we have

(2.2) λPP
(Z) =

∑

z∈Z (modPP )

λPP
({z})

and

(2.3) lim
k→∞

λ
(k)
PP

(Z) = λPP
(Z) =

∏

(p,s)∈P

λps(Z) .
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Proof. (1) The first equality (2.2) follows directly from Definition 2.1.

(2) For the second equality of (2.3), we let NPP
(Z) be the number of x ∈ (Z/PPZ)

d for which
g(x) ∈ Z (mod PP). The Chinese remainder theorem along with Definition 2.1 then gives

P d
P λPP

(Z) = NPP
(Z) =

∏

(p,s)∈P

Nps(Z) =
∏

(p,s)∈P

psdλps(Z) = P d
P

∏

(p,s)∈P

λps(Z) .

Dividing both sides by P d
P leads to the desired equality.

(3) For the first equality of (2.3), we first observe that if p | 2k + 1, then λ
(k)
PP

(Z) = λPP
(Z)

by definition. If p ∤ 2k + 1, then we proceed by approximating 2k + 1 by a multiple of PP and

estimating λ
(k)
PP

(Z) using λPP
(Z).

Let k ∈ Z such that K := 2k + 1 ≥ PP , then there exists q ∈ Z+ such that

(2.4) q · PP ≤ K < (q + 1) · PP .

It follows that for any integer y, there are either q or q + 1 numbers among Z(k) that equal y mod
PP . Thus the number of x ∈ Zd

(k) for which for which g(x) ∈ Z (mod PP) is between qdN ′ and

(q + 1)dN ′, where N ′ := NPP
(Z), therefore

λ
(k)
PP

(Z) ∈
[

qdN ′

Kd
,
(q + 1)dN ′

Kd

]

:= Jk .

Thanks to (2.4), we have

Jk ⊆
[

qdN ′

[(q + 1)PP ]
d
,
(q + 1)dN ′

(qPP)
d

]

=

[

(

q

q + 1

)d
N ′

P d
P

,

(

q + 1

q

)d
N ′

P d
P

]

,

whose left and right endpoints both converge to N ′/P d
P as q → ∞ . Hence

λ
(k)
PP

(Z) → N ′/P d
P = λPP

(Z) ,

as q → ∞ , or equivalently, as k → ∞ , as desired. �

2.2. Multi-gcd Distribution over Z .

We show some properties of the density λ of set unions, subtractions and complements. They
will be very useful in determining the value of λ for specific sets (such as in Remark 2.9 (iii)).

Theorem 2.4. Suppose that {Zα}α∈A are pairwise disjoint subsets of Zw such that λ(Zα) exists
for all α ∈ A . If A is a finite set, then

λ (∪α∈A Zα) =
∑

α∈A

λ(Zα) .

Proof. By Definition 2.1, we have
∑

α∈A

λ(Zα) =
∑

α∈A

lim
k→∞

λ(k)(Zα) = lim
k→∞

∑

α∈A

λ(k)(Zα) = lim
k→∞

λ(k) (∪α∈A Zα)

and the conclusion follows. �

Theorem 2.5. Suppose that Z ′ ⊆ Z ⊆ Zw such that λ(Z ′) and λ(Z) both exist, then

λ(Z \ Z ′) = λ(Z)− λ(Z ′) .

In particular, for the complement Zc of Z in Zw, we have

λ(Zc) = 1− λ(Z) .
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Proof. By Definition 2.1, we have

λ(Z)− λ(Z ′) = lim
k→∞

λ(k)(Z)− lim
k→∞

λ(k)(Z ′) = lim
k→∞

(

λ(k)(Z)− λ(k)(Z ′)
)

= lim
k→∞

λ(k)(Z \ Z ′)

and the conclusion follows. �

Theorem 2.6. Suppose that Y ∈ Zw such that λ(Y) = 0 , then for any Z ⊆ Y, we have λ(Z) = 0
as well.

Proof. Since λ(k)(Z) ≥ 0 , Z ⊆ Y and limk→∞ λ(k)(Y) = λ(Y) = 0 , we obtain

0 ≤ lim inf
k→∞

λ(k)(Z) ≤ lim sup
k→∞

λ(k)(Z) ≤ lim sup
k→∞

λ(k)(Y) = λ(Y) = 0 .

Therefore
lim
k→∞

λ(k)(Z) = 0 ,

as desired. �

2.3. Connection between λ and λps.
We show that the density λ exists and in fact, equals the product of some λps’s.

Assumption 2.7. For all 1 ≤ i ≤ w, we have

gcd(F1, F2, . . . , Fh) = gcd (F : F ∈ Ui) = 1 in Q[x1, x2, . . . , xd] .

Theorem 2.8. Suppose that Assumption 2.7 holds. Given positive integers r ≤ w and yi, 1 ≤ i ≤
r, let y =

∏∞

j=1 p
sj
j with pj the j-th smallest prime and sj nonnegative integers, j = 1, 2, . . . such

that yi | y for all 1 ≤ i ≤ r, then the probability λ(Z) exists for

(2.5) Z =
{

(z1, z2, . . . , zw) ∈ Zw
+ : zi = yi , ∀ i ≤ r

}

,

and in fact

(2.6) λ(Z) =

∞
∏

j=1

λ
p
sj+1

j

(Z) .

Remark 2.9. (i) The right-hand side of (2.6) is well-defined since λps(·) ∈ [0, 1] for all p and s.
(ii) The special case that all sj ’s are either 0 or 1 follows from [6, Theorem 2.3].
(iii) We have assumed that the yi’s are positive. In fact, in the case that yi = 0 for some i, we

have λ(Z) = 0 on the strength of Theorem 2.6 and that the probability that a nonzero polynomial
at a random integer vector equals zero is 0 (see Theorem 2.15 (ii) below).

To prove Theorem 2.8, we need Theorem 2.3 and the following two lemmas.

Lemma 2.10. ([13, Lemma 5.1] or [14, Lemma 21]) Suppose that F,G ∈ Z[x1, x2, . . . , xd] are

relatively prime as elements of Q[x1, x2, . . . , xd]. Let ν
(k)
ℓ be the probability that p |F (x), G(x) for

some prime p > ℓ with x uniformly distributed over Zd
(k), i.e.,

ν
(k)
ℓ := #

{

x ∈ Zd
(k) : ∃ prime p > ℓ s.t. p |F (x), G(x)

}

/ (2k + 1)d.

Then
lim
ℓ→∞

lim sup
k→∞

ν
(k)
ℓ = 0 .

Lemma 2.11. Suppose that G1, . . . , Gh ∈ Q[x1, x2, . . . , xd] (h ≥ 2) are relatively prime, then there
exists v = (v3, . . . , vh) ∈ Zh−2 such that

gcd

(

G1, G2 +

h
∑

i=3

viGi

)

= 1.
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Proof. We prove by induction on h. The case h = 2 is trivial since gcd(G1, G2) = 1.

Base case: h = 3 .
We prove by contradiction. Assume the contrary that

gcd(G1, G2 + z G3) 6= 1, ∀ z ∈ Z .

Suppose that the polynomial factorization of G1 is φ1φ2 · · ·φu , then each G2+z G3 is a multiple
of some factor φu(z) of G1 (1 ≤ u(z) ≤ u). Since there are infinitely many z’s, by the pigeonhole
principle, at least two of the u(z)’s are the same, say u(z) = u(z′) (z 6= z′). Then

φu(z) | (G2 + z G3)− (G2 + z′G3) = (z − z′)G3

thus φu(z) |G3 and hence φu(z) | (G2 + z G3) − z G3 = G2 . Recall that φu(z) |G1 as well. This
contradicts with the condition that G1, G2 and G3 are relatively prime.

Inductive step: from h− 1 to h (≥ 4). Assume that the statement holds for h− 1.
Let H := (G2, G3, . . . , Gh) and Hi := Gi/H (2 ≤ i ≤ h), then

(2.7) gcd(G1, H) = gcd(G1, G2, · · · , Gh) = 1 = gcd(H2, H3, · · · , Hh) .

According to the induction hypothesis for H2, H3, · · · , Hh, there exists v = (v4, . . . , vh) ∈ Zh−3

such that

(2.8) H ′
3 := H3 +

h
∑

i=4

viHi

satisfies

gcd(H2, H
′
3) = 1.

Combining with (2.7) gives

gcd(G1, G2, H
′
3H) = gcd(G1, H2H,H

′
3H) = gcd(G1, gcd(H2H,H

′
3H)) = gcd(G1, H) = 1.

Thus we can apply the base case h = 3 to G1, G2, H
′
3H to get an integer z such that

gcd(G1, G2 + zH ′
3H) = 1.

Finally, we represent H ′
3H back to a linear combination of the Gi’s with integer coefficients by

definition (2.8):

H ′
3H = H3H +

h
∑

i=4

viHiH = G3 +
h
∑

i=4

viGi ,

therefore

gcd

(

G1, G2 + z G3 + z
h
∑

i=4

viGi

)

= 1,

namely, the statement holds for h with the new v = (z, zv4, . . . , zvh). �

Now we are ready to prove Theorem 2.8.

Proof of Theorem 2.8. Let

Pℓ := {(pj, sj + 1)}ℓj=1 , ℓ ∈ Z+ ,

then Theorem 2.3 gives

λPPℓ
(Z) =

ℓ
∏

j=1

λ
p
sj+1

j

(Z) .
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Since λ
p
sj+1

j

(Z) ∈ [0, 1] for all j, we can let ℓ→ ∞ :

(2.9) lim
ℓ→∞

λPPℓ
(Z) =

∞
∏

j=1

λ
p
sj+1

j

(Z) = RHS of (2.6) .

Therefore it suffices to show that

(2.10) lim
k→∞

λ(k)(Z) = lim
ℓ→∞

λPPℓ
(Z) .

Since y is finite, there exists j∗ ∈ Z+ such that sj = 0 for all j > j∗. Let

I =
{

(z1, z2, . . . , zw) ∈ Zw
+ : z1 = z2 = · · · = zr = 1

}

then for any j > j∗, the sets Z and I are equivalent mod pj under multiplication of the components
by units.

We define for ℓ > j∗,

A(ℓ) :=
{

x ∈ Zd : g(x) ∈ Z (mod PPℓ
)
}

, A(k)(ℓ) :=
{

x ∈ Zd
(k) : g(x) ∈ Z (mod PPℓ

)
}

,

A(k) :=
{

x ∈ Zd
(k) : g(x) ∈ Z

} (

⊆ A(k)(ℓ)
)

,

and
B(k)(ℓ) := A(k)(ℓ) \ A(k),

then

(2.11) λ(k)(Z) =
#A(k)

Kd
, λ

(k)
PPℓ

(Z) =
#A(k)(ℓ)

Kd
=

#A(k) +#B(k)(ℓ)

Kd

with K := 2k + 1. Therefore

(2.12) λPPℓ
(Z) = lim

k→∞
λ
(k)
PPℓ

(Z) = lim
k→∞

#A(k) +#B(k)(ℓ)

Kd
.

Combining with the first equation in (2.11) leads to

lim sup
k→∞

λ(k)(Z) ≤ lim sup
k→∞

#A(k) +#B(k)(ℓ)

Kd
= λPPℓ

(Z)

and

lim inf
k→∞

λ(k)(Z) ≥ lim inf
k→∞

#A(k) +#B(k)(ℓ)

Kd
− lim sup

k→∞

#B(k)(ℓ)

Kd
≥ λPPℓ

(Z)− lim sup
k→∞

#B(k)(ℓ)

Kd
.

Once we show that

(2.13) lim
ℓ→∞

lim sup
k→∞

#B(k)(ℓ)

Kd
= 0 ,

taking ℓ→ ∞ in the above two inequalities will yield (2.10).

Now let us prove (2.13). For any x ∈ B(k)(ℓ) , there exists j > ℓ (> j∗) such that g(x) /∈ I (mod

p
sj+1
j = pj) (recall that Z and I are equivalent). Hence pj | gη(x) for some η ≤ r.
Recall that gη is the gcd of some relatively prime Fi’s. If two or more Fi’s are involved, then

applying Lemma 2.11 to these Fi’s leads to two relatively prime linear combinations Gη and Hη of
these Fi’s with integer coefficients. If there is only one Fi involved, then it must be a constant since
the gcd of itself is 1 in Q[x1, x2, . . . , xd]. In this case, we take Gη = Hη = Fi so that gcd(Gη,Hη) = 1
still holds.

Since pj | gη(x), we have pj
∣

∣Gη(x),Hη(x). Hence

(2.14) B(k)(ℓ) ⊆
r
⋃

η=1

B
(k)

η (ℓ) ,
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where
B

(k)

η (ℓ) :=
{

x ∈ Zd
(k) : ∃ j > ℓ s.t. pj

∣

∣Gη(x) ,Hη(x)
}

.

Applying Lemma 2.10 to Gη and Hη gives

lim
ℓ→∞

lim sup
k→∞

#B
(k)

η (ℓ)

Kd
= 0 , ∀ η .

Combining with (2.14), we obtain

lim sup
ℓ→∞

lim sup
k→∞

#B(k)(ℓ)

Kd
≤ lim sup

ℓ→∞

lim sup
k→∞

r
∑

η=1

#B
(k)

η (ℓ)

Kd
≤

r
∑

η=1

lim sup
ℓ→∞

lim sup
k→∞

#B
(k)

η (ℓ)

Kd
= 0 .

On the other hand, since #B(k)(ℓ) ≥ 0 , we have

lim inf
ℓ→∞

lim sup
k→∞

#B(k)(ℓ)

Kd
≥ 0 .

Hence (2.13) indeed holds. �

2.4. Relatively Prime Polynomial Values.

An interesting application of Theorem 2.8 is to determine the probability that the polynomial
values are relatively prime.

Theorem 2.12. Let w = 1 and U1 = {{F1, F2, . . . , Fh}} in Definition 2.1.
(a) If F1, F2, . . . , Fh are not relatively prime in Q[x1, x2, . . . , xd], then λ({1}) = 0 ;
(b) If F1, F2, . . . , Fh are relatively prime, i.e.,

(2.15) gcd(F1, F2, . . . , Fh) = 1 in Q[x1, x2, . . . , xd] .

then we have
(i) λ({1}) exists and

λ({1}) =
∏

p

λp({1}) ;

(ii) the asymptotic result

(2.16) λp({0}) = O(p−2) ;

(iii) λ({1}) = 0 if and only if λp({1}) = 0 for some prime p, i.e., if and only if there exists a prime
p such that F1(x), F2(x), . . . , Fh(x) are multiples of p for all x ; in words, the probability that the
values of relatively prime polynomials at a random integer are relatively prime is 0 if and only if
there exists a prime p such that these polynomials are all always multiples of p.

Remark 2.13. Theorem 2.12 (b)(ii) and Lemma 2.14 in the proof below are special cases of the
Lang-Weil bound [11, Theorem 1]. We present a considerably simpler and more approachable
proof. As mentioned in Remark 2.9 and [14, Remark of Lemma 21], Theorem 2.12 (b)(i) follows
from [6, Theorem 2.3]; whereas its special case h = 2 was shown in [13, Theorem 3.1].

Proof. (a) Let G = gcd(F1, F2, . . . , Fh), then G is a non-constant polynomial. If the gcd g(x) = 1,

then G(x) = ±1. Thus λ(k)({1}) ≤ σ
(k)
G=1 + σ

(k)
G=−1 → 0 as k → ∞ on the strength of Theorem

2.15 (ii), where σ
(k)
G=c (c = ±1) is the probability that G(x) = c with x uniformly distributed over

Zd
(k). Hence λ({1}) = 0 .

(b) (i) follows directly from Theorem 2.8. For (ii), we prove by induction on d. First, we notice
the following facts:

1. If h = 1, then F1 must be a constant due to Assumption (2.15). Hence λp({0}) = 0 for all
p > |F1| and (2.16) follows.
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2. If h ≥ 2 , by Lemma 2.11, there exist two linear combinations G and H of the Fi’s with
integer coefficients such that gcd(G,H) = 1 in Q[x1, x2, . . . , xd]. Then p | g(x) implies that
p | gcd(G(x), H(x)), so it suffices to prove for the case h = 2 .

3. Assume that h = 2 . Let L be the greatest total degree of the Fi’s. If L = 0 , then F1, F2 and
thus g are nonzero constants. Thus σp = 0 for any p > |g| and (2.16) follows, so we only need to
prove for L ≥ 1.

Base case: d = 1. Assume that h = 2 .
Thanks to Assumption (2.15), there exist H1, H2 ∈ Z[x1] such that H1F1 + H2F2 = C with C

a positive integer constant. If p | g(x), then p |C as well. Hence σp = 0 for all p > C and (2.16)
follows.

Inductive step: from d − 1 to d (≥ 2). Assume that the statement holds for d − 1 and that h = 2
and L ≥ 1.

Since L ≥ 1, without loss of generality, we can assume that F1 is not a constant and x1 appears
in F1 . We recast Fi as a univariate polynomial Gi ∈ (Z[x2, . . . , xd])[x1] of degree Li , i = 1, 2, then
L1 ≥ 1. Let γi,j ∈ Z[x2, . . . , xd] (0 ≤ j ≤ Li) be the coefficients of xj1 in Gi .

Since F1 and F2 are relatively prime in Q[x1, x2, . . . , xd] by Assumption (2.15), we have

gcd (γi,j : 1 ≤ i ≤ 2 , 0 ≤ j ≤ Li) = 1 = gcd(G1, G2) in (Q[x2, . . . , xd])[x1] .

As a result, there exist H1, H2 ∈ (Z[x2, . . . , xd])[x1] and H3 ∈ Z[x2, . . . , xd] such that H1G1 +
H2G2 = H3 and (H1, H2, H3) = 1 in Q[x1, x2, . . . , xd].

If p | g(x), then p | (Gi(x2, . . . , xd)) (x1) (∀ i), H3(x2, . . . , xd) and either
(1) p | γi,j(x2, . . . , xd) for all i and j; or
(2) p ∤ γi,j(x2, . . . , xd) for some i, j.

Case (1). Recall that L1 ≥ 1. By the induction hypothesis for the at least two polynomials:
γi,j(x2, . . . , xd) (1 ≤ i ≤ 2 , 0 ≤ j ≤ Li), the probability that Case (1) happens with (x2, . . . , xd)
uniformly distributed on (Z/pZ)d−1 is O(p−2).

Case (2). We need the following asymptotic result.

Lemma 2.14. Let G ∈ Z[x1, x2, . . . , xd] be a nonzero polynomial, p a prime, and σp the probability
that p |G(x) with x uniformly distributed over (Z/pZ)d, then we have

(2.17) σp = O(p−1) .

Proof. Let L be the total degree of G. If L = 0 , then G is a nonzero constant. For any prime
p > G, we have σp = 0 , thus (2.17) holds.

Now we assume that L ≥ 1. We prove by induction on d.

Base case: d = 1.
Since the number of roots of G mod p is at most L, we get σp ≤ L/p and hence (2.17).

Inductive step: from d− 1 to d (≥ 2). Assume that the statement holds for d− 1.
We recast G as a univariate polynomial G1 ∈ (Z[x2, x3, . . . , xd])[x1]. Let γ1 ∈ Z[x2 . . . , xd] be the

leading coefficient of G1. Observe that the total degree of G1 is at most L . If γ1(x2, . . . , xd) 6≡ 0
(mod p), then the probability that p |G1(x1) with x1 uniformly distributed over Z/pZ is no
greater than L/p , according to the base case d = 1. On the other hand, the probability that
p | γ1(x2, . . . , xd) with (x2, . . . , xd) uniformly distributed over (Z/pZ)d−1 is O(p−1) by the induction
hypothesis for γ1 . Combining these two cases, we conclude that the probability that p |G(x1, x2, . . . , xd)
with (x1, x2, . . . , xd) uniformly distributed over (Z/pZ)d is at most L/p+O(p−1) = O(p−1). Hence
the statement holds for d, as desired. �
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Now we go back to the proof of Theorem 2.12 (b)(ii). Thanks to Lemma 2.14, the probabil-
ity that p |H3(x2, . . . , xd) with (x2, . . . , xd) uniformly distributed on (Z/pZ)d−1 is O(p−1); more-
over, for each (x2, . . . , xd) that satisfies p ∤ γi,j(x2, . . . , xd) for some i, j, the probability that
p | (Gi(x2, . . . , xd)) (x1) with x1 uniformly distributed on Z/pZ is O(p−1). Hence the probabil-
ity that Case (2) happens with (x1, x2, . . . , xd) uniformly distributed on (Z/pZ)d is (O(p−1))2 =
O(p−2).

Combining Cases (1) and (2), we conclude that the statement holds for d as well, as desired.

(iii) If λp({1}) = 0 for some prime p, then λ({1}) = 0 by (i).
Now assume that λp({1}) > 0 for all prime p. On the strength of (ii), there exist a positive

constant c and a positive integer j∗ such that

pj∗ > 1 + c >
√
c , λpj({0}) ≤ c p−2

j , ∀ j ≥ j∗.

Thus
∞
∏

j=j∗

(

1− λpj({0})
)

≥
∞
∏

j=j∗

(

1− c

p2j

)

≥ 1−
∞
∑

j=j∗

c

p2j
≥ 1−

∞
∑

i=pj∗

c

i2

≥ 1−
∞
∑

i=pj∗

c

(

1

i− 1
− 1

i

)

= 1− c

pj∗ − 1
> 0 ,

where in the second inequality, we take advantage of the well-known inequality:

(2.18) (1− δ1)(1− δ2) · · · (1− δu) ≥ 1− δ1 − δ2 − · · · − δu

for δ1, δ2, . . . , δu ∈ [0, 1], which can be proved easily by induction on u (base cases: u = 1, 2;
inductive step from u to u + 1: (1 − δ1)(1 − δ2) · · · (1 − δu+1) ≥ (1 − δ1)(1 − δ2 − · · · − δu+1) ≥
1− δ1 − δ2 − · · · − δu+1).

Hence
∏

p

λp({1}) =
j∗−1
∏

j=1

λpj({1}) ·
∞
∏

j=j∗

(

1− λpj({0})
)

> 0 .

�

2.5. Zero Polynomial Values.

Remark 2.9 (iii) used a well-known result that the probability that a nonzero polynomial at a
random integer vector equals zero is 0 ([13, Lemma 4.1]). We conclude this section with a different
proof by estimating this probability from above by σp and applying Lemma 2.14.

Theorem 2.15. Let G ∈ Z[x1, x2, . . . , xd] be a nonzero polynomial, p a prime, σ
(k)
p the probability

that p |G(x) with x uniformly distributed over Zd
(k), and σp the probability that p |G(x) with x

uniformly distributed over (Z/pZ)d, then
(i) we have

σ(k)
p → σp as k → ∞ , and σ(k)

p ≤ 2dσp , ∀ k > (p− 1)/2 ;

(ii) the probability σ(k) that G(x) = 0 with x uniformly distributed over Zd
(k) goes to 0 as k → ∞ ;

in words, the probability that a nonzero polynomial at a random integer vector equals zero is 0. As
a consequence, for any given integer c, the probability that G(x) = c is either 0 or 1 (consider the
polynomial G(x)− c).

Proof. (i) We follow a similar approach as in the proof of the first equality of (2.3). Let k ∈ Z
such that K := 2k + 1 > p. Then there exists q ∈ Z+ such that

(2.19) q · PP ≤ K < (q + 1) · PP .
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It follows that for any integer y, there are either q or q + 1 numbers among Z(k) that equal y mod
p. Further, the number of x ∈ (Z/pZ)d for which p |G(x) is pdσp , thus the number of x ∈ Zd

(k) for

which p |G(x) is between qdpdσp and (q + 1)dpdσp . Therefore

(2.20) σ(k)
p ∈

[

qdpdσp
Kd

,
(q + 1)dpdσp

Kd

]

:= Σk .

Thanks to (2.19), we have

(2.21) Σk ⊆
[

qdpdσp
[(q + 1)p]d

,
(q + 1)dpdσp

(qp)d

]

=

[

(

q

q + 1

)d

σp ,

(

q + 1

q

)d

σp

]

,

whose left and right endpoints both converge to σp as q → ∞ . Hence

σ(k)
p → σp , as q → ∞ , or equivalently, as k → ∞ .

Additionally, we deduce σ
(k)
p ≤ 2dσp from (2.20) and (2.21) along with q ≥ 1.

(ii) The probability σ(k) is no greater than σ
(k)
p , which by virtue of (i) and Lemma 2.14, converges

to 0 as p, k → ∞ with k > (p− 1)/2 . �

3. SNF Distribution

Let m ≤ n be two positive integers. We shall define the density of SNF of a random n × m
integer matrix as the limit (if exists) of the density of SNF of a random n×m matrix with entries
independent and uniformly distributed over Z(k) as k → ∞ (see Definition 3.1 below for a precise
definition).

If we regard the minors of an n×m matrix as polynomials of the nm matrix entries with integer
coefficients, then the SNF of a matrix is uniquely determined by the values of these polynomials.
Specifically, let x1, x2, . . . , xnm be the nm entries of an n×m matrix, Fj’s be the minors of an n×m
matrix as elements in Z[x1, x2, . . . , xnm], Ui be the set of i× i minors (1 ≤ i ≤ m), then the SNF
of this matrix is the diagonal matrix whose i-th diagonal entry is 0 if gi(x) = 0 and gi(x)/gi−1(x)
otherwise, where x = (x1, x2, . . . , xnm) and gi(x) is defined in (2.1).

In this spirit, the multi-gcd distribution as well as the results in Sections 2.1–2.3 have analogues
for the SNF distribution of a random integer matrix. This section presents these analogues and
the next section will use them to compute the density µ for some interesting types of sets.

Conventionally, the SNF is only defined for a nonzero matrix; however, for convenience, we shall
define the SNF of a zero matrix to be itself, so that SNF is well-defined for all matrices. This
definition does not change the density (if exists) of SNF of a random n ×m integer matrix since
the probability of a zero matrix with entries from Z(k) is 1/(2k + 1)nm, which converges to 0 as
k → ∞ .

We denote the SNF of an n × m matrix M by SNF(M) = (SNF(M)i,j)n×m and let S be the
set of all candidates for SNF of an n ×m integer matrix, i.e., the set of n×m diagonal matrices
whose diagonal entries (d1, d2, . . . , dm) are nonnegative integers such that di+1 is a multiple of di ,
i = 1, 2, . . . , m− 1.

For ease of notation, we shall always assume that the matrix entries are independent and uni-
formly distributed on its range (if known, e.g., Z(k) or Z/PPZ), and that the notion SNF(M) ∈ S or
SNF(M) = D (mod PP) for some S ⊆ S, D ∈ S and PP =

∏

(p,s)∈P p
s ∈ Z+ implies the equivalence

of multiplication of the entries of M by units in Z/PPZ , thus we can assume for convenience that
the entries of SNF(M) (mod PP) are zero or divisors of PP .

Definition 3.1. (i) For S ⊆ S , we denote by µ(k)(S) the probability that SNF(M) ∈ S with
entries of M from Z(k). If limk→∞ µ(k)(S) = µ(S) exists, then we say that the probability that
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SNF(M) ∈ S with M a random n×m integer matrix is µ(S). If this is the case, then µ(S) ∈ [0, 1]
since µ(k)(S) ∈ [0, 1] for all k.

(ii) We define similarly the SNF distribution over the ring of integers mod ps: for prime p and

positive integer s, we denote by µ
(k)
ps (S) the probability that the SNF(M) ∈ S (mod ps) with

entries of M from Z(k), and by µps(S) the probability that SNF(M) ∈ S (mod ps) with entries of
M from Z/psZ .

More generally, for a finite set P of prime and positive integer pairs (p, s) (with p a prime and s

a positive integer), we denote by µ
(k)
PP

(S) the probability that SNF(M) ∈ S (mod PP) with entries
ofM from Z(k), and by µPP

(S) the probability that SNF(M) ∈ S (mod PP) with entries ofM from
Z/PPZ . Note that µPP

(S) is the number of matrices M over PP such that SNF(M) ∈ S (mod PP)
divided by P nm

P . The situation discussed in the previous paragraph is the special case that P
consists of only one element (p, s) and PP = ps.

In this section, we establish a formula for µps, discuss the properties of µPP
and µ, show the

existence of µ and represent it as a product of µps’s.

3.1. SNF Distribution over Z/PPZ .

We have the following formula for µps and analogue of Theorem 2.3 for SNFs.

Theorem 3.2. (i) Given a prime p, a positive integer s and a sequence of integers 0 = a0 ≤ a1 ≤
· · · ≤ as ≤ as+1 = m , let a := (a1, a2, . . . , as) and Da ∈ S be the diagonal matrix with exactly
(ai − ai−1) p

i−1’s, i.e., ai non-p
i-multiples, 1 ≤ i ≤ s on its diagonal. Then we have

(3.1) µps({Da}) = p−
∑s

i=1
(n−ai)(m−ai) · [p, n][p,m]

[p, n− as][p,m− as]
∏s

i=1[p, ai − ai−1]
,

where

[p, 0] = 1, [p, ℓ] :=
ℓ
∏

j=1

(

1− p−j
)

, ℓ ∈ Z+ .

(ii) For any S ⊆ S, we have

µPP
(S) =

∑

D∈S (modPP )

µPP
({D})

and

(3.2) lim
k→∞

µ
(k)
PP

= µPP
(S) =

∏

(p,s)∈P

µps(S) .

Proof. (ii) and (iii) are direct applications of Theorem 2.3 to SNFs. For (i), we compute the
number of n × m matrices over Z/psZ whose SNF is Da by [7, Theorem 1] (or [8, Theorem 2])
and simplify it to

(3.3) p
∑s

i=1[(n+m)ai−a2i ] ·
∏as−1

i=0 (1− p−n+j)(1− p−m+j)
∏s−1

i=0

∏ai+1−ai
j=1 (1− p−j)

=: N.

Thus
µps({Da}) = p−snmN = RHS of (3.1) .

�

Remark 3.3. In the case of s = 1, the formula (3.3) gives the number of n × m matrices over
Z/pZ of rank a1 and is consistent with [15, Exercise 1.192(b)]; whereas in the case of n = m, a
calculation shows that (3.3) is consistent with the results in [9, pp. 233, 236] (their |AutH| is our
N).
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3.2. SNF Distribution over Z .

The properties of λ of set unions, subtractions and complements in Section 2.2 also carry over
to SNFs. They will be useful in determining the value of µ for some specific sets (for instance, the
singleton set of the identity matrix as in Section 4.3).

Theorem 3.4. Suppose that {Sα}α∈A are pairwise disjoint subsets of S such that µ(Sα) exists for
all α ∈ A . If A is a finite set, then

µ (∪α∈A Sα) =
∑

α∈A

µ(Sα) .

Theorem 3.5. Suppose that S ′ ⊆ S ⊆ S such that µ(S ′) and µ(S) both exist, then

µ(S \ S ′) = µ(S)− µ(S ′) .

In particular for the complement Sc of S in S, we have

µ(Sc) = 1− µ(S) .
Theorem 3.6. Suppose that T ∈ S such that µ(T ) = 0, then for any S ⊆ T , we also have
µ(S) = 0 .

3.3. Connection between µ and µps.

Theorem 2.8 has an analogue for SNFs as well, by virtue of the following well-known lemma (see
[3, Theorem 61.1] for an easy proof).

Lemma 3.7. Fix a positive integer r. The determinant of an r × r matrix as a polynomial of its
r2 entries x1, x2, . . . , xr2 is irreducible in Q[x1, x2, . . . , xr2 ] .

For any i ≤ m ∧ (n − 1) (i.e., min {m,n − 1}, which is m if m < n, and n − 1 if m = n,
recalling that m ≤ n), the set Ui contains at least two different minors, which are both irreducible
as polynomials of the entries on the strength of Lemma 3.7 and therefore relatively prime. Hence
Assumption 2.7 holds with w = m ∧ (n − 1). This allows us to apply Theorem 2.8 to SNFs and
obtain the following analogue. In addition, we will compute the density µ(S) explicitly later in
Section 4.1.

Theorem 3.8. Given positive integers r ≤ m ∧ (n − 1) and d1 |d2 | · · · | dr, let z =
∏∞

j=1 p
sj
j with

pj the j-th smallest prime and sj nonnegative integers, j = 1, 2, . . . such that dr | z, then the
probability µ(S) exists for

(3.4) S = {D := (Di,j)n×m ∈ S : Di,i = di , ∀ i ≤ r} ,
and in fact

(3.5) µ(S) =
∞
∏

j=1

µ
p
sj+1

j

(S) .

Remark 3.9. (i) The right-hand side of (3.5) is well-defined since µps(·) ∈ [0, 1] for all p and s.
(ii) We have assumed that r ≤ m ∧ (n − 1); in fact, we have µ(S) = 0 otherwise. Recall that

m ≤ n and note that r ≤ m, thus in the case of r > m ∧ (n − 1), we must have r = m = n.
As a result, any matrix M with SNF(M) ∈ S satisfies |M | = ±dn . We will show later that the
probability that the determinant of a random n× n integer matrix equals ±c is 0 for all constant
c (Theorem 4.5).

(iii) We have also assumed that the di’s are positive; in fact, we have µ(S) = 0 otherwise. If
di = 0 for some i, then all i × i minors of any matrix M with SNF(M) ∈ S are zero. Applying
Theorem 4.5 to c = 0 yields the desired result.
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4. Applications

Now we apply Theorems 3.2 and 3.8 to compute the density µ explicitly for the following subsets
of S: matrices with first few diagonal entries given (i.e., with the form of (3.4)), full rank matrices,
a finite subset, matrices with diagonal entries all equal to 1, and square matrices with at most
ℓ (= 1, 2, . . . , n) diagonal entries not equal to 1.

4.1. Density of the Set (3.4).
For the set S of (3.4), i.e., of matrices with first r diagonal entries given, we take z = dr in

Theorem 3.8, then it suffices to compute µps+1(S) for each (p, s) = (pj , sj). In mod ps+1, the set
S has m − r + 1 elements (see (4.12) below). Further, since formula (3.1) gives the density µps+1

of each element of S, one can take the sum over S to get an expression for µps+1(S) (Theorem
3.2), and compute this sum explicitly when m− r is small, such as in Theorems 4.8 and 4.9 below.
However, this sum is hard to compute when m− r is large, for example, when m is large and r is
fixed; in this case, we recast S as the difference between a subset of S and the union of other r− 1
subsets such that for each of these r sets, its density µps+1 is given directly by (3.1).

We work out two examples to illustrate this idea, and then deal with the general case.

4.1.1. The First Example: Relatively Prime Entries.
Our approach reproduces the following result mentioned at the beginning of this paper.

Theorem 4.1. Let S be the set of (3.4) with r = 1 and d1 = 1, then we have

(4.1) µ(S) = 1

ζ(nm)
,

where ζ(·) is the Riemann zeta function.

Proof. Applying Theorem 3.8 with r = 1 , d1 = 1 and sj = 0 , j = 1, 2, . . . gives

(4.2) µ(S) =
∏

p

µp(S) ,

therefore it reduces to computing µp(S) for each p.
Recall the equivalence of multiplication by units, therefore we only have two choices for matrix

entries in mod p : 1 and 0. The set S (mod p) consists of all the matrices in S whose first
diagonal entry is 1, thus S = {Da : a = (a1) ≥ 1} (mod p) (recall from Theorem 3.2 that
a := (a1, a2, . . . , as) and that Da ∈ S is the diagonal matrix with exactly ai non-p

i-multiples on
its diagonal). Therefore

µp(S) = 1− µp({D(0)}) .
We apply (3.1) to get µp({D(0)}) = p−nm, thus µp(S) = 1− p−nm. Plugging into (4.2) along with
the Euler product formula

(4.3)
∏

p

(

1− p−i
)

=
1

ζ(i)
∈ (0, 1) , ∀ i ≥ 2

yields (4.1). �

4.1.2. Another Example.

Theorem 4.2. Let S be the set of (3.4) with r = 2, d1 = 2 and d2 = 6, then we have

(4.4) µ(S) = µ22(S)µ32(S)
∏

p>3

µp(S) ,
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where

(4.5) µ22(S) = 2−nm

(

1− 2−nm − 2−(n−1)(m−1) · (1− 2−n) (1− 2−m)

1− 2−1

)

,

(4.6) µ32(S) = 3−(n−1)(m−1)
(

1− 3−(n−1)(m−1)
) (1− 3−n) (1− 3−m)

1− 3−1
,

(4.7) µp(S) = 1− p−nm − p−(n−1)(m−1) · (1− p−n) (1− p−m)

1− p−1
= 1−

(n−1)m
∑

(n−1)(m−1)

p−i +
nm−1
∑

n(m−1)+1

p−i .

Proof. The first equation (4.4) follows directly from Theorem 3.8 with r = 2 , d1 = 2 , d2 = z = 6 ,
s1 = s2 = 1 , sj = 0 , j ≥ 3 . Therefore it reduces to calculating µps(S) for (p, s) = (2, 2), (3, 2)
and (p, 1) with p > 3 .

Case 1. p > 3 and s = 1 .
Recall the equivalence of multiplication by units, therefore we only have two choices for matrix

entries in mod p : 1 and 0. The set S (mod p) consists of all the matrices in S whose first two
diagonal entries are 1, thus S = {Da : a = (a1) ≥ 2} (mod p) (recall a again from Theorem 3.2).
Therefore

µp(S) = 1− µp({D(0)})− µp({D(1)}) .
We then apply (3.1) to get µp({D(0)}) and µp({D(1)}), and (4.7) follows.

Case 2. p = 2 and s = 2 .
We have three choices for matrix entries in mod 22: 1, 2 and 0. The set S (mod 22) consists of

all the matrices in S whose first two diagonal entries are 2, thus S = {Da=(a1,a2) : a1 = 0 , a2 ≥ 2}
(mod 22). Therefore

(4.8) µ22(S) = µ22({D(a1,a2) : a1 = 0})− µ22({D(0,0)})− µ22({D(0,1)}) .
Notice that the set {D(a1,a2) : a1 = 0} (mod 22) consists of all the matrices in S whose diagonal
entries are all multiples of 2 (i.e., either 2 or 0); in other words, in mod 2, it contains only one
element – the zero matrix. Hence

µ22({D(a1,a2) : a1 = 0}) = µ2({D(0)}) .
Plugging into (4.8) and applying (3.1) to get µ2({D(0)}), µ22({D(0,0)}) and µ22({D(0,1)}), we obtain
(4.5).

Case 3. p = 3 and s = 2 .
We have three choices for matrix entries in mod 32: 1, 3 and 0. The set S (mod 32) consists of all

the matrices in S whose first two diagonal entries are 1 and 3, respectively, thus S = {Da=(a1,a2) :
a1 = 1 , a2 ≥ 2} (mod 32). Therefore

(4.9) µ32(S) = µ32({D(a1,a2) : a1 = 1})− µ32({D(1,1)}) .

Notice that the set {D(a1,a2) : a1 = 1} (mod 32) consists of all the matrices in S whose first diagonal
entry is 1 and all other diagonal entries are multiples of 3 (i.e., either 3 or 0); in other words, in
mod 3, it contains only one element – the diagonal matrix whose diagonal entries are 1, 0, 0, . . . , 0.
Hence

µ32({D(a1,a2) : a1 = 1}) = µ3({D(1)}) .
Plugging into (4.9) and applying (3.1) to get µ3({D(1)}) and µ32({D(1,1)}), we obtain (4.6). �
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4.1.3. The General Case.

Theorem 4.3. Let S be the set of (3.4) in Theorem 3.8 with dr =
∏∞

j=1 p
sj
j , then for (p, s) =

(pj , sj), j = 1, 2, . . . , we have

µps+1(S) = p−
∑s

i=1
(n−ãi)(m−ãi) · [p, n][p,m]

[p, n− ãs][p,m− ãs]
∏s

i=1[p, ãi − ãi−1]

−
r−1
∑

ℓ=ãs

p−(n−ℓ)(m−ℓ)−
∑s

i=1
(n−ãi)(m−ãi) · [p, n][p,m]

[p, n− ℓ][p,m− ℓ][p, ℓ− ãs]
∏s

i=1[p, ãi − ãi−1]
,(4.10)

where ãi (0 ≤ i ≤ s) is the number of non-pi-multiples among d1, d2, . . . , dr (thus ãs ≤ r − 1) . In
particular, when s = 0 (which holds for all but finitely many j’s), we have

(4.11) µp(S) = 1−
r−1
∑

ℓ=0

p−(n−ℓ)(m−ℓ) · [p, n][p,m]

[p, n− ℓ][p,m− ℓ][p, ℓ]
.

The value of µ(S) is then given by Theorem 3.8 with z = dr .

Proof. Recalling from Theorem 3.2 the notation of Da, we recast S as

(4.12) S = {Da=(a1,a2,...,as+1) : ai = ãi , 1 ≤ i ≤ s , as+1 ≥ r} (mod ps+1) ,

and therefore

(4.13) µps+1(S) = µps+1({Da=(a1,a2,...,as+1) : ai = ãi , 1 ≤ i ≤ s})−
r−1
∑

ℓ=ãs

µps+1({D(ã1,ã2,...,ãs,ℓ)}) .

Notice that the set {Da=(a1,a2,...,as+1) : ai = ãi , 1 ≤ i ≤ s} (mod ps+1) in the first term on the right-
hand side of (4.13) consists of all the matrices in S with exactly ãi (1 ≤ i ≤ s) non-pi-multiples on
its diagonal; in other words, in mod ps, it contains only one element – the diagonal matrix with
exactly ãi non-p

i-multiples, i.e., (ãi − ãi−1) p
i−1’s, 1 ≤ i ≤ s on its diagonal. Hence

(4.14) µps+1({Da=(a1,a2,...,as+1) : ai = ãi , 1 ≤ i ≤ s}) = µps({D(ã1,ã2,...,ãs)}) .
Plugging into (4.13) and applying (3.1) to get µps({D(ã1,ã2,...,ãs)}) and µps+1({D(ã1,ã2,...,ãs,ℓ)}), 1 ≤
ℓ ≤ r − 1, we obtain (4.10). �

Remark 4.4. We notice that the density µps({Da}) of (3.1) is a polynomial of p−1 with integer
coefficients since m − as +

∑s
i=1(ai − ai−1) = m. The µp(S) of (4.11) is also a polynomial of p−1

with integer coefficients and with constant term 1 (see the µp(S) of (4.7) as an example). If we
replace each occurrence of p by pz, where z is a complex variable, and plug into (3.5) of Theorem
3.8, we get an Euler product for some kind of generalized zeta function.

For instance, when m = n = 3, for the set S in Theorem 4.2, we apply (4.7) to get

µp(S) = 1− p−4 − p−5 − p−6 + p−7 + p−8 =
(

1− p−2
) (

1− p−3
) (

1 + p−2 + p−3
)

.

Taking the product over all primes p and applying the Euler product formula (4.3), we obtain
∏

p

µp(S) =
1

ζ(2)ζ(3)

∏

p

(

1 + p−2 + p−3
)

.

Plugging into (4.4), we see that to obtain the density µ(S), it reduces to computing
∏

p(1+ p−2 +

p−3), or to understanding the Euler product
∏

p(1 + p−2z + p−3z).
It would be interesting to study whether such an Euler product for some generalized zeta function

(1) has any interesting properties relevant to SNF; (2) extends to a meromorphic function on all
of C ; (3) satisfies a functional equation.
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4.2. The Determinant.

The determinant of an m×m matrix can be regarded as a polynomial G of its m2 entries. Note
that G is not a constant since it takes values 1 and 0 for the identity matrix and the zero matrix,
respectively. Thus we can apply Theorem 2.15 to G and obtain the following.

Theorem 4.5. Let c be an integer. The probability that the determinant equals c for an m ×m
matrix with entries from Z(k) goes to 0 as k → ∞ ; in other words, the density of the determinant
of a random m×m integer matrix is always 0.

This result plays an important role in the next two theorems. The first of them shows that the
probability that a random n×m integer matrix is full rank is 1.

Theorem 4.6. If S ⊆ S satisfies Dm,m = 0 for all D = (Di,j)n×m ∈ S, then we have µ(S) = 0 ;
in other words, the probability that an n ×m matrix with entries from Z(k) is full rank goes to 1
as k → ∞ .

Proof. If SNF(M)m,m = 0 , then all m×m minors ofM are zero. Therefore the result follows from
Theorem 4.5 with c = 0 . �

When m = n, we can generalize Theorem 4.6 to S with finitely many values of Dm,m’s.

Theorem 4.7. Suppose that m = n and S ⊂ S , then we have µ(S) = 0 if the set {Dn,n : D =
(Di,j)n×n ∈ S} is finite; in particular, this holds for any finite subset S ⊂ S .

Proof. For any M such that SNF(M) = D ∈ S, we have |M | = ±D1,1D2,2 · · ·Dn,n . As a conse-
quence, if Dn,n = 0 , then |M | = 0 ; if Dn,n 6= 0 , then the Di,i’s are divisors of Dn,n and therefore
|M | has finitely many choices. The result then follows from Theorem 4.5. �

If Dn,n 6= 0 for all D ∈ S, then we have another proof of Theorem 4.7 without invoking Theorem
4.5. We cannot take advantage of (3.2) from Theorem 3.8 since r = m = n > m ∧ (n− 1) in this

case. Instead, we will start from the observation that µ(k)(S) ≤ µ
(k)
P (ℓ)({I}) with P (ℓ) a product of

primes and I the identity matrix, then bound µ
(k)
P (ℓ)({I}) from above by 2n

2

µP (ℓ)({I}) through a

similar idea as in the proof of (2.3) (approximating 2k+1 by a multiple of P (ℓ)), and finally show
that µP (ℓ)({I}) → 0 as ℓ→ ∞.

Another Proof of Theorem 4.7 with Dn,n 6= 0 for all D ∈ S . Let I be the n × n identity matrix
and j∗ ∈ Z+ such that pj > c for all j ≥ j∗. Then for any j > j∗, SNF(M) ∈ S (mod pj) only if
SNF(M) = I (mod pj).

Applying (3.3) with s = 1 and a1 = n (or [15, Exercise 1.192(b)]), we get the number of n × n
non-singular matrices over Z/pjZ :

pn
2

j [pj, n] := βj .

Set
P (ℓ) := pj∗ pj∗+1 · · · pℓ , ℓ ≥ j∗.

Then SNF(M) ∈ S (mod P (ℓ)) only if SNF(M) = I (mod P (ℓ)). Hence µ
(k)
P (ℓ)(S) ≤ µ

(k)
P (ℓ)({I}).

By the Chinese remainder theorem, the number of n × n matrices over Z/P (ℓ)Z whose SNF
equals I mod P (ℓ) is

(4.15) βj∗βj∗+1 · · ·βℓ =
ℓ
∏

j=j∗

pn
2

j [pj , n] = P (ℓ)n
2

ℓ
∏

j=j∗

[pj , n] := β(ℓ) .

For any integer k with K := 2k + 1 > P (ℓ), there exists q ∈ Z+ such that

(4.16) q · P (ℓ) ≤ K < (q + 1) · P (ℓ) .
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Then for any integer z , there are at most q + 1 numbers among Z(k) that equal z mod P (ℓ).
Therefore the number of n× n matrices with entries from Z(k) whose SNF is equal to I mod P (ℓ)

is at most (q + 1)n
2

β(ℓ). Hence

(4.17) µ
(k)
P (ℓ)({I}) ≤

(q + 1)n
2

β(ℓ)

Kn2
≤ (q + 1)n

2

β(ℓ)

[qP (ℓ)]n
2

=

(

q + 1

q

)n2

β(ℓ)

P (ℓ)n2
≤ 2n

2

ℓ
∏

j=j∗

[pj , n] ,

on the strength of (4.16) and (4.15) (note that P (ℓ)−n2

β(ℓ) = µP (ℓ)({I}) by (4.15) and (3.2)).
Notice that

(4.18) 1− x ≤ exp(−x) , ∀ x ∈ [0, 1] .

(To see this, let W (x) := 1 − x − exp(−x), x ∈ [0, 1], then W ′(x) = −1 + exp(−x) ≤ 0 . Hence
W (x) ≤W (0) = 0 .)

Applying (4.18) with x = p−1
j (j∗ ≤ j ≤ ℓ), we obtain

[pj, n] ≤ 1− p−1
j ≤ exp

(

−p−1
j

)

.

Plugging into (4.17) yields

µ
(k)
P (ℓ)({I}) ≤ 2n

2
∏

1≤j≤ℓ

exp
(

−p−1
j

)

= 2n
2

exp

(

−
∑

j∗≤j≤ℓ

p−1
j

)

→ 0 as ℓ→ ∞

with 2k + 1 (= K) > P (ℓ), by the well-known result that
∑

1≤j≤ℓ

p−1
j → ∞ as ℓ→ ∞ .

Since µ(k)(S) ≤ µ
(k)
P (ℓ)(S) ≤ µ

(k)
P (ℓ)({I}), we deduce that µ(k)(S) → 0 as k → ∞ , as desired. �

4.3. Probability that All Diagonal Entries of the SNF Are 1.
Theorem 4.7 (along with Theorem 3.6) implies that the probability that all diagonal entries of

an SNF are 1 is 0 if m = n ; however, as we will see soon, this probability is positive if m < n .
We will need Theorems 3.2 and 3.8 to determine its value.

Theorem 4.8. Let E be the n ×m diagonal matrix whose diagonal entries are all 1. If m < n ,
then we have

µ({E}) = 1
∏n

i=n−m+1 ζ(i)
→
{

1 , if m is fixed
1∏

∞

i=n−m+1
ζ(i)

, if n−m is fixed
, as n→ ∞ .

Proof. Apply Theorem 3.8 with S = {E}, r = m , di = z = 1 , sj = 0 for all i, j, and then Theorem
3.2 with s = 1 , a1 = m :

µ({E}) =
∏

p

µp({E}) =
∏

p

[p, n]

[p, n−m]
=
∏

p

n
∏

i=n−m+1

(

1− p−i
)

=

n
∏

i=n−m+1

∏

p

(

1− p−i
)

=
1

∏n
i=n−m+1 ζ(i)

,

on the strength of n−m+ 1 ≥ 2 and the Euler product formula (4.3).
Finally, thanks to the fact that ζ(i) ↓ 1 as i→ ∞ , we obtain the limits of µ({E}) as desired. �
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4.4. Probability that At Most ℓ Diagonal Entries of the SNF Are Not 1.
In this section, we assume that m = n. We provide a formula for the probability that an SNF

has at most ℓ diagonal entries not equal to 1 and a formula for the limit of this probability as
n → ∞ . In particular, when ℓ = 1, this limit is the reciprocal of a product of values of the
Riemann zeta function at positive integers and equals 0.846936. For bigger ℓ, we prove that this
limit converges to 1 as ℓ→ ∞ and find its asymptotics (see (4.38)).

4.4.1. Cyclic SNFs (ℓ = 1).
We shall say that an SNF is cyclic if it has at most one diagonal entry not equal to 1, i.e., if

the corresponding cokernel is cyclic. Denote the set of n× n cyclic SNFs by Tn . We will compute
the probability µ(Tn) of having a cyclic SNF, and show that this probability strictly decreases to
0.846936 as n→ ∞ .

Theorem 4.9. We have
(i)

(4.19) µ(Tn) =
1

∏n
i=2 ζ(i)

·
∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+ 1

pn

)

=: Zn ;

(ii) Zn is strictly decreasing in n ;
(iii)

Z2 =
1

ζ(4)
=

90

π4
≈ 0.923938 ;

(iv)

lim
n→∞

Zn =
1

ζ(6)
∏∞

i=4 ζ(i)
≈ 0.846936 .

Proof. (i) Apply Theorem 3.8 with S = Tn , r = n − 1 , di = z = 1 , sj = 0 for all i, j, and then
Theorem 3.2 with s = 1 , a1 = n , n− 1 , respectively:

µ(Tn) =
∏

p

µp(Tn) =
∏

p

(

[p, n] +
p−1[p, n]2

[p, 1]2[p, n− 1]

)

=
∏

p

[p, n]

[p, 1]

(

[p, 1] +
p−1[p, n]

[p, 1][p, n− 1]

)

(4.20)

=
1

∏n
i=2 ζ(i)

∏

p

(

1− p−1 +
p−1(1− p−n)

1− p−1

)

=
1

∏n
i=2 ζ(i)

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+ 1

pn

)

= Zn .

Here in the fourth equality we used the fact that

(4.21)
∏

p

[p, n]

[p, 1]
=
∏

p

n
∏

i=2

(

1− p−i
)

=

n
∏

i=2

∏

p

(

1− p−i
)

=
1

∏n
i=2 ζ(i)

,

by virtue of the Euler product formula (4.3).

(ii) We consider the ratio:

Zn+1

Zn

=
∏

p

(

1− p−(n+1)
)

· 1 + p−2 + p−3 + · · ·+ p−(n+1)

1 + p−2 + p−3 + · · ·+ p−n
,

thus it suffices to show

(4.22)
(

1− p−(n+1)
)

· 1 + p−2 + p−3 + · · ·+ p−(n+1)

1 + p−2 + p−3 + · · ·+ p−n
< 1

for all p. For ease of notation, we denote p−1 by t throughout this paper, then

LHS of (4.22) =
(

1− tn+1
)

·
(

1 +
tn+1

1 + t2 + t3 + · · ·+ tn

)

<
(

1− tn+1
) (

1 + tn+1
)

= 1−t2(n+1) < 1 .
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(iii) When n = 2, it follows from definition (4.19) that

Z2 =
∏

p

(

1− p−2
) (

1 + p−2
)

=
∏

p

(

1− p−4
)

=
1

ζ(4)
.

(iv) Now assume that n ≥ 3. According to the definition (4.19) of Zn , it suffices to prove that

lim
n→∞

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+ 1

pn

)

=
ζ(2)ζ(3)

ζ(6)
.

In fact, we will show that

(4.23)
ζ(2)ζ(3)

ζ(6)
=
∏

p

(

1 +
1

p2
+

1

p3
+ · · ·

)

= lim
n→∞

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+ 1

pn

)

.

We adopt the notation t := p−1. For the left equality of (4.23), we observe that

(4.24) 1 + t2 + t3 + · · · = 1 +
t2

1− t
=

1− t+ t2

1− t
=

1 + t3

(1 + t)(1− t)
=

1− t6

(1− t2) (1− t3)
.

Taking the product of this equation over all reciprocals t of primes and applying the Euler product
formula (4.3) yields the desire equality.

For the right equality of (4.23), since

0 < 1− 1 + t2 + t3 + · · ·+ tn

1 + t2 + t3 + · · · =
tn+1 + tn+2 + · · ·
1 + t2 + t3 + · · · <

tn+1 + tn+2 + · · ·
t2 + t3 + · · · = tn−1,

combining with (4.3), we obtain

1 >
∏

t

1 + t2 + t3 + · · ·+ tn

1 + t2 + t3 + · · · >
∏

t

(

1− tn−1
)

=
1

ζ(n− 1)
→ 1, as n→ ∞

and complete the proof, where
∏

t represents a product over all reciprocals t of primes.

One can also show the right equality of (4.23) using the fact that

(4.25) 1 < 1 + p−2 + p−3 + · · ·+ p−n ↑ 1 + p−2 + p−3 + · · · , as n→ ∞
and the following version of monotone convergence theorem (which will also be very useful later
in proving Theorem 4.13 (iii)).

Theorem 4.10. If real numbers xi,j (i, j = 1, 2, . . . ) satisfy 1 ≤ xi,j ↑ xi as j → ∞ for all i, then
we have

(4.26) lim
j→∞

∞
∏

i=1

xi,j =

∞
∏

i=1

xi .

Here we allow the products and the limit to be infinity.

Proof. Applying the monotone convergence theorem to log xi,j (≥ 0) gives

lim
j→∞

∞
∑

i=1

log xi,j =
∞
∑

i=1

log xi .

Thus

lim
j→∞

log

∞
∏

i=1

xi,j = log

∞
∏

i=1

xi ,

and (4.26) follows. �
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Thanks to (4.25), we can apply Theorem 4.10 with xi,j = 1 + p−2
i + p−3

i + · · · + p−j
i and xi =

1 + p−2
i + p−3

i + · · · , and arrive at the desire equality. �

Remark 4.11. (1) The proof of Theorem 4.9 (iv) is reminiscent of (though not directly related to)
[15, Exercise 1.186 (c)].

(2) Theorem 4.9 (i), (iv) and the numerical value of (iii) are obtained in [6, Section 3] via a
slightly different approach. We have provided a complete and more detailed proof.

4.4.2. More Generators (General ℓ).
Now we consider the SNFs with at most ℓ (≤ n) diagonal entries not equal to 1, i.e., whose

corresponding cokernel has at most ℓ generators. Denote the set of such n× n SNFs by Tn(ℓ). In
particular, when ℓ = n, we have µ(Tn(n)) = 1. The above discussion on cyclic SNFs is for the
case ℓ = 1. We will compute the density µ(Tn(ℓ)) and its limit as n → ∞ , show that this limit
increases to 1 as ℓ→ ∞ , and establish its asymptotics.

We start with a lemma which will play an important role in our proof (as well as in Section 5.2
below).

Lemma 4.12. For any positive number x ≤ 1/2, the positive sequence {[1/x, k]}∞k=1 is decreasing
and thus has a limit as k → ∞:

(4.27) C(x) := (1− x) (1− x2) · · · ∈
[

e−2x/(1−x), 1
)

.

This also implies that C(x) → 1 as x→ 0 and that [1/x, k] ∈ [e−2x/(1−x), 1) for all x ∈ (0, 1/2] and
k ≥ 1.

In particular, when x = 1/p, we have

(4.28) [p, k] ↓ Cp := C(1/p) ∈
[

e−2/(p−1), 1
)

⊆
[

e−2, 1
)

, as k → ∞ ,

Cp → 1 as p→ ∞ , and [p, k] ∈ [e−2/(p−1), 1) for all p and k ≥ 1.

Proof. The sequence [1/x, k] is strictly decreasing in k because 0 < 1− xj < 1 for all j ≥ 1.
To get the lower bound for C(x) , we will use the following inequality:

(4.29) ln y ≥ −1 − y

y
, ∀ y ∈ (0, 1] .

(To see this, let ψ(y) := ln y + (1− y)/y, then ψ′(y) = 1/y − 1/y2 ≤ 0 . Hence ψ(y) ≤ ψ(1) = 0 .)
Applying (4.29) with y = 1− xj (j ≥ 1) yields

(4.30) ln
(

1− xj
)

≥ − xj

1− xj
≥ −2xj

as xj ≤ 1/2 . Summing up (4.30) over j from 1 to k, we get

ln [1/x, k] ≥ −
k
∑

j=1

2xj > −
∞
∑

j=1

2xj = − 2x

1− x
.

Hence C(x) = limk→∞[1/x, k] ≥ e−2x/(1−x). �

Theorem 4.13. We have
(i)

(4.31) µ(Tn(ℓ)) =
∏

p

Zn(p, ℓ) =
1

∏n
i=2 ζ(i)

∏

p

Yn(p, ℓ) =: Zn(ℓ) ,

where

Zn(p, ℓ) = µp(Tn(ℓ)) = [p, n]

ℓ
∑

i=0

p−i2 [p, n]

[p, i]2[p, n− i]
,
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(4.32) Yn(p, ℓ) =
[p, 1]

[p, n]
Zn(p, ℓ) = [p, 1]

ℓ
∑

i=0

p−i2[p, n]

[p, i]2[p, n− i]
;

(ii)

(4.33) Yn(p, ℓ) ↑ [p, 1]

ℓ
∑

i=0

p−i2

[p, i]2
=: Y (p, ℓ) as n→ ∞ , Y (p, ℓ) ↑ [p, 1]

Cp
as ℓ→ ∞ ,

and

(4.34) µp(Tn(ℓ)) = Zn(p, ℓ) →
Cp

[p, 1]
Y (p, ℓ) = Cp

ℓ
∑

i=0

p−i2

[p, i]2
=: Z(p, ℓ) as n→ ∞ ,

where Cp = (1− p−1)(1− p−2) · · · as defined in (4.28) and (4.27), then it follows from (4.33) that

(4.35) Z(p, ℓ) ↑ 1 as ℓ→ ∞ ;

(iii)

(4.36) µ(Tn(ℓ)) = Zn(ℓ) →
1

∏∞
i=2 ζ(i)

∏

p

Y (p, ℓ) =
∏

p

Z(p, ℓ) =: Z(ℓ) as n→ ∞ ,

and Z(ℓ) ↑ 1 as ℓ→ ∞ ;
(iv)

(4.37) lim
n→∞

µp(Tn(ℓ)) = Z(p, ℓ) = 1− C−1
p p−(ℓ+1)2

[

1− 2

p2 − p
· p−ℓ +O

(

p−2ℓ
)

]

as ℓ→ ∞ ;

more precisely, this O
(

p−2ℓ
)

∈ (0, 2p−2ℓ) ;
(v)

(4.38) lim
n→∞

µ(Tn(ℓ)) = Z(ℓ) = 1− C−1
2 · 2−(ℓ+1)2

[

1− 2−ℓ +O
(

4−ℓ
)]

as ℓ→ ∞ ,

where C−1
2 ≈ 3.46275 .

Parts (ii) and (iv) also hold with p = 1/x for any x ∈ (0, 1/2].

Figure 1 and Table 1 below illustrate the asymptotics (4.38) of Z(ℓ) and fast rate of convergence.

Figure 1. Asymptotics of Z(ℓ)
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Table 1. Asymptotics of Z(ℓ)

ℓ Z(ℓ) 1− Z(ℓ) 2(ℓ+1)2(1−Z(ℓ)) −ln[1− C2 2
(ℓ+1)2(1−Z(ℓ))] / ln 2

1 0.846935901735 1.53064098265× 10−1 2.44902557224 1.77225611430
2 0.994626883543 5.37311645734× 10−3 2.75103562616 2.28255339912
3 0.999953295075 4.67049248389× 10−5 3.06085395424 3.10703467197
4 0.999999903035 9.69645493161× 10−8 3.25359037644 4.04926385851
5 0.999999999951 4.88413458245× 10−11 3.35635172814 5.02441603986
6 1.000000000000 6.05577286766× 10−15 3.40909705378 6.01220652280
7 1.000000000000 1.86255532064× 10−19 3.43580813230 7.00610418193
8 1.000000000000 1.42657588960× 10−24 3.44924885316 8.00305233425
9 1.000000000000 2.72629586798× 10−30 3.45599059345 9.00152622794
10 1.000000000000 1.30126916909× 10−36 3.45936681921 10.0007631292

Remark 4.14. The convergence result (4.35) in Theorem 4.13 (ii) with p = 1/x implies Euler’s
identity:

∞
∑

i=0

xi
2

(1− x)2(1− x2)2 · · · (1− xi)2
=

1

(1− x)(1− x2) · · · .

Proof. (i) The first equality follows from Theorem 3.8 with S = Tn(ℓ) , r = n − ℓ , di = z = 1 ,
sj = 0 for all i, j, and Theorem 3.2 with s = 1 , a1 = n, n− 1, . . . , n− ℓ , respectively.

The second equality follows from definition (4.32) and (4.21).

(ii) We observe that

[p, n]

[p, n− i]
=
(

1− p−n
) (

1− p−(n−1)
)

· · ·
(

1− p−(n−i+1)
)

↑ 1 as n→ ∞ .

This leads to the first result of (4.33).
Since Yn(p, ℓ) is also increasing in ℓ by definition (4.32), so is Y (p, ℓ), and for all ℓ ≤ n, we have

(4.39) Yℓ(p, ℓ) ≤ Yn(p, ℓ) ≤ Yn(p, n) .

Further, we derive from

1 = µp(Tn(n)) =
[p, n]

[p, 1]
Yn(p, n) ,

that

Yn(p, n) =
[p, 1]

[p, n]
and similarly, Yℓ(p, ℓ) =

[p, 1]

[p, ℓ]
.

Plugging into (4.39), we obtain

[p, 1]

[p, ℓ]
≤ Yn(p, ℓ) ≤

[p, 1]

[p, n]
<

[p, 1]

Cp
.

Taking n→ ∞ yields
[p, 1]

[p, ℓ]
≤ Y (p, ℓ) ≤ [p, 1]

Cp

.

Then taking ℓ→ ∞ and applying Lemma 4.12 leads to the second result of (4.33).
Finally, on the strength of (4.33) and Lemma 4.12, we obtain (4.34) from definition (4.32):

Zn(p, ℓ) =
[p, n]

[p, 1]
Yn(p, ℓ) →

Cp

[p, 1]
Y (p, ℓ) as n→ ∞ .

This proof also carries over to p = 1/x for any x ∈ (0, 1/2].
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(iii) It follows from definitions (4.31) and (4.32) that

(4.40) Zn(ℓ) =
∏

p

Zn(p, ℓ) =
∏

p

[p, n]

[p, 1]

∏

p

Yn(p, ℓ) .

By virtue of (4.21), we have

(4.41)
∏

p

[p, n]

[p, 1]
=

1
∏n

i=2 ζ(i)
→ 1
∏∞

i=2 ζ(i)
≈ 0.435757 as n→ ∞ .

Further, this limit

1
∏∞

i=2 ζ(i)
=

∞
∏

i=2

∏

p

(

1− p−i
)

=
∏

p

∞
∏

i=2

(

1− p−i
)

=
∏

p

Cp

[p, 1]
.

Hence

(4.42)
∏

p

[p, n]

[p, 1]
→
∏

p

Cp

[p, 1]
as n→ ∞ .

We can also deduce (4.42) from Theorem 4.10 with xi,j = [pi, 1]/[pi, j] since

1 ≤ [p, 1]

[p, n]
↑ [p, 1]

Cp
as n→ ∞

by Lemma 4.12.
For the second product on the right-hand side of (4.40), from (4.20) in the proof of Theorem

4.9 (i), we see that Yn(p, 1) = 1+p−2+p−3+ · · ·+p−n > 1 . Since Yn(p, ℓ) is increasing in ℓ, we have
Yn(p, ℓ) > 1 as well. In conjunction with (4.33), we can apply Theorem 4.10 with xi,j = Yj(pi, ℓ)
to obtain

(4.43)
∏

p

Yn(p, ℓ) ↑
∏

p

Y (p, ℓ) as n→ ∞ .

Plugging (4.41), (4.43) and (4.42) into (4.40) along with definition (4.34) yields (4.36):

(4.44) Zn(ℓ) →
1

∏∞

i=2 ζ(i)

∏

p

Y (p, ℓ) =
∏

p

Cp

[p, 1]

∏

p

Y (p, ℓ) =
∏

p

Cp

[p, 1]
Y (p, ℓ) =

∏

p

Z(p, ℓ)

as n→ ∞ .
Since Yn(p, ℓ) > 1 and Yn(p, ℓ) is increasing in ℓ, so is Y (p, ℓ) (recall (4.33)). Thus we can apply

Theorem 4.10 with xi,j = Y (pi, j) to obtain

∏

p

Y (p, ℓ) ↑
∏

p

[p, 1]

Cp
as ℓ→ ∞ .

Finally, we plug this into the second expression of the limit of Zn(ℓ) in (4.44):

Z(ℓ) = lim
n→∞

Zn(ℓ) =
∏

p

Cp

[p, 1]

∏

p

Y (p, ℓ) ↑ 1 as ℓ→ ∞ .

(iv) We prove for the more general case p = 1/x with x ∈ (0, 1/2]. Let

V (x, ℓ) := Z(1/x, ℓ) = C(x)

ℓ
∑

i=0

xi
2

[1/x, i]2
.

Recall that C(x) = (1− x)(1− x2) · · · and [1/x, i] = (1− x)(1− x2) · · · (1− xi).
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Since V (x, ℓ) = Z(1/x, ℓ) ↑ 1 as ℓ→ ∞ by (4.35), we have

1

C(x)
=

∞
∑

i=0

xi
2

[1/x, i]2
=

ℓ
∑

i=0

xi
2

[1/x, i]2
+

∞
∑

i=ℓ+1

xi
2

[1/x, i]2
=
V (x, ℓ)

C(x)
+

∞
∑

i=ℓ+1

xi
2

[1/x, i]2
.

Thus for any x ∈ (0, 1/2], we obtain

x−(ℓ+1)2C(x) [1− V (x, ℓ)] = x−(ℓ+1)2C2(x)

[

1

C(x)
− V (x, ℓ)

C(x)

]

= x−(ℓ+1)2
∞
∑

i=ℓ+1

C2(x)xi
2

[1/x, i]2

=
∞
∑

i=ℓ+1

xi
2−(ℓ+1)2

∞
∏

j=i+1

(

1− xj
)2

=
∞
∏

j=ℓ+2

(

1− xj
)2

+
∞
∑

i=ℓ+2

xi
2−(ℓ+1)2

∞
∏

j=i+1

(

1− xj
)2

=

(

1− 2
∞
∑

j=ℓ+2

xj +∆1

)

+∆2 = 1− 2xℓ+2

1− x
+∆1 +∆2 ,(4.45)

where

(4.46) 0 < ∆2 :=
∞
∑

i=ℓ+2

xi
2−(ℓ+1)2

∞
∏

j=i+1

(

1− xj
)2
<

∞
∑

i=ℓ+2

xi
2−(ℓ+1)2 <

∞
∑

i=2ℓ+3

xi =
x2ℓ+3

1− x
< x2ℓ

and

(4.47) 0 ≤ ∆1 :=
∞
∏

j=ℓ+2

(

1− xj
)2 −

(

1− 2
∞
∑

j=ℓ+2

xj

)

≤ 4
∑

j,j′≥ℓ+2

xj+j′ =
4x2ℓ+4

(1− x)2
≤ x2ℓ ,

as 0 < x ≤ 1/2 , thanks to the inequality:

0 ≤
u
∏

i=1

(1− δi)−
(

1−
u
∑

i=1

δi

)

≤
∑

1≤i<j≤u

δiδj

for δ1, δ2, . . . , δu ∈ [0, 1], which can be proved easily by induction on u (the left inequality was
proved in (2.18). For the right inequality, base cases: u = 1, 2; inductive step from u to u + 1:
(1−δu+1)

∏u
i=1(1−δi) ≤ (1−δu+1)(1−

∑u
i=1 δi+

∑

1≤i<j≤u δiδj) = 1−∑u+1
i=1 δi+

∑

1≤i<j≤u+1 δiδj−
δu+1

∑

1≤i<j≤u δiδj ≤ 1−
∑u+1

i=1 δi +
∑

1≤i<j≤u+1 δiδj).

Plugging (4.46) and (4.47) into (4.45) yields (4.37).

(v) Since Z(ℓ) =
∏

p Z(p, ℓ) by definition (4.36) and 0 ≤ Z(p, ℓ) ≤ 1 for all p , we have Z(ℓ) ≤
Z(2, ℓ). Thus it follows from (iv) that

(4.48) Z(ℓ) ≤ Z(2, ℓ) = 1− C−1
2 2−(ℓ+1)2

[

1− 2−ℓ +O
(

4−ℓ
)]

as ℓ→ ∞ .

On the other hand, we notice that when ℓ ≥ 2, the O(p−2ℓ) in (4.37) satisfies

O(p−2ℓ) < 2p−2ℓ ≤ 2

p2
· p−ℓ <

2

p2 − p
· p−ℓ ,

thus

Z(p, ℓ) > 1− C−1
p p−(ℓ+1)2 .

Hence

(4.49) Z(ℓ) =
∏

p

Z(p, ℓ) > Z(2, ℓ)
∏

p≥3

(

1− C−1
p p−(ℓ+1)2

)

≥ 1− (1− Z(2, ℓ))−
∑

p≥3

C−1
p p−(ℓ+1)2 .
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Here we took advantage of the inequality (2.18). Thanks to (4.28), the positive sum

∑

p≥3

C−1
p p−(ℓ+1)2 ≤ e2

∑

p≥3

p−(ℓ+1)2 = e2 2−(ℓ+1)2
∑

p≥3

(

2

p

)(ℓ+1)2

< e2 2−(ℓ+1)2
∑

p≥3

(

2

3

)ℓ2 (
2

p

)2

< e2 2−(ℓ+1)2
(

2

3

)ℓ2

· 4 = 2−(ℓ+1)2O(4−ℓ) .

Finally, combining with (4.48) and (4.49) leads to (4.38). �

Remark 4.15. When ℓ = 1, in the proof of Theorem 4.9 we wrote Y (1/x, 1) as (1−x6)/(1−x2)(1−
x3) (see (4.24)) in order to represent Z(1) =

∏

p Y (p, 1) /
∏∞

i=2 ζ(i) as the reciprocal of a product
of values of the Riemann zeta function at positive integers. However, this is not the case when
ℓ > 1; in fact, in general Y (1/x, ℓ) is not even a symmetric function in x, for instance,

Y

(

1

x
, 2

)

=
1− x− x2 + 2x3 − x5 + x6

(1− x)3(1 + x)2
,

Y

(

1

x
, 3

)

=
1− x− x2 + 2x4 + x5 − 2x6 − x7 + x8 + x9 − x11 + x12

(1− x)5(1 + x)2(1 + x+ x2)2
.

5. Properties of the SNF Distribution Function µps

In this section, we first fix p, s,m, n and find the maximum and minimum of the probability
density function µps of (3.1). Then we free p, s,m, n and study the monotonicity properties and
limiting behaviors of µps({Da}), as a function of p, s,m, n and a (recall from Theorem 3.2 the
notation of vector a = (a1, a2, . . . , as) as well as its corresponding diagonal matrix Da ∈ S).

For convenience, we replace m − ai by bi (0 ≤ i ≤ s) in (3.1) to get a simpler expression for
µps({Da}):

(5.1) f(p, s,m, n′, b) := p−
∑s

i=1
(n′+bi)bi · [p, n′ +m][p,m]

[p, n′ + bs][p, bs]
∏s

i=1[p, bi−1 − bi]
.

Here and throughout this section, we shall assume that p is a prime, that s,m and n are positive
integers, that n > n′ := n − m ≥ 0 , and that b := (b1, b2, . . . , bs) is an integer vector satisfying
m = b0 ≥ b1 ≥ · · · ≥ bs ≥ 0 .

5.1. The Maximum and Minimum.

We show that f(p, s,m, n′, ·) attains its maximum at either (0, 0, . . . , 0) or (1, 1, . . . , 1) depending
on p, s,m and n′, and its minimum at (m,m, . . . ,m).

Theorem 5.1. For fixed p,m, n and s, the maximum and minimum of f(p, s,m, n′, ·) are given
as follows.

(i) If p > 2 , s > 1 or n′ > 0 , then

max
b

f(p, s,m, n′, b) =
[p, n′ +m]

[p, n′]
,

and the maximum is achieved if and only if b = (0, 0, . . . , 0) := 0, in other words, if the corre-
sponding matrix Da is full rank;

(ii) If p = 2 , s = 1 , n′ = 0 and m > 1 , then

max
b

f(p, s,m, n′, b) =
[2, m]2

[2, 1][2, m− 1]
,

and the maximum is achieved if and only if b = (1);
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(iii) In both Case (i) and Case (ii), we have

min
b

f(p, s,m, n′, b) = p−s(n′+m)m ,

and the minimum is achieved if and only if b = (m,m, . . . ,m), in other words, if the corresponding
matrix Da is the zero matrix.

(iv) If p = 2 , s = 1 , n′ = 0 and m = 1 , then b = (1) or (0), and they have the same value of
f : 1/2.

Proof. (i) We proceed by the following two lemmas which show that the bi’s are all equal at the
maximum of f(p, s,m, n′, ·), and that bi = 0 or 1 depending on p, s,m and n′ .

Let b = (b1, b2, . . . , bs) be an arbitrary s-tuple with m = b0 ≥ b1 ≥ · · · ≥ bs ≥ 0 .

Lemma 5.2. If bi > bi+1 for some i ∈ {1, 2, . . . , s− 1} (s ≥ 2), then we have

f(p, s,m, n′, b′) > f(p, s,m, n′, b),

where b
′ = (b′1, b

′
2, . . . , b

′
s) with b′i = bi − 1 and b′j = bj for all j 6= i. Note that b′ still satisfies

m = b′0 ≥ b′1 ≥ · · · ≥ b′s ≥ 0 .

Lemma 5.3. Let ϕ(b) := f
(

p, s,m, n′, (b, b, . . . , b)
)

, 0 ≤ b ≤ m, then for all 0 ≤ b < m, we have

ϕ(b)

ϕ(b+ 1)











< 1 , if p = 2 , s = 1 , n′ = 0 , m > 1 and b = 0

= 1 , if p = 2 , s = 1 , n′ = 0 , m = 1 and b = 0

> 1 , otherwise

.

These lemmas are proved right below this proof. Thanks to Lemma 5.2, the maximum point of
f(p, s,m, n′, ·) must have the form (b, b, . . . , b) with 0 ≤ b ≤ m . Therefore it reduces to finding
the maximum of ϕ(·).

Since p > 2 , s > 1 or n′ > 0 , it follows from Lemma 5.3 that

(5.2) ϕ(0) > ϕ(1) > · · · > ϕ(m) .

Hence the maximum of ϕ(·) is ϕ(0) = [p,n′+m]
[p,n′]

, as desired.

(ii) When p = 2 , s = 1 , n′ = 0 and m > 1 , it follows from Lemma 5.3 that

(5.3) ϕ(0) < ϕ(1) and ϕ(1) > · · · > ϕ(m) .

Hence the maximum of ϕ(·) is ϕ(1) = [2,m]2

[2,1][2,m−1]
, as desired.

(iii) We proceed by the following lemma (proved right below this proof) which shows that at
the minimum of f(p, s,m, n′, ·), all the bi’s (i > 1) equal m.

Lemma 5.4. If bi < bi−1 for some i ∈ {1, 2, . . . , s− 1} (s ≥ 2), then we have

f(p, s,m, n′, b′) < f(p, s,m, n′, b),

where b
′ = (b′1, b

′
2, . . . , b

′
s) with b′i = bi + 1 and b′j = bj for all j 6= i. Note that b

′ still satisfies
m = b′0 ≥ b′1 ≥ · · · ≥ b′s ≥ 0 .

Thanks to Lemma 5.4, the minimum point of f(p, s,m, n′, ·) must have the form (m,m, . . . ,m, b)
with 0 ≤ b ≤ m . Further, since f

(

p, s,m, n′, (m,m, . . . ,m, b)
)

= p−(s−1)(n′+m)m · ϕ(b) (by (5.1)),
where ϕ is defined in Lemma 5.3 with s = 1 , it reduces to finding the minimum of ϕ(·).

Case (i) When p > 2 or n′ > 0 , it follows from (5.2) that the minimum of ϕ(·) is ϕ(m) =
p−(n′+m)m .

Case (ii) When p = 2 , n′ = 0 and m > 1 , it follows from (5.3) that the minimum of ϕ(·) is
min {ϕ(0), ϕ(m)}. Since

ϕ(0) = [2, m] >
(

1− 2−1
)m

= 2−m ≥ 2−m2

= ϕ(m) ,
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the minimum of ϕ(·) is still ϕ(m).

Hence the minimum of f is always p−s(n′+m)m and achieved at (m,m, . . . ,m). �

Proof of Lemma 5.2. It follows from definition (5.1) that

f(p, s,m, n′, b′)

f(p, s,m, n′, b)
= p(n

′+bi)bi−(n′+b′i)b
′
i · [p, bi−1 − bi][p, bi − bi+1]

[p, bi−1 − b′i][p, b
′
i − bi+1]

≥ p · [p, bi−1 − bi][p, bi − bi+1]

[p, bi−1 − bi + 1][p, bi − 1− bi+1]
= p · 1− p−(bi−bi+1)

1− p−(bi−1−bi+1)
> p

(

1− p−1
)

= p− 1 ≥ 1 ,

as desired, where in the second last inequality, we used the condition that bi > bi+1 to get 1 −
p−(bi−bi+1) ≥ 1− p−1 . �

Proof of Lemma 5.3. By the definition of ϕ and (5.1), we obtain

ϕ(b)

ϕ(b+ 1)
= ps[(n

′+b+1)(b+1)−(n′+b)b] · [p, n
′ + b+ 1][p, b+ 1][p,m− b− 1]

[p, n′ + b][p, b][p,m− b]

= ps(n
′+2b+1) ·

(

1− p−(n′+b+1)
) (

1− p−(b+1)
)

1− p−(m−b)
> ps(n

′+2b+1)
(

1− p−1
)2
,(5.4)

where we used the fact that

1− p−(n′+b+1), 1− p−(b+1) ≥ 1− p−1 and 1− p−(m−b) < 1 .

Case 1. s(n′ + 2b+ 1) ≥ 2 .
The right-hand side of (5.4) is at least

p2
(

1− p−1
)2

= (p− 1)2 ≥ 1 .

Case 2. p ≥ 3 .
The right-hand side of (5.4) is at least

p
(

1− p−1
)2 ≥ 3

(

1− 3−1
)2

= 4/3 > 1 .

Case 3. p = 2 and s(n′ + 2b+ 1) = 1 , which requires that s = 1 and n′ = b = 0 .
Plugging into (5.4) yields

ϕ(b)

ϕ(b+ 1)
=

2 (1− 2−1)
2

1− 2−m
=

1

2− 21−m

{

< 1, if m > 1

= 1, if m = 1

and completes the proof. �

Proof of Lemma 5.4. By definition (5.1), we obtain

f(p, s,m, n′, b′)

f(p, s,m, n′, b)
= p(n

′+bi)bi−(n′+b′i)b
′
i · [p, bi−1 − bi][p, bi − bi+1]

[p, bi−1 − b′i][p, b
′
i − bi+1]

≤ p−1 · [p, bi−1 − bi][p, bi − bi+1]

[p, bi−1 − bi − 1][p, bi + 1− bi+1]
= p−1 · 1− p−(bi−1−bi)

1− p−(bi+1−bi+1)
< p−1 · 1

1− p−1
=

1

p− 1
≤ 1 ,

as desired, where in the second last inequality, we used the condition that bi ≥ bi+1 to get 1 −
p−(bi+1−bi+1) ≥ 1− p−1 . �
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5.2. Monotonicity Properties and Limiting Behaviors.

Now we free p, s,m and n′. We will see that the monotonicity properties and limiting behaviors
of f of (5.1) when b = 0 (i.e., the corresponding matrix Da is full rank) differ tremendously
from those when b 6= 0. Specifically, we show that f is increasing in n′, p and decreasing in m
when b = 0 (Theorem 5.5), but decreasing in n′ and increasing in m when b 6= 0 (Theorem 5.6).
Further, with regard to limiting behaviors, when b = 0, the limit of f as p,m or n′ → ∞ is
positive (note that f is independent of s) (Theorem 5.5); whereas when b 6= 0, the limit of f
is still positive as m → ∞ or s → ∞ with

∑s
i=1 bi bounded (Theorems 5.10, 5.11), but zero as

max {p, n′,
∑s

i=1 bi} → ∞ (Theorems 5.7, 5.9). Lemma 4.12 is crucial in the analysis of limiting
behaviors of f .

5.2.1. The Case of b = 0 .
Let

(5.5) f0(p,m, n
′) := f(p, s,m, n′, 0) =

[p, n′ +m]

[p, n′]
=

n′+m
∏

j=n′+1

(

1− p−j
)

.

We derive the following monotonicity properties and limiting behaviors of f0 with the help of
Lemma 4.12.

Theorem 5.5. The function f0(p,m, n
′) of (5.5) is strictly increasing in p, n′ while strictly de-

creasing in m, and satisfies

lim
m→∞

f0(p,m, n
′) =

Cp

[p, n′]
< 1 , lim

n′→∞
inf
m
f0(p,m, n

′) = 1 and lim
p→∞

inf
m,n′

f0(p,m, n
′) = 1 ,

where Cp = (1− p−1)(1− p−2) · · · as defined in Lemma 4.12. In particular, we have

lim
m→∞

f0(p,m, 0) = Cp and lim
n′→∞

f0(p,m, n
′) = 1 = lim

p→∞
f0(p,m, n

′) ;

the first equality characterizes Cp as the limit of the probability that a random m×m integer matrix
over Z/psZ is nonsingular as m→ ∞ .

Proof. Utilizing the expression on the right-hand side of (5.5), we obtain the monotonicities. Then
we apply Lemma 4.12 to get

inf
m
f0(p,m, n

′) = lim
m→∞

f0(p,m, n
′) =

Cp

[p, n′]
→ Cp

Cp
= 1 as n′ → ∞ ,

and
inf
m,n′

f0(p,m, n
′) = lim

m→∞
f0(p,m, 0) = Cp → 1 as p→ ∞ .

�

5.2.2. The Case of b 6= 0 .
We first present the monotonicity properties of f(p, s,m, n′, b) in n′ and m.

Theorem 5.6. Suppose that b 6= 0 . The function f(p, s,m, n′, b) is strictly decreasing in n′ while
strictly increasing in m.

Proof. Recall that b1 ≥ b2 ≥ · · · bs ≥ 0 . Since b 6= 0, we have b1 ≥ 1 . Thus the ratio

f(p, s,m, n′ + 1, b)

f(p, s,m, n′, b)
= p−

∑s
i=1(n

′+1+bi)bi+
∑s

i=1(n
′+bi)bi · [p, n

′ + 1 +m][p, n′ + bs]

[p, n′ +m][p, n′ + 1 + bs]

= p−
∑s

i=1
bi · 1− p−(n′+1+m)

1− p−(n′+1+bs)
< p−1 · 1

1− p−1
=

1

p− 1
≤ 1 ,
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and

f(p, s,m+ 1, n′, b)

f(p, s,m, n′, b)
=

[p, n′ +m+ 1][p,m+ 1][p,m− b1]

[p, n′ +m][p,m][p,m+ 1− b1]

=

(

1− p−(n′+1+m)
) (

1− p−(m+1)
)

1− p−(m+1−b1)
≥
(

1− p−(m+1)
)2

1− p−m
>

1− 2p−(m+1)

1− p−m
≥ 1 ,

as p ≥ 2 . �

Recall from definition (5.1) that f is the product of a power of p

f1(p, s,m, n
′, b) := p−

∑s
i=1

(n′+bi)bi

and a fraction

(5.6) f2(p, s,m, n
′, b) :=

[p, n′ +m][p,m]

[p, n′ + bs][p, bs]
∏s

i=1[p, bi−1 − bi]
.

When s is fixed, thanks to Lemma 4.12, the function f2 defined in (5.6) is bounded regardless
of the values of other variables. Moreover, when m (instead of s) is fixed, this result also holds
since

∑s
i=1(bi−1 − bi) = m− bs ≤ m implies that

s
∏

i=1

[p, bi−1 − bi] =
s
∏

i=1

bi−1−bi
∏

j=1

(

1− p−j
)

≥
(

1− p−1
)m ≥ 2−m .

These observations lead to the following zero limiting probabilities.

Theorem 5.7. We have

lim
max{p,n′,

∑s
i=1

bi}→∞,b 6=0

max
m

f(p, s,m, n′, b) = 0 when s is fixed

and

lim
max{p, n′,

∑s
i=1 bi}→∞, b6=0

f(p, s,m, n′, b) = 0 when m is fixed.

Proof. When s or m is fixed, we have shown that f2 is bounded. On the other hand, we have

f1(p, s,m, n
′, b) = p−

∑s
i=1

(n′+bi)bi = p−n′
∑s

i=1
bi−

∑s
i=1

b2i → 0

as long as b 6= 0 and

(5.7) max

{

p, n′

s
∑

i=1

bi +
s
∑

i=1

b2i

}

→ ∞ .

Noticing that

n′

s
∑

i=1

bi ≤ n′

s
∑

i=1

bi +

s
∑

i=1

b2i ≤ n′

s
∑

i=1

bi +

(

s
∑

i=1

bi

)2

,

thus (5.7) is equivalent to max {p, n′,
∑s

i=1 bi} → ∞ . �

Remark 5.8. Let r (≤ s) be the number of nonzeroes in {b1, b2, . . . , bs}, i.e., br > 0 = br+1 (we
define bs+1 = 0), then rbr , b1 ≤

∑s
i=1 bi ≤ rb1 due to the decreasing property of the bi’s. Hence

∑s
i=1 bi → ∞ if and only if max {b1, r} → ∞ . In particular, when s is fixed, we have

∑s
i=1 bi → ∞

if and only if b1 → ∞.

Moreover, if we free s,m, n′ but fix p and let
∑s

i=1 bi → ∞ , then f also goes to 0.
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Theorem 5.9. For a fixed prime p, we have

lim∑s
i=1

bi→∞
max
m,n′

f(p, s,m, n′, b) = 0 .

Proof. Since
∑s

i=1 bi → ∞ , we can assume that b 6= 0 . Moreover, if r (≤ s) is the number of
nonzeroes in {b1, b2, . . . , bs}, then max {b1, r} → ∞ (see Remark 5.8), which is equivalent to that
b1 → ∞ or r → ∞ holds.

Case 1. b1 → ∞ .
For any fixed p, s,m and n, from Lemma 5.2 we see that for b′ = (b1, bs, bs, . . . , bs),

f(p, s,m, n′, b) ≤ f(p, s,m, n′, b′)

= p−(n′+b1)b1−(s−1)(n′+bs)bs · [p, n′ +m][p,m]

[p, n′ + bs][p, bs][p,m− b1][p, b1 − bs]
≤ p−b1 · 1

(e−2)4

on the strength of Lemma 4.12. Hence

max
m,n′

f(p, s,m, n′, b) ≤ p−b1 · 1

(e−2)4
→ 0 , as b1 → ∞ .

Case 2. r → ∞ .
For any fixed p, s,m and n, from Lemma 5.2 we see that for b

′ = (br, br, . . . , br, bs, bs, . . . , bs)
(with r br’s and (s− r) bs’s),

f(p, s,m, n′, b) ≤ f(p, s,m, n′, b′)

= p−r(n′+br)br−(s−r)(n′+bs)bs · [p, n′ +m][p,m]

[p, n′ + bs][p, bs][p,m− br][p, br − bs]
≤ p−r · 1

(e−2)4
,

on the strength of Lemma 4.12. Hence

max
m,n′

f(p, s,m, n′, b) ≤ p−r · 1

(e−2)4
→ 0 , as r → ∞ .

�

All the limits of f we have found so far equal zero. To attain a nonzero limit, we must have a
bounded max {p, n′,

∑s
i=1 bi}. We may fix p, s, n′, b, let m→ ∞ and apply Lemma 4.12 .

Theorem 5.10. For fixed p, s, n′ and b 6= 0 , we have

lim
m→∞

f(p, s,m, n′, b) = p−
∑s

i=1
(n′+bi)bi · Cp

[p, n′ + bs][p, bs]
∏s

i=2[p, bi−1 − bi]
.

We may also weaken the constraints by fixing p, n′ and
∑s

i=1 bi only. A natural way to achieve
this is to fix the first few bi’s, say b1, b2, . . . , br (r < s fixed), and set the rest to be zero no matter
how big s is. According the definition (5.1) of f , for b = (b1, b2, . . . , br, 0, 0, . . . , 0), we have

(5.8) f(p, s,m, n′, b) = p−
∑r

i=1
(n′+bi)bi · [p, n′ +m][p,m]

[p, n′]
∏r+1

i=1 [p, bi−1 − bi]
,

which is independent of s. Coupling with Theorem 5.9 gives the following.

Theorem 5.11. When m,n′ and p are fixed, for any given infinite integer sequence {b0, b1, . . . }
with m = b0 ≥ b1 ≥ · · · ≥ bi ≥ bi+1 ≥ · · · ≥ 0 , we have

lim
s→∞

f(p, s,m, n′, bs) =

{

0 , if
∑∞

i=1 bi → ∞
p−

∑r
i=1

(n′+bi)bi · [p,n′+m][p,m]

[p,n′]
∏r+1

i=1
[p,bi−1−bi]

, otherwise
,

where b
s := (b0, b1, . . . , bs) and in the second case, r is the number of nonzeroes in {b0, b1, . . . } and

finite (see Remark 5.8), and br+1 = 0 .
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