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Abstract

We study the mixing properties of permutations obtained as product of two uniformly ran-
dom permutations of fixed types. For instance, we give an exact formula for the probability that
elements 1, 2, . . . , k are in distinct cycles of the random permutation of {1, 2, . . . , n} obtained as
product of two uniformly random n-cycles.

1 Introduction

We study certain separation probabilities for products of permutations. The archetypal question
can be stated as follows: in the symmetric group Sn, what is the probability that the elements
1, 2, . . . , k are in distinct cycles of the product of two n-cycles chosen uniformly randomly? The
answer is surprisingly elegant: the probability is 1

k! if n − k is odd and 1
k! +

2
(k−2)!(n−k+1)(n+k) if

n− k is even. This result was originally conjectured by Bóna [3] for k = 2. Subsequently, Du and
Stanley proved it for all k and proposed additional conjectures [11]. The goal of this paper is to
prove these conjectures, and establish generalizations of the above result.

We first define a larger class of problems. Given a tuple A = (A1, . . . , Ak) of k disjoint non-
empty subsets of {1, . . . , n}, we say that a permutation π is A-separated if no cycle of π contains
elements of more than one of the subsets Ai. Now, given two integer partitions λ, µ of n, one can
wonder about the probability Pλ,µ(A) that the product of two uniformly random permutations of
cycle type λ and µ is A-separated. The example presented above corresponds to A = ({1}, . . . , {k})
and λ = µ = (n). Clearly, the separation probabilities Pλ,µ(A) only depend on A through the size
of the subsets #A1, . . . ,#Ak, and we shall denote σα

λ,µ = Pλ,µ(A), where α = (#A1, . . . ,#Ak) is a

composition (of size m ≤ n). Note also that σα
λ,µ = σα′

λ,µ whenever the composition α′ is a permu-
tation of the composition α. Below, we focus on the case µ = (n) and we further denote σα

λ := σα
λ,(n).

In this paper, we establish a general formula the separation probabilities σα
λ . Using this expres-

sion we first prove a the following symmetry property: if α = (α1, . . . , αk) and β = (β1, . . . , βk) are
compositions of the same size m ≤ n and of the same length k, then

σα
λ

∏k
i=1 αi!

=
σβ
λ

∏k
i=1 βi!

. (1)

Moreover, we obtain explicit formulas for the separation probabilities σα
λ for certain partitions λ

including λ = (n) and λ = 2N . For instance, the separation probability σα
(n) for the product of two
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n-cycles is found to be

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n+ k)(n − 1)!

(

(−1)n−m
(

n−1
k−2

)

(

n+m
m−k

) +

m−k
∑

r=0

(−1)r
(

m−k
r

)(

n+r+1
m

)

(

n+k+r
r

)

)

(2)

This includes the case α = 1k proved by Du and Stanley [11].

Our approach differs from the one used in [11]. Our starting point is a formula obtained in [8]
about colored factorizations of the n-cycles. This formula displays a symmetry which turns out to
be of crucial importance for our method. Our approach can in fact been made mostly bijective as
explained in Section 5. Indeed, the formula obtained in [8] builds on a bijection established in [9].
An alternative bijective proof was given in [2] (using ideas developed in [1, Sec. 3]). We explain
how to concatenate this bijective proof with the constructions of the present paper in Section 5.

Outline. In Section 2 we present our strategy for computing the separation probabilities. This
involves counting certain colored factorizations of the n-cycles. We then gather our main results in
Section 3. In particular we prove the symmetry property (1) and obtain formulas for the separa-
tion probabilities σα

λ for certain partitions λ including λ = (n) or when λ = 2N . In Section 4, we
give formulas relating the separation probabilities σα

λ and σα
λ′ when λ′ is a partition obtained from

another partition λ by adding some parts of size 1. In Section 5, we indicate how our proofs could
be made bijective. We gather a few additional remarks in Section 6.

Notation. We denote [n] := {1, 2, . . . , n}. We denote by #S the cardinality of a set S.
A composition of an integer n is a tuple α = (α1, α2, . . . , αk) of positive integer summing to n.

We then say that α has size n and length ℓ(α) = k. An integer partition is a composition such that
the parts αi are in weakly decreasing order. We use the notation λ |= n (resp. λ ⊢ n) to indicate
that λ is a composition (resp. integer partition) of n. We sometime write integer partitions in
multiset notation: writing λ = 1n1 , 2n2 , . . . , jnj ] means that λ has ni parts equal to i.

We denote bySn the symmetric group on [n]. Given a partition λ of n, we denote by Cλ the set of
permutations in Sn with cycle type λ. It is well known that #Cλ = n!/zλ where zλ =

∏

i i
ni(λ)ni(λ)!

and ni(λ) is the number of parts equal to i in λ.
We shall consider symmetric functions in an infinite number of variables x = {x1, x2, . . .}. For

any sequence of non-negative integers, α = (α1, α2, . . . , αk) we denote xα := xα1

1 xα2

2 . . . xα3

3 . For an
integer partition λ = (λ1, . . . , λk) we denote by pλ(x) and mλ(x) respectively the power symmetric

function and monomial symmetric function (see e.g. [10]). That is, pλ(x) =
∏ℓ(λ)

i=1 pλi
(x) where

pk(x) =
∑

i≥1 x
k
i , and mλ(x) =

∑

α x
α where the sum is over all the distinct sequences α whose

positive parts are {λ1, λ2, . . . , λk} (in any order). Recall that the power symmetric functions form
a basis of the symmetric functions. For a symmetric function f(x) we denote by [pλ(x)]f(x) the
coefficient of pλ(x) of the decomposition of f(x) in this basis.

2 Strategy

In this section, we first translate the problem of determining the separation probabilities σα
λ into

the problem of enumerating certain sets Sα
λ . Then, we introduce a symmetric function Gα

n(x, t)
whose coefficients in one basis are the cardinalities #Sα

λ , while the coefficient in another basis
count certain “colored” separated factorizations of the permutation (1, . . . , n). Lastly, we give a
exact counting formulas for these colored separated factorizations. Our main results will follow as

2



corollaries in Section 3.

For a composition α = (α1, . . . , αk) of size m ≤ n, we denote by Aα
n the set of tuples A =

(A1, . . . , Ak) of pairwise disjoint subsets of [n] with #Ai = αi for all i in [k]. Now, recall from the
introduction that σα

λ is the probability for the product of a uniformly random permutation of cycle
type λ with a uniformly random n-cycle to be A-separated for a fixed tuple A in Aα

n. Alternatively,
it can be defined as the probability for the product of a uniformly random permutation of cycle
type λ with a fixed n-cycle to be A-separated for a uniformly random tuple A in Aα

n (since the only
property that matters is that the elements in A are randomly distributed in the n-cycle).

Definition 1. For an integer partition λ of n, and a composition α of m ≤ n, we denote by Sα
λ the

set of pairs (π,A), where A is a tuple in Aα
n and π is a permutation in Cλ such that the product

π ◦ (1, 2, ..., n) is A-separated.

From the above discussion we obtain for any composition α = (α1, . . . , αk) of size m,

σα
λ =

#Sα
λ

(

n
α1,α2,...,αk,n−m

)

#Cλ
. (3)

Enumerating the sets Sα
λ directly seems rather challenging. However, we will show below how

to enumerate a related class of “colored” separated permutations denoted by T α
γ (r). We call cycle-

coloring of a permutation π ∈ Sn in [q], a mapping c from [n] to [q] such that if i, j ∈ [n] belong
to the same cycle of π then c(i) = c(j). We think of [q] as the set of colors, and c−1(i) as set of
elements colored i.

Definition 2. Let γ = (γ1, . . . , γℓ) be a composition of size n, and let α = (α1, . . . , αk) be a
composition of size m ≤ n and length k. For a non-negative integer r we define T α

γ (r) as the set of
quadruples (π,A, c1, c2), where π is a permutation of [n], A = (A1, . . . , Ak) is in Aα

n, and
(i) c1 is a cycle-coloring of π in [ℓ(γ)] such that there are γi element colored i for all i in [ℓ(γ)],
(ii) c2 is a cycle-coloring of the product π ◦ (1, 2, . . . , n) in [k + r] such that every color in [k + r]

is used and for all i in [k] the elements in the subset Ai are colored i.

Note that condition (ii) in Definition 2 and the definition of cycle-coloring implies in particular
that the product π ◦ (1, 2, . . . , n) is A-separated.

In order to relate the cardinalities of the sets Sα
λ and T α

γ (r), it is convenient to use symmetric
functions (in the variables x = {x1, x2, x3, . . .}). Namely, given a composition α of m ≤ n, we
define

Gα
n(x, t) :=

∑

λ⊢n

pλ(x)
∑

(π,A)∈Sα
λ

texcess(π,A),

where the outer sum runs over all the integer partitions of n, and excess(π,A) is the number of
cycles of the product π ◦ (1, 2, . . . , n) containing none of the elements in A. Recall that the power
symmetric functions pλ(x) form a basis of the symmetric functions, so that the contribution of a
partition λ to Gα

n(x, t) can be recovered by extracting the coefficient in this basis. In particular,

#Sα
λ = [pλ(x)] G

α
n(x, 1) (4)

where [·] extracts the corresponding coefficient in the basis of power symmetric functions. As
we prove now, the sets T α

γ (r) are related to the coefficients of Gα
n(x, t) in the basis of monomial

symmetric functions.
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Proposition 3. If α is a composition of length k, then

Gα
n(x, t+ k) =

∑

r≥0

∑

γ⊢n

mγ(x)

(

t

r

)

#T α
γ (r), (5)

where the inner sum is over all integer partitions of n.

Proof. Let λ be a partition, and π be a permutation of cycle type λ. Then clearly, the symmetric
function pλ(x) can be interpreted as the generating function of the cycle-colorings of π, that is,
for any sequence γ = (γ1, . . . , γℓ) of non-negative integer, the coefficient [xγ ]pλ(x) is the number of
cycle-colorings of π such that γi elements are colored i, for all i > 0. Moreover, if π is A-separated
for a certain A = (A1, . . . , Ak) ∈ Aα

n, then (t+ k)excess(S,π) represents the number of cycle-colorings
of the permutation π ◦ (1, 2, . . . , n) in [k + t] (not necessarily using every color) such that for all
i ∈ [k] the elements in the subset Ai are colored i. Therefore, for a partition γ and an integer t,
the coefficient [xγ ]Gα

n(x, t + k) counts the quadruple (π,A, c1, c2), where π,A, c1, c2 are as in the
definition of T α

γ (t + k) except that c2 might actually use only a subset of the colors [k + t]. Note
however that all the colors in [k] will necessarily be used by c2, and that we can partition the
quadruples according to the subset of colors of size k + r they use. This gives

[xγ ]Gα
n(x, t+ k) =

∑

r≥0

(

t

r

)

#T α
γ (r).

Now extracting the coefficient of xγ in the right-hand side of (5) gives the same result. This
proves (5) when t is an integer (since both sides are symmetric functions in x), hence for all t (since
both sides are polynomial in t).

In order to obtain an explicit expression for the series Gα
n(x, t) it remains to enumerate the sets

T α
γ (r) which is done below.

Proposition 4. Let r be a non-negative integer, let α be a composition of size m and length k,
and let γ be a partition of size n ≥ m and length ℓ. Then, the set T α

γ (r) specified by Definition 2
has cardinality

#T α
γ (r) =

n(n− ℓ)!(n− k − r)!

(n − k − ℓ− r + 1)!

(

n+ k − 1

n−m− r

)

, (6)

if n− k − ℓ− r + 1 ≥ 0, and 0 otherwise.

The rest of this section is devoted to the proof of (6). In order to count the quadruples
(π,A, c1, c2) satisfying Definition 2, we shall start by choosing π, c1, c2 before choosing the tuple
A. For compositions γ = (γ1, . . . , γℓ), δ = (δ1, . . . , δℓ′) of n we denote by Bγ,δ the set of triples
(π, c1, c2), where π is a permutation of [n], c1 is a cycle-coloring of π such that γi elements are
colored i for all i ∈ [ℓ], and c2 is a cycle-coloring of the permutation π ◦ (1, 2, . . . , n) such that δi
elements are colored i for all i ∈ [ℓ′]. The problem of counting such sets was first considered by

Jackson [5] who actually enumerated the union
⋃

γ,δ|=n, ℓ(γ)=i, ℓ(δ)=j

Bγ,δ using representation theory.

It was later proved in [8] that

#Bγ,δ =
n(n− ℓ)!(n− ℓ′)!

(n − ℓ− ℓ′ + 1)!
, (7)

if n−ℓ−ℓ′+1 ≥ 0, and 0 otherwise. The proof of (7) in [8] uses a refinement of a bijection designed
in [9] in order to prove Jackson’s formula (a proof using representation theory is in fact possible

4



but we have not found it in the literature). Another bijective proof of (7) is given in [2] and we
shall discuss it further in Section 5.

One of the striking feature of the counting formula (7) is that it depends on the compositions
γ, δ only through their lengths ℓ, ℓ′. This “symmetry” feature will prove particularly handy for
enumerating T α

γ (r). Let r, α, γ be as in Proposition 4, and let δ = (δ1, . . . , δk+r) be a composition
of n of length k + r. We denote by T α

γ,δ the set of quadruples (π,A, c1, c2) in T α
γ (r) such that the

cycle-coloring c2 has δi elements colored i for all i in [k + r] (equivalently, (π, c1, c2) ∈ Bγ,δ). We

also denote dαδ =
∏k

i=1

(

δi
αi

)

. It is easily seen that for any triple (π, c1, c2) ∈ Bγ,δ, the number dαδ
counts the tuples A ∈ Aα

n such that (π,A, c1, c2) ∈ T α
γ,δ. Therefore,

#T α
γ (r) =

∑

δ|=n, ℓ(δ)=k+r

#T α
γ,δ =

∑

δ|=n, ℓ(δ)=k+r

dαδ #Bγ,δ,

where the sum is over all the compositions of n of length k + r. Using (7) then gives

#T α
γ (r) =

n(n− ℓ)!(n − k − r)!

(n− k − ℓ− r + 1)!

∑

δ|=n, ℓ(δ)=k+r

dαδ

if n− k − ℓ− r + 1 ≥ 0, and 0 otherwise. In order to complete the proof of Proposition 4, it only
remains to prove the following lemma.

Lemma 5. If α has size m and length k, then

∑

δ|=n, ℓ(δ)=k+r

dαδ =

(

n+ k − 1

n−m− r

)

.

Proof. We give a bijective proof illustrated in Figure 1. One can represent a composition δ =
(δ1, . . . , δk+r) as a sequence of rows of boxes (the ith row has δi boxes). With this representation,
dαδ :=

∏k
i=1

(

δi
αi

)

is the number of ways of choosing αi boxes in the ith row for i = 1, . . . , k. Hence
∑

δ|=n, ℓ(δ)=k+r d
α
δ counts α-marked compositions of size n and length k+r, that is, sequences of k+r

non-empty rows of boxes with some marked boxes in the first k rows, with a total of n boxes, and αi

marks in the ith row for i = 1, . . . , k; see Figure 1. Now α-marked compositions of size n and length
k+ r are clearly in bijection (by adding a marked box to each of the rows 1, . . . , k, and marking the
last box of each of the rows k+1, . . . , k+ r) with α′-marked compositions of size n+ k and length
k+ r such that the last box of each row is marked, where α′ = (α1+1, α2+1, . . . , αk +1, 1, 1, . . . , 1)
is a composition of length k+ r. Lastly, these objects are clearly in bijection (by concatenating all
the rows) with sequences of n + k boxes with m + k + r marks, one of which is on the last box.
There are

(

n+k−1
n−m−r

)

such sequences, which concludes the proof of Lemma 5 and Proposition 4.

Figure 1: A (2, 1, 2)-marked composition of size n = 12 and length 5 and its bijective transformation
into a sequence n+ k = 15 boxes with m+ k + r = 10 marks, one of which is on the last box.
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3 Main results

In this section, we exploit the consequences of Propositions 3 and 4 in order to derive our main
results. All the results will be consequences of the following theorem.

Theorem 6. For any composition α of m ≤ n of length k, the generating function Gα
n(x, t+ k) in

the variables t and x = {x1, x2, . . .} has the following explicit expression in the bases mλ(x) and
(

t
r

)

:

Gα
n(x, t+ k) =

n−m
∑

r=0

∑

λ⊢n, ℓ(λ)≤n−k−r+1

mλ(x)

(

t

r

)

n(n− ℓ(λ))!(n − k − r)!

(n− k − r − ℓ(λ) + 1)!

(

n+ k − 1

n−m− r

)

. (8)

Moreover, for any partition λ of n, one has #Sα
λ = [pλ(x)]G

α
n(x, 1) and σα

λ =
#Sα

λ
(

n
α1,α2,...,αk,n−m

)

#Cλ
.

Theorem 6 is the direct consequence of Propositions 3 and 4. One of the striking feature of (8) is
that the expression of Gα

n(x, t+ k) depends on α only through its size and length. This “symmetry
property” then obviously also holds for #Sα

λ = [pλ(x)]G
α
n(x, 1), and translates into the formula (1)

for separation of probabilities as stated below.

Corollary 7. Let λ be a partition of n, and let α = (α1, . . . , αk) and β = (β1, . . . , βk) be compo-
sition of the same size m and length k. Then,

#Sα
λ = #Sβ

λ . (9)

or, equivalently, in terms of separation probabilities,
σα
λ

∏k
i=1 αi!

=
σβ
λ

∏k
i=1 βi!

.

We now derive explicit formulas for the separation probabilities for the product of a uniformly
random permutation π, with particular constraints on its cycle type, with a uniformly random n-
cycle. We focus on two constraints: when π has p cycles and for n even and π is a fixed-point-free
involution.

3.1 Case when π has p cycles

Let C(n, p) denote the set of permutations of [n] having p cycles. Recall that the numbers c(n, p) =
#C(n, p) = [xp]x(x + 1)(x + 2) · · · (x + n − 1) are called the signless Stirling numbers of the first
kind. We denote by σα(n, p) the probability that the product of a uniformly random permutation
in C(n, p) with a uniformly random n-cycle is A-separated for a given set A in Aα

n. By a reasoning
similar to the one used in the proof of Equation (3), one gets

σα(n, p) =
1

(

n
α1,α2,...,αk ,n−m

)

c(n, p)

∑

λ⊢n,ℓ(λ)=p

#Sα
λ . (10)

We now compute the probabilities σα(n, p) explicitly.

Theorem 8. Let α be a composition of m with k parts. Then,

σα(n, p) =
(n−m)!

∏k
i=1 αi!

c(n, p)

n−m
∑

r=0

c(n − k − r + 1, p)

(n− k − r + 1)!

(

1− k

r

)(

n+ k − 1

n−m− r

)

, (11)

where c(n, p) are signless Stirling numbers of the first kind.
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For instance, when m = n in the preceding theorem, one gets

σα(n, p) =

∏k
i=1 αi!

c(n, p)

c(n− k + 1, p)

(n− k + 1)!
.

This is the probability that the cycles of the product of a uniformly random permutation in
C(n, p) with a uniformly random n-cycle refine a given set partition of [n] having blocks of sizes
α1, α2, . . . , αk.

Via (10), proving Theorem 8 amounts to enumerate Sα(n, p) :=
⋃

λ⊢n,ℓ(λ)=p S
α
λ , and by (4) and

Theorem 6 one gets

#Sα(n, p) =
∑

λ⊢n,ℓ(λ)=p

[pλ(x)]G
α
n(x, 1) =

=

n−m
∑

r=0

n−k−r+1
∑

ℓ=1

A(n, p, ℓ)

(

1− k

r

)

n(n− ℓ)!(n − k − r)!

(n− k − r − ℓ+ 1)!

(

n+ k − 1

n−m− r

)

, (12)

where A(n, p, ℓ) :=
∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x).

Lemma 9. For any positive integers p, ℓ ≤ n

∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x) =
(−1)ℓ−p

ℓ!

(

n− 1

ℓ− 1

)

c(ℓ, p), (13)

where c(a, b) are the signless Stirling numbers of the first kind.

Proof. For this proof we use the principal specialization of symmetric functions, that is, their
evaluation at x = 1a := {1, 1, . . . , 1, 0, 0 . . .} (a ones). Since pγ(1

a) = aℓ(γ) for any positive integer
a, one gets

∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a) =

n
∑

p=1

ap
∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x). (14)

Now, since mλ(1
a) counts the a-tuples of non-negative integers such that the positive ones are the

same as the parts of λ (in some order), the left-hand side of (14) counts the a-tuples of non-negative
integers with ℓ positive ones summing to n. Thus,

∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a) =

(

n− 1

ℓ− 1

)(

a

ℓ

)

. (15)

The right-hand sides of (14) and (15) are polynomials in a, so they are equal as polynomials
and one can identify their coefficients. Extracting the coefficient of ap gives (13) since [ap]

(

a
ℓ

)

=
(−1)ℓ−p

ℓ! c(ℓ, p).

Using Lemma 9 in (12) gives

#Sα(n, p) = n!

n−m
∑

r≥0

(

1− k

r

)(

n+ k − 1

n−m− r

) n−k−r+1
∑

ℓ=1

(−1)ℓ−pc(ℓ, p)

ℓ!

(

n− k − r

ℓ− 1

)

, (16)

which we simplify using the following lemma.
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Lemma 10. For any nonnegative integer a,
a
∑

q=0

(−1)q+1−pc(q + 1, p)

(q + 1)!

(

a

q

)

=
c(a+ 1, p)

(a+ 1)!
.

Proof. The left-hand side equals [xp]
∑a

q=0

(

x
q+1

)(

a
q

)

. Using the Chu-Vandermonde identity this

equals [xp]
(

x+a
a+1

)

which is precisely the right-hand side.

Using Lemma 10 in (16) gives

#Sα(n, p) = n!
n−m
∑

r=0

c(n − k − r + 1, p)

(n− k − r + 1)!

(

1− k

r

)(

n+ k − 1

n−m− r

)

, (17)

which is equivalent to (11) via (3). This completes the proof of Theorem 8. �

In the case p = 1, the expression (11) for the probability σα(1) = σα
(n) can be written as a sum

of m− k terms instead. We state this below.

Corollary 11. Let α be a composition of m with k parts. Then the separation probabilities σα
(n)

(separation for the product of two uniformly random n-cycles) is

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n+ k)(n− 1)!

(

(−1)n−m
(

n−1
k−2

)

(

n+m
m−k

) +
m−k
∑

r=0

(−1)r
(

m−k
r

)(

n+r+1
m

)

(

n+k+r
r

)

)

.

The equation in Corollary 11 already stated in the introduction, is particularly simple when
m− k is small. For α = 1k (i.e. m = k) one gets the result stated at the beginning of this paper:

σ1k

(n) =

{

1
k! if n− k odd,
1
k! +

2
(k−2)!(n−k+1)(n+k) if n− k even.

(18)

In order to prove Corollary 11 we start with the expression obtained by setting p = 1 in (11):

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n− 1)!

n−m
∑

r=0

(

1− k

r

)

1

n− k − r + 1

(

n+ k − 1

n−m− r

)

=
(n−m)!

∏k
i=1 αi!

(n− 1)!
[xn−m](1 + x)1−k

n+k−1
∑

r=0

xr

r +m− k + 1

(

n+ k − 1

r

)

. (19)

We now use the following polynomial identity.

Lemma 12. For non-negative integers a, b, one has the following identity between polynomials
in x:

a
∑

i=0

xi

i+ b+ 1

(

a

i

)

=
1

(a+ 1)

(

1
(

a+b+1
b

)

(−x)b+1
−

b
∑

i=0

(

b
i

)

(x+ 1)a+i+1

(

a+i+1
i

)

(−x)i+1

)

. (20)

Proof. It is easy to see that the left-hand side of (20) is equal to 1
xb+1

∫ x

0 (1 + t)atbdt. Now this
integral can be computed via integration by parts. By a simple induction on b, this gives the
right-hand side of (20).
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Now using (20) in (19), with a = n+ k − 1 and b = m− k, gives

σα
(n) =

(n −m)!
∏k

i=1 αi!

(n + k)(n − 1)!
[xn−m]

(

(1 + x)1−k

(

n+m
m−k

)

(−x)m−k+1
−

m−k
∑

r=0

(

m−k
r

)

(1 + x)n+r+1

(

n+k+r
r

)

(−x)r+1

)

=
(n −m)!

∏k
i=1 αi!

(n + k)(n − 1)!

(

(−1)n−m
(

n−1
k−2

)

(

n+m
m−k

) +

m−k
∑

r=0

(−1)r
(

m−k
r

)(

n+r+1
m

)

(

n+k+r
r

)

)

.

This completes the proof of Corollary 11. �

3.2 Case when π is a fixed-point-free involution

Given a composition α of m ≤ 2N with k parts, we define

Hα
N (t) :=

∑

(π,A)∈Sα

2N

texcess(π,A),

where excess(π,A) is the number of cycles of the product π ◦ (1, 2, . . . , 2N) containing none of
the elements of A and where π is a fixed-point-free involution of [2N ]. Note that Hα

N (t) =
[p2N (x)]G

α
2N (x, t). We now give an explicit expression for this series.

Theorem 13. For any composition α of m ≤ 2N of length k, the generating series Hα
N (t + k) is

given by

Hα
N (t+ k) = N

min(2N−m,N−k+1)
∑

r=0

(

t

r

)

2k+r−N (2N − k − r)!

(N − k − r + 1)!

(

2N + k − 1

2N −m− r

)

. (21)

Consequently the separation probabilities for the product of a fixed-point-free involution with a
2N -cycle are given by

σα
2N =

∏k
i=1 αi!

(2N − 1)!(2N − 1)!!

min(2N−m,N−k+1)
∑

r=0

(

1− k

r

)

2k+r−N−1 (2N − k − r)!

(N − k − r + 1)!

(

2N + k − 1

2N −m− r

)

.

(22)

Remark 14. It is possible to prove Theorem 13 directly using ideas similar to the one used to
prove Theorem 6 in Section 2. This will be explained in more details in Section 5. In the proof
given below, we instead obtain Theorem 13 as a consequence of Theorem 6.

The rest of this section is devoted to the proof of Theorem 13. SinceHα
N(t) = [p2N (x)]G

α
2N (x, t),

Theorem 6 gives

Hα
N (t+ k) = (23)

2N−m
∑

r=0

(

t

r

)(

2N + k − 1

2N −m− r

)N−k−r+1
∑

s=0

2N(N − s)!(2N − k − r)!

(N − k − r − s+ 1)!
[p2N (x)]

∑

λ⊢2N, ℓ(λ)=N+s

mλ(x).

We then use the following result.

Lemma 15. For any nonnegative integer s ≤ N ,

[p2N (x)]
∑

λ⊢2N, ℓ(λ)=N+s

mλ(x) =
(−1)s

2ss!(N − s)!
.

9



Proof. For partitions λ, µ of n, we denote Sλ,µ = [pλ(x)]mµ(x) and Rλ,µ = [mλ(x)]pµ(x). The
matrices S = (Sλ,µ)λ,µ⊢n andR = (Rλ,µ)λ,µ⊢n are the transition matrices between the bases {pλ}λ,⊢n
and {mλ}λ⊢n of symmetric functions of degree n, hence S = R−1. Moreover the matrix R is easily
seen to be lower triangular in the dominance order, that is, Rλ,µ = 0 unless λ1 + λ2 + · · · + λi ≤
µ1+µ2+ · · ·+µi for all i ≥ 1 ([10, Prop. 7.5.3]). Thus the matrix S = R−1 is also lower triangular
in the dominance order. Since the only partition of 2N of length N + s that is not larger than the
partition 2N in the dominance order is 12s2N−s, one gets

[p2N (x)]
∑

λ⊢2N, ℓ(λ)=N+s

mλ(x) = [p2N (x)]m12s2N−s(x). (24)

To compute this coefficient we use the standard scalar product 〈·, ·〉 on symmetric functions (see
e.g. [10, Sec. 7]) defined by 〈pλ, pµ〉 = zλ if λ = µ and 0 otherwise, where zλ was defined at the
end of Section 1. From this definition one immediately gets

[p2N ]m12s2N−s =
1

z2N
〈p2N ,m12s2N−s〉 =

1

N !2N
〈p2N ,m12s2N−s〉. (25)

Let {hλ} denote the complete symmetric functions. It is known that 〈hλ,mµ〉 = 1 if λ = µ and 0
otherwise, therefore 〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N . Lastly, since p2N = (p2)

N and p2 = 2h2 − h21
one gets

〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N = [h2s1 hN−s
2 ] (2h2 − h21)

N = 2N−s(−1)s
(

N

s

)

. (26)

Putting together (24), (25) and (26) completes the proof.

By Lemma 15, Equation (23) becomes

Hα
N (t+ k) =

2N−m
∑

r=0

(

t

r

)(

2N + k − 1

2N −m− r

)N−k−r+1
∑

s=0

2N(N − s)!(2N − k − r)!

(N − k − r − s+ 1)!

(−1)s

2ss!(N − s)!

= 2N

2N−m
∑

r=0

(

t

r

)

(2N − k − r)!

(N − k − r + 1)!

(

2N + k − 1

2N −m− r

)N−k−r+1
∑

s=0

(

N − k − r + 1

s

)

(−1)s

2s

= 2N

min(2N−m,N−k+1)
∑

r=0

(

t

r

)

(2N − k − r)!

(N − k − r + 1)!

(

2N + k − 1

2N −m− r

)

(1/2)N−k−r+1,

where the last equality uses the binomial theorem. This completes the proof of Equation (21).
Equation (22) then immediately follows from the case t = 1− k of (21) via (3). This completes the
proof of Theorem 13. �

4 Adding fixed points to the permutation π

In this section we obtain a relation between the separation probabilities σα
λ and σα

λ′ , when the
partition λ′ is obtained from λ by adding some parts of size 1. Our main result is given below.

Theorem 16. Let λ be a partition of n with parts of size at least 2 and let λ′ be the partition
obtained from λ by adding r parts of size 1. Then for any composition α = (α1, . . . , αk) of m ≤ n+r
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of length k,

#Sα
λ′ =

m−k
∑

p=0

(

n+ p

n

(

n+m+ r − p

n+m

)

+
m− p

n

(

n+m+ r − p− 1

n+m

))(

m− k

p

)

#S
(m−k−p+1,1k−1)
λ .

(27)
Equivalently, in terms of separation probabilities,

σα
λ′ =

n!
(

n+r
α1,...,αk,n+r−m

)(

n+r
r

)

m−k
∑

p=0

(

n+p
n

(

n+m+r−p
n+m

)

+ m−p
n

(

n+m+r−p−1
n+m

)

)

(

m−k
p

)

(n+m+ p)!(m− k − p+ 1)!
σ
(m−k−p+1,1k−1)
λ .

(28)

For instance, when α = 1k Theorem 16 gives

σ1k

λ′ =

(

n+r−k
r

)

(

n+r
r

)2

((

n+ r + k

n+ k

)

+
k

n

(

n+ r + k − 1

n+ k

))

σ1k

λ .

The rest of the section is devoted to proving Theorem 16. Observe first that (28) is a simple
restatement of (27) via (3) (using the fact that #Cλ′ =

(

n+r
n

)

#Cλ). Thus it only remains to
prove (27), which amounts to enumerating Sα

λ′ . For this purpose, we will first define a mapping

Ψ from Sα
λ′ to Ŝα

λ , where Ŝα
λ is a set closely related to Sα

λ . We shall then count the number of

preimages of each element in Ŝα
λ under the mapping Ψ. Roughly speaking, if (π′, A) is in Sα

λ′ and
the tuple A = (A1, . . . , Ak) is thought as “marking” some elements in the cycles of the permutation
ω = π′ ◦ (1, 2, . . . , n+ r), then the mapping Ψ simply consists in removing all the fixed points of π′

from the cycle structure of ω and transferring their “marks” to the element preceding them in the
cycle structure of ω.

We introduce some notation. A multisubset of [n] is a function M which associates to each
integer i ∈ [n] its multiplicity M(i) which is a non-negative integer. The integer i is said to be in the
multisubsetM ifM(i) > 0. The size ofM is the sum of multiplicities

∑n
i=1 M(i). For a composition

α = (α1, . . . , αk), we denote by Âα
n the set of tuples (M1, . . . ,Mk) of disjoint multisubsets of [n]

(i.e., no element i ∈ [n] is in more than one multisubset) such that the multisubset Mj has size αj

for all j ∈ [k]. For M = (M1, . . . ,Mk) in Âα
n we say that a permutation π is M -separated if no

cycle of π contains elements of more than one of the multisubsets Mj . Lastly, for a partition λ of
n we denote by Ŝα

λ the set of pairs (π,M) where π is a permutation in Cλ, and M is a tuple in Âα
n

such that the product π ◦ (1, 2, . . . , n) is M -separated.
We now set λ, λ′, α, k,m, n, r to be as in Theorem 16, and define a mapping Ψ from Sα

λ′ to Ŝα
λ .

Let π′ be a permutation of [n + r] of cycle type λ′, and let e1 < e2 < · · · < en ∈ [n + r] be the
elements not fixed by π′. We denote ϕ(π′) the permutation π defined by setting π(i) = π(j) if
π′(ei) = π′(ej).

Remark 17. If e1 < e2 < · · · < en ∈ [n+ r] are the elements not fixed by π′ and π = ϕ(π′), then
the cycle structure of the permutation π′ ◦ (1, 2, . . . , n + r) is obtained from the cycle structure of
π ◦ (1, 2, . . . , n) by replacing each element i ∈ [n − 1] by the sequence of elements Fi = ei, ei +
1, ei+2, . . . , ei+1−1, and replacing the element n by the sequence of elements Fn = en, en+1, en+
2, . . . , n+ r, 1, 2, . . . , e1− 1. In particular, the permutations π ◦ (1, 2, . . . , n) and π′ ◦ (1, 2, . . . , n+ r)
have the same number of cycles.

Now given a pair (π′, A) in Sα
λ′ , where A = (A1, . . . , Ak), we consider the pair Ψ(π′, A) = (π,M),

where π = ϕ(π′) and M = (M1, . . . ,Mk) is a tuple of multisubsets of [n] defined as follows: for all

11



j ∈ [k] and all i ∈ [n] the multiplicity Mj(i) is the number of elements in the sequence Fi belonging
to the subset Aj (where the sequence Fi is defined as in Remark 17). It is easy to see that Ψ is a
mapping from Sα

λ′ to Ŝα
λ .

We are now going to evaluate #Sα
λ′ by counting the number of preimages of each element in Ŝα

λ

under the mapping Ψ. As we will see now, the number of preimages of a pair (π,M) in Ŝα
λ only

depends on M .

Lemma 18. Let (π,M) ∈ Ŝα
λ , where M = (M1, . . . ,Mk). Let s be the number of elements

appearing in the multisets M1, . . . ,Mk, and let x =
∑k

j=1Mj(n) be the multiplicity of the integer n.
Then the number of preimages of the pair (π,M) under the mapping Ψ is

#Ψ−1(π,M) =















(

n+ r + s

n+m

)

if x = 0,

x

(

n+ r + s

n+m

)

+

(

n+ r + s− 1

n+m

)

otherwise.

(29)

Proof. We adopt the notation of Remark 17. In order to construct a preimage (π′, A) of (π,M),
where A = (A1, . . . , Ak), one has to
(i) choose for all i ∈ [n] the length fi > 0 of the sequence Fi (with

∑n
i=1 fi = n+ r),

(ii) choose the position b ∈ [fn] corresponding to the integer n+ r in the sequence Fn,
(iii) if Mj(i) > 0 for some i ∈ [n] and j ∈ [k], then choose which Mj(i) elements in the sequence

Fi are in the subset Aj .
Indeed, by Remark 17 the choices (i), (ii) determines the permutation π′ ∈ Cλ′ (the non-initial
elements of the sequences Fi will be the fixed-points of π′), while the choice (iii) determines the
tuple of subsets A = (A1, . . . , Ak).

We will now count the number ways of making the choices (i), (ii), (iii) by encoding such choices
as rows of (marked and unmarked) boxes as illustrated in Figure 2. We treat separately the cases
x = 0 and x 6= 0. Suppose first x = 0. To each i ∈ [n] we associate a row of boxes Ri encoding the
choices (i), (ii), (iii) as follows:
(1) if i 6= n and Mj(i) = 0 for all j ∈ [k], then the row Ri is made of fi boxes, the first of which

is marked,
(2) if i 6= n and Mj(i) > 0 for some j ∈ [k], then the row Ri is made of fi + 1 boxes, with the

first box being marked and Mj(i) other boxes being marked (the marks represent the choice
(iii)),

(3) the row Rn is made of fn + 1 boxes, with the first box being marked and an additional box
being marked and called special marked box (the special marked box represents the choice
(ii)).

There is no loss of information in concatenating the rows R1, R2, . . . , Rn given that M is known
(indeed the row Ri starts at the (i + Ni)th marked box, where Ni =

∑

h<i

∑k
j=1Mj(h)). This

concatenation results in a row of n+ r+ s+1 boxes with n+m+1 marks with the first box being
marked (and the last mark being “special”); see Figure 2. Moreover there are

(

n+r+s
n+m

)

such rows
of boxes and any of them can be obtained for some choices of (i), (ii), (iii). This proves the case
x = 0 of Lemma 18.

We now suppose x > 0. We reason similarly as above but there are now two possibilities for the
row Rn, depending on whether or not the integer n+ r belongs to one of the subsets A1, . . . , Ak. In
order to encode a preimage such that n+ r belong to one of the subsets A1, . . . , Ak the condition
(3) above must be changed to

12



R1 (f1 = 4) R2 (f2 = 2) R3 (f3 = 2) R4 (f4 = 5) R5 (f5 = 1) R6 (f6 = 3, x = 2)

Figure 2: Example of choices (1),(2),(3) encoded by a sequence of boxes, some of which being
marked (indicated in grey) and one of which being special (indicated with a cross). Here n = 6,
k = 2, r = 11, x = 0 and the multisubsets M1,M2 are defined by M1(1) = 1, M2(3) = 1, M1(4) = 3,
and Mj(i) = 0 for the other values of i, j.

(3’) the row Rn is made of fn+1 boxes, with the first box being marked and x other boxes being
marked, one of which called special marked box.

In this case, concatenating the rows R1, R2, . . . , Rn gives a row of n + r + s boxes with n + m
marks, with the first box being marked and one of the x last marked boxes being special. There
are x

(

n+r+s−1
n+m−1

)

such rows and each of them comes from a unique choice of (i), (ii) and (iii).
Lastly, in order to encode a preimage such that n + r does not belong to one of the subsets

A1, . . . , Ak the condition (3) above must be changed to
(3”) the row Rn is made of fn + 1 boxes, with the first box being marked and x + 1 other boxes

being marked, one of which called special marked box.
In this case, concatenating the rows R1, R2, . . . , Rn gives a row of n + r + s boxes with n+m+ 1
marks, with the first box being marked and one of the x+ 1 last marked box being special. There
are (x+ 1)

(

n+r+s−1
n+m

)

such rows and each of them comes from a unique choice of (i), (ii) and (iii).
Thus, in the case x > 0 one has

#Ψ−1(π,M) = x

(

n+ r + s− 1

n+m− 1

)

+ (x+ 1)

(

n+ r + s− 1

n+m

)

= x

(

n+ r + s

n+m

)

+

(

n+ r + s− 1

n+m

)

.

This completes the proof.

We now complete the proof of Theorem 16. For any composition γ = (γ1, . . . , γk), we denote
by Ŝα,γ

λ the set of pairs (π,M) in Ŝα
λ , where M = (M1, . . . ,Mk), such that for all j ∈ [k] the

multisubset Mj contains exactly γj distinct elements. Summing Equation (29) gives

∑

(π,M)∈Ŝα,γ
λ

#Ψ−1(π,M) =

(

(E(X) + P(X = 0))

(

n+ r + |γ|

n+m

)

+ P(X > 0)

(

n+ r + |γ| − 1

n+m

))

#Ŝα,γ
λ ,

(30)
where X is the random variable defined as X =

∑k
j=1Mj(n) for a pair (π,M) chosen uniformly

randomly in Ŝα,γ
λ , E(X) is the expectation of this random variable, and P(X > 0) = 1− P(X = 0)

is the probability that X is positive.

Lemma 19. With the above notation, E(X) =
m

n
, and P(X > 0) =

|γ|

n
.

Proof. The proof is simply based on a cyclic symmetry. For i ∈ [n] we consider the random variable
Xi =

∑k
j=1Mj(i) for a pair (π,M) chosen uniformly randomly in Ŝα,γ

λ . It is easy to see that all the

variables X1, . . . ,Xn = X are identically distributed since the set Ŝα,γ
λ is unchanged by cyclically

shifting the value of the integers 1, 2, . . . , n in pairs (π,M) ∈ Ŝα,γ
λ . Therefore,

nE(X) =

n
∑

i=1

E(Xi) = E

(

n
∑

i=1

Xi

)

= E(m) = m,
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and

nP(X > 0) =

n
∑

i=1

P(Xi > 0) = E

(

n
∑

i=1

1Xi>0

)

= E (|γ|) = |γ|.

We now enumerate the set Ŝα,γ
λ . Observe that any pair (π,M) in Ŝα,γ

λ can be obtained (in a
unique way) from a pair (π,A) in Sγ

λ by transforming A = (A1, . . . , Ak) into M = (M1, . . . ,Mk) as
follows: for each j ∈ [k] one has to assign a positive multiplicity Mj(i) for all i ∈ Aj so as to get a
multisubset Mj of size αj . There are

(

αj−1
γj−1

)

ways of performing the later task, hence

#Ŝα,γ
λ =

k
∏

i=1

(

αi − 1

γi − 1

)

#Sγ
λ .

Using this result and Lemma 19 in (30) gives

∑

(π,M)∈Ŝα,γ
λ

#Ψ−1(π,M) =

(

m+ n− |γ|

n

(

n+ r + |γ|

n+m

)

+
|γ|

n

(

n+ r + |γ| − 1

n+m

)) k
∏

i=1

(

αi − 1

γi − 1

)

#Sγ
λ .

Observe that the above expression is 0 unless γ is less than α componentwise. Finally, one gets

#Sα
λ′ =

∑

γ≤α, ℓ(γ)=k

(

m+ n− |γ|

n

(

n+ r + |γ|

n+m

)

+
|γ|

n

(

n+ r + |γ| − 1

n+m

)) k
∏

i=1

(

αi − 1

γi − 1

)

#Sγ
λ , (31)

where the sum is over compositions γ with k parts that are less than α componentwise. Lastly, by
Corollary 7, the cardinality #Sα

λ′ only depends on the composition α through the length and size of
α so one can use equation (31) with α = (m− k + 1, 1k−1) in order to obtain (27). This completes
the proof of Theorem 16. �

5 Bijective proofs and interpretation in terms of maps

In this section we explain how certain results of this paper can be interpreted in terms of maps,
and can be proved bijectively. In particular, we shall interpret the sets T α

γ,δ of “separated colored
factorizations” (defined in Section 2) in terms of maps. We can then extend a bijection from [1] in
order to prove bijectively the symmetry property stated in Corollary 7.

5.1 Interpretations of (separated) colored factorizations in terms of maps

We first recall some definitions about maps. Our graphs are undirected, and they can have mul-
tiple edges and loops. Our surfaces are two-dimensional, compact, boundaryless, orientable, and
considered up to homeomorphism; such a surface is characterized by its genus. A connected graph
is cellularly embedded in a surface if its edges are not crossing and its faces (connected components
of the complementary of the graph) are simply connected. A map is a cellular embedding of a
connected graph in an orientable surface considered up to homeomorphism. A map is represented
in Figure 3. By cutting an edge in its midpoint one gets two half-edges. A map is rooted if one
of its half-edges is distinguished as the root. In the following we shall consider rooted bipartite
maps, and consider the unique proper coloring of the vertices in black and white such that the root
half-edge is incident to a black vertex.
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(a) (b)

Figure 3: (a) A rooted bipartite one-face map. (b) A rooted bipartite tree-rooted map (the spanning
tree is indicated by thick lines). The rooting is indicated by an arrow preceding the root half-edge
in clockwise order around the incident vertex.

By a classical encoding (see e.g. [6]), for any partitions λ, µ of n, the solutions (π1, π2) ∈ Cλ×Cµ
of the equation π1 ◦ π2 = (1, 2, . . . , n) are in bijection with the rooted one-face bipartite maps such
that black and white vertices have degrees given by the permutations λ and µ respectively (that is,
the number of vertices of degree i is equal to the number of parts equal to i). Let γ = (γ1, . . . , γℓ),
δ = (δ1, . . . , δℓ′) be compositions of n and let α = (α1, . . . , αk) be a composition of m ≤ n. A
rooted bipartite map is (γ, δ)-colored if its black vertices are colored in [ℓ] (that is, every vertex
is assigned a “color” in [ℓ]) in such a way that γi edges are incident to black vertices of color i,
and its white vertices are colored in [ℓ′] in such a way that δi edges are incident to white vertices
of color i. Through the above mentioned encoding, the set Bγ,δ of colored factorizations of the
n-cycles defined in Section 2 corresponds to the set of (γ, δ)-colored rooted bipartite one-face maps.
Similarly, the sets T α

γ,δ of “separated colored factorizations” corresponds to the set of (γ, δ)-colored
rooted bipartite one-face maps with some marked edges, such that for all i ∈ [k] exactly αi marked
edges are incident to white vertices colored i.

The results in this paper can then be interpreted in terms of maps. For instance, one can
interpret (8) in the case m = k = 0 as follows:

∑

λ⊢n

∑

M∈Bλ

pλ(x) t
#white vertices = G∅

n(x, t) =

n
∑

r=1

∑

λ⊢n, ℓ(λ)≤n−r+1

mλ(x)

(

t

r

)

n(n− ℓ(λ))!(n − r)!

(n − r − ℓ(λ) + 1)!

(

n− 1

n− r

)

,

where Bλ is the set of rooted bipartite one-face maps such that black vertices have degrees given
by the permutation λ. The results in Subsection 3.2 can also be interpreted in terms of general
(i.e., non-necessarily bipartite) maps. Indeed, the set MN = B2N can be interpreted as the set of
general rooted one-face maps with N edges (because a bipartite map in which every black vertex
has degree two can be interpreted as a general map upon contracting the black vertices). Therefore
one can interpret (21) in the case m = k = 0 as follows:

∑

M∈MN

t#vertices = H∅
N (t) = N

N+1
∑

r=1

(

t

r

)

2r−N (2N − r)!

(N − r + 1)!

(

2N − 1

2N − r

)

. (32)

This equation is exactly the celebrated Harer-Zagier formula [4].

5.2 Bijection for separated colored factorizations, and symmetry

In this section, we explain how some of our proofs could be made bijective. In particular we will
use bijective results obtained in [1] in order to prove the symmetry result stated in Corollary 7.
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We first recall the bijection obtained in [1] about the sets Bγ,δ. We call tree-rooted map is a
rooted map with a marked spanning tree; see Figure 3(b). We say that a bipartite tree-rooted map
is (ℓ, ℓ′)-labelled if it has ℓ black vertices labelled with distinct labels in [ℓ], and ℓ′ white vertices
labelled with distinct labels in [ℓ′]. It was shown in [1] that for any compositions γ = (γ1, . . . , γℓ),
δ = (δ1, . . . , δℓ′) of n, the set Bγ,δ is in bijection with the set of (ℓ, ℓ′)-labelled bipartite tree-rooted
maps such that the black (resp. white) vertex labelled i has degree γi (resp. δi).

From this bijection, it is not too hard to derive the enumerative formula (7) (see Remark 21).
We now adapt the bijection established in [1] to the sets T α

γ,δ of “separated colored factorizations”.
For a composition α = (α1, . . . , αk), a (ℓ, ℓ′)-labelled bipartite maps is said to be α-marked if αi

edges incident to the white vertex labelled i are marked for all i in [k]; see Figure 4.

Theorem 20. The bijection in [1] extends into a bijection between the set T α
γ,δ and the set of

α-marked (ℓ, ℓ′)-labelled bipartite tree-rooted maps with n edges such that the black (resp. white)
vertex labelled i has degree γi (resp. δi).

By Theorem 20, the set T α
γ (r) specified by Definition 2 is in bijection with the set T̃ α

γ (r) of
α-marked (ℓ, k + r)-labelled bipartite tree-rooted maps with n edges such that the black vertex
labelled i has degree γi. We will now explain bijectively why

#T α
γ (r) = #T β

γ (r), (33)

whenever the compositions α and β have the same length and size. Observe that, in turn, Equation
(33) readily implies Corollary 7.

In order to prove (33) bijectively, it is convenient to interpret maps as graphs endowed with
a rotation-system. A rotation-system of a graph G is an assignment for each vertex v of G of a
cyclic ordering of the half-edges incident to v. Any map M defines a rotation-system ρ(M) of the
underlying graph: the cyclic orderings are given by the clockwise order of the half-edges around
the vertices. This correspondence is in fact bijective (see e.g. [7]): for any connected graph G the
mapping ρ gives a bijection between maps having underlying graph G and the rotation-systems
of G. Using the “rotation-system” interpretation, any map can be represented in the plane (with
edges allowed to cross each other) by choosing the clockwise order of the half-edges around each
vertex to represent the rotation-system; this is the convention used in Figures 4 and 5.

3 3 4

5

4

3 2

1

2 *

*

*

*

3 3

2

1

*

5 1 5

4

1

*

5 1

*

ϕ1,3

* *

4

2

*

e3

e1

e
′

1

Figure 4: A (3, 1, 1)-marked (4, 5)-labelled bipartite tree-rooted maps (left) and the (2, 1, 2)-marked
(4, 5)-labelled bipartite tree-rooted maps obtained by applying the mapping ϕ1,3. In this figure,
the maps are represented using the “rotation system interpretation”, so that the edge-crossings are
irrelevant. The spanning trees are drawn in thick lines, the marked edges are indicated by stars,
and the root half-edge is indicated by an arrow preceding it clockwise around the incident vertex.

We now prove (33). It is sufficient to consider the case α = (α1, . . . , αk), β = (β1, . . . , βk) with
βi = αi − 1, βj = αj + 1 and αs = βs for s 6= i, j. Let M be an α-marked (ℓ, ℓ′)-labelled bipartite

16



tree-rooted map. We consider the path joining the white vertices i and j in the spanning tree of
M . Let ei and ej be the edges of this path incident to the white vertices i and j respectively; see
Figure 4. We consider the first marked edge e′i following ei in clockwise order around the vertex i
(note that ei 6= e′i since αi = βi +1 > 1). We then define ϕi,j(M) as the map obtained by ungluing
from the vertex i the half-edge of e′i as well as all the half-edges appearing strictly between ei and
e′i, and gluing them (in the same clockwise order) in the corner following ej clockwise around the
vertex j. Figure 4 illustrates the mapping ϕ1,3. It is easy to see that ϕi,j(M) is a tree-rooted map,
and that ϕi,j and ϕj,i are reverse mappings. Therefore ϕi,j(M) is a bijection between T̃ α

γ (r) and

T̃ β
γ (r). This proves (33).

Remark 21. By an argument similar to the one used above to prove (33), one can prove that
if γ, γ′, δ, δ′ are compositions of n such that ℓ(γ) = ℓ(γ′) and ℓ(δ) = ℓ(δ′) then Bγ,δ = Bγ′,δ′

(this is actually done in a more general setting in [2]). From this property one can compute the
cardinality of Bγ,δ by choosing the most convenient compositions γ, δ of length ℓ and ℓ′. We take
γ = (n − ℓ + 1, 1, 1, . . . , 1) and δ = (n − ℓ + 1, 1, 1, . . . , 1), so that #Bγ,δ is the number of (ℓ, ℓ′)-
labelled bipartite tree-rooted maps with the black and white vertices labelled 1 of degree n− ℓ+ 1
and n−ℓ′+1 respectively, and all the other vertices of degree 1. In order to construct such an object
(see Figure 5), one must choose the unrooted plane tree (1 choice), the labelling of the vertices

((ℓ−1)!(ℓ′−1)! choices), the n−ℓ−ℓ′+1 edges not in the tree (
(

n−ℓ
n−ℓ−ℓ′+1

)(

n−ℓ′

n−ℓ−ℓ′+1

)

(n−ℓ′−ℓ′+1)!
choices), and lastly the root (n choices). This gives (7).

2

1

3

2

4

1

4

3

3

Figure 5: A tree-rooted map in Bγ,δ, where γ = (8, 1, 1, 1, 1), δ = (9, 1, 1, 1). Here the map is
represented using the “rotation system interpretation”, so that the edge-crossings are irrelevant.

5.3 A direct proof of Theorem 13

In Section 3 we obtained Theorem 13 as a consequence of Theorem (6). Here we explain how to
obtain it directly.

First of all, by a reasoning identical to the one used to derive (5) one gets

Hα
N(t+ k) =

2N−m
∑

r=0

(

t

r

)

#Uα(r), (34)

where Uα(r) is the set of triples (π,A, c2) where π is a fixed-point free involution of [2N ], A is in
Aα

n and c2 is a a cycle-coloring of the product π ◦ (1, 2, . . . , 2N) in [k + r] such that every color in
[k + r] is used and for all i in [k] the elements in the subset Ai are colored i.

In order to enumerate Uα(r) one consider for each composition γ = (γ1, . . . , γℓ) the set Mγ

of pairs (π, c2), where π is a fixed-point-free involution of [2N ] and c2 is a cycle-coloring of the
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permutation π ◦ (1, 2, . . . , 2N) such that γi elements are colored i for all i ∈ [ℓ]. One then uses the
following analogue of (7):

#Mγ =
N(2N − ℓ)!

(N − ℓ+ 1)!
2ℓ−N . (35)

Using this result in conjunction with Lemma 5, one then obtains the following analogue of (6)

#Uα(r) =
N(2N − k − r)!

(N − k − r + 1)!

(

2N + k − 1

2N −m− r

)

.

Plugging this result in (34) completes the proof of Theorem 13.

Similarly as (7), Equation (35) can be obtained bijectively. Indeed by a classical encoding, the
set Mγ is in bijection with the set of rooted one-face maps with vertices colored in [ℓ] in such
a way that for all i ∈ [ℓ], there are exactly γi half-edges incident to vertices of color i. Using
this interpretation, it was proved in [1] that the set Mγ is in bijection with the set of tree-rooted
maps with ℓ vertices labelled with distinct labels in [ℓ]. The later set is easy to enumerate (using
symmetry as in Remark 21) and one gets (35).

6 Concluding remarks: strong separation and connection coeffi-
cients

Given a tuple A = (A1, . . . , Ak) of disjoint subsets of [n], a permutation π is said to be strongly
A-separated if each of the subset Ai, i ∈ [k] is included in a distinct cycle of π. Given a partition
λ of n and a composition α of m ≤ n, we denote by πα

λ the probability that the product ω ◦ ρ is
strongly A-separated, where π (resp. ρ) is a uniformly random permutation of type λ (resp. (n))
and A is a fixed tuple in Aα

n. In particular, for a composition α of size m = n, one gets

πα
λ =

Kα
λ,(n)

(n− 1)! #Cλ
,

where Kα
λ,(n) is the connection coefficient of the symmetric group counting the number of solutions

(ω, ρ) ∈ Cλ × C(n), of the equation ω ◦ ρ = π where π is a fixed permutation of cycle type α.
We now argue that the separation probabilities {σα

λ}α|=m computed in this paper are enough
to determine the probabilities {πα

λ}α|=m. Indeed, it is easy to prove that

σα
λ =

∑

β�α

Rα,βπ
β
λ , (36)

where the sum is over the compositions β = (β1, . . . , βℓ) of size m = |α| such that there exists
0 = j0 < j1 < j2 < · · · < jk = ℓ such that (βji−1+1, βji−1+1, . . . , βji) is a composition of αi for all

i ∈ [k], and Rα,β =
∏k

i=1 Ri where Ri is the number of ways of partitioning a set of size αi into
blocks of respective sizes βji−1+1, βji−1+1, . . . , βji . Moreover, the matrix (Rα,β)α,β|=m is invertible
(since upper triangular for the lexicographic ordering of compositions). Thus, from the separation
probabilities {σα

λ}α|=m one can deduce the strong separation probabilities {πα
λ}α|=m and in partic-

ular, for m = n, the connection coefficients Kα
λ,(n) of the symmetric group.
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