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1 Introdu
tion.

Let P be an n-element poset (partially ordered set), and let ! : P ! [n℄ =

f1; 2; : : : ; ng be a bije
tion, 
alled a labeling of P . We 
all the pair (P; !)

a labelled poset. A linear extension of P is an order-preserving bije
tion

f : P ! [n℄. We 
an regard f as de�ning a permutation � = �(f) of the

set [n℄ given by �(i) = j if f(!

�1

(j)) = i. We write � in the 
ustomary way

as a word a

1

a

2

� � �a

n

, where �(i) = a

i

= !(f

�1

(i)). We will say for instan
e

that f is an even linear extension of (P; !) if � is an even permutation (i.e.,

an element of the alternating group A

n

). Let E

P

denote the set of linear

extensions of P , and set L

P;!

= f�(f) : f 2 E

P

g

We say that (P; !) is sign-balan
ed if L

P;!


ontains the same number of

even permutations as odd permutations. Note that the parity of a linear

extension f depends on the labeling !. However, the notion of sign-balan
ed

depends only on P , sin
e 
hanging the labeling of P simply multiplies the

elements of L

P;!

by a �xed permutation in S

n

, the symmetri
 group of all

permutations of [n℄. Thus we 
an simply say that P is sign-balan
ed without

spe
ifying !.

We say that a fun
tion # : E

P

! E

P

is parity-reversing (respe
tively,

parity-preserving) if for all f 2 E

P

, the permutations �(f) and �(#(f)) have

1
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opposite parity (respe
tively, the same parity). Note that the properties

of parity-reversing and parity-preserving do not depend on !; indeed, # is

parity-reversing (respe
tively, parity-preserving) if and only if for all f 2 E

P

,

the permutation #f Æ f

�1

2 S

n

is odd (respe
tively, even),

Sign-balan
ed posets were �rst 
onsidered by Ruskey [20℄. He established

the following result, whi
h shows that many 
ombinatorially o

uring 
lasses

of posets, su
h as geometri
 latti
es and Eulerian posets, are sign-balan
ed.

1.1 Theorem. Suppose #P � 2. If every nonminimal element of

the poset P is greater than at least two minimal elements, then P is sign-

balan
ed.

Proof. Let � = a

1

a

2

a

3

� � �a

n

2 L

P;!

. Let �

0

= �(1; 2) = a

2

a

1

a

3

� � �a

n

2

S

n

. (We always multiply permutations from right to left.) By the hypothesis

on P , we also have �

0

2 L

P;!

. The map � 7! �

0

is a parity-reversing involution

(i.e., exa
tly one of � and �

0

is an even permutation) on L

P;!

, and the proof

follows. 2

The above proof illustrates what will be our basi
 te
hnique for showing

that a poset P is sign-balan
ed, viz., giving a bije
tion � : L

P;!

! L

P;!

su
h

that � and �(�) have opposite parity for all � 2 L

P;!

. Equivalently, we are

giving a parity-reversing bije
tion # : E

P

! E

P

.

In 1992 Ruskey [21, x5, item 6℄ 
onje
tured as to when the produ
tm�n

of two 
hains of 
ardinalities m and n is sign-balan
ed, viz., m;n > 1 and

m � n (mod 2). Ruskey proved this when m and n are both even by giving

a simple parity-reversing involution, whi
h we generalize in Proposition 4.1

and Corollary 4.2. Ruskey's 
onje
ture for m and n odd was proved by D.

White [32℄, who also 
omputed the \imbalan
e" between even and odd linear

extensions in the 
ase when exa
tly one of m and n is even (stated here as

Theorem 3.5). None of our theorems below apply to the 
ase when m and n

are both odd. Ruskey [21, x5, item 5℄ also asked what order ideals I (de�ned

below) of m� n are sign-balan
ed. Su
h order ideals 
orrespond to integer

partitions � and will be denoted P

�

; the linear extensions of P

�

are equivalent

to standard Young tableaux (SYT) of shape �. White [32℄ also determined

some additional � for whi
h P

�

is sign-balan
ed, and our results below will

give some further examples. In Se
tions 5 and 6 we 
onsider some analogous
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questions for the parity of the major index of a linear extension of a poset

P .

Given � = a

1

a

2

� � �a

n

2 L

P;!

, let inv(f) denote the number of inversions

of �, i.e.,

inv(�) = #f(i; j) : i < j; a

i

> a

j

g:

Let

I

P;!

(q) =

X

�2L

P;!

q

inv(f)

; (1)

the generating fun
tion for linear extensions of (P; !) by number of inversions.

Sin
e f is an even linear extension if and only if inv(f) is an even integer,

we see that P is sign-balan
ed if and only if I

P;!

(�1) = 0. In general I

P;!

(q)

seems diÆ
ult to understand, even when P is known to be sign-balan
ed.

I am grateful to Mar
 van Leeuwen for his many helpful suggestions re-

garding Se
tion 3.

2 Promotion and eva
uation.

Promotion and eva
uation are 
ertain bije
tions on the set E

P

of linear exten-

sions of a �nite poset P . They were originally de�ned by M.-P. S
h�utzenberger

[22℄ and have subsequently arisen is many di�erent situations (e.g., [6, x5℄[10,

x8℄[11, x4℄[16, x3℄). To be pre
ise, the original de�nitions of promotion and

eva
uation require an insigni�
ant reindexing to be
ome bije
tions. We will

in
orporate this reindexing into our de�nition. Let f : P ! [n℄ be a linear

extension of the poset P . De�ne a maximal 
hain u

0

< u

1

< � � � < u

`

of

P , 
alled the promotion 
hain of f , as follows. Let u

0

= f

�1

(1). On
e u

i

is

de�ned let u

i+1

be that element u 
overing u

i

(i.e., u

i

< u

i+1

and no s 2 P

satis�es u

i

< s < u

i+1

) for whi
h f(u) is minimal. Continue until rea
hing a

maximal element u

`

of P . Now de�ne the promotion g = �f of f as follows.

If t 6= u

i

for any i, then set g(t) = f(t) � 1. If 1 � i � k � 1, then set

g(u

i

) = f(u

i+1

)� 1. Finally set g(u

`

) = n. Figure 1 gives an example, with

the elements in the promotion 
hain of f 
ir
led. (The vertex labels in Fig-

ure 1 are the values of a linear extension and are unrelated to the (irrelevant)
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Figure 1: The promotion operator �

labeling !.) It is easy to see that �f 2 E

P

and that the map � : E

P

! E

P

is

a bije
tion.

2.1 Lemma. Let P be an n-element poset. Then the promotion operator

� : E

P

! E

P

is parity-reversing if and only if the length ` (or 
ardinality `+1)

of every maximal 
hain of P satis�es n � ` (mod 2). Similarly, � is parity-

preserving if and only if the length ` of every maximal 
hain of P satis�es

n � `+ 1 (mod2).

Proof. Let f 2 E

P

, and let u

0

< u

1

< : : : < u

`

be the promotion 
hain

of f . Then (�f)f

�1

is a produ
t of two 
y
les, viz.,

(�f)f

�1

= (n; n� 1; : : : ; 1)(b

0

; b

1

; : : : ; b

`

);

where b

i

= f(u

i

). This permutation is odd if and only if n � ` (mod2), and

the proof follows sin
e every maximal 
hain of P is the promotion 
hain of

some linear extension. 2

2.2 Corollary. Let P be an n-element poset, and suppose that the

length ` of every maximal 
hain of P satis�es n � ` (mod2). Then P is

sign-balan
ed.

Proof. By the previous lemma, � is parity-reversing. Sin
e it is also a
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Figure 2: The eva
uation operator eva
.

bije
tion, E

P

must 
ontain the same number of even linear extensions as odd

linear extensions. 2

We now 
onsider a variant of promotion known as eva
uation. For any

linear extension g of an m-element poset Q, let u

0

< u

1

< � � � < u

`

be

the promotion 
hain of g, so �g(u

`

) = m. De�ne �

g

(Q) = Q � fu

`

g. The

restri
tion of �g to �

g

(Q), whi
h we also denote by �g, is a linear extension

of �

g

(Q). Let

�

g;k

(Q) = �

�

k

g

�

�

k�1

g

� � � �

�g

�

g

(Q):

Now let #P = n and de�ne the eva
uation eva
(f) of f to be the linear

extension of P whose value at the unique element of �

g;k�1

(P ) � �

g;k

(P ) is

n � k + 1, for 1 � k � n. Figure 2 gives an example of eva
(f), where we


ir
le the values of eva
(f) as soon as they are determined. A remarkable

theorem of S
h�utzenberger [22℄ asserts that eva
 is an involution (and hen
e

a bije
tion E

P

! E

P

).

We say that the poset P is 
onsistent if for all t 2 P , the lengths of all

maximal 
hains of the prin
ipal order ideal �

t

:= fs 2 P : s � tg have the

same parity. Let �(t) denote the length of the longest 
hain of �

t

, and set

�(P ) =

X

t2P

�(t):

We also say that a permutation � of a �nite set has parity k 2 Z if either � and

k are both even or � and k are both odd. Equivalently, inv(�) � k (mod 2).

2.3 Proposition. Suppose that P is 
onsistent. Then eva
: E

P

! E

P

is parity-preserving if

�

n

2

�

� �(P ) is even, and parity-reversing if

�

n

2

�

� �(P )

is odd.
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Proof. The eva
uation of a linear extension f of an n-element poset P


onsists of n promotions Æ

1

; : : : ; Æ

n

, where Æ

i

is applied to a 
ertain subposet

P

i�1

of P with n � i + 1 elements. Let f

i

be the linear extension of P

whose restri
tion to P

i

agrees with Æ

i

Æ

i�1

� � � Æ

1

, and whose value at the unique

element of P

j�1

� P

j

for j � i is n � i + 1. Thus f

0

= f and f

n

= eva
(f).

(Figure 2 gives an example of the sequen
e f

0

; : : : ; f

5

.) Let u

i

be the end

(top) of the promotion 
hain for the promotion Æ

i

. Thus fu

1

; u

2

; : : : ; u

n

g = P .

Lemma 2.1 shows that if P is 
onsistent, then f

i

f

�1

i�1

has parity n� i + 1�

(�(u

i

) + 1). Hen
e the parity of eva
(f)f

�1

is given by

n

X

i=1

(n� i� �(u

i

)) =

�

n

2

�

�

X

t2P

�(P ) =

�

n

2

�

� �(P );

from whi
h the proof follows. 2

2.4 Corollary. Suppose that P is 
onsistent and

�

n

2

�

� �(P ) is odd.

Then P is sign-balan
ed.

Note. In [25, pp. 50{51℄[26, Cor. 19.5℄ it was shown using the theory of

P -partitions that the number e(P ) of linear extensions of P is even if P is

graded of rank ` (i.e., every maximal 
hain of P has length `) and n � ` is

even, and it was stated that it would be interesting to give a dire
t proof.

Our Corollary 2.2 gives a dire
t proof of a stronger result. Similarly in [25,

Cor. 4.6℄[26, Cor. 19.6℄ it was stated (in dual form) that if for all t 2 P all

maximal 
hains of �

t

have the same length, and if

�

n

2

�

� �(P ) is odd, then

e(P ) is even. Corollary 2.4 gives a dire
t proof of a stronger result.

3 Partitions.

In this se
tion we apply our previous results and obtain some new results for


ertain posets 
orresponding to (integer) partitions. We �rst review some no-

tation and terminology 
on
erning partitions. Further details may be found

in [29, Ch. 7℄. Let � = (�

1

; �

2

; : : :) be a partition of n, denoted � ` n or

j�j = n. Thus �

1

� �

2

� � � � � 0 and

P

�

i

= n. We 
an identify � with its

diagram f(i; j) 2 P � P : 1 � j � �

i

g. Let � be another partition su
h that

6



� � �, i.e., �

i

� �

i

for all i. De�ne the skew partition or skew diagram �=�

by

�=� = f(i; j) 2 P � P : �

i

+ 1 � j � �

i

g:

Write j�=�j = n to denote that j�j � j�j = n, i.e., n is the number of squares

in the shape �=�, drawn as a Young diagram [27, p. 29℄. We 
an regard �=�

as a subposet of P � P (with the usual 
oordinatewise ordering). We write

P

�=�

for this poset. As a set it is the same as �=�, but the notation P

�=�

emphasizes that we are 
onsidering it to be a poset. In this se
tion we will

only be 
on
erned with \ordinary" shapes �, but in Se
tion 5 skew shapes

�=� will arise as a spe
ial 
ase of Proposition 5.3.

The posets P

�

are 
onsistent for any �, so we 
an ask for whi
h P

�

is

eva
uation parity-reversing, i.e.,

�

n

2

�

��(P

�

) is odd. To this end, the 
ontent


(i; j) of the 
ell (i; j) is de�ned by 
(i; j) = j � i [29, p. 373℄. Also let O(�)

denote the number of odd parts of the partition �. An order ideal of a poset

P is a subset K � P su
h that if t 2 K and s < t, then s 2 K. Similarly

a dual order ideal or �lter of P is a subset F � P su
h that if s 2 F and

t > s, then t 2 F . If we su

essively remove two-element 
hains from P

�

whi
h are dual order ideals of the poset from whi
h they are removed, then

eventually we rea
h a poset 
ore

2

(P

�

), 
alled the 2-
ore of P

�

, that 
ontains

no dual order ideals whi
h are two-element 
hains. The 2-
ore is unique,

i.e., independent of the order in whi
h the dual order ideals are removed,

and is given by P

Æ

k

for some k � 1, where Æ

k

denotes the \stair
ase shape"

(k � 1; k � 2; : : : ; 1). For further information see [29, Exer. 7.59℄.

3.1 Proposition. Let � ` n. The following numbers all have the same

parity.

(a) �(P

�

)

(b)

P

t2P

�


(t)

(
)

1

2

(O(�)�O(�

0

))

(d)

1

2

(n�

�

k

2

�

), where

�

k

2

�

= #
ore

2

(P

�

)

Hen
e if a

�

denotes any of the above four numbers, then eva
uation is partity-

reversing on P

�

if and only if

�

n

2

�

� a

�

is odd.

7



Proof. It is easy to see that if t 2 P

�

, then �(t) � 
(t) (mod2). Hen
e

(a) and (b) have the same parity. It is well-known and easy to see [17, Exam.

3, p. 11℄ that

X

t2P

�


(t) =

X

�

�

i

2

�

�

X

�

�

0

i

2

�

:

Sin
e

P

�

i

=

P

�

0

i

, we have

X

t2P

�


(t) =

1

2

�

X

�

2

i

�

X

(�

0

i

)

2

�

:

Sin
e a

2

� 0; 1 (mod4) depending on whether a is even or odd, we see that

(b) and (
) have the same parity. If we remove from P

�

a 2-element dual

order ideal whi
h is also a 
hain, then we remove exa
tly one element with an

odd 
ontent. A 2-
ore is self-
onjugate and hen
e has an even 
ontent sum.

Hen
e the number of odd 
ontents of P

�

is equal to the number of dominos

that must be removed from P

�

in order to rea
h 
ore

2

(P

�

). It follows that

(b) and (
) have the same parity, 
ompleting the proof. 2

It 
an be shown [30℄ that if t(n) denotes the number of partitions � ` n

for whi
h a

�

is even, then t(n) =

1

2

(p(n) + f(n)), where p(n) denotes the

total number of partitions of n and

X

n�0

f(n)x

n

=

Y

i�1

1 + x

2i�1

(1� x

4i

)(1 + x

4i�2

)

2

:

Hen
e the number g(n) of partitions � ` n for whi
h eva
 is parity-reversing

on P

�

is given by

g(n) =

(

1

2

(p(n) + f(n)); if

�

n

2

�

is odd

1

2

(p(n)� f(n)); if

�

n

2

�

is even

We 
on
lude this se
tion with some appli
ations of the theory of domino

tableaux. A standard domino tableau (SDT) of shape � ` 2n is a sequen
e

� = �

0

� �

1

� � � � � �

n

= �

of partitions su
h that ea
h skew shape �

i

=�

i�1

is a domino, i.e., two squares

with an edge in 
ommon. Ea
h of these dominos is either horizontal (two

8



squares in the same row) or verti
al (two squares in the same 
olumn). Let

Dom

�

denote the set of all SDT of shape �. Given D 2 Dom

�

, de�ne ev(D)

to be the number of verti
al dominos in even 
olumns of D, where an even


olumn means the 2ith 
olumn for some i 2 P. For the remainder of this

se
tion, �x the labeling ! of P

�

to be the usual \reading order," i.e., the

�rst row of � is labelled 1; 2; : : : ; �

1

; the se
ond row is labelled �

1

+ 1; �

1

+

2; : : : ; �

1

+ �

2

, et
. We write I

�

(q) for I

P

�

;!

(q) and set I

�

= I

�

(�1), the

imbalan
e of the partition �. It is shown in [32, Thm. 12℄ (by analyzing the

formula that results from setting q = �1 in (13)) that

I

�

=

X

D2Dom

�

(�1)

ev(D)

:

Let � ` n. Las
oux, Le
ler
 and Thibon [14, (27)℄ de�ne a 
ertain 
lass

of symmetri
 fun
tions

~

G

(k)

�

(x; q) (de�ned earlier by Carr�e and Le
ler
 [4℄ for

the spe
ial 
ase k = 2 and � = 2�). We will only be 
on
erned with the 
ase

k = 2 and q = �1, for whi
h we write G

�

=

~

G

(2)

�

(x;�1). The symmetri


fun
tion G

�

vanishes unless 
ore

2

(�) = �, so we may assume n = 2m. If


ore

2

(�) = �, then G

�

is homogeneous of degreem = n=2. We will not de�ne

it here but only re
all the properties relevant to us. The 
onne
tion with the

imbalan
e I

�

is provided by the formula (immediate from the de�nition of

G

�

in [14℄ together with [32, Thm. 12℄)

[x

1

� � �x

m

℄G

�

= (�1)

r(�)

I

�

; (2)

where [x

1

� � �x

m

℄F denotes the 
oeÆ
ient of x

1

� � �x

m

in the symmetri
 fun
-

tion F , and r(�) is the maximum number of verti
al dominos that 
an appear

in even 
olumns of a domino tableau of shape �. Also de�ne d(�) to be the

maximum number of disjoint verti
al dominos that 
an appear in the diagram

of �, i.e.,

d(�) =

X

i

�

1

2

�

0

2i

�

:

Note that d(�) � r(�), but equality need not hold in general. For instan
e,

d(4; 3; 1) = 1, r(4; 3; 1) = 0. However, we do have d(2�) = r(2�) for any

partition �. Let us also note that our r(�) is denoted d(�) in [32℄ and is

de�ned only for � with an empty 2-
ore.

9



3.2 Theorem. (a) We have

X

�`m

I

2�

= 1

for all m � 1.

(b) Let v(�) denote the maximum number of disjoint verti
al dominos

that �t in the shape �. Equivalently,

v(�) =

X

i�1

�

1

2

�

0

i

�

:

Then

X

�`2m

(�1)

v(�)

I

2

�

= 0:

Proof. (a) Barbas
h and Vogan [2℄ and Gar�nkle [9℄ de�ne a bije
tion

between elements � of the hypero
tahedral group B

m

, regarded as signed

permutations of 1; 2; : : : ; m, and pairs (P;Q) of SDT of the same shape � `

2m. (See [15, p. 25℄ for further information.) A 
ru
ial property of this

bije
tion, stated impli
itly without proof in [12℄ and proved by Shimozono

and White [23, Thm. 30℄, asserts that

t
(�) =

1

2

(v(P ) + v(Q)); (3)

where t
(�) denotes the number of minus signs in � and v(R) denotes the

number of verti
al dominos in the SDT R.

Carr�e and Le
ler
 [4, Def. 9.1℄ de�ne a symmetri
 fun
tion H

�

(x; q) whi
h

satis�es H

�

(x;�1) = (�1)

v(�)

G

2�

. In [12, Thm. 1℄ is stated the identity

X

�

H

�

(x; q) =

Y

i

1

1� x

i

Y

i<j

1

1� x

i

x

j

Y

i�j

1

1� qx

i

x

j

: (4)

The proof of (4) in [12℄ is in
omplete, sin
e it depends on a semistandard

version of the P = Q 
ase of (3) (easily dedu
ed from (3)), whi
h had not

yet been proved. The proof of (3) in [23℄ therefore 
ompletes the proof of

(4). A generalization of (4) was later given by Lam [13, Thm. 28℄.

10



Setting q = �1 in (4) gives

X

�

(�1)

v(�)

G

2�

=

Y

i

1

(1� x

i

)(1 + x

2

i

)

Y

i<j

1

1� x

2

i

x

2

j

:

Taking the 
oeÆ
ient of x

1

� � �x

m

on both sides and using (2) together with

v(�) = d(2�) = r(2�) 
ompletes the proof.

(b) It is easy to see that for any SDT D we have

v(D) = v(�)� 2d(�) + 2ev(D):

Thus by (3) we have

0 =

X

�2B

m

(�1)

t
(�)

=

X

P;Q

(�1)

1

2

(v(P )+v(Q))

=

X

�`2m

 

X

D2Dom

�

(�1)

1

2

v(D)

!

2

=

X

�`2m

(�1)

v(�)

 

X

D2Dom

�

(�1)

ev(D)

!

2

=

X

�`2m

(�1)

v(�)

I

2

�

: 2

In the same spirit as Theorem 3.2 we have the following 
onje
ture.

3.3 Conje
ture.

2

(a) For all n � 0 we have

X

�`n

q

v(�)

t

d(�)

x

v(�

0

)

y

d(�

0

)

I

�

= (q + x)

bn=2


: (5)

(b) If n 6� 1 (mod4), then

X

�`n

(�1)

v(�)

t

d(�)

I

2

�

= 0:

2

A 
ombinatorial proof of (a) was found by Thomas Lam [13℄ after this paper was

written. Later a 
ombinatorial proof of both (a) and (b) was given by Jonas Sj�ostrand [24℄.

Sj�ostrand's main result [24, Thm. 2.3℄ leads to further identities, su
h as

P

�`n

q

v(�)

I

2�

=

1, thereby generalizing our Theorem 3.2(a).

11



Figure 3: d(86655431) = d(86655431

0

)

It is easy to see that d(�) = d(�

0

) for all �. (E.g., 
onsider the horizontal

and verti
al line segments in Figure 3.) Hen
e the variable y is super
uous in

equation (5), but we have in
luded it for the sake of symmetry. In parti
ular,

if F

n

(q; t; x; y) denotes the left-hand side of (5) then

F

n

(q; 0; x; y) = F

n

(q; t; x; 0) = F

n

(q; 0; x; 0):

Note also that d(�) = 0 if and only � is a hook, i.e., a partition of the form

(n� k; 1

k

).

The 
ase t = 0 (or y = 0, or t = y = 0) of equation (5) follows from the

following proposition, whi
h in a sense \explains" where the right-hand side

(q + x)

bn=2



omes from.

3.4 Proposition. For all n � 0 we have

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

= (q + x)

bn=2


; (6)

where � ranges over all hooks (n� k; 1

k

), 0 � k � n� 1.

First proof. Let � = (n � k; 1

k

). Let ! denote the \reading or-

der" labeling of P

�

as above. The set L

P;!


onsists of all permutations

12



1; a

2

; : : : ; a

m

, where a

2

; : : : ; a

m

is a shu�e of the permutations 2; 3; : : : ; n�k

and n� k + 1; n� k + 2; : : : ; n. It follows e.g. from [27, Prop. 1.3.17℄ that

I

�

(q) =

�

n� 1

k

�

;

a q-binomial 
oeÆ
ient.

Suppose �rst that n = 2m+ 1. By [27, Exer. 3.45(b)℄,

�

n� 1

k

�

q=�1

=

8

>

<

>

:

�

m

j

�

; k = 2j

0; k = 2j + 1:

Note that if � = (n� 2j; 1

2j

), then v(�) = j and v(�

0

) = m� j. Hen
e

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m

X

j=0

q

j

x

m�j

�

m

j

�

= (q + x)

m

;

as desired. The proof for n even is similar and will be omitted. 2

Se
ond proof. Assume �rst that n = 2m. We use an involution argu-

ment analogous to the proof of Theorem 1.1 or to arguments in [32, x5℄ and

Se
tion 4 of this paper. Let T be an SYT of shape � = (n � k; 1

k

), whi
h


an be regarded as an element of L

P

�

;!

. Let i be the least positive integer

(if it exists) su
h that 2i� 1 and 2i appear in di�erent rows and in di�erent


olumns of T . Let T

0

denote the SYT obtained from T by transposing 2i� 1

and 2i. Sin
e multiplying by a transposition 
hanges the sign of a permuta-

tion, we have (�1)

inv(T )

+ (�1)

inv(T

0

)

= 0. The surviving SYT are obtained

by �rst pla
ing 1; 2 in the same row or 
olumn, then 3; 4 in the same row or


olumn, et
. If k = 2j or 2j + 1, then the number of survivors is easily seen

to be

�

m�1

j

�

. Be
ause the entries of T 
ome in pairs 2i� 1; 2i, the number of

inversions of ea
h surviving SYT is even. Moreover, if k = 2j then v(�) = j

and v(�

0

) = m�j, while if k = 2j+1 then v(�) = j+1 and v(�

0

) = m�1�j.

Hen
e

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m�1

X

j=0

(q + x)

�

m� 1

j

�

q

j

x

m�1�j

= (q + x)

m

;
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as desired.

The proof is similar for n = 2m + 1. Let i be the least positive integer

(if it exists) su
h that 2i and 2i + 1 (rather than 2i � 1 and 2i) appear in

di�erent rows and in di�erent 
olumns of T . There are now no survivors

when k = 2j + 1 and

�

m

j

�

survivors when k = 2j. Other details of the proof

remain the same, so we get

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m

X

j=0

�

m� 1

j

�

q

j

x

m�j

= (q + x)

m

;


ompleting the proof. 2

There are some additional properties of the symmetri
 fun
tions G

�

that

yield information about I

�

. For instan
e, there is a produ
t formula in [12,

Thm. 2℄ for

P

�

G

2�[2�

, where � ranges over all partitions and

2� [ 2� = (2�

1

; 2�

1

; 2�

2

; 2�

2

; : : :);

whi
h implies that

P

�`n

I

2�[2�

= 0. In fa
t, in [4, Cor. 9.2℄ it is shown

that G

2�[2�

(x) = �s

�

(x

2

1

; x

2

2

; : : :), from whi
h it follows easily that in fa
t

I

2�[2�

= 0. However, this result is just a spe
ial 
ase of Corollary 2.2 and of

Proposition 2.3, so we obtain nothing new.

Also relevant to us is an expansion of G

�

into S
hur fun
tions due to

Shimozono (see [32, Thm. 18℄) for 
ertain shapes �, namely, those whose

2-quotient (in the sense e.g. of [17, Exam. I.1.8℄) is a pair of re
tangles. This

expansion was used by White [32, Cor. 20℄ to evaluate I

�

for su
h shapes.

White [32, x8℄ also gives a 
ombinatorial proof, based on a sign-reversing

involution, in the spe
ial 
ase that � itself is a re
tangle. We simply state

here White's result for re
tangles.

3.5 Theorem. Let � be an m� n re
tangle. Then

I

�

=

8

<

:

1; if m = 1 or n = 1

0; if m � n (mod2) and m;n > 1

�g

�

; m 6� n (mod2);
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where g

�

denotes the number of shifted standard tableaux (as de�ned e.g. in

[17, Exam. III.8.12℄) of shape

� =

�

m + n� 1

2

;

m + n� 3

2

; � � � ;

jn�mj+ 3

2

;

jn�mj + 1

2

�

:

(An expli
it \hook length formula" for any g

�

appears e.g. in the referen
e

just 
ited.)

It is natural to ask whether Theorem 3.5 
an be generalized to other

partitions �. In this regard, A. Eremenko and A. Gabrielov (private 
ommu-

ni
ation) have made a remarkable 
onje
ture. Namely, if we �x the number

` of parts and parity of ea
h part of �, then there are integers 


1

; : : : ; 


k

and

integer ve
tors 


1

; : : : ; 


k

2 Z

`

su
h that

I

�

=

k

X

i=1




i

g

1

2

(�+


i

)

:

One defe
t of this 
onje
ture is that the expression for I

�

is not unique.

We 
an insure uniqueness, however, by the additional 
ondition that all the

ve
tors 


i

have 
oordinate sum 0 when j�j is even and �1 when j�j is odd

(where j�j =

P

�

i

). In this 
ase, however, we need to de�ne properly g

�

when � isn't a stri
tly de
reasing sequen
e of nonnegative integers. See the

dis
ussion pre
eding Conje
ture 3.6. For instan
e, we have

I

(2a;2b;2
)

= g

(a;b;
)

� g

(a+1;b;
�1)

I

(2a+1;2b;2
)

= g

(a;b;
)

+ g

(a+1;b�1;
)

I

(2a;2b+1;
)

= 0

I

(2a;2b;2
+1)

= �g

(a+1;b�1;
)

� g

(a+1;b;
�1)

I

(2a+1;2b+1;2
)

= g

(a+1;b;
)

+ g

(a+1;b+1;
�1)

I

(2a+1;2b;2
+1)

= 0

I

(2a;2b+1;2
+1)

= g

(a+1;b;
)

+ g

(a;b+1;
)

I

(2a+1;2b+1;2
+1)

= g

(a;b+1;
)

+ g

(a+1;b+1;
�1)

I

(2a;2b;2
;2d)

= g

(a;b;
;d)

� g

(a+1;b;
�1;d)

� g

(a+1;b+1;
�1;d�1)

� 2g

(a+1;b;
;d�1)

:

It is easy to see that I

(2a;2b+1;
)

= I

(2a+1;2b;2
+1)

= 0, viz., the 2-
ores of the

partitions (2a; 2b+1; 
) and (2a+1; b; 2
+1) have more than one square. More

generally, we have veri�ed by indu
tion the formulas for I

�

when `(�) � 3.
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We have found a (
onje
tured) symmetri
 fun
tion generalization of the

Eremenko-Gabrielov 
onje
ture. If f(x) is any symmetri
 fun
tion, de�ne

f(x=x) = f(p

2i�1

! 2p

2i�1

; p

2i

! 0):

In other words, write f(x) as a polynomial in the power sums p

j

and substi-

tute 2p

2i�1

for p

2i�1

and 0 for p

2i

. In �-ring notation, f(x=x) = f(X � X).

Let Q

�

denote S
hur's shifted Q-fun
tion [17, x3.8℄. The Q

�

's form a basis for

the ring Q [p

1

; p

3

; p

5

; : : :℄. Hen
e f(x=x) 
an be written uniquely as a linear


ombination of Q

�

's.

We mentioned above that the symmetri
 fun
tion G

�

was originally de-

�ned only when 
ore

2

(�) = �. We 
an extend the de�nition to any � as

follows. The original de�nition has the form

G

�

(x) =

X

D

(�1)


ospin(D)

x

D

; (7)

summed over all semistandard domino tableaux of shape �, where 
ospin(�) is

a 
ertain integer and x

D

a 
ertain monomial depending on �. If #
ore

2

(�) =

1, then de�ne G

�

exa
tly as in (7), ex
ept that we sum over all semistandard

domino tableaux of the skew shape �=1. If #
ore

2

(�) > 1, then de�ne

G

�

= 0. (In 
ertain 
ontexts it would be better to de�ne G

�

by (7), summed

over all semistandard domino tableaux of the skew shape �=
ore

2

(�), but

this is not suitable for our purposes.) Equation (2) then 
ontinues to hold

for any � ` n, where m = bn=2
.

We also need to de�ne G

�

(x=x) properly when � is not a stri
tly de
reas-

ing sequen
e of positive integers. The following de�nition seems to be 
or-

re
t, but perhaps some modi�
ation is ne
essary. Let � = (�

1

; : : : ; �

k

) 2 Z

k

.

Trailing 0's are irrelvant and 
an be ignored, so we may assume �

k

> 0.

If � is not a sequen
e of distin
t nonnegative integers, then G

�

(x=x) = 0.

Otherwise G

�

(x=x) = "

�

G

�

(x=x), where � is the de
reasing rearrangement

of � and "

�

is the sign of the permutation that 
onverts � to �.

3.6 Conje
ture. Fix the number ` of parts and parity of ea
h part

of the partition �. Then there are integers 


1

; : : : ; 


k

and integer ve
tors




1

; : : : ; 


k

2 Z

`

su
h that

(�1)

r(�)

G

�

(x=x) =

k

X

i=1




i

Q

1

2

(�+


i

)

(x): (8)
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Let � ` 2n or � ` 2n+1. Take the 
oeÆ
ient of x

1

x

2

� � �x

n

on both sides

of (8). By (2) the left-hand side be
omes 2

n

I

�

. Moreover, if � ` m then

the 
oeÆ
ient of x

1

� � �x

m

in Q

�

is 2

m

g

�

[17, (8.16)℄. Hen
e Conje
ture 3.6

spe
ializes to the Eremenko-Gabrielov 
onje
ture. At present we have no


onje
ture for the values of the 
oeÆ
ients 


i

. Here is a short table (due to

Eremenko and Gabrielov for I

�

; they have extended this table to the 
ase of

four and �ve rows) of the three-row 
ase of Conje
ture 3.6. For simpli
ity we

write � for (�1)

r(�)

.

�G

(2a;2b;2
)

(x=x) = Q

(a;b;
)

(x)�Q

(a+1;b;
�1)

(x)

�G

(2a+1;2b;2
)

(x=x) = Q

(a;b;
)

(x) +Q

(a+1;b�1;
)

(x)

�G

(2a;2b+1;2
)

(x=x) = 0

�G

(2a;2b;2
+1)

(x=x) = �Q

(a+1;b�1;
)

(x)�Q

(a+1;b;
�1)

(x)

�G

(2a+1;2b+1;2
)

(x=x) = Q

(a+1;b;
)

(x) +Q

(a+1;b+1;
�1)

(x)

�G

(2a+1;2b;2
+1)

(x=x) = 0

�G

(2a;2b+1;2
+1)

(x=x) = Q

(a+1;b;
)

(x) +Q

(a;b+1;
)

(x)

�G

(2a+1;2b+1;2
+1)

(x=x) = Q

(a;b+1;
)

(x) +Q

(a+1;b+1;
�1)

(x):

We now dis
uss some general properties of the polynomial I

�

(q) and its

value I

�

(�1). Let C(�) denote the set of 
orner squares of �, i.e., those

squares of the Young diagram of � whose removal still gives a Young diagram.

Equivalently, Pieri's formula [29, Thm. 7.15.7℄ implies that

s

�=1

=

X

t2C(�)

s

��t

: (9)

Let f

�

denote the number of SYT of shape � [29, Prop. 7.10.3℄, so

f

�

=

X

t2C(�)

f

��t

: (10)

Note that I

�

(1) = f

�

, so I

�

(q) is a (nonstandard) q-analogue of f

�

. The

q-analogue of equation (10) is the following result.

3.7 Proposition. We have

I

�

(q) =

X

t2C(�)

q

b

�

(t)

I

��t

(q);

17



where b

�

(t) denotes the number of squares in the diagram of � in a lower row

than that of t.

Proof. We have by de�nition

I

�

(q) =

X

T

q

inv(�(T ))

;

where T ranges over all SYT of shape � and �(T ) is the permutation obtained

by reading the entries of T in the usual reading order, i.e., left-to-right and

top-to-bottom when T is written in \English notation" as in [17℄[27℄[29℄.

Suppose � ` n. If T is an SYT of shape �, then the square t o

upied by n

is a 
orner square. The number of inversions (i; j) of �(T ) = a

1

� � �a

m

su
h

that a

i

= n is equal to b

�

(t), and the proof follows. 2

Now let D

1

denote the linear operator on symmetri
 fun
tions de�ned by

D

1

(s

�

) = s

�=1

. We then have the 
ommutation relation [29, Exer
ise 7.24(a)℄

D

1

s

1

� s

1

D

1

= I; (11)

the identity operator. This leads to many enumerative 
onsequen
es, dis-


ussed in [28℄. There is an analogue of (11) related to I

�

, though we don't

know of any appli
ations. De�ne a linear operator D(q) on symmetri
 fun
-

tions by

D(q)s

�

=

X

t2C(�)

q

b

�

(t)

s

��t

:

Let U(q) denote the adjoint of D(q) with respe
t to the basis fs

�

g of S
hur

fun
tions, so

U(q)s

�

=

X

t

q

b

�+t

(t)

s

�+t

;

where t ranges over all boxes that we 
an add to the diagram of � to get the

diagram of a partition �+ t (for whi
h ne
essarily t 2 C(�+ t)). Note that

U(1) = s

1

(i.e., multipli
ation by s

1

) and D(1) = D

1

as de�ned above. It

follows from Proposition 3.7 that

U(q)

n

� 1 =

X

�`n

I

�

(q)s

�

;
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where U(q)

n

� 1 denotes U(q)

n

a
ting on the symmetri
 fun
tion 1 = s

�

.

Write U = U(�1) and D = D(�1). Let A be the linear operator on sym-

metri
 fun
tions given by As

�

= (2k(�) + 1)s

�

, where k(�) = #C(�), the

number of 
orner boxes of �.

3.8 Proposition. We have DU + UD = A.

Proof. The proof is basi
ally a brute for
e 
omputation. Write

�

�

i

=

�

i

+ �

i+1

+ � � �. Suppose � is obtained from � by adding a box in row r � 1

and deleting a box in row s � 1, where r < s. Then the 
oeÆ
ient of s

�

in

(D(q)U(q) + U(q)D(q))s

�

is given by

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = q

�

�

r

q

�

�

s

+ q

�

�

s

q

�

�

r

�1

;

whi
h vanishes when q = �1. Similarly if r > s we get

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = q

�

�

s

q

�

�

r

+1

+ q

�

�

r

q

�

�

s

;

whi
h again vanishes when q = �1. On the other hand, if � = � we have

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = (
(�) + 1)q

2

�

�

r

+ 
(�)q

2

�

�

r

= (2
(�) + 1)q

2

�

�

r

:

When q = �1 the right-hand side be
ome 2
(�) + 1, 
ompleting the proof.

2

4 Chains of order ideals.

Suppose that P is an n-element poset, and let � = (�

1

; : : : ; �

k

) be a 
om-

position of n, i.e., �

i

2 P = f1; 2; : : :g and

P

�

i

= n. De�ne an �-
hain of

order ideals of P to be a 
hain

� = K

0

� K

1

� � � � � K

k

= P (12)

of order ideals satisfying #(K

i

� K

i�1

) = �

i

for 1 � i � k. The following

result is quite simple but has a number of 
onsequen
es.
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4.1 Proposition. Let P be an n-element poset and � a �xed 
omposition

of n. Suppose that for every �-
hain (12) of order ideals of P , at least one

subposet K

i

�K

i�1

is sign-balan
ed. Then P is sign-balan
ed.

Proof. Let C be the �-
hain (12). We say that a linear extension f is

C-
ompatible if

K

1

= f

�1

(f1; : : : ; �

1

g); K

2

�K

1

= f

�1

(f�

1

+ 1; : : : ; �

1

+ �

2

g);

et
. Let inv(C) be the minimum number of inversions of a C-
ompatible

linear extension. Clearly

X

f

q

inv(f)

= q

inv(C)

k

Y

i=1

I

K

i

�K

i�1

(q);

where the sum is over all C-
ompatible f . Sin
e every linear extension is


ompatible with a unique �-
hain, there follows

I

P;!

(q) =

X

C

q

inv(C)

k

Y

i=1

I

K

i

�K

i�1

(q); (13)

where C ranges over all �-
hains of order ideals of P . The proof now follows

by setting q = �1. 2

De�ne a �nite poset P with 2m elements to be tilable by dominos if there

is a 
hain � = K

0

� K

1

� � � � � K

m

= P of order ideals su
h that ea
h

subposet K

i

�K

i�1

is a two-element 
hain. Similarly, if #P = 2m + 1 and

1 � j � m + 1 then we say that P is j-tilable by dominos if there is a 
hain

� = K

0

� K

1

� � � � � K

m+1

= P of order ideals su
h that #(K

i

�K

i�1

) = 2

if 1 � i � m+1 and i 6= j (so #(K

j

�K

j�1

) = 1). Note that being tilable by

dominos is stronger than the existen
e of a partition of P into 
over relations

(or two element saturated 
hains). For instan
e, the poset P with 
over

relations a < 
; b < 
; a < d; b < d 
an be partitioned into the two 
over

relations a < 
 and b < d, but P is not tilable by dominos. When n = 2m,

we de�ne a P -domino tableau to be a 
hain � = K

0

� K

1

� � � � � K

m

= P

of order ideals su
h that K

i

� K

i�1

is a two-element 
hain for 1 � i � m.

Similarly, when n = 2m + 1, we de�ne a (standard) P -domino tableau to

be a 
hain � = K

0

� K

1

� � � � � K

m+1

= P of order ideals su
h that
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K

i

�K

i�1

is a two-element 
hain for 1 � i � m (so that K

m+1

�K

m


onsists

of a single point). Thus for � ` 2n, a P

�

-domino tableau 
oin
ides with our

earlier de�nition of an SDT of shape �.

4.2 Corollary. Let #P = 2m, and assume that P is not tilable by

dominos. Then P is sign-balan
ed. Similarly if #P = 2m + 1 � 3 and P is

not j-tilable by dominos for some j, then P is sign-balan
ed.

Proof. Let � = (2; 2; : : : ; 2) (m 2's). If #P = 2m and P is not tilable

by dominos, then for any �-
hain (12) there is an i for whi
h K

i

� K

i�1


onsists of two disjoint points. Sin
e a poset 
onsisting of two disjoint points

is sign-balan
ed, it follows from Proposition 4.1 that P is sign-balan
ed. The

argument is similar for #P = 2m + 1. 2

Corollary 4.2 was proved in a spe
ial 
ase (the produ
t of two 
hains with

an even number of elements, with the

^

0 and

^

1 removed), using essentially the

same proof as we have given, by Ruskey [21, x5, item 6℄.

Corollary 4.2 is parti
ularly useful for the posets P

�

. From this 
orollary

and the de�nition of 
ore

2

(�) we 
on
lude the following.

4.3 Corollary. If 
ore

2

(P

�

) 
onsists of more than one element, then

P

�

is sign-balan
ed.

It follows from [29, Exer. 7.59(e)℄ that if f(n) denotes the number of

partitions � ` n su
h that #
ore

2

(�) � 1, then

X

n�0

f(n)x

n

=

1 + x

Q

i�1

(1� x

2i

)

2

:

Standard partition asymptoti
s (e.g., [1, Thm. 6.2℄) shows that

f(n) �

C

n

5=4

exp

�

�

p

2n=3

�

for some C > 0. Sin
e the total number p(n) of partitions of n satis�es

p(n) �

C

0

n

exp

�

�

p

2n=3

�

;

it follows that lim

n�0

f(n)=p(n) = 0. Hen
e as n ! 1, P

�

is sign-balan
ed

for almost all � ` n.
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5 Maj-balan
ed posets.

If � = a

1

a

2

� � �a

m

is a permutation of [n℄, then the des
ent set D(�) of � is

de�ned as

D(�) = fi : a

i

> a

i+1

g:

An element of D(�) is 
alled a des
ent of �, and major index maj(�) is

de�ned as

maj(�) =

X

i2D(�)

i:

The major index has many properties analogous to the number of inversions,

e.g., a 
lassi
 theorem of Ma
Mahon states that inv and maj are equidis-

tributed on the symmetri
 group S

n

[7℄[8℄. Thus it is natural to try to �nd

\maj analogues" of the results of the pre
eding se
tions. In general, the major

index of a linear extension of a poset 
an be more tra
table or less tra
table

than the number of inversions. Thus, for example, in Theorem 5.1 we are able

to 
ompletely 
hara
terize naturally labelled maj-balan
ed posets. An anal-

ogous result for sign-balan
ed partitions seems very diÆ
ult. On the other

hand, sin
e multiplying a permutation by a �xed permutation has no de�nite

e�e
t on the parity of the major index, many of the results for sign-balan
ed

posets are false (Theorem 1.1, Lemma 2.1, Proposition 2.3).

Let f be a linear extension of the labelled poset (P; !), and let � = �(f)

be the asso
iated permutation of [n℄. In analogy to our de�nition of inv(f),

de�ne maj(f) = maj(�) and

W

P;!

(q) =

X

f2E

P

q

maj(f)

=

X

�2L

P;!

q

maj(�)

:

We say that (P; !) is maj-balan
ed if W

P;!

(�1) = 0, i.e., if the number of

linear extensions of P with even major index equals the number with odd

major index. Unlike the situation for sign-balan
ed posets, the property of

being maj-balan
ed 
an depend on the labeling !. Thus an interesting spe
ial


ase is that of natural labelings, for whi
h !(s) < !(t) whenever s < t in P .

We write W

P

(q) for W

P;!

(q) when ! is natural. It is a basi
 
onsequen
e of

the theory of P -partitions [27, Thm. 4.5.8℄ that W

P

(q) does not depend on

the 
hoi
e of natural labeling of P .
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Figure 4: Some 
ounterexamples

Figures 4(a) and (b) show two di�erent labelings of a poset P . The

�rst labeling (whi
h is natural) is not maj-balan
ed, while the se
ond one

is. Moreover, the dual poset P

�

to the poset P in Figure 4(b), whether

naturally labelled or labelled the same as P , is maj-balan
ed. Contrast that

with the trivial fa
t that the dual of a sign-balan
ed poset is sign-balan
ed.

As a further example of the 
ontrast between sign and maj-balan
ed posets,

Figure 4(
) shows a naturally labelled maj-balan
ed poset Q. However, if we

adjoin an element

^

0 below every element of Q and label it 0 (thus keeping the

labeling natural) then we get a poset whi
h is no longer maj-balan
ed. On

the other hand, it is 
lear that su
h an operation has no e�e
t on whether a

poset is sign-balan
ed. (In fa
t, it leaves I

Q;!

(q) un
hanged.)

Corollary 4.2 
arries over to the major index in the following way.

5.1 Theorem. (a) Let P be naturally labelled. Then W

P

(�1) is equal

to the number of P -domino tableaux. In parti
ular, P is maj-balan
ed if and

only if there does not exist a P -domino tableau.

(b) A labelled poset (P; !) is maj-balan
ed if there does not exist a P -

domino tableau.

Proof. (a) Let � = a

1

� � �a

m

2 L

P;!

. Let i be the least number (if

it exists) for whi
h �

0

= a

1

� � �a

2i

a

2i+2

a

2i+1

a

2i+3

� � �a

m

2 L

P;!

. Note that

(�

0

)

0

= �. Now exa
tly one of � and �

0

has a des
ent at 2i + 1. The only

other di�eren
es in the des
ent sets of � and �

0

o

ur (possibly) for the even

numbers 2i and 2i + 2. Hen
e (�1)

maj(�)

+ (�1)

maj(�

0

)

= 0. The surviving

permutations � = b

1

� � � b

m

in L

P;!

are exa
tly those for whi
h � � fb

1

; b

2

g �
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2

31

4

Figure 5: A maj-balan
ed labelled poset tilable by dominos

fb

1

; : : : ; b

4

g � � � � is a P -domino tableau with !

�1

(b

2i�1

) < !

�1

(b

2i

) in P . (If

n is even, then the P -domino tableau ends as fb

1

; : : : ; b

n�2

g � P , while if n

is odd it ends as fb

1

; : : : ; b

n�1

g � P .) Sin
e ! is natural we have b

2i�1

< b

2i

for all i, so maj(�) is even. Hen
e W

P

(�1) is equal exa
tly to the number of

P -domino tableaux.

(b) Regardless of the labeling !, if there does not exist a P -domino

tableau then there will be no survivors in the argument of (a), so W

P

(�1) =

0. 2

The 
onverse to Theorem 5.1(b) is false. The labelled poset (P; !) of

Figure 5 is tilable by dominos and is maj-balan
ed.

Given an n-element poset P with dual P

�

, set �(P ) = �(P

�

). In [25,

Thm 4.4℄[26, Prop. 18.4℄[27, Thm. 4.5.2℄ it is shown that the following two


onditions are equivalent:

(i) For all t 2 P , all maximal 
hains of the prin
ipal dual order ideal

V

t

= fs 2 P : s � tg have the same length.

(ii) q

(

n

2

)

��(P )

W

P

(1=q) =W

P

(q).

It follows by setting q = �1 that if (i) holds and

�

n

2

�

��(P ) is odd, then P

is maj-balan
ed. Corollary 2.4 suggests in fa
t the following stronger result.
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5.2 Corollary. Suppose that P is naturally labelled and dual 
onsistent

(i.e., P

�

is 
onsistent). If

�

n

2

�

��(P ) is odd, then P is maj-balan
ed.

Proof. By Theorem 5.1 we need to show that there does not exist a

P -domino tableau. Given t 2 P , let Æ(t) denote the length of the longest


hain of V

t

, so �(P ) =

P

t2P

Æ(t). First suppose that n = 2m, and assume

to the 
ontrary that � = I

0

� I

1

� � � � � I

m

= P is a P -domino tableau.

If s; t 2 I

i

� I

i�1

then by dual 
onsisten
y Æ(s) + Æ(t) � 1 (mod2). Hen
e

�(P ) � m (mod 2), so

�

n

2

�

��(P ) � m(2m� 1)�m � 0 (mod2);

a 
ontradi
tion.

Similarly if n = 2m+1, then the existen
e of a P -domino tableau implies

�(P ) � m (mod 2), so

�

n

2

�

��(P ) � m(2m+ 1)�m � 0 (mod2);

again a 
ontradi
tion. 2

Now let S be a �nite subset of solid unit squares with integer verti
es

in R � R su
h that the set jSj =

S

S2S

is simply-
onne
ted. For S; T 2 S,

de�ne S < T if the 
enter verti
es (s

1

; s

2

) of S and (t

1

; t

2

) of T satisfy either

(a) t

1

= s

1

and t

2

= s

2

+ 1 or (b) t

1

= s

1

+ 1 and t

2

= s

2

. Regard S as a

poset, denoted P

S

, under the transitive (and re
exive) 
losure of the relation

<. Figure 6 gives an example, where (a) shows S as a set of squares and (b)

as a poset. Note that the posets P

�=�

are a spe
ial 
ase.

A S
hur labelling ! of P

S

is a labeling that in
reases along rows and de-


reases along 
olumns, as illustrated in Figure 6. For the spe
ial 
ase P

�=�

,

S
hur labelings play an important role in the expansion of skew S
hur fun
-

tions s

�=�

in terms of quasisymmetri
 fun
tions [29, pp. 360{361℄. Suppose

that #P

S

is even and that P

S

is tilable by dominos. Then S itself is tilable

by dominos in the usual sense. It is known (impli
it, for instan
e, in [31℄,

and more expli
it in [5℄) that any two domino tilings of S 
an be obtained

from ea
h other by \2� 2 
ips," i.e., repla
ing two horizontal dominos in a
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(a) (b)
Figure 6: A set S of squares and the S
hur labelled poset P

S

2� 2 square by two verti
al dominos or vi
e versa. It follows that if D is a

domino tiling of S with v(D) verti
al dominos, then (�1)

v(D)

depends only

on S. Set sgn(S) = (�1)

v(D)

for any domino tiling of S.

5.3 Proposition. Let S be as above, and let ! be a S
hur labeling of

P

S

, where #P

S

is even, say #P

S

= n. Then sgn(S)W

P

S

(�1) is the number

of P

S

-domino tableaux.

Proof. The proof parallels that of Theorem 5.1. De�ne the involution

� 7! �

0

as in the proof of Theorem 5.1. Ea
h survivor � = b

1

� � � b

m


orre-

sponds to a P

S

-domino tableau D. We have b

2i�1

> b

2i

if and only if the

domino labelled with b

2i�1

and b

2i

is verti
al. As noted above, (�1)

v(D)

=

sgn(S), independent of D. Hen
e (�1)

maj(�)

= sgn(�), and the proof follows

as in Theorem 5.1(a). 2

A result analogous to Proposition 5.3 holds for #P

S

odd (with essen-

tially the same proof) provided P

S

has a

^

0 or

^

1. The spe
ial 
ase P

�=�

of Proposition 5.3 (and its analogue for #P

S

odd) 
an also be proved us-

ing the theory of symmetri
 fun
tions, notably, [29, Prop. 7.19.11℄ and the

Murnaghan-Nakayama rule ([29, Cor. 7.17.5℄).
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6 Hook lengths.

In this se
tion we brie
y dis
uss a 
lass of posets P for whi
h W

P

(q), and

sometimes even I

P;!

(q), 
an be expli
itly 
omputed. For this 
lass of posets

we get a simple 
riterion for being maj balan
ed and, if appli
able, sign

balan
ed.

Following [26, p. 84℄, an n-element poset P is 
alled a hook length poset

if there exist positive integers h

1

; : : : ; h

n

, the hook lengths of P , su
h that

W

P

(q) =

[n℄!

(1� q

h

1

) � � � (1� q

h

n

)

; (14)

where [n℄! = (1� q)(1� q

2

) � � � (1� q

n

). It is easy to see that if P is a hook

length poset, then the multiset of hook lengths is unique. In general, if P

is an \interesting" hook length poset, then ea
h element of P should have a

hook length asso
iated to it in a \natural" 
ombinatorial way.

Note. We 
ould just as easily have extended our de�nition to labelled

posets (P; !), where now

W

P;!

(q) =

q




[n℄!

(1� q

h

1

) � � � (1� q

h

n

)

for some 
 2 N . However, little is known about the labelled situation ex
ept

when we 
an redu
e it to the 
ase of natural labelings by subtra
ting 
ertain


onstants from the values of �.

The following result is an immediate 
onsequen
e of equation (14).

6.1 Proposition. Suppose that P is a hook length poset with hook

lengths h

1

; : : : ; h

n

. Then P is maj-balan
ed if and only if the number of

even hook lengths is less than bn=2
. If P isn't maj-balan
ed, then the maj

imbalan
e is given by

W

P

(�1) =

bn=2
!

Q

h

i

even

(h

i

=2)

:
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It is natural to ask at this point what are the known hook length posets.

The strongest work in this area is due to Pro
tor [18℄[19℄. We won't state his

remarkable results here, but let us note that his d-
omplete posets en
ompass

all known \interesting" examples of hook length posets. These in
lude forests

(i.e., posets for whi
h every element is 
overed by at most one element) and

the duals P

�

�

of the posets P

�

of Se
tion 3.

Bj�orner and Wa
hs [3, Thm. 1.1℄ settle the question of what naturally

labelled posets (P; !) satisfy

I

P;!

(q) =W

P;!

(q): (15)

Namely, P is a forest and ! is a postorder labeling. Hen
e for postorder

labelled forests, Proposition 6.1 holds also for I

P;!

(�1). Bj�orner and Wa
hs

also obtain less de�nitive results for arbitrary labelings, whose relevan
e to

sign and maj imbalan
e we omit.
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