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1 The main result.

The irredu
ible 
hara
ters �

�

of the symmetri
 group S

n

are indexed by

partitions � of n (denoted � ` n or j�j = n), as dis
ussed e.g. in [5, x1.7℄ or

[8, x7.18℄. If w 2 S

n

has 
y
le type � ` n then we write �

�

(�) for �

�

(w). If

� has exa
tly p parts, all equal to q, then we say that � has re
tangular shape

and write � = p � q. In this paper we give a new formula for the values of

the 
hara
ter �

p�q

.

Let � be a partition of k � n, and let (�; 1

n�k

) be the partition obtained

by adding n�k 1's to �. Thus (�; 1

n�k

) ` n. De�ne the normalized 
hara
ter

b�

�

(�; 1

n�k

) by

b�

�

(�; 1

n�k

) =

(n)

k

�

�

(�; 1

n�k

)

�

�

(1

n

)

;

where �

�

(1

n

) denotes the dimension of the 
hara
ter �

�

and (n)

k

= n(n �

1) � � � (n � k + 1). Thus [5, (7.6)(ii)℄[8, p. 349℄ �

�

(1

n

) is the number f

�

of

standard Young tableaux of shape �. Identify � with its diagram f(i; j) :

1 � j � �

i

g, and regard the points (i; j) 2 � as squares (forming the Young

diagram of �). We write diagrams in \English notation," with the �rst


oordinate in
reasing from top to bottom and the se
ond 
oordinate from

left to right. Let � = (�

1

; �

2

; : : :) and �

0

= (�

0

1

; �

0

2

; : : :), where �

0

is the

1
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onjugate partition to �. The hook length of the square u = (i; j) 2 � is

de�ned by

h(u) = �

i

+ �

0

j

� i� j + 1;

and the Frame-Robinson-Thrall hook length formula [5, Exam. I.5.2℄[8, Cor. 7.21.6℄

states that

f

�

=

n!

Q

u2�

h(u)

:

For w 2 S

n

let �(w) denote the number of 
y
les of w (in the disjoint


y
le de
omposition of w). The main result of this paper is the following.

Theorem 1. Let � ` k and �x a permutation w

�

2 S

k

of 
y
le type �.

Then

b�

p�q

(�; 1

pq�k

) = (�1)

k

X

uv=w

�

p

�(u)

(�q)

�(v)

;

where the sum ranges over all k! pairs (u; v) 2 S

k

�S

k

satisfying uv = w

�

.

The proof of Theorem 1 hinges on a 
ombinatorial identity involving hook

lengths and 
ontents. Re
all [5, Exam. I.1.3℄[8, p. 373℄ that the 
ontent 
(u)

of the square u = (i; j) 2 � is de�ned by 
(u) = j� i. We write s

�

(1

p

) for the

S
hur fun
tion s

�

evaluated at x

1

= � � � = x

p

= 1, x

i

= 0 for i > p. A well

known identity [5, Exam. I.3.4℄[8, Cor. 7.21.4℄ in the theory of symmetri


fun
tions asserts that

s

�

(1

p

) =

Y

u2�

p+ 
(u)

h(u)

: (1)

Sin
e the right-hand side is a polynomial in p, it makes sense to de�ne

s

�

(1

�q

) =

Y

u2�

�q + 
(u)

h(u)

: (2)

Equivalently, s

�

(1

�q

) = (�1)

j�j

s

�

0

(1

q

). Regard p and q as �xed, and let

� = (�

1

; : : : ; �

p

) � p � q (
ontainment of diagrams). De�ne the partition

~

� = (

~

�

1

; : : : ;

~

�

p

) by

~

�

i

= q � �

p+1�i

: (3)

Thus the diagram of

~

� is obtained by removing from the bottom-right 
orner

of p� q the diagram of � rotated 180

Æ

. Write

H

�

=

Y

u2�

h(u);
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the produ
t of the hook lengths of �.

Lemma. With notation as above we have

H

p�q

= (�1)

j�j

H

�

H

~

�

s

�

(1

p

)s

�

(1

�q

):

Proof. Let �

\

denote the shape � rotated 180

Æ

. Let SQ(�) denote the

skew shape obtained by removing �

\

from the lower right-hand 
orner of p�q

and adjoining �

\

at the right-hand end of the top edge of p � q and at the

bottom end of the left edge. See Figure 1 for the 
ase p = 4, q = 6, and

� = (4; 3; 1). It follows immediately from [6, Thm. 1℄ that

H

SQ(�)

= H

~

�

Y

u2�

(p+ 
(u))

Y

v2�

0

(q + 
(u))

= (�1)

j�j

H

~

�

Y

u2�

(p+ 
(u))(�q + 
(u)): (4)

It was proved in [1℄[3℄[7℄ that the multiset of hook lengths of the shape SQ(�)

is the union of those of the shapes p� q and �, so

H

SQ(�)

= H

p�q

H

�

: (5)

The proof now follows from equations (1), (2), (4), and (5). 2

Proof of Theorem 1. Let ` = `(�). We �rst obtain an expression for

�

p�q

(�; 1

pq�k

) using the Murnaghan-Nakayama rule [5, Exam. I.7.5℄[8, Thm.

7.17.3℄. A

ording to this rule,

�

p�q

(�; 1

pq�k

) =

X

T

(�1)

ht(T )

;

where T ranges over all border-strip tableaux (B

1

; B

2

; : : : ; B

`+pq�k

) of shape

p � q and type (�; 1

n�k

). Here we are regarding T as a sequen
e of border

strips removed su

essively from the shape p � q. (See [5℄ or [8℄ for further

details.) The �rst ` border strips B

1

; : : : ; B

`

will o

upy some shape � ` k,

rotated 180

Æ

, in the lower right-hand 
orner of p� q. If we �x this shape �,

then the number of 
hoi
es for B

1

; : : : ; B

`

, weighted by (�1)

ht(B

1

)+���+ht(B

`

)

, is

by the Murnaghan-Nakayama rule just �

�

(�). The remaining border strips

3



Figure 1: The shape SQ(4; 3; 1) for p = 4, q = 6

B

`+1

; : : : ; B

`+pq�k

all have one square (and hen
e height 0) and 
an be added

in f

~

�

ways, where

~

� has the same meaning as in (3). Hen
e

�

p�q

(�; 1

pq�k

) =

X

��p�q

�`k

�

�

(�)f

~

�

;

so

b�(�; 1

pq�k

) =

(pq)

k

f

p�q

X

��p�q

�`k

�

�

(�)f

~

�

=

(pq)

k

H

p�q

(pq)!

X

��p�q

�`k

�

�

(�)

(pq � k)!

H

~

�

= H

p�q

X

��p�q

�`k

�

�

(�)H

�1

~

�

: (6)

Now let �(w) denote the 
y
le type of a permutation w 2 S

k

. The

following identity appears in [2, Prop. 2.2℄ and [8, Exer. 7.70℄:

X

�`k

H

�

s

�

(x)s

�

(y)s

�

(z) =

1

k!

X

uvw=1

in S

k

p

�(u)

(x)p

�(v)

(y)p

�(w)

(z);
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where p

�

(x) is a power sum symmetri
 fun
tion in the variables x = (x

1

; x

2

; : : :).

Set x = 1

p

, y = 1

�q

, take the s
alar produ
t (as de�ned in [5, xI.4℄ or [8,

x7.9℄) of both sides with p

�

, and multiply by (�1)

k

. Sin
e (in standard sym-

metri
 fun
tion notation) the number of permutations in S

k

of 
y
le type �

is k!=z

�

, and sin
e hp

�

; p

�

i = z

�

and hs

�

; p

�

i = �

�

(�), we get

(�1)

k

X

�`k

H

�

s

�

(1

p

)s

�

(1

�q

)�

�

(�) = (�1)

k

X

uv=w

�

p

�(u)

(�q)

�(v)

: (7)

Note that s

�

(1

p

)s

�

(1

�q

) = 0 unless � � p � q. Hen
e we 
an assume that

� � p� q in the sum on the left-hand side of (7).

Now the 
oeÆ
ient of �

�

(�) in (6) is H

p�q

H

�1

~

�

, while the 
oeÆ
ient of

�

�

(�) on the left-hand side of (7) is (�1)

k

H

�

s

�

(1

p

)s

�

(1

�q

). By the lemma

these two 
oeÆ
ients are equal, and the proof follows. 2

2 Generalizations.

The next step after re
tangular shapes would be shapes that are the union

of two re
tangles, then three re
tangles, et
. Figure 2 shows a shape � `

P

m

i=1

p

i

q

i

that is a union of m re
tangles of sizes p

i

� q

i

, where q

1

> q

2

>

� � � > q

m

.

Proposition 1. Let � be the shape in Figure 2, and �x k � 1. Set

n = j�j and

F

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) = b�

�

(k; 1

n�k

):

Then F

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) is a polynomial fun
tion of the p

i

's and q

i

's

with integer 
oeÆ
ients, satisfying

(�1)

k

F

k

(1; : : : ; 1;�1; : : : ;�1) = (k +m� 1)

k

:

Proof. Let � = (�

1

; : : : ; �

r

) ` n and

� = (�

1

; : : : ; �

r

) = (�

1

+ r � 1; �

2

+ r � 2; : : : ; �

r

):

De�ne '(x) =

Q

r

i=1

(x � �

i

). A theorem of Frobenius (see [5, Exam. I.7.7℄)

asserts that

b�

�

(k; 1

n�k

) = �

1

k

[x

�1

℄

(x)

k

'(x� k)

'(x)

; (8)
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q

p

p

p

q

q

2

1

2

.

..

1

m
m

Figure 2: A union of m re
tangles

where [x

�1

℄f(x) denotes the 
oeÆ
ient of x

�1

in the expansion of f(x) in

des
ending powers of x (i.e., as a Taylor series at x =1).

If we let � = � in (8) and 
an
el 
ommon fa
tors from the numerator and

denominator, we obtain

b�

�

(k; 1

n�k

) = �

1

k

[x

�1

℄

(x)

k

m

Y

i=1

(x� (q

i

+ p

i

+ p

i+1

+ � � �+ p

m

))

k

m

Y

i=1

(x� (q

i

+ p

i+1

+ p

i+2

+ � � �+ p

m

))

k

(9)

= �

1

k

[x

�1

℄H

k

(x);

say. Sin
e

1

x� a

=

1

x

+

a

x

2

+

a

2

x

3

+ � � � ;

it is 
lear that [x

�1

℄H

k

(x) will be a polynomial F

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) in

the p

i

's and q

i

's with integer 
oeÆ
ients. If we put p

i

= 1 and q

i

= �1 then

6



we obtain (after 
an
elling 
ommon fa
tors)

F

k

(1; : : : ; 1;�1; : : : ;�1) = �

1

k

[x

�1

℄

(x� k + 1)(x�m+ 1)

k

x+ 1

:

Sin
e the sum of the residues of a rational fun
tion R(x) in the extended


omplex plane is 0, it follows that

�

1

k

[x

�1

℄

(x� k + 1)(x�m + 1)

k

x + 1

= �

1

k

Res

x=�1

�

(x� k + 1)(x�m + 1)

k

x + 1

�

= (�m)

k

= (�1)

k

(k +m� 1)

k

:

It remains to show that the 
oeÆ
ients of F

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) are inte-

gers. Equivalently, the 
oeÆ
ients of the polynomial

[x

�1

℄

(x)

k

'(x� k)

'(x)

are divisible by k. But

(x)

k

'(x� k)

'(x)

� (x)

k

(mod k)

and

[x

�1

℄(x)

k

= 0;

so the proof follows. 2

Note. For any �xed � ` k, J. Katriel has shown (private 
ommuni
a-

tion), based on a method [4℄ for expressing b�

�

(�; 1

n�k

) in terms of the values

b�

�

(j; 1

n�j

), that b�

�

(�; 1

n�k

) is a polynomial F

�

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) with

rational 
oeÆ
ients satisfying

(�1)

k

F

�

(1; : : : ; 1;�1; : : : ;�1) = (k +m� 1)

k

:

It 
an be dedu
ed from the Murnaghan-Nakayama rule that in fa
t the fun
-

tion F

�

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) is a polynomial with integer 
oeÆ
ients. We


onje
ture that in fa
t the 
oeÆ
ients of F

�

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) are non-

negative:

7



Conje
ture 1. For �xed � ` k, b�

�

(�; 1

n�k

) is a polynomial F

�

(p

1

; : : : ; p

m

;

q

1

; : : : ; q

m

) with integer 
oeÆ
ients su
h that (�1)

k

F

�

(p

1

; : : : ; p

m

;�q

1

; : : : ;�q

m

)

has nonnegative 
oeÆ
ients summing to (k +m� 1)

k

.

We do not have a 
onje
tured 
ombinatorial interpretation of the 
oef-

�
ients of (�1)

k

F

�

(p

1

; : : : ; p

m

;�q

1

; : : : ;�q

m

). When m = 2 we have the

following data, where we write a = p

1

, p = p

2

, b = q

1

, q = q

2

:

�F

1

(a; p;�b;�q) = ab + pq

F

2

(a; p;�b;�q) = a

2

b+ ab

2

+ 2apq + p

2

q + pq

2

�F

3

(a; p;�b;�q) = a

3

b+ 3a

2

b

2

+ 3a

2

pq + ab

3

+ 3abpq + 3ap

2

q + 3apq

2

+p

3

q + 3p

2

q

2

+ pq

3

+ ab + pq

F

4

(a; p;�b� q) = a

4

b+ 6a

3

b

2

+ 4a

3

pq + 6a

2

b

3

+ 12a

2

bpq + 6a

2

p

2

q

+6a

2

pq

2

+ ab

4

+ 4ab

2

pq + 4abp

2

q + 4abpq

2

+ 4ap

3

q

+14ap

2

q

2

+ 4apq

3

+ p

4

q + 6p

3

q

2

+ 6p

2

q

3

+ pq

4

+ 5a

2

b

+5ab

2

+ 10apq + 5p

2

q + 5pq

2

:

We 
an say something more spe
i�
 about the leading terms of F

k

(p

1

; : : : ; p

m

;

q

1

; : : : ; q

m

). Let G

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

) denote these leading terms, viz.,

the terms of total degree k + 1.

Proposition 2. We have

1

x

+

X

k�0

G

k

(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

)x

k

=

1

0

B

B

B

B

�

x

m

Y

i=1

(1� (q

i

+ p

i+1

+ p

i+2

+ � � �+ p

m

)x)

m

Y

i=1

(1� (q

i

+ p

i

+ p

i+1

+ � � �+ p

m

)x)

1

C

C

C

C

A

h�1i

; (10)

where

h�1i

denotes 
ompositional inverse [8, x5.4℄ with respe
t to x. In parti
-

ular, the generating fun
tion

P

G

k

x

k

is algebrai
 over Q(p

1

; : : : ; p

m

; q

1

; : : : ; q

m

; x).

8



Proof. From (9) we have

G

k

(p

1

; : : : ; p

k

; q

1

; : : : ; q

k

) = �

1

k

[x

�1

℄

x

k

m

Y

i=1

(x� (q

i

+ p

i

+ p

i+1

+ � � �+ p

m

))

k

m

Y

i=1

(x� (q

i

+ p

i+1

+ p

i+2

+ � � �+ p

m

))

k

= �

1

k

[x

�1

℄L(x)

k

;

say. Let L(1=x) = M(x)=x, so M(0) = 1. Regard M(x) as a power series in

as
ending powers of x, i.e., an ordinary Taylor series at x = 0. Then by the

Lagrange inversion formula [8, Thm. 5.4.2℄ we have

[x

�1

℄L(x)

k

= [x

k+1

℄M(x)

k

= �k[x

k

℄

1

(x=M(x))

h�1i

;

so equation (10) follows. 2

Proposition 2 was also proved by Philippe Biane (private 
ommuni
ation)

in the same way as here, though using the language of free probability theory.

It follows from Proposition 1 or Proposition 2 that (�1)

k

G

k

(p

1

; : : : ; p

m

;

�q

1

; : : : ;�q

m

) is a polynomial with integer 
oeÆ
ients summing to

S

k

:= (�1)

k

G

k

(1; : : : ; 1;�1; : : : ;�1):

From Proposition 2 we have

�

1

x

+

X

k�0

S

k

x

k

=

�1

�

x(1� x)

1� (m� 1)x

�

h�1i

;

an algebrai
 fun
tion of degree two. When m = 1 we have S

k

= C

k

, the

kth Catalan number. Hen
e by Theorem 1 C

k

is equal to the number of

pairs (u; v) 2 S

k

�S

k

su
h that �(u) + �(v) = k + 1 and uv = (1; 2; : : : ; k),

a known result (e.g., [8, Exer. 6.19(hh)℄). Moreover, it follows easily from

Proposition 2 that

(�1)

k

G

k

(p;�q) =

k

X

i=1

N(k; i)p

k+1�i

q

i

;

9



where N(k; i) =

1

k

�

k

i

��

k

i�1

�

, a Narayana number [8, Exer 6.36℄. Hen
e N(k; i)

is equal to the number of pairs (u; v) 2 S

k

�S

k

su
h that �(u) = i, �(v) =

k + 1 � i, and uv = (1; 2; : : : ; k). When m = 2 we have S

k

= r

k

, a (big)

S
hr�oder number [8, p. 178℄.

It would follow from Conje
ture 1 that the polynomial (�1)

k

G

k

(p

1

; : : : ; p

m

;

�q

1

; : : : ;�q

m

) has nonnegative 
oeÆ
ients. In fa
t, Sergi Elizalde has shown

(private 
ommuni
ation of May, 2002) that

(�1)

k

G

k

(p

1

; : : : ; p

m

;�q

1

; : : : ;�q

m

)

=

1

k

X

i

1

+���+i

m

+j

1

+���+j

m

=k+1

�

k

i

1

���

i

1

j

1

��

m

Y

s=2

0

�

min(i

s

;j

s

)

X

r=0

�

k

r

���

r

j

s

� r

���

k � r � i

1

� � � � � i

s�1

� j

1

� � � � � j

s�1

i

s

� r

s

�

1

A

p

i

1

1

� � � p

i

m

m

q

j

1

1

� � � q

j

m

m

;

where

��

a

b

��

=

�

a+b�1

b

�

. Thus in parti
ular (�1)

k

G

k

(p

1

; : : : ; p

m

;�q

1

; : : : ;�q

m

)

indeed does have nonnegative 
oeÆ
ients. Do they have a simple 
ombina-

torial interpretation?
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