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We follow symmetric function notation and terminology from [4, Ch. 7).
Let A F n, and let f* denote the number of standard Young tableaux of
shape \. Equivalently, f* is the dimension of the irreducible representation
of the symmetric group &,, indexed by A. Let ¢ be a prime, and let

n=ay+oal+aglt+---,

with 0 < a; < £, the base ¢ expansion of n. Let

P(z) =[] —2""

n>1

If G(x) is a power series, then [z*]G(z) denotes the coefficient of % in G(z).
Finally, write mg(n) for the number of partitions A  n for which f* is
relatively prime to ¢. I. G. Macdonald [1] showed that

my(n) = [ [l2*]P(2)". (1)

r>0

In particular, if each o, =0 or 1, s0 n = £ + %2 + ... with ky < ky < -+ -,
then
mg(n) — €k1+k2+---' (2>

Equation (2) had earlier been conjectured by J. McKay for ¢ = 2, inspiring
Macdonald to write his paper.

In this note we give a simpler approach to equation (1) based on sym-
metric functions, allowing us to extend the result to some other irreducible
character values of G,,.



Lemma 1. Let A\ = n. The number of ways to add a border strip of size
m >n to X is m.

Proof. Straightforward. [
First we do the special case (2).

Proof of equation (2). If f, g are symmetric functions over Z, then write
f = g(mod/{) to mean that every coefficient of f — g is divisible by ¢. Thus
p§ = pjer (mod ), so

no o fFipgka
b = D

= PpiPere -+ (mod /)

By the Murhanghan-Nakayama rule,

Pek1 Pk = -+ = Z Sgn(B)Ssh(B)a
B

where B is obtained by beginning with a hook B; of size ¢*1, then adjoining
a border strip By of size /%2, etc. Here sgn(B) = %1 and sh(B) is the shape
of B. By Lemma 1, there are ¢*! choices for By, then ¢*2 choices for B,, etc.,
so N = (kitkat choices in all. It is easy to see that all the shapes obtained
in this way are distinct. Hence pgr, pgr, - - - is a linear combination of N Schur
functions, each with sign +1. Now pf = >, f*sy, so taking p} modulo ¢
completes the proof. [J

Proof of equation (1). Now we obtain
Py =Py g - (mod ).
By Lemma 1 it follows that

my(n) = [ [ me(ont").

r>0

If we expand pj;” in terms of Schur functions, the shapes X that appear will be
those partitions of a,.¢" with empty ¢-core. Let puq,. .., tta, be the £"-quotient
of A. Let ¢; = |u;|. Then by standard properties of cores and quotients |2,
Exam. [.1.8, p. 12, and Exam. 1.5.2(b), p. 75],

ZM:’
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<p?rrv 8)\> = :l:(
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Because «, < p, it follows easily that

(ppr, sx) # 0 (modp).

Hence my(a,.£") is equal to the number of partitions of a,.f" with empty ¢"-
core. By [4, Exer. 7.59(e)] this number is [x%]P(x)*", and the proof follows.
OJ

Numerous generalizations suggest themselves.

e Can one determine for each 0 < ¢ < ¢ the number of A = n for which
f* =i (modl)?

e Rather than using pf = >_,,, s\, use
Z X ({3"))8x,
AFjin

where (j™) denotes the partition with n parts equal to j. For instance,
taking j = (% gives:

Proposition 2. Let A - (*n. The number of character values x* (€%, 0%, .. .)
(n terms equal to (*) that are not divisible by ¢ is equal to the number
of i 0*n for which f* is not divisible by ¢ (given by equation (1)).

What about other values of j, i.e., j # (%7

e Use h; instead of p;. Use [4, Exer. 7.61] to expand b = h;(a{ 25 ,...)
in terms of Schur functions. This will give Kostka number congruences.
For instance, let g(n) denote the number of odd Kostka numbers Ky (2ny,

A F 2n. Since ho(xf,xh,...) = ha|p,) (plethysm) is a linear combina-

tion of ("}') Schur functions with coefficients £1, we get g(2") = (*,1).

We apparently have
2N +1
g(2"+1) = ( 5 )

ren = (7))
g(2"+3) = 5(27;1).

What about g(2" — 1)? the values of g(n) for 1 < n < 15 are 1, 3, 5,
10, 10, 30, 50, 36, 36, 108, 180, 312, 312, 840, 1368 (I think).
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e What about ¢* (shifted SYT) instead of f*? And projective charac-
ters of &,, instead of ordinary ones? A relevant exercise might be [2,
Exam. 1.1.9, p. 14].

e What about differential posets? le., replace f* for A\ - n with the
number e(x) of saturated chains from 0 to an element z of rank n.
The Fibonacci differential poset in particular may be interesting. In
this case e(z) is the dimension of an irreducible representation of the
Okada algebra O,, [3], so we can also ask about congruence properties
of character values of O,,.
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