
Generalized Ri�e Shu�esand Quasisymmetric functionsRichard P. Stanley1Department of Mathematics 2-375Massachusetts Institute of TechnologyCambridge, MA 02139version of 31 May 20011 Introduction.Let xi be a probability distribution on a totally ordered set I, i.e., the prob-ability of i 2 I is xi. (Hence xi � 0 and Pxi = 1.) Fix n 2 P = f1; 2; : : :g,and de�ne a random permutation w 2 Sn as follows. For each 1 � j � n,choose independently an integer ij (from the distribution xi). Then standard-ize the sequence i = i1 � � � in in the sense of [34, p. 322], i.e., let �1 < � � � < �kbe the elements of I actually appearing in i, and let ai be the number of �i'sin i. Replace the �1's in i by 1; 2; : : : ; a1 from left-to-right, then the �2's ini by a1 + 1; a1 + 2; : : : ; a1 + a2 from left-to-right, etc. For instance, if I = Pand i = 311431, then w = 412653. This de�nes a probability distributionon the symmetric group Sn, which we call the QS-distribution (because ofthe close connection with quasisymmetric functions explained below). If weneed to be explicit about the parameters x = (xi)i2I , then we will refer tothe QS(x)-distribution.The QS-distribution is not new, at least when I is �nite. It appears forinstance in [10, pp. 153{154][14][20][24]. Although these authors anticipatesome of our results, they don't make systematic use of quasisymmetric andsymmetric functions. Some additional work using the viewpoint of our paperis due to Fulman [15].1.1 Example. As an example of a general result to be proved later(Theorem 2.1), let us compute Prob(213), the probability that a random1Partially supported by NSF grant DMS-99884591



permutation w 2 S3 (chosen from the QS-distribution) is equal to the per-mutation 213. A sequence i = i1i2i3 will have the standardization 213 if andonly if i2 < i1 � i3. HenceProb(213) = Xa<b�cxaxbxc:There is an alternative way to describe the QS-distribution. Suppose wehave a deck of n cards. Cut the deck into random packets of respective sizesai > 0; i 2 I, such that P ai = n and the probability of (ai)i2I isProb ((ai)i2I) = n!Yi2I xaiiai! :Then ri�e shu�e these packets Pi together into a pile P in the mannerdescribed by Bayer and Diaconis [2] (see also [11][14]); namely, after placingk cards on P , the probability that the next card comes from the top ofthe current packet Pj is proportional to the current number of cards in Pj.This card is then placed at the bottom of P . The ordinary dovetail or ri�eshu�e [2, p. 294] corresponds to the case I = f1; 2g and x1 = x2 = 1=2.In this case the original deck is cut according to the binomial distribution.More generally, if for �xed q 2 P we cut the deck into q packets (somepossibly empty) according to the q-multinomial distribution, then we obtainthe q-shu�es of Bayer and Diaconis [2, p. 299] (where they use a for ourq). The q-shu�e is identical to the QS-distribution for I = f1; 2 : : : ; qg andx1 = x2 = � � � = xq = 1=q. We will denote this distribution by Uq. Ifwe q-shu�e a deck and then r-shu�e it, the distribution is the same as asingle qr-shu�e [2, Lemma 1]. In other words, if � denotes convolution ofprobability distributions then Uq � Ur = Uqr. We extend this result to theQS-distribution in Theorem 2.4.In the next section we will establish the connection between the QS-distribution and the theory of quasisymmetric functions. In Section 3 we useknown results from the theory of quasisymmetric and symmetric functions toobtain results about the QS-distribution, many of them direct generalizationsof the work of Bayer, Diaconis, and Fulman mentioned above. For instance,we show that the probability that a random permutation w 2 Sn (alwaysassumed chosen from the QS-distribution) has k inversions is equal to theprobability that w has major index k. This is an analogue of MacMahon's2



corresponding result for the uniform distribution on Sn (see e.g. [33, p. 23]).A further result is that if T 0 is a standard Young tableau of shape �, thenthe probability that T 0 is the recording tableau of w under the Robinson-Schensted-Knuth algorithm is s�(x), where x = (xi)i2I and s� denotes aSchur function.2 The QS-distribution and quasisymmetric func-tionsIn this section we show the connection between the QS-distribution and qua-sisymmetric functions. In general our reference for quasisymmetric functionsand symmetric functions will be [34, Ch. 7]. Quasisymmetric functions maybe regarded as bearing the same relation to compositions (ordered partitionsof a nonnegative integer) as symmetric functions bear to partitions. Namely,the homogeneous symmetric functions of degree n form a vector space ofdimension p(n) (the number of partitions of n) and have many natural basesindexed by the partitions of n. Similarly, the homogeneous quasisymmetricfunctions of degree n form a vector space of dimension 2n�1 (the number ofcompositions of n) and have many natural bases indexed by the compositionsof n.A quasisymmetric function F (z) is a power series of bounded degree, saywith rational coe�cients, in the variables z = (zi)i2I , with the followingproperty: let i1 < i2 < � � � < in and j1 < j2 < � � � < jn, where ik; jk 2 I. Ifa1; : : : ; ak 2 P, then the coe�cient of za1i1 � � � zanin is equal to the coe�cient ofza1j1 � � � zanjn in F (z). The set of all quasisymmetric functions forms a graded Q -algebra denoted Q . The quasisymmetric functions that are homogeneous ofdegree n form a Q -vector space, denoted Qn. If jIj � n (including jIj =1),then dimQn = 2n�1.Let � = (�1; : : : ; �k) be a composition of n, i.e., �i 2 P and P�i = n.Let Comp(n) denote the set of all compositions of n, so #Comp(n) = 2n�1[33, pp. 14{15]. De�neS� = f�1; �1 + �2; : : : ; �1 + � � �+ �k�1g � f1; : : : ; n� 1g:3



The fundamental quasisymmetric function L� = L�(z) is de�ned byL�(z) = Xi1�����inij<ij+1 if j2S� zi1 � � � zin :It is not hard to show that when jIj � n, the set fL� : � 2 Comp(n)g isa Q -basis for Qn [34, Prop. 7.19.1]. More generally, if jIj = k then the setfL� : � 2 Comp(n); length(�) � kg is a Q -basis for cqn, and L� = 0 iflength(�) > k.If w = w1w2 � � �wn 2 Sn then let D(w) denote the descent set of w, i.e.,D(w) = fi : wi > wi+1g:Write co(w) for the unique composition of n satisfying Sco(w) = D(w). Inother words, if co(w) = (�1; : : : ; �k), then w has descents exactly at �1,�1+�2; : : :, �1+ � � �+�k�1. For any composition � of n it is easy to see thatthe (possibly in�nite) series L�(x) (where as always xi � 0 andP xi = 1) isabsolutely convergent and therefore represents a nonnegative real number.The main result on which all our other results depend is the following.2.1 Theorem. Let w 2 Sn. The probability Prob(w) that a permutationin Sn chosen from the QS-distribution is equal to w is given byProb(w) = Lco(w�1)(x):Proof. This result is equivalent to [18, Lemma 3.2] (see also [30,Lemma 9.39]). Because of its importance here we present the (easy) proof.The integers i for which i + 1 appears somewhere to the left of i in w =w1w2 � � �wn are just the elements of D(w�1). Let i1; : : : ; in be chosen in-dependently from the distribution xi. Let aj = iw�1(j), i.e., if we writedown i1 � � � in underneath w1 � � �wn, then aj appears below j. In order forthe sequence i1 � � � in to standardize to w it is necessary and su�cient thata1 � a2 � � � � � an and that aj < aj+1 whenever j 2 D(w�1). HenceProb(w) = Xa1�a2�����anai<ai+1 if i2D(w�1) xa1xa2 � � �xan= Lco(w�1)(x): 24



For some algebraic results closely related to Theorem 2.1, see [12].Two special cases of Theorem 2.1 are of particular interest. The �rst isthe q-shu�e distribution Uq. Let des(u) denote the number of descents ofthe permutation u 2 Sn, i.e.,des(u) = #fi : w(i) > w(i+ 1)g:It follows easily from Theorem 2.1 or by a direct argument (see [34, p. 364])that the probability ProbUq(w) that a random permutation in Sn chosenfrom the distribution Uq is equal to w is given byProbUq(w) = �q � des(w�1) + n� 1n �q�n:This is just the probability of obtaining w with a q-shu�e, as de�ned in [2,x3], con�rming that Uq is just the q-shu�e distribution.For �xed n, the uniform distribution U on Sn is given byU = limq!1Uq: (1)Because of this formula many of our results below may be considered as gen-eralizations of the corresponding results for the uniform distribution. Theseresults for the uniform distribution are well-known and classical theorems inthe theory of permutation enumeration.The second interesting special case of Theorem 2.1 is de�ned byxi = (1� t)ti�1;where I = P and 0 � t � 1. Given u = u1u2 � � �un 2 Sn, de�ne �u =v1v2 � � �vn, where vi = n + 1 � un+1�i. (Equivalently, �u = w0uw0, wherew0(i) = n + 1 � i.) Set e(u) = maj(�u), where maj denotes major index (orgreater index ) of u [33, p. 216], i.e.,maj(u) = Xi2D(u) i:It follows from [34, Lemma 7.19.10] thatProb(w) = te(w�1)(1� t)n(1� t)(1� t2) � � � (1� tn) : (2)5



The QS-distribution de�nes a Markov chain (or random walk)Mn on Snby de�ning the probability Prob(u; uw) of the transition from u to uw to beProb(w) = Lco(w�1)(x). The next result determines the eigenvalues of thisMarkov chain. Equivalently, de�ne�n(x) = Xw2Sn Lco(w�1)(x)w 2 RSn ;where RSn denotes the group algebra of Sn over R. Then the eigenvalues ofMn are just the eigenvalues of �n(x) acting on RSn by right multiplication.2.2 Theorem. The eigenvalues of Mn are the power sum symmet-ric functions p�(x) for � ` n. The eigenvalue p�(x) occurs with multiplicityn!=z�, the number of elements in Sn of cycle type �.The above theorem appears implicitly in [16, Thm. 4.4] and more explic-itly in [23, Note 5.20]. See also [13, x7] and [34, Exer. 7.96]. It is also aspecial case of [3, Thm. 1.2], as we now explain.Bidigare, Hanlon, and Rockmore [3] de�ne a random walk on the set Rof regions of a (�nite) hyperplane arrangement A in Rn as follows. (Precisede�nitions of the terms used below related to arrangements may be found in[3]. For further information see [9].) Let F be the set of faces of A, i.e., thenonempty faces of the closure of the regions of A. Let wt be a probabilitydistribution on F . Given R 2 R and F 2 F , de�ne F � R to be that regionR0 of A closest to R that has F as a face. (There is always a unique suchregion R0.) Now given a region R, choose F 2 F with probability wt(F ) andmove to the region F �R.Consider the special case when A is the braid arrangement Bn, i.e., theset of hyperplanes ui = uj for 1 � i < j � n, where u1; : : : ; un are thecoordinates in Rn . The set of regions of Bn can be identi�ed in a natural waywith Sn, viz., identify the region ua1 < ua2 < � � � < uan with the permutationw given by w(ai) = i. The faces of Bn correspond to ordered set partitions� of 1; 2; : : : ; n, i.e., � = (B1; : : : ; Bk) where Bi 6= ;, Bi \ Bj = ; for i 6= j,and [Bi = f1; 2; : : : ; ng; viz., � corresponds to the face de�ned by ur = us ifr; s 2 Bi for some i, and ur < us if r 2 Bi and s 2 Bj with i < j. De�ne the6



type of � to be the compositiontype(�) = (#B1; : : : ;#Bk) 2 Comp(n):Given � = (�1; : : : ; �k) 2 Comp(n), de�ne the monomial quasisymmetricfunction M�(z) by M�(z) = Xi1<���<ik z�1i1 � � � z�kik :(See [34, (7.87)].) Now if F is a face of Bn corresponding to the orderedpartition �, then set wt(F ) = Mtype(�)(x):It is easy to see that wt is a probability distribution on the set of faces ofBn; in fact, for indeterminates (zi)i2I we haveX� Mtype(�)(z) = �X zi�n :Thus wt de�nes a Bidigare-Hanlon-Rockmore random walk on the regionsof Bn. Let P (R;R0) denote the probability of moving from a region R to aregion R0.2.3 Theorem. Let R correspond to u 2 Sn and R0 to uw. ThenP (R;R0) = Lco(w�1)(x):Hence the Bidigare-Hanlon-Rockmore random walk just de�ned on the regionsof Bn is isomorphic to the random walk on Sn de�ned by the QS-distribution.Proof. By symmetry we may suppose that u = 12 � � �n, the identitypermutation. The faces F of R0 for which F � R = R0 correspond to thoseordered partitions � obtained from w�1 = w1 � � �wn by drawing bars betweencertain pairs wi and wi+1, where there must be a bar when i 2 D(w�1). Theelements contained between the consecutive bars (including a bar before w1and after wn) form the blocks of �, read from left-to-right. For instance, ifw�1 = 582679134, then one way of drawing bars is j58j267j9j1j34j, yieldingthe ordered partition � = (f5; 8g; f2; 6; 7g; f9g; f1g; f3; 4g). It follows thatP (R;R0) =X� M�(x);7



where � runs over all compositions re�ning co(w�1). From the de�nition ofL�(x) we have X� M�(x) = Lco(w�1)(x);and the proof follows. 2The next result determines the convolution of the QS(x)-distribution withthe QS(y)-distribution. We write xy for the variables xiyj in the order xiyj <xrys if either i < r or i = r and j < s.2.4 Theorem. Suppose that a permutation u 2 Sn is chosen fromthe QS(x)-distribution, and a permutation v 2 Sn is chosen from the QS(y)-distribution. Let w 2 Sn. Then the probability that uv = w is equal toLco(w�1)(xy). In other words, if � denotes convolution thenQS(x) �QS(y) = QS(xy):Equivalently, in the ring RSn we have�n(x)�n(y) = �n(xy):Theorem 2.4 is equivalent to [23, (62)][30, Thm. 9.37]. For the Uq-distribution it was also proved in [2, Lemma 1], and this proof can be easilyextended to prove Theorem 2.4 in its full generality.3 Enumerative properties of the QS-distributionSuppose that X is any subset of Sn. Let w 2 Sn be chosen from the QS-distribution. It follows from Theorem 2.1 that the probability that w 2 X isgiven by Prob(w 2 X) =Xu2X Lco(u�1)(x): (3)There are many known instances of the set X � Sn for which the right-handside of (3) can be explicitly evaluated. Most of this section will be devotedto some examples of this type. 8



Our �rst result involves the symmetric function ln(z) de�ned byln(z) = 1nXdjn �(d)pn=dd (z);where � denotes the usual number-theoretic M�obius function. More infor-mation on ln(z) may be found in [30, Ch. 8] or [34, Exer. 7.88{7.89].3.1 Theorem. Let w be a random permutation in Sn, chosen fromthe QS-distribution. The probability Prob(�(w) = �) that w has cycle type� = h1m12m2 � � �i ` n (i.e., mi cycles of length i) is given byProb(�(w) = �) =Yi�1 hmi [li](x);where brackets denote plethysm [26, xI.8][34, p. 447].The proof of Theorem 3.1 follows from [30, Thm. 8.23 and Thm. 9.41(a)].In the special case of the Uq-distribution, the result appears in [11, Thm. A].As above let maj(w) denote the major index of w 2 Sn, and let inv(w)denote the number of inversions of w [33, pp. 20{21], i.e.,inv(w) = #f(i; j) : 1 � i < j � n; w(i) > w(j)g:Let In(j) (respectively, Mn(j)) denote the probability that w 2 Sn satis�esinv(w) = j (respectively, maj(w) = j) under the QS-distribution.3.2 Theorem. We have Mn(j) = In(j)Xn�0Xj�0 Mn(j)tjzn(1� t)(1� t2) � � � (1� tn) = Yi�1Yj2I �1� ti�1xjz��1 : (4)Proof. The standardization w of a sequence i = i1i2 � � � in satis�esmaj(w) = maj(i) and inv(w) = inv(i). Hence by de�nition of the QS-distribution we haveXj Mn(j)tj = Xi=i1���in tmaj(i)xi1 � � �xinXj In(j)tj = Xi=i1���in tinv(i)xi1 � � �xin :9



Thus if F�(t) = Xv tmaj(v)G�(t) = Xv tinv(v);where v ranges over all permutations of the multiset f1�1; 2�2 ; : : :g, thenXj Mn(j)tj = X�`n F�(t)m�(x)Xj In(j)tj = X�`n G�(t)m�(x);where m�(x) denotes a monomial symmetric function. But it is known [32,(45), p. 97][33, Prop. 1.3.17] thatF�(t) = G�(t) = � n�1; �2; : : :�t ;a q-multinomial coe�cient in the variable t. Hence Mn(j) = In(j).Now let h�(x) denote a complete homogeneous symmetric function [34,x7.5]. It is easy to see [34, Prop. 7.8.3] thath�(1; t; t2; : : :) =Yi 1(1� t)(1� t2) � � � (1� t�i) :Hence Xj Mn(j)tj = (1� t) � � � (1� tn)X�`n h�(1; t; t2; : : :)m�(x):Equation (4) then follows immediately from the expansion [34, (7.10)] of theCauchy product Qi;j(1 � xiyj)�1. Equation (4) is also equivalent to [17,(78)]. 2Other expansions of the Cauchy product lead to further formulas forPj Mn(j)tj. In particular, from [34, (7.20), Thm. 7.12.1, and Cor. 7.21.3]10



there follows (using notation from [34])Xj Mn(j)tj = X�`n tb(�) (1� t) � � � (1� tn)Qu2� (1� th(u)) s�(x)= X�`n (1� t) � � � (1� tn)(1� t�1) � � � (1� t�l)z�1� p�(x): (5)A famous result of MacMahon asserts that#fw 2 Sn : maj(w) = jg = #fw 2 Sn : inv(w) = jg:Since the uniform distribution U on Sn satis�es U = limq!1 Uq, it followsthat Theorem 3.2 is a generalization of MacMahon's result. In fact, the proofwe have given of Theorem 3.2 shows that it is equivalent to the equidistribu-tion of maj and inv on the set of permutations of any �nite multiset (wherethe underlying set is linear ordered). This result was also known, at leastimplicitly, to MacMahon. For further references and some generalizations,see [5].In principle one can use Theorem 3.2 to derive the moments of maj(w)(or equivalently inv(w)). Let E denote expectation with respect to the QS-distribution and EU expectation with respect to the uniform distribution.The next result obtains the �rst two moments of maj(w), stated for simplicityas the expectations of maj(w) and maj(w)(maj(w)�1) (instead of maj(w)2).3.3 Corollary. Choose w 2 Sn from the QS-distribution. ThenE(maj(w)) = EU (maj(w))� 12�n2�p2(x) (6)E(maj(w)(maj(w)� 1)) = EU (maj(w)(maj(w)� 1)) (7)�3�n+ 14 �p2(x) + 43�n3�p3(x) + 32�n4�p2(x)2: (8)Note. It is easy to see (e.g. [22, p. 16]) thatEU(maj(w)) = 12�n2�EU(maj(w)(maj(w)� 1)) = n(n� 1)(n� 2)(9n+ 13)144 :11



Proof of Corollary 3.3. Let�n(t) =Xj Mn(j)tj:Then E(maj(w)) = �0n(1):When we di�erentiate (5) term-by-term and set t = 1, the only survivingterms will be from � = h1ni and � = h21n�2i. HenceE(maj(w)) = ddt �(1� t) � � � (1� tn)(1� t)n 1n!p1(x)n+(1� t) � � � (1� tn)(1� t2)(1� t)n�2 12 � (n� 2)!p1(x)n�2p2(x)�t=1 : (9)Now p1(x) =P xi = 1 andddt �(1� t) � � � (1� tn)(1� t)n 1n!�t=1 = EU(maj(w)):It is routine to compute the second term on the right-hand side of (9), ob-taining equation (6).A similar computation using E(maj(w)(maj(w)� 1)) = �00n(1) yields (8);we omit the details. 2It is clear from the above proof that for general k � 1, E(maj(w)k) isa linear combination, whose coe�cients are polynomials in n, of power sumsymmetric functions p�(x) where � ` n and `(�) � n� k. Here `(�) denotesthe length (number of parts) of �.We next consider the relationship between the QS-distribution and theRobinson-Schensted-Knuth (RSK) algorithm [34, x7.11]. Recall that thisalgorithm associates a pair (T; T 0) of standard Young tableaux (SYT) of thesame shape � ` n with a permutation w 2 Sn. We call T 0 the recordingtableau of w, denoted rec(w). The shape � of T 0 is also called the shape ofw, denoted sh(w) = �. 12



3.4 Theorem. Choose w 2 Sn from the QS-distribution. Let T be anSYT of shape � ` n. Then the probability that rec(w) = T is given byProb(rec(w) = T ) = s�(x);where s� denotes a Schur function.Proof. Let XT = fw 2 Sn : rec(w) = Tg:It follows from [34, Thm. 7.19.2 and Lemma 7.23.1] thatXw2XT Lco(w�1)(x) = s�(x):The proof now follows from equation (3). 23.5 Corollary. Choose w 2 Sn from the QS-distribution, and let � ` n.Then Prob(sh(w) = �) = f�s�(x);where f� denotes the number of SYT of shape � (given explicitly by theFrame-Robinson-Thrall hook-length formula [34, Cor. 7.21.6]).Proof. There are f� SYT's T of shape �, and by Theorem 3.4 they allhave probability s�(x) of being the recording tableau of w. 2Note. If the RSK algorithm associates (T; T 0) with w 2 Sn, then callT the insertion tableau of w, denoted ins(w). Since ins(w) = rec(w�1) [34,Thm. 7.13.1], it follows thatProb(ins(w) = T ) = f�Lco(w)(x):Note. The probability distribution Prob(�) = f�s�(x) on the set of allpartitions � of all nonnegative integers is a specialization of the z-measureof Borodin and Olshanski, as surveyed in [7] (see also [29]).It is easy to give an expression for the probability that a permutation w 2Sn chosen from the QS-distribution has a �xed descent set S � f1; 2; : : : ; n�13



1g. In general, if � and � are partitions with � � � (i.e., �i � �i for all i), then�=� denotes the skew shape obtained by removing the diagram of � from thatof � [34, p. 309]. One can then de�ne (see [34, Def. 7.10.1]) the skew Schurfunction s�=�(x). A border strip (or rim hook or ribbon) is a connected skewshape with no 2 � 2 square [34, p. 245]. Let � = (�1; : : : ; �k) 2 Comp(n).Then there is a unique border strip B� (up to translation) with �i squaresin row i. For instance, the border strip B(3;2;1;2;4) looks like:
Some special properties of border strip Schur functions sB� are discussed in[34, x7.23].3.6 Theorem. Let w be a random permutation in Sn, chosen fromthe QS-distribution. Let � = (�1; : : : ; �k) 2 Comp(n), and recall that S� =f�1; �1 + �2; : : : ; �1 + � � � + �k�1g � f1; 2 : : : ; n � 1g. Then the probabilitythat w has descent set S� is given byProb(D(w) = S�) = sB�(x):Proof. Immediate from Theorem 2.1 and the fact [34, Cor. 7.23.4] thatsB� = Xw2Sn�=co(w) Lco(w�1): 2
4 Longest increasing subsequences.It is a fundamental result of Schensted [31] (see also [34, Cor. 7.23.11]) thatif sh(w) = � = (�1; �2; : : :), then �1 is the length is(w) of the longest in-creasing subsequence of w. (There is a generalization due to Greene [19][34,Thm. 7.23.13 or A1.1.1] that gives a similar interpretation of any �i.) Thus14



the expected value EU(n) of is(w) for w 2 Sn under the uniform distributionis given by EU (n) = EU(is(w)) = 1n!X�`n �1 �f��2 :(See [34, Exer. 7.109(b)].) It was shown by Vershik and Kerov [35] thatEU(n) � 2pn. Later Baik et al. [1] obtained a much stronger result, viz.,the exact distribution (suitably normalized) of �1 (or equivalently is(w)) inthe limit n!1. (This result was extended to any �i in [8][28][21].) We canask whether similar results hold for the QS-distribution. Many results alongthese lines appear in [4][6, Ex. 2][8][27][29]. Here we make some elementarycomments pointing in a di�erent direction from these papers.It is clear from Corollary 3.5 thatE(is(w)) =X�`n �1f�s�(x); (10)where as usual E denotes expectation with respect to the QS-distribution.This formula can be made more explicit in the special case of the distributionUq. Identify � ` n with its Young diagram, and let c(u) denote the contentof the square u 2 � as de�ned in [34, p. 373].4.1 Theorem. We haveEUq(is(w)) = 1n!X�`n �1 �f��2Yu2� �1 + q�1c(u)� : (11)Proof. Let s�(1q) denote s�(x) where x1 = � � � = xq = 1 and xi = 0 fori > q. It is well-known (e.g. [34, Cor. 7.21.4 and 7.21.6]) thats�(1q) = f�n! Yu2�(q + c(u)):Since s�(x) is homogeneous of degree n, the proof follows from equation (10).2 Note that EUq(is(w)) is a polynomial in q�1, which can be writtenEUq(is(w)) = EU (is(w)) + 1n!X�`n �1 �f��2 Xu2� c(u)! 1q + � � � : (12)15



Let us mention thatXu2� c(u) =X i(�0i � �i) =X��i2��X��0i2�;where �0 = (�01; �02; : : :) denotes the conjugate partition to �. If we regard nas �xed, then equation (12) shows the rate at which EUq(is(w)) converges toEU(is(w)) as q !1. It is therefore of interest to investigate the asymptoticbehavior of the coe�cientF1(n) = 1n!X�`n �1 �f��2 Xu2� c(u)!as n ! 1 (as well as the coe�cient of q�i for i > 1). Numerical evidencesuggests that F1(n)=n is a slowly increasing function of n. The largest valueof n for which we have done the computation is n = 47, giving F1(47)=47 �0:6991. Eric Rains suggests that there is some reason to suspect that F (n)=ngrows like n1=6.Acknowledgment. I am grateful to Jinho Baik, Fran�cois Bergeron,Ken Brown, Persi Diaconis, Alain Lascoux, Andrei Okounkov, Craig Tracy,and an anonymous referee for providing helpful suggestions and additionalreferences.References[1] J. Baik, P. Deift, and K. Johansson, On the distribution of the length ofthe longest increasing subsequence of random permutations, J. Amer.Math. Soc., to appear.[2] D. Bayer and P. Diaconis, Trailing the dovetail shu�e to its lair, Ann.Applied Probability 2 (1992), 294{313.[3] P. Bidigare, P. Hanlon, and D. Rockmore, A combinatorial description ofthe spectrum of the Tsetlin library and its generalization to hyperplanearrangements, Duke Math. J. 99 (1999), 135{174.[4] Ph. Biane, seminar talk at U.C. Berkeley, March 2000.16



[5] A. Bj�orner and M. Wachs, q-hook length formulas for forests, J. Com-binatorial Theory (A) 52 (1989), 165{187.[6] A. Borodin and A. Okounkov, A Fredholm determinant formula forToeplitz determinants, Integral Equations and Operator Theory 37(2000), 386{396, math.CA/9907165.[7] A. Borodin and G. Olshanski, Z-measures on partitions, Robinson-Schensted-Knuth correspondence, and � = 2 random matrix ensembles,preprint, math.CO/9905189.[8] A. Borodin, A. Okounkov, and G. Olshanski, On asymptotics ofPlancherel measures for symmetric groups, J. Amer. Math. Soc. 13(2000), 481{515, math.CO/9905032.[9] K. Brown and P. Diaconis, Random walks and hyperplane arrangements,Ann. Probability 26 (1998), 1813{1854.[10] P. Diaconis, J. Fill, and J. Pitman, Analysis of top to random shu�es,Combinatorics, Probability, and Computing 1 (1992), 135{155.[11] P. Diaconis, M. McGrath, and J. Pitman, Ri�e shu�es, cycles, anddescents, Combinatorica 15 (1995), 11{29.[12] G. Duchamp, F. Hivert, and J.-Y. Thibon, Une g�en�eralisation des fonc-tions quasi-sym�etriques et des fonctions sym�etriques non commutatives,C. R. Acad. Sci. Paris S�er. I Math. 328 (1999), 1113{1116.[13] G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, Noncommuta-tive symmetric functions III: Deformations of Cauchy and convolutionalgebras, Discrete Math. Theor. Comput. Sci. 1 (1997), 159{216.[14] J. Fulman, The combinatorics of biased ri�e shu�es, Combinatorica 18(1998), 173{184.[15] J. Fulman, Applications of symmetric functions to cycle and subsequencestructure after shu�es, preprint, math.CO/0102176.[16] A. Garsia and C. Reutenauer, A decomposition of Solomon's descentalgebra, Advances in Math. 77 (1989), 189{262.17



[17] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y.Thibon, Noncommutative symmetric functions, Advances in Math. 112(1995), 218{348.[18] I. Gessel and C. Reutenauer, Counting permutations with given cyclestructure and descent set, J. Combinatorial Theory (A) 64 (1993), 189{215.[19] C. Greene, An extension of Schensted's theorem, Advances in Math. 14(1974), 254{265.[20] A. R. Its, C. A. Tracy, and H. Widom, Random words, Toeplitz deter-minants and integrable systems. I, preprint, math.CO/9909169.[21] K. Johansson, Discrete orthogonal polynomial ensembles and the Plan-cherel measure, preprint, math.CO/9906120.[22] D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting andSearching, second ed., Addison-Wesley, Reading, Massachusetts, 1998.[23] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetricfunctions II: Tranformations of alphabets, Internat. J. Algebra Comput.7 (1997), 181{264.[24] G. Kuperberg, Random words, quantum statistics, central limits, ran-dom matrices, preprint, math.PR/9909104.[25] B. F. Logan and L. A. Shepp, A variational problem for random Youngtableaux, Advances in Math. 26 (1977), 206{222.[26] I. G. Macdonald, Symmetric Functions and Hall Polynomials, seconded., Oxford University Press, Oxford, 1995.[27] A. Okounkov, In�nite wedge and random partitions, preprint,math.RT/9907127.[28] A. Okounkov, Random matrices and random permutations, Internat.Math. Res. Notices 2000, 1043{1095, math.CO/9903176.[29] A. Okounkov, SL(2) and z-measures, preprint, math.RT/0002135.18



[30] C. Reutenauer, Free Lie Algebras, Oxford University Press, Oxford,1993.[31] C. E. Schensted, Longest increasing and decreasing subsequences,Canad. Math. J. 13 (1961), 179{191.[32] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc.,no. 119 (1972).[33] R. Stanley, Enumerative Combinatorics, vol. 1, second printing, Cam-bridge University Press, New York/Cambridge, 1996.[34] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge UniversityPress, New York/Cambridge, 1999.[35] A. M. Vershik and S. V. Kerov, Asymptotic behavior of the Plancherelmeasure of the symmetric group and the limit form of Young tableaux,Soviet Math. Dokl. 18 (1977), 527{531; translated from Dokl. Akad.Nauk SSSR 233 (1977), 1024{1027.

19


