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Abstra
t

The rank of an ordinary partition of a nonnegative integer n is the length

of the main diagonal of its Ferrers or Young diagram. Nazarov and Tarasov

gave a generalization of this de�nition for skew partitions and proved some

basi
 properties. We show the 
lose 
onne
tion between the rank of a skew

partition �=� and the minimal number of border strips whose union is �=�.

A general theory of minimal border strip de
ompositions is developed and

an appli
ation is given to the evaluation of 
ertain values of irredu
ible 
har-

a
ters of the symmetri
 group.

1 Introdu
tion.

Let � = (�

1

; �

2

; : : :) be a partition of the integer n, i.e., �

1

� �

2

� � � � � 0

and

P

�

i

= n. The (Durfee or Frobenius) rank of �, denoted rank(�), is the

length of the main diagonal of the diagram of �, or equivalently, the largest

integer i for whi
h �

i

� i [11, p. 289℄. We will assume familiarity with

the notation and terminology involving partitions and symmetri
 fun
tions
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found in [7℄ and [11℄. Nazarov and Tarasov [9, x1℄, in 
onne
tion with ten-

sor produ
ts of Yangian modules Y (gl

n

), de�ned a generalization of rank to

skew partitions (or skew diagrams) �=�. There are several simple equivalent

de�nitions of rank(�=�) whi
h we summarize in Proposition 2.2. In parti
-

ular, rank(�=�) is the least integer r su
h that �=� is a disjoint union of r

border strips (also 
alled ribbons or rim hooks). In Se
tion 4 we 
onsider

the stru
ture of the de
ompositions of �=� into this minimal number r of

border strips. For instan
e, we show that the number of ways to write �=�

as a disjoint union of r border strips is a perfe
t square. A 
onsequen
e of

our results will be that if �

�=�

is the skew 
hara
ter of the symmetri
 group

S

n

indexed by �=� and if w is a permutation in S

n

with rank(�=�) 
y
les

(in its disjoint 
y
le de
omposition) for whi
h exa
tly m

i


y
les have length

i, then �

�=�

(w) is divisible by m

1

!m

2

! � � �.

In addition to the various 
hara
terizations of rank(�=�) given by Propo-

sition 2.2 we have a further possible 
hara
terization whi
h we have been

unable to prove or disprove. Namely, let s

�=�

(1

t

) denote the skew S
hur

fun
tion s

�=�

evaluated at x

1

= � � � = x

t

= 1, x

i

= 0 for i > t. For �xed

�=�, s

�=�

(1

t

) is a polynomial in t. Let zrank(�=�) denote the exponent of the

largest power of t dividing s

�=�

(1

t

) (as a polynomial in t). It is easy to see

(Proposition 3.1) that zrank(�=�) � rank(�=�), and we ask whether equality

always holds. We know of two main 
ases where the answer is aÆrmative:

(1) when �=� is an ordinary partition (i.e., � = ;), a trivial 
onsequen
e of

known results on S
hur fun
tions (Theorem 3.2(a)), and (2) when every row

of the Ja
obi-Trudi matrix for �=� whi
h 
ontains an entry equal to 0 also


ontains an entry equal to 1 (Theorem 3.2(b)).

2 Chara
terizations of Frobenius rank.

Let �=� be a skew shape, whi
h we identify with its Young diagram f(i; j) :

�

i

< j � �

i

g. While all our results are stated in terms of the partitions � and

�, it should be mentioned that these results depend on � and � only up to

translation of the skew shape �=�. We regard the points (i; j) of the Young

diagram as squares. An outside top 
orner of �=� is a square (i; j) 2 �=�

su
h that (i� 1; j); (i; j � 1) 62 �=�. An outside diagonal of �=� 
onsists of

2
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Figure 1: Outside and inside diagonals of the skew shape 8874=411

all squares (i + p; j + p) 2 �=� for whi
h (i; j) is a �xed outside top 
orner.

Similarly an inside top 
orner of �=� is a square (i; j) 2 �=� su
h that

(i� 1; j); (i; j� 1) 2 �=� but (i� 1; j� 1) 62 �=�. An inside diagonal of �=�


onsists of all squares (i+ p; j+ p) 2 �=� for whi
h (i; j) is a �xed inside top


orner. If � = ;, then �=� has one outside diagonal (the main diagonal) and

no inside diagonals. Figure 1 shows the skew shape 8874=411, with outside

diagonal squares marked by + and inside diagonal squares by �.

Let d

+

(�=�) (respe
tively, d

�

(�=�)) denote the total number of outside

diagonal squares (respe
tively, inside diagonal squares) of �=�. Following

Nazarov and Tazarov [9, x1℄, we de�ne the (Durfee or Frobenius) rank of

�=�, denoted rank(�=�), to be d

+

(�=�)� d

�

(�=�). Clearly when � = ; this

redu
es to the usual de�nition of rank(�) mentioned in the introdu
tion. We

see, for instan
e, from Figure 1 that rank(8874=411) = 4.

We wish to give several equivalent de�nitions of rank(�=�). First we

dis
uss the ne
essary ba
kground. A skew shape �=� is 
onne
ted if the

interior of the Young diagram of �=�, regarded as a union of solid squares, is

a 
onne
ted (open) set. A border strip [11, p. 345℄ is a 
onne
ted skew shape

with no 2�2 square. (The empty diagram ; is not a border strip.) A border

strip is uniquely determined, up to translation, by its row lengths; there are

exa
tly 2

n�1

border strips with n squares (up to translation). We say that

a border strip B � �=� is a border strip of �=� if �=�� B is a skew shape

�=� (so B = �=�). Equivalently, we say that B 
an be removed from �=�. A

border strip B of �=� is determined by its lower left-hand square init(B) and

upper right-hand square �n(B). A border strip de
omposition [11, p. 470℄

of �=� is a partitioning of the squares of �=� into (pairwise disjoint) border

3



Figure 2: A minimal border strip de
omposition of the skew shape 8874=411

strips. Let N = j�=�j :=

P

�

i

�

P

�

i

and � = (�

1

; : : : ; �

`

) ` N , where

�

`

> 0. We say that a border strip de
omposition D has type � ` N if the

sizes (number of squares) of the border strips appearing inD are �

1

; : : : ; �

`

. A

border strip de
omposition of �=� is minimal if the number of border strips

is minimized, i.e., there does not exist a border strip de
omposition with

fewer border strips. Figure 2 shows a minimal border strip de
omposition of

the skew shape 8874=411.

A 
on
ept 
losely related to border strip de
ompositions is that of border

strip tableaux [11, p. 346℄. Let �=� ` N . Let � = (�

1

; �

2

; : : : ; �

m

) be a


omposition of N , i.e., �

i

2 P = f1; 2; : : :g and

P

�

i

= N . A border strip

tableau of (shape) �=� and type � is a sequen
e

� = �

0

� �

1

� � � � � �

r

= � (1)

su
h that �

i

=�

i�1

is a border strip of size �

i

. (Note that the type of a

border strip de
omposition is a partition but of a border strip tableau is a


omposition.) Often in the de�nition of a border strip tableau there is allowed

�

i

=�

i�1

= ;, but it will be 
onvenient for us not to permit this. Every border

strip tableau T of shape �=� de�nes a border strip de
ompositionD of �=�,

viz., the border strips �

i

=�

i�1

of T are just the border strips of D. We say

thatD 
orresponds to T and 
onversely that T 
orresponds toD. Of 
ourse

given T , the 
orrespondingD is unique, but not 
onversely. If T 
orresponds

to a minimal border strip de
ompositionD, then we 
all T a minimal border

strip tableau.

Now suppose that `(�) � n, where `(�) denotes the number of (nonzero)

parts of �. Re
all that the Ja
obi-Trudi identity for the skew S
hur fun
tion

4



s

�=�

[11, Thm. 7.16.1℄ asserts that

s

�=�

= det

�

h

�

i

��

j

�i+j

�

n

i;j=1

;

where h

k

denotes the 
omplete homogeneous symmetri
 fun
tion of degree

k, with the 
onvention h

0

= 1 and h

k

= 0 for k < 0. Denote the ma-

trix

�

h

�

i

��

j

�i+j

�

appearing in the Ja
obi-Trudi identity by JT

�=�

, 
alled the

Ja
obi-Trudi matrix of the skew shape �=�. Let jrank(�=�) denote the num-

ber of rows of JT

�=�

that don't 
ontain a 1. Note that JT

�=�

impli
itly

depends on n, but jrank(�=�) does not depend on the 
hoi
e of n.

Our �nal pie
e of ba
kground material 
on
erns the (Com�et) 
ode of a

shape � [11, Exer. 7.59℄, generalized to skew shapes �=�. Let �=� be a skew

shape, with its left-hand edge and upper edge extended to in�nity, as shown

in Figure 3 for �=� = 8874=411. Put a 0 next to ea
h verti
al edge and a 1

next to ea
h horizontal edge of the \lower envelope" and \upper envelope"

of �=� (whose de�nition should be 
lear from Figure 3). If we read these

numbers as we move north and east along the lower envelope we obtain a

binary sequen
e C

�=�

= � � � 


�2




�1




0




1




2

� � � beginning with in�nitely many

0's and ending with in�nitely many 1's. Similarly if we read these numbers

as we move north and east along the upper envelope we obtain another su
h

binary sequen
e D

�=�

= � � �d

�2

d

�1

d

0

d

1

d

2

� � �. The indexing of the terms of

C

�=�

and D

�=�

is arbitrary (it doesn't a�e
t the sequen
es themselves), but

we require them to \line up" in the sense that 
ommon steps in the two

envelopes should have 
ommon indi
es. We 
all the resulting two-line array


ode(�=�) =

� � � 


�2




�1




0




1




2

� � �

� � � d

�2

d

�1

d

0

d

1

d

2

� � �

; (2)

the (Com�et) 
ode of �=� (also known as the partition sequen
e of �=� [1℄[2℄).

If we omit the in�nitely many initial 
olumns

0

0

and �nal 
olumns

1

1

from


ode(�=�), then we 
all the resulting array the redu
ed 
ode of �=�, denoted


ode(�=�). Thus for instan
e from Figure 3 we see that


ode(8874=411) =

1 1 1 1 0 1 1 1 0 1 0 0

0 1 0 0 1 1 1 0 1 1 1 1

:

A two-line array (2) with in�nitely many initial 
olumns

0

0

and �nal


olumns

1

1

is the 
ode of some �=� if and only if for all i,

#fj � i : (


j

; d

j

) = (1; 0)g � #fj � i : (


j

; d

j

) = (0; 1)g; (3)
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Figure 3: Constru
ting the 
ode of 8874=411

and

#fj 2 Z : (


j

; d

j

) = (1; 0)g = #fj 2 Z : (


j

; d

j

) = (0; 1)g: (4)

If � = ; then the se
ond row of 
ode(�=�) is redundant, so we de�ne 
ode(�)

to be the �rst row of 
ode(�=�). If 
ode(�=�) is given by (2) then we write

s(


i

) (respe
tively, s(d

i

)) for the (unique) square of �=� that 
ontains the edge

of the lower envelope (respe
tively, upper envelope) of �=� 
orresponding to 


i

(respe
tively, d

i

). The following fundamental property of 
ode(�=�) appears

e.g. in [11, Exer. 7.59(b)℄ for ordinary shapes and 
arries over dire
tly to

skew shapes.

2.1 Proposition. Let 
ode(�=�) be given by (2). Then removing a

border strip of size p from �=� is equivalent to 
hoosing i with 


i

= 1 and




i+p

= 0, and then repla
ing 


i

with 0 and 


i+p

with 1, provided that (3)


ontinues to hold. Spe
i�
ally, su
h a pair (i; i+p) 
orresponds to the border

strip B of size p de�ned by

init(B) = s(


i

); �n(B) = s(


i+p

):

Moreover, 
ode(�=� � B) is obtained from 
ode(�=�) by setting 


i

= 0 and




i+p

= 1.
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We 
an now state several 
hara
terizations of rank(�=�).

2.2 Proposition. For any skew shape �=�, the following numbers are

equal.

(a) rank(�=�)

(b) the number of border strips in a minimal border strip de
omposition of

�=�

(
) jrank(�=�)

(d) the number of 
olumns of 
ode(�=�) equal to

0

1

(or to

1

0

)

Proof. By equations (3) and (4) there exists a bije
tion

# : fi : (


i

; d

i

) = (1; 0)g ! fi : (


i

; d

i

) = (0; 1)g

su
h that #(i) > i for all i in the domain of #. By Proposition 2.1, as we

su

essively remove border strips from �=� the bottom line � � �d

�1

d

0

d

1

� � � of


ode(�=�) remains the same, while the top line � � � 


�1




0




1

� � � inter
hanges

a 0 and 1. We will exhaust all of �=� when the top line be
omes equal to

the bottom. Hen
e the number of border strips appearing in a border strip

de
omposition of �=� is at least the number of 
olumns

0

1

of 
ode(�=�). On

the other hand, we 
an a
hieve exa
tly this number by inter
hanging 


i

with




#(i)

for all i su
h that (


i

; d

i

) = (0; 1). It follows that (b) and (d) are equal.

Let B be the (unique) largest border strip of �=� su
h that init(B) is

the bottom square of the leftmost 
olumn of �=�. B will interse
t ea
h di-

agonal (running from upper-left to lower-right) of its 
onne
ted 
omponent

� of �=� exa
tly on
e. The number of outside diagonals of � is one more

than the number of inside diagonals. Hen
e rank(�=�) = rank(�=��B)+1.

Continuing to remove the largest border strip results in a minimal border

strip de
omposition of �=�. (Minimality is an easy 
onsequen
e of Proposi-

tion 2.1.) Sin
e ea
h border strip removal redu
es the rank by one, it follows

that (a) and (b) are equal.

Finally 
onsider the Ja
obi-Trudi matrix JT

�=�

. We prove by indu
tion

on the number of rows of JT

�=�

that (b) and (
) are equal. The assertion

7



is 
lear when JT

�=�

has one row, so assume that JT

�=�

has more than one

row. We may assume that �=� has no empty rows, sin
e \
ompressing" �=�

by removing all empty rows does not 
hange (
). Let JT

0

�=�

denote JT

�=�

with the �rst row and last 
olumn removed. Let �=� be the shape obtained

by removing a maximal border strip from ea
h 
onne
ted 
omponent of �=�

and deleting the bottom (empty) row. If �=� has 
 
onne
ted 
omponents,

then rank(�=�) = rank(�=�)� 
. Now the (i; j)-entry h

�

i+1

��

j

�i+j�1

of the

matrix JT

0

�=�

satis�es

h

�

i+1

��

j

�i+j�1

=

8

<

:

h

�

i

��

j

�i+j

; if row i of �=� is not the last row of a


onne
ted 
omponent of �=�

h

�

i

��

j

�i+j+1

; otherwise.

Moreover, if row i is the last row of a 
onne
ted 
omponent of �=� (other than

the bottom row of �=�) then the (i; i)-entry of JT

�=�

is 1, while the ith row

of JT

�=�

does not 
ontain a 1. It follows that jrank(�=�) = jrank(�=�)� 
,

and the equality of (b) and (
) follows by indu
tion. 2

The equivalen
e of (a) and (
) in Proposition 2.2 is also an immediate


onsequen
e of [9, Prop. 1.32℄.

The following 
orollary was �rst proved by Nazarov and Tarasov [9, Thm.

1.4℄ using the de�nition rank(�=�) = d

+

(�=�) � d

�

(�=�). The result is

not obvious (even for nonskew shapes �) using this de�nition, but it is an

immediate 
onsequen
e of parts (b) or (d) of Proposition 2.2.

2.3 Corollary. Let (�=�)

\

denote the skew shape obtained by rotating

the diagram of �=� 180

Æ

, i.e, repla
ing (i; j) 2 �=� with (h � i; k � i) for

some h and k. Then rank(�=�) = rank((�=�)

\

).

3 An open 
hara
terization of rank(�=�)

Re
all that in Se
tion 1 we de�ned zrank(�=�) to be the largest power of t

dividing the polynomial s

�=�

(1

t

).

8



Open problem. Is it true that

rank(�=�) = zrank(�=�) (5)

for all �=�?

3.1 Proposition. For all �=� we have rank(�=�) � zrank(�=�).

Proof. We have (see [11, Prop. 7.8.3℄)

h

i

(1

t

) =

�

t+ i� 1

i

�

=

t(t+ 1) � � � (t + i� 1)

i!

:

Hen
e by the Ja
obi-Trudi identity,

s

�=�

(1

t

) = det

��

t + �

i

� �

j

� i+ j � 1

�

i

� �

j

� i + j

��

n

i;j=1

: (6)

By Proposition 2.2 exa
tly rank(�=�) rows of this matrix have every entry

equal either to 0 or a polynomial divisible by t. Hen
e s

�=�

(1

t

) is divisible

by t

rank(�=�)

, so rank(�=�) � zrank(�=�) as desired.

Alternatively, we 
an expand s

�=�

in terms of power sums p

�

instead of


omplete symmetri
 fun
tions h

�

. If

s

�=�

=

X

�

z

�1

�

�

�=�

(�)p

�

; (7)

then by the Murnaghan-Nakayama rule [11, Cor. 7.17.5℄ �

�=�

(�) = 0 unless

there exists a border strip tableau of �=� of type �. By Proposition 2.2 it

follows that �

�=�

(�) = 0 unless `(�) � rank(�=�). Sin
e p

�

(1

t

) = t

`(�)

, it

again follows that s

�=�

(1

t

) is divisible by t

rank(�=�)

. 2

The next result establishes that rank(�=�) = zrank(�=�) in two spe
ial


ases.

3.2 Theorem. (a) If � = ; (so �=� = �) then rank(�) = zrank(�).

(b) If every row of JT

�=�

that 
ontains a 0 also 
ontains a 1, then

rank(�=�) = zrank(�=�).

9



Proof. (a) A basi
 formula in the theory of symmetri
 fun
tions [11,

Cor. 7.21.4℄ asserts that

s

�

(1

t

) =

Y

(i;j)2�

t� i + j

h(i; j)

;

where h(i; j) = �

i

+ �

0

j

� i� j + 1, the hook length of � at (i; j). Hen
e

zrank(�) = #fi : (i; i) 2 �g = rank(�):

(b) Let

y(�=�) =

�

t

�rank(�=�)

s

�=�

(1

t

)

�

t=0

:

By Proposition 3.1 y(�=�) is �nite (and in fa
t is just the 
oeÆ
ient of

t

rank(�=�)

in s

�=�

(1

t

)), and the assertion that rank(�=�) = zrank(�=�) is equiv-

alent to y(�=�) 6= 0. Now fa
tor out t from every row not 
ontaining a 1 of

the matrix on the right-hand side of equation (6). By Proposition 2.2 the

number of su
h rows is rank(�=�). Divide by t

rank(�=�)

and set t = 0. Denote

the resulting matrix by R

�=�

, so

y(�=�) = detR

�=�

�

�

t=0

:

Note that

�

t

�1

h

i

(1

t

)

�

t=0

=

1

i

; i � 1: (8)

If row i of JT

�=�


ontains a 1, say in 
olumn j, then row i of R

�=�

has

all entries equal to 0 ex
ept for a 1 in 
olumn j. Hen
e we 
an remove row i

and 
olumn j from R

�=�

without 
hanging the determinant detR

�=�

, ex
ept

possibly for the sign. When we do this for all rows i of JT

�=�


ontaining a 1,

then using (8) we obtain a matrix of the form

R

0

�=�

=

�

1

a

i

+ b

j

�

r

i;j=1

; (9)

where a

1

> a

2

> � � � > a

r

> 0 and 0 = b

1

< b

2

< � � � < b

r

. In parti
ular,

the denominators a

i

+ b

j

are never 0. But it was shown by Cau
hy (e.g., [8,

x353℄) that

detR

0

�=�

=

Q

i<j

(a

i

� a

j

)(b

i

� b

j

)

Q

i;j

(a

i

+ b

j

)

6= 0;

as was to be shown. 2
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4 Minimal border strip de
ompositions of �=�

In the proof of Proposition 3.1 we mentioned the Murnaghan-Nakayama rule

[11, Cor. 7.17.5℄ in 
onne
tion with the expansion of s

�=�

in terms of power

sums. This rule asserts that if �

�=�

(�) is de�ned by equation (7), then

�

�=�

(�) =

X

T

(�1)

ht(T )

; (10)

summed over all border-strip tableaux T of shape �=� and type �. Here

ht(T ) =

X

B

ht(B);

where B ranges over all border strips in T and ht(B) is one less than the

number of rows of B. In fa
t, in equation (10) � 
an be a 
omposition rather

than just a partition. In other words, let � = (�

1

; : : : ; �

m

) be a 
omposition

of N = j�=�j and let

�

�=�

(�) =

X

T

(�1)

ht(T )

;

summed over all border strip tableaux T of shape �=� and type �. Then

�

�=�

(�) = �

�=�

(�), where � is the de
reasing rearrangement of �. The se
ond

proof of Proposition 3.1 showed that s

�=�

has minimal degree r = rank(�=�)

as a polynomial in the p

i

's (with deg p

i

= 1 for i � 1). Sin
e p

�

(1

t

) = t

`(�)

we see that the 
oeÆ
ient y(�=�) of t

rank(�=�)

in s

�=�

(1

t

) is given by

y(�=�) =

X

�`N

`(�)=r

z

�1

�

�

�=�

(�): (11)

As mentioned above, an aÆrmative answer to (5) is equivalent to y(�=�) 6= 0.

Although we are unable to resolve this question here, we will show that

there is some interesting 
ombinatori
s asso
iated with minimal border strip

de
ompositions and border tableaux of shape �=�. In parti
ular, a more


ombinatorial version of equation (11) is given by (30).

Let e be an edge of the lower envelope of �=�, i.e., no square of �=� has e

as its upper or left-hand edge. We will de�ne a 
ertain subset S

e

of squares

of �=�, 
alled a snake. If e is also an edge of the upper envelope of �=�, then

11



set S

e

= ;. Otherwise, if e is horizontal and (i; j) is the square of �=� having

e as its lower edge, then de�ne

S

e

= (�=�)\f(i; j); (i�1; j); (i�1; j�1); (i�2; j�1); (i�2; j�2); : : :g: (12)

Finally if e is verti
al and (i; j) is the square of �=� having e as its right-hand

edge, then de�ne

S

e

= (�=�)\f(i; j); (i; j�1); (i�1; j�1); (i�1; j�2); (i�2; j�2); : : :g: (13)

In Figure 4 the nonempty snakes of the skew shape 8744=411 are shown with

dashed paths through their squares, with a single bullet in the two snakes

with just one square. The length `(S) of a snake S is one fewer than its

number of squares; a snake of length k � 1 (so with k squares) is 
alled a

k-snake. In parti
ular, if S

e

= ; then `(S

e

) = �1. Call a snake of even

length a right snake if it has the form (12) and a left snake if it has the form

(13). (We 
ould just as well make the same de�nitions for snakes of odd

length, but we only need the de�nitions for those of even length.) It is 
lear

that the snakes are linearly ordered from lower left to upper right. In this

linear ordering repla
e a left snake of length 2k with the symbol L

k

, a right

snake of length 2k with R

k

, and a snake of odd length with O. The resulting

sequen
e (whi
h does not determine �=�), with in�nitely many initial and

�nal O's removed, is 
alled the snake sequen
e of �=�, denoted SS(�=�). For

instan
e, from Figure 4 we see that

SS(8874=411) = L

0

OL

1

L

2

R

2

OOL

2

R

2

OR

1

R

0

:

Snakes (though not with that name) appear in the solution to [11, Exer-


ise 7.66℄. Call two 
onse
utive squares of a snake S (i.e., two squares with

a 
ommon edge) a link of S. Thus a k-snake has k � 1 links. A link of a

left snake is 
alled a left link, and similarly a link of a right snake is 
alled

a right link. Two links l

1

and l

2

are said to be 
onse
utive if they have a

square in 
ommon. We say that a border strip B uses a link l of some snake

if B 
ontains the two squares of l. Similarly a border strip de
omposition D

or border strip tableau T uses l if some border strip in D or T uses l. The

exer
ise 
ited above shows the following.

4.1 Lemma. Let D be a border strip de
omposition of �=�. Then no

B 2 D uses two 
onse
utive links of a snake. Conversely, if we 
hoose a

12



Figure 4: Snakes for the skew shape 8874=411

set L of links from the snakes of �=� su
h that no two of these links are


onse
utive, then there is a unique border strip de
omposition D of �=� that

uses pre
isely the links in L (and no other links).

Lemma 4.1 sets up a bije
tion between border strip de
ompositions of

�=� and sets L of links of the snakes of �=� su
h that no two links are


onse
utive. In parti
ular, if F

n

denotes a Fibona

i number (F

1

= F

2

= 1,

F

n+1

= F

n

+ F

n�1

for n > 1), then there are F

k+1

ways to 
hoose a subset

L of links of a k-snake su
h that no two links are 
onse
utive. Hen
e if

the snakes of �=� have sizes a

1

; : : : ; a

r

, then the number of border strip

de
ompositions of �=� is F

a

1

+1

� � �F

a

r

+1

(as is 
lear from the solution to [11,

Exer. 7.66℄). Moreover, the size (number of border strips) of the border strip

de
omposition D is given by

#D = j�=�j �#L: (14)

Consider now the minimal border strip de
ompositions D of �=�, i.e.,

#D is minimized. Thus by Proposition 2.2 we have #D = rank(�=�). By

equation (14) we wish to maximize the number of links, no two 
onse
utive.

For snakes with an odd number 2m� 1 of links we have no 
hoi
e | there is

a unique way to 
hoose m links, no two 
onse
utive, and this is the maximum

number possible. For snakes with an even number 2m of links there are m+1

ways to 
hoose the maximum number m of links. Thus if mbsd(�=�) denotes

the number of minimal border strip de
ompositions of �=�, then we have

proved the following result (whi
h will be improved in Theorem 4.5).

13



4.2 Proposition. We have

mbsd(�=�) =

Y

S

�

1 +

`(S)

2

�

;

where S ranges over all snakes of �=� of even length.

To pro
eed further with the stru
ture of the minimal border strip de-


ompositions of �=�, we will develop their 
onne
tion with 
ode(�=�). Let

p be the bottom-leftmost point of (the diagram of) �=�, and let q be the

top-rightmost point. We regard the boundary of �=� as 
onsisting of two

latti
e paths from p to q with steps (1; 0) or (0; 1), or in other words, the

restri
tion of the upper and lower envelopes of �=� between p and q. The

top-left path (regarded as a sequen
e of edges e

1

; : : : ; e

k

) is denoted �

1

(�=�),

and the bottom-right path f

1

; : : : ; f

k

by �

2

(�=�). Note that if in the two-line

array

f

1

f

2

� � � f

k

e

1

e

2

� � � e

k

we repla
e ea
h verti
al edge by 1 and ea
h horizontal edge by 0, then we

obtain 
ode(�=�).

Continue the zigzag pattern of the links of ea
h snake of �=� one further

step in ea
h dire
tion, as illustrated in Figure 5 for �=� = 8874=411. These

steps will 
ross an edge on the boundary of �=�. Denote the top-left boundary

edge 
rossed by the extended link of the snake S by �(S), 
alled the top

edge of S. Similarly denote the bottom-right boundary edge 
rossed by

the extended link of the snake S by �(S), 
alled the bottom edge of the

snake S. (In fa
t, the snake S

e

has �(S

e

) = e.) When S

e

= ; we have

�(S

e

) = �(S

e

) = e. See Figure 6 for the 
ase �=� = 43111=2211, whi
h has

three edges e for whi
h S

e

= ;.

We thus have the following situation. Write S

i

as short for S

f

i

, so �(S

i

) =

e

i

and �(S

i

) = f

i

. Let


ode(�=�) =

�




1




2

� � � 


k

d

1

d

2

� � � d

k

�

: (15)

It is easy to see that S

i

is a left snake if and only if (


i

; d

i

) = (1; 0). In this


ase, if S

i

has length 2m then

m + 1 = #fj > i : (


j

; d

j

) = (0; 1)g �#fj > i : (


j

; d

j

) = (1; 0)g: (16)
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Figure 5: Extended links for the skew shape 8874=411

Figure 6: Extended links for the skew shape 43111=2211
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Similarly S

i

is a right snake if and only if (


i

; d

i

) = (0; 1); and if S

i

has length

2m then

m + 1 = #fj < i : (


j

; d

j

) = (1; 0)g �#fj < i : (


j

; d

j

) = (0; 1)g: (17)

4.3 Proposition. The snake sequen
e SS(�=�) = q

1

q

2

� � � q

k

is \well-

parenthesized" in the following sense. There exists a (unique) set P(�=�) =

f(u

1

; v

1

); : : : ; (u

r

; v

r

)g, where r = rank(�=�), su
h that:

(a) The u

i

's and v

i

's are all distin
t integers.

(b) 1 � u

i

< v

i

� k

(
) q

u

i

= L

t

and q

v

i

= R

t

for some t (depending on i)

(d) For no i and j do we have u

i

< u

j

< v

i

< v

j

.

Proof. Equations (3) and (4) assert that for any 1 � i � k we have

#fj : 1 � j � i; q

j

= L

s

for some sg � #fj : 1 � j � i; q

j

= R

s

for some sg;

(18)

and that the total number of L's in SS(�=�) equals the total number of R's.

It now follows from a standard bije
tion (e.g., [11, solution to Exer. 6.19(n)

and (o)℄) that there is a unique set P(�=�) satisfying (a), (b), and (d). But

(
) is then a 
onsequen
e of equations (16) and (17). 2

We 
an depi
t the set P(�=�) by drawing ar
s above the terms of SS(�=�),

su
h that the left and right endpoints of an ar
 are some L

t

and R

t

, and su
h

that the ar
s are non
rossing. For instan
e,

P(8874=411) = f(1; 12); (3; 11); (4; 5); (8; 9)g;

as illustrated in Figure 7.

Let SS(�=�) = q

1

q

2

� � � q

k

as in Proposition 4.3, and de�ne an interval set

of �=� to be a 
olle
tion I of r ordered pairs,

I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g;

satisfying the following 
onditions:
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L O L L R OOL R OR R1  2 2 2 2 10 0

Figure 7: Parenthesization of the snake sequen
e SS(8874=411)

L O L L R OOL R OR R1  2 2 2 2 10 0

Figure 8: An interval set of the skew shape 8874=411

� The u

i

's and v

i

's are all distin
t integers.

� 1 � u

i

< v

i

� k

� q

u

i

= L

s

and q

v

i

= R

t

for some s and t (depending on i)

Thus P(�=�) is itself an interval set. Figure 8 illustrates the interval set

f(1; 5); (3; 12); (4; 9); (8; 11)g of the skew shape 8874=411. Let is(�=�) denote

the number of interval sets of �=�.

4.4 Theorem. Let T

1

; : : : ; T

r

be the left snakes (or right snakes) of

�=�. Then

is(�=�) =

r

Y

i=1

�

1 +

`(T

i

)

2

�

:

Proof. Let SS(�=�) = q

1

q

2

� � � q

k

. Let q

u

1

; : : : ; q

u

r

be the positions of the

terms L

s

, with u

1

< � � � < u

r

. Let q

u

i

= L

m

i

. We 
an obtain an interval set

by pairing q

u

r

with some R

s

to the right of q

u

r

, then pairing q

u

r�1

with some

R

s

to the right of q

u

r�1

not already paired, et
. By equation (16) the number

of 
hoi
es for pairing q

u

i

is just m

i

+ 1, and the proof follows. 2

17



We are now in a position to 
ount the number of minimal border strip

de
ompositions and minimal border strip tableaux of shape �=�. Let us

denote this latter number by mbst(�=�).

4.5 Theorem. Let rank(�=�) = r. Then

mbsd(�=�) = is(�=�)

2

(19)

mbst(�=�) = r! is(�=�): (20)

Proof. Equation (19) is an immediate 
onsequen
e of Proposition 4.2 and

Theorem 4.4 (using that in Theorem 4.4 we 
an take T

1

; : : : ; T

r

to 
onsist of

either all left snakes or all right snakes).

To prove equation (20) we use Proposition 2.1. Let


ode(�=�) =




1




2

� � � 


k

d

1

d

2

� � � d

k

and let r = rank(�=�). It follows from Proposition 2.1 that a minimal border

strip tableau of shape �=� is equivalent to 
hoosing a sequen
e (u

1

; v

1

); : : :,

(u

r

; v

r

) where 1 � u

i

< v

i

� k, 


u

i

= 1, 


v

i

= 0, the u

i

's and v

i

's are

distin
t, and then su

essively 
hanging (u

i

; v

i

) from (1; 0) to (0; 1), so that

at the end we obtain the sequen
e d

1

; : : : ; d

k

. Sin
e there are exa
tly r pairs

(


i

; d

i

) equal to (0; 1) and r pairs equal to (1; 0), the 
ondition that we end

up with d

1

; : : : ; d

k

is equivalent to d

u

i

= 0 and d

v

i

= 1. Hen
e the possible

sets f(u

1

; v

1

); : : : ; (u

r

; v

r

)g are just the interval sets of �=�. There are is(�=�)

ways to 
hoose an interval set and r! ways to linearly order its elements, so

the proof follows. 2

As dis
ussed in the above proof, every interval set I of �=� gives rise

to r! minimal border strip tableaux T of shape �=�. The set of border

strips appearing in su
h a tableau is a border strip de
omposition D of �=�.

Extending our terminology that T and D 
orrespond to ea
h other, we will

say that I, D, and T all 
orrespond to ea
h other.

How many of the above r! border strip de
ompositions 
orresponding to

I are distin
t? Rather remarkably, the number is is(�=�), independent of

18



the interval set I. This is a 
onsequen
e of Theorem 4.8 below. Our proof

of this result is best understood in the 
ontext of posets. Let P be a �nite

poset with p elements x

1

; : : : ; x

p

. A bije
tion f : P ! [p℄ = f1; 2; : : : ; pg

is 
alled a dropless labeling of P if we never have f

�1

(i + 1) < f

�1

(i). Let

in
(P ) denote the in
omparability graph of P , i.e, the vertex set of in
(P )

is fx

1

; : : : ; x

p

g, with an edge between x

i

and x

j

if and only if x

i

and x

j

are

in
omparable in P . The next result is impli
it in [5, Thm. 2℄ and [3, Theorem

on p. 322℄ (namely, in [5, Th. 2℄ put x = �1 and in [3, Theorem on p. 322℄

put � = �1, and use (22) below) and expli
it in [12, Thm. 4.12℄. For the

sake of 
ompleteness we repeat the essen
e of the proof in [12℄.

4.6 Lemma. The number dl(P ) of dropless labelings of P is equal to

the number ao(in
(P )) of a
y
li
 orientations of in
(P ).

Proof. Given the dropless labeling f : P ! [p℄, de�ne an a
y
li
 ori-

entation o = o(f) as follows. If x

i

x

j

is an edge of in
(P ), then let x

i

! x

j

in o if f(x

i

) < f(x

j

), and let x

j

! x

i

otherwise. Clearly o is an a
y
li


orientation of in
(P ). Conversely, let o be an a
y
li
 orientation of in
(P ).

The set of sour
es (i.e., verti
es with no arrows into them) form a 
hain in

P sin
e otherwise two are in
omparable, so there is an arrow between them

that must point into one of them. Let x be the minimal element of this 
hain,

i.e., the unique minimal sour
e. If f is a dropless labeling of P with o = o(f),

then we 
laim f(x) = 1. Suppose to the 
ontrary that f(x) = i > 1. Let

j be the largest integer satisfying j < i and y := f

�1

(j) 6< x. Note that

j exists sin
e f

�1

(1) > x. We must have y > x sin
e x is a sour
e. But

then f

�1

(j + 1) � x < y = f

�1

(j), 
ontradi
ting the fa
t that f is dropless.

Thus we 
an set f(x) = 1, remove x from in
(P ), and pro
eed indu
tively to


onstru
t a unique f satisfying o = o(f). 2

Now given any set

I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g (21)

with u

i

< v

i

, de�ne a partial order P

I

on I by setting (u

i

; v

i

) < (u

j

; v

j

) if

v

i

< u

j

. If we regard the pairs (u

i

; v

i

) as 
losed intervals [u

i

; v

i

℄ in R, then

P

I

is just the interval order 
orresponding to these intervals (e.g., [4℄[13℄).
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4.7 Lemma. Let I be as in equation (21). For 1 � i � r let

'(i) = #fj : v

j

> v

i

g �#fj : u

j

> v

i

g:

Then

dl(P

I

) = ('(1) + 1)('(2) + 1) � � � ('(r) + 1):

Proof. Let �

I

(q) denote the 
hromati
 polynomial of the graph in
(P

I

).

We may suppose that the elements of I are indexed so that v

1

> v

2

> � � � >

v

r

. We 
an properly 
olor the verti
es of in
(P

I

) (i.e., adja
ent verti
es have

di�erent 
olors) in q 
olors as follows. First 
olor vertex (u

1

; v

1

) in q ways.

Suppose that verti
es (u

1

; v

1

); : : : ; (u

i

; v

i

) have been 
olored, where i < r.

Now for 1 � j � i, (u

i+1

; v

i+1

) is in
omparable in P

I

to (u

j

; v

j

) if and only

v

i+1

> u

j

. These verti
es (u

j

; v

j

) form an anti
hain in P

I

; else either some

v

j

< v

i+1

or some u

j

> v

i+1

. The number of these verti
es is '(i+ 1). Sin
e

they form a a 
lique in in
(P

I

) there are exa
tly q � '(i + 1) ways to 
olor

vertex (u

i+1

; v

i+1

), independent of the 
olors previously assigned. It follows

that

�

I

(q) =

r

Y

i=1

(q � '(i + 1)):

For any graph G with r verti
es it is known [10℄ that

ao(G) = (�1)

r

�

G

(�1): (22)

Hen
e

ao(in
(P

I

)) =

r

Y

i=1

('(i) + 1):

The proof follows from Lemma 4.6. 2

Note. The fa
t (shown in the above proof) that we 
an order the verti
es

of in
(P

I

) so that ea
h vertex is adja
ent to a set of previous verti
es forming

a 
lique is equivalent to the statement that the in
omparability graph of an

interval order is 
hordal. Note that the above proof shows that for any interval

order P 
oming from intervals [u

1

; v

1

℄; : : : ; [u

r

; v

r

℄, the 
hromati
 polynomial

of in
(P ) depends only on the sets fu

1

; : : : ; u

r

g and fv

1

; : : : ; v

r

g.

We now 
ome to the result mentioned in the paragraph before Lemma 4.6.
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4.8 Theorem. Let I be an interval set of �=�, thus giving rise to

r! minimal border strip tableaux of shape �=�. Then the number of distin
t

border strip de
ompositions that 
orrespond to these r! border strip tableaux

is is(�=�).

Proof. Let (u

i

; v

i

); (u

j

; v

j

) 2 I. We say that (u

i

; v

i

) and (u

j

; v

j

) overlap

if [u

i

; v

i

℄\ [u

j

; v

j

℄ 6= ;, where [a; b℄ = fu

i

; u

i

+1; : : : ; v

i

g. Two linear orderings

� and � of I 
orrespond to the same border strip de
omposition if and only

if any two overlapping elements (u

i

; v

i

) and (u

j

; v

j

) appear in the same order

in � and �. Suppose that � is given by the linear ordering

� = ((u

i

1

; v

i

1

); : : : ; (u

i

r

; v

i

r

)): (23)

If (u

i

m

; v

i

m

) and (u

i

m+1

; v

i

m+1

) are 
onse
utive terms of � whi
h do not overlap

and if i

m

> i

m+1

, then we 
an transpose the two terms without a�e
ting the

border strip de
omposition de�ned by �. By a series of su
h transpositions

we 
an put � in the \
anoni
al form" where 
onse
utive nonoverlapping pairs

appear in in
reasing order of their subs
ripts. The number of distin
t border

strip de
ompositions that 
orrespond to the r! permutations � is the number

of � that are in 
anoni
al form. Let � be given by (23), and de�ne f : P

I

! [r℄

by f(u

i

m

; v

i

m

) = m. Then � is in 
anoni
al form if and only if f is dropless.

Comparing equation (16), Theorem 4.4, and Lemma 4.7 
ompletes the proof.

2

Note that Theorem 4.8 gives a re�nement of equation (19), sin
e we have

partitioned the is(�=�)

2

minimal border strip de
ompositions of �=� into

is(�=�) blo
ks, ea
h of size is(�=�).

Now let I = f(u

1

; v

1

); : : : ; (u

i

; v

i

)g be an interval set of �=�. De�ne the

type of I to be the partition � whose parts are the integers v

1

�u

1

; : : : ; v

r

�u

r

.

Hen
e by Proposition 2.1 � is also the type of any of the border strip de
om-

positions 
orresponding to I. Let is

�

(�=�) denote the number of interval sets

of �=� of type �, and let mbsd

�

(�=�) denote the number of minimal border

strip de
ompositions of �=� of type �. The following result is a re�nement

of equation (19).

4.9 Corollary. Let N = j�=�j. For any partition � ` N , we have

mbsd

�

(�=�) = is

�

(�=�)is(�=�):
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Proof. Immediate 
onsequen
e of Theorem 4.8 and the observation above

that type(I) = type(D) for any interval set I and border strip de
omposition

D 
orresponding to I. 2

We 
an improve the above 
orollary by expli
itly partitioning the minimal

border strip de
ompositions of �=� into is(�=�) blo
ks, ea
h of whi
h 
ontains

exa
tly mbsd

�

(�=�) border strip de
ompositions of type �.

4.10 Theorem. For ea
h right snake S of �=� �x a set F

S

of `(S)=2

links of S, no two 
onse
utive, and let F =

S

S

F

S

. Let Q

F

be the set of all

minimal border strip de
ompositions D of �=� whi
h use the links in Q

F

.

Then for ea
h � ` N = j�=�j, Q

F


ontains exa
tly is

�

(�=�) minimal border

strip de
ompositions of type �.

Figure 9 illustrates Theorem 4.10 for the 
ase �=� = 332=1. We are using

dots rather than squares in the diagram of �=�. The �rst 
olumn shows the

right snakes, with the 
hoi
e of links as a solid line and the remaining links

as dashed lines. The �rst row shows the same for the left snakes. The re-

maining 16 entries are the minimal border strip de
ompositions of �=� using

the right snake links for that row and the left snake links for that 
olumn.

Theorem 4.10 asserts that ea
h row (and hen
e by symmetry ea
h 
olumn)


ontains the same number of minimal border strip de
ompositions of ea
h

type, viz., one of type (5; 1; 1), two of type (4; 2; 1), and one of type (3; 2; 2).

For general �=� there will also be snakes of odd length 2m � 1 yielding m

links that must be used in every minimal border strip de
omposition.

Proof of Theorem 4.10. Let I be an interval set of �=� of type �.

By Theorem 4.8 there are exa
tly is(�=�) border strip de
ompositions (all of

type �) 
orresponding to I.

Claim. Any two of the above is(�=�) border strip de
ompositionsD have

a di�erent set of left links and a di�erent set of right links.

By symmetry it suÆ
es to show that any two, say D and D

0

, have a

di�erent set of left links. Let 
ode(�=�) be given by (15), and let S

i

= S

f

i

as

de�ned just before (15). Thus S

i

is a left snake if and only if (


i

; d

i

) = (0; 1).
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left

right

Figure 9: Minimal border strip de
ompositions of the skew shape 332=1
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Figure 10: Interse
tion of border strips with a left snake

Moreover, if S

i

is a left snake and I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g is any interval

set for �=�, then it follows from (16) that `(S

i

) = 2m where

m = #fj : u

j

< i < v

j

g:

Let j

1

; : : : ; j

m

be those j for whi
h u

j

< i < v

j

. In a linear ordering � of I

there are m + 1 
hoi
es for how many of the pairs (u

j

s

; v

j

s

) pre
ede (u

i

; v

i

).

The linear ordering � de�nes a border strip tableau with 
orresponding bor-

der strip de
omposition D. In turn D is de�ned by a 
hoi
e of a maximum

number of links, no two 
onse
utive, from ea
h left and right snake. The


hoi
es of links from the snake S

i

are equivalent to 
hoosing the number of

pairs (u

j

s

; v

j

s

) pre
eding (u

i

; v

i

) in �, sin
e S

i

interse
ts pre
isely the bor-

der strips B

i

and B

j

s


orresponding to (u

i

; v

i

) and the (u

j

s

; v

j

s

)'s, and the

position of B

i

within the snake determines the unique two 
onse
utive un-

used links of the snake S

i

extended by adding one square in ea
h dire
tion.

Moreover, B

i

will be the unique border strip whose initial square (reading

from lower-left to upper-right) begins on S

i

. As an example see Figure 10,

whi
h shows the skew shape �=� = 66554=1 with the left snake S

6

shaded.

There are four border strips interse
ting S

6

, and the third one (reading from

bottom-right to upper-left) begins on the square (2; 3) of S

6

. The two links

of S

6

involving this square are not used in the border strip de
ompositionD.

A dropless labeling of I is uniquely determined by spe
ifying for ea
h left
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snake S

i

how many of the (u

j

s

; v

j

s

)'s, as de�ned above, pre
ede (u

i

; v

i

); for

we 
an indu
tively determine, pre
eding from left-to-right in 
ode(�=�), the

relative order of any pair (u

i

; v

i

) and (u

j

; v

j

) of elements whi
h 
ross, while all

remaining ambiguities in the labeling are resolved by the dropless 
ondition.

Thus the is(�=�) dropless labelings of I de�ne border strip tableaux of shape

�=� and type �, no two of whi
h have the same left links. Sin
e these border

strip tableaux 
orrespond to di�erent border strip de
ompositions (by the

proof of Theorem 4.8), the proof of the 
laim follows.

By the 
laim, for ea
h interval set I the is(�=�) border strip de
ompo-

sitions 
orresponding to I all have the same type and belong to di�erent

Q

F

's. Sin
e there are is(�=�) di�erent Q

F

's it follows that ea
h Q

F


ontains

exa
tly is

�

(�=�) minimal border strip de
ompositions of type �, as was to

be proved. 2

Another way to state Theorem 4.10 is as follows. Let A be the square

matrix whose 
olumns (respe
tively, rows) are indexed by the maximum size

sets G (respe
tively, F ) of links, no two 
onse
utive, of right snakes (respe
-

tively, left snakes) of �=�. The entry A

FG

is de�ned to be the minimal border

strip de
omposition of �=� using the links F and G. Figure 9 shows this ma-

trix for �=� = 332=1. Let t = is(�=�) and let I

1

; : : : ; I

t

be the interval sets

of �=�. If the border strip de
omposition A

FG


orresponds to I

j

, then let

L be the matrix obtained by repla
ing A

FG

with the integer j. Then the

matrix L is a Latin square, i.e., every row and every 
olumn is a permutation

of 1; 2; : : : ; t. For instan
e, when �=� = 332=1 the interval sets are

I

1

= f(1; 6); (2; 3); (4; 5)g; I

2

= f(1; 3); (2; 6); (4; 5)g

I

3

= f(1; 5); (2; 3); (4; 6)g; I

4

= f(1; 3); (2; 5); (4; 6)g:

The matrix A of Figure 9 be
omes the Latin square

L =

2

6

6

4

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

3

7

7

5

:
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5 An appli
ation to the 
hara
ters of S

n

.

Expand the skew S
hur fun
tion s

�=�

in terms of power sums as in equa-

tion (7). De�ne deg(p

i

) = 1, so deg(p

�

) = `(�). As mentioned after (7),

the Murnaghan-Nakayama rule (10) implies that if p

�

appears in s

�=�

then

deg(p

�

) � r = rank(�=�). In fa
t, at least one su
h p

�

a
tually appears in

s

�=�

, viz., let �

1

be the length of the longest border strip B

1

of �=�, then �

2

the length of the longest border strip B

2

of �=� � B

1

, et
. All border strip

tableaux of �=� of type � involve the same set of border strips, so there is

no 
an
ellation in the right-hand side of (10). Hen
e the 
oeÆ
ient of p

�

in

s

�=�

in nonzero. (See [11, Exer. 7.52℄ for the 
ase � = ;.) Let us write ŝ

�=�

for the lowest degree part of s

�=�

, so

ŝ

�=�

=

X

� : `(�)=r

z

�1

�

�

�=�

(�)p

�

; (24)

where r = rank(�=�). Also write ~p

i

= p

i

=i. For instan
e,

s

332=1

=

1

120

p

7

1

�

1

12

p

4

1

p

3

+

1

24

p

3

1

p

2

2

+

1

5

p

2

1

p

5

�

1

4

p

1

p

2

p

4

+

1

12

p

2

2

p

3

:

Hen
e

ŝ

332=1

=

1

5

p

2

1

p

5

�

1

4

p

1

p

2

p

4

+

1

12

p

2

2

p

3

= ~p

2

1

~p

5

� 2~p

1

~p

2

~p

4

+ ~p

2

2

~p

3

:

If I = f(w

1

; y

1

); : : : ; (w

r

; y

r

)g is an interval set, then let 
(I) denote the num-

ber of 
rossings of I, i.e., the number of pairs (i; j) for whi
h w

i

< w

j

< y

i

<

y

j

. Moreover, let P(�=�) = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g be as in Proposition 4.3,

and let


ode(�=�) =




1




2

� � � 


k

d

1

d

2

� � � d

k

:

For 1 � i � r de�ne

z(i) = #fj : u

i

< j < v

i

; 


j

= 0g

z(�=�) = z(1) + z(2) + � � �+ z(r):

It is easy to see (see the proof of Theorem 5.2 for more details) that z(�=�)

is just the height ht(T ) of a \greedy border strip tableau" T of shape �=�
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obtained by starting with �=� and su

essively removing the largest possi-

ble border strip. (Although T may not be unique, the set of border strips

appearing in T is unique, so ht(T ) is well-de�ned.)

5.1 Lemma. Let I be an interval set of �=�. If T and T

0

are two

border strip tableaux 
orresponding to I, then ht(T ) � ht(T

0

) (mod 2).

Proof. When we remove a border strip B of size p from a skew shape

�=� with 
ode(�) = � � � 


0




1




2

� � �, then by Proposition 2.1 we repla
e some

(


i

; 


i+p

) = (1; 0) with (0; 1). It is easy to 
he
k (and is also equivalent to the

dis
ussion in [1, top of p. 3℄) that

ht(B) = #fh : i < h < i+ p; 


h

= 0g: (25)

Suppose we have (


i

; 


i+p

) = (


j

; 


j+q

) = (1; 0), where the four numbers




i

; 


i+p

; 


j

; 


j+q

are all distin
t. Let B

1

be the the border strip 
orresponding

to (i; i + p) and B

2

the border strip 
orresponding to (j; j + q) after B

1

has

been removed. Similarly let B

0

1


orrespond to (j; j + q) and B

0

2

to (i; i + p)

after B

0

1

has been removed. If i + p < j or j + q < i then B

1

= B

0

2

and

B

2

= B

0

1

, so ht(B

1

) + ht(B

2

) = ht(B

0

1

) + ht(B

0

2

). In parti
ular,

ht(B

1

) + ht(B

2

) � ht(B

0

1

) + ht(B

0

2

) (mod 2): (26)

If 


i

< 


j

< 


i+p

< 


j+q

, then using (25) we see that ht(B

1

) = ht(B

0

2

)� 1 and

ht(B

2

) = ht(B

0

1

)� 1 so again (26) holds. Similarly it is easy to 
he
k (26) in

all remaining 
ases.

Iterating the above argument and using the fa
t that every permutation

is a produ
t of adja
ent transpositions 
ompletes the proof. 2

5.2 Theorem. For any skew shape �=� of rank r we have

ŝ

�=�

= (�1)

z(�=�)

X

I=f(u

1

;v

1

);:::;(u

r

;v

r

)g

(�1)


(I)

r

Y

i=1

~p

v

i

�u

i

; (27)

where I ranges over all interval sets of �=�.

Proof. Let I be an interval set of �=�, and let T be a border strip

tableau 
orresponding to I. We 
laim that

ht(T ) � z(�=�) + 
(I) (mod 2): (28)
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The proof of the 
laim is by indu
tion on 
(I).

First note that by Lemma 5.1, it suÆ
es to prove the 
laim for some T


orresponding to ea
h I. Suppose that 
(I) = 0, so I = P. Let T be a

greedy border strip tableau as de�ned before Lemma 5.1. The 
orresponding

interval set is just P, the unique interval set without 
rossings, sin
e if u

i

<

u

j

< v

i

< v

j

we would pi
k the border strip 
orresponding to (u

i

; v

j

) rather

than (u

i

; v

i

) or (u

j

; v

j

). Sin
e by (25) we have z(�=�) = ht(T ), equation (28)

holds when 
(I) = 0.

Now let 
(I) > 0. Suppose that (u

i

; v

i

) and (u

j

; v

j

) de�ne a 
rossing in

I, say u

i

< u

j

< v

i

< v

j

. Let I

0

be obtained from I by repla
ing (u

i

; v

i

)

and (u

j

; v

j

) with (u

i

; v

j

) and (u

j

; v

i

). It is easy to see that 
(I)� 
(I

0

) is an

odd positive integer. By the indu
tion hypothesis we may assume that (28)

holds for I

0

. Let T

0

be a border strip tableau 
orresponding to I

0

su
h that

the border strips B

1

and B

2

indexed by (u

1

; v

1

) and (u

2

; v

2

) are removed �rst

(say in the order B

1

; B

2

). Let T be the border strip tableau that di�ers from

T

0

by repla
ing B

1

; B

2

with the border strips indexed by (u

j

; v

i

) and (u

i

; v

j

).

It is straightforward to verify, using (25) or a dire
t argument, that ht(T )

and ht(T

0

) di�er by an odd integer. Hen
e (28) holds for I, and the proof of

the 
laim follows by indu
tion.

Now let `(�) = r and m

i

(�) = #fj : �

j

= ig, the number of parts of �

equal to i. Sin
e z

�

= 1

�

1

�

1

! 2

�

2

�

2

! � � �, we have

ŝ

�=�

=

X

`(�)=r

z

�1

�

�

�=�

(�)p

�

=

X

`(�)=r

1

m

1

(�)!m

2

(�)! � � �

�

�=�

(�)~p

�

:

Now by the Murnaghan-Nakayama rule we have

�

�=�

(�) =

X

T

(�1)

ht(T )

;

where T ranges over all border strip tableaux of shape �=� and some �xed

type � = (�

1

; : : : ; �

r

) whose de
reasing rearrangement is �. Sin
e there are

28



r!=m

1

(�)!m

2

(�)! � � � di�erent permutations � of the entries of �, we have

�

�=�

(�) =

m

1

(�)!m

2

(�)! � � �

r!

X

T

(�1)

ht(T )

;

where T now ranges over all border strip tableaux of shape �=� whose type

is some permutation � of �. By Theorem 4.8, Proposition 2.1, and equation

(28) we then have

�

�=�

(�) =

m

1

(�)!m

2

(�)! � � �

r!

0

�

r!

X

I : type(I)=�

(�1)

z(�=�)+
(I)

1

A

; (29)

where I ranges over all interval sets of �=� of type �, and the proof follows.

2

Let us remark that just as in the Murnaghan-Nakayama rule, 
an
ellation


an o

ur in the sum on the right-hand side of (27). For instan
e, if �=� =

4442=11 then there is one interval set of type (6; 3; 2; 1) with one 
rossing

and one with two 
rossings.

The following 
orollary follows immediately from equation (29).

5.3 Corollary. Let �=� be a skew shape of rank r and let `(�) = r.

Then �

�=�

(�) is divisible by m

1

(�)!m

2

(�)! � � �.

Let A = (a

ij

) be an array of real numbers with 1 � i < j � 2r. Re
all

that the PfaÆan Pf(A) may be de�ned by (e.g. [6, p. 616℄)

Pf(A) =

X

�

(�1)


(�)

a

i

1

j

1

� � �a

i

r

j

r

;

where the sum is over all partitions � of f1; 2; : : : ; 2rg into two element blo
ks

i

k

< j

k

, and where 
(�) is the number of 
rossings of �, i.e., the number of

pairs h < k for whi
h i

h

< i

k

< j

h

< j

k

. Comparing with Theorem 5.2 gives

the following alternative way of writing (27). Let SS(�=�) = q

1

q

2

� � � q

k

; let

u

1

< u

2

< � � � < u

r

be those indi
es for whi
h q

u

i

= L

s

for some s; and

let v

1

< v

2

< � � � < v

r

be those indi
es for whi
h q

v

i

= R

s

for some s. Let

w

1

< w

2

< � � � < w

2r


onsist of the u

i

's and v

i

's arranged in in
reasing order.

Then

ŝ

�=�

= (�1)

z(�=�)

Pf(a

ij

);
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where

a

ij

=

�

~p

w

j

�w

i

; if w

i

= u

s

and w

j

= v

t

for some s < t

0; otherwise.

For instan
e, SS(443=2) = L

0

L

1

OR

1

L

1

R

1

R

0

and z(443=2) = 2, when
e

ŝ

443=2

= Pf

0

B

B

B

B

B

B

�

0 ~p

3

0 ~p

5

~p

6

~p

2

0 ~p

4

~p

5

0 0 0

~p

1

~p

2

0

1

C

C

C

C

C

C

A

:

Note that from (11) or (24) we get the following PfaÆani
 formula for the


oeÆ
ient y(�=�) of t

rank(�=�)

in s

�=�

(1

t

):

y(�=�) = (�1)

z(�=�)

Pf(b

ij

);

where

b

ij

=

�

1=(w

j

� w

i

); if w

i

= u

s

and w

j

= v

t

for some s < t

0; otherwise.

Similarly from Theorem 5.2 there follows

y(�=�) = (�1)

z(�=�)

X

I=f(u

1

;v

1

);:::;(u

r

;v

r

)g

(�1)


(I)

Q

r

i=1

(v

i

� u

i

)

; (30)

summed over all interval sets I of �=�.
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