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tion.A re
ent paper [7℄ of M
Kay, Morse, and Wilf 
onsiders the number N(n;T )of standard Young tableaux (SYT) with n 
ells that 
ontain a �xed standardYoung tableau T of shape � ` k. (For notation and terminology related tosymmetri
 fun
tions and tableaux, see [6℄ or [12, Ch. 7℄.) They obtain theasymptoti
 formula N(n;T ) � tnf�k! ; (1)where f� denotes the number of SYT of shape � and tn denotes the numberof involutions in the symmetri
 group Sn. Note that N(n;T ) = N(n;U)whenever T and U are SYT of the same shape. Hen
e we 
an write N(n;�)for N(n;T ). Moreover, it is 
lear thatN(n;�) =X�`n f�=�; (2)where f�=� denotes the number of SYT T of skew shape �=�.In Se
tion 2 we extend equation (1), using te
hniques from the theory ofsymmetri
 fun
tions, to give an expli
it formula for N(n;�) as a �nite linear
ombination of tn�j's, from whi
h in prin
iple we 
an write down the entireasymptoti
 expansion of N(n;�). In Se
tion 3 we apply similar te
hniques,1Partially supported by NSF grant #DMS-9988459.1



together with asymptoti
 formulas for 
hara
ter values of Sn due to Biane[2℄ and to Vershik and Kerov [14℄, to derive the asymptoti
 behavior of f�=�as a fun
tion of � for �xed �.2 A formula for N(n;�).Let ��(�) denote the value of the irredu
ible 
hara
ter �� of Sk on a permu-tation of 
y
le type � ` k (as explained e.g. in [6, x1.7℄ or [12, xx7.17{7.18℄).Let mi(�) denote the number of parts of the partition � equal to i, and write~� for the partition obtained from � by repla
ing every even part 2i with thetwo parts i; i. For instan
e,� = (6; 6; 5; 4; 2; 1) ) ~� = (5; 3; 3; 3; 3; 2; 2; 1; 1; 1):Equivalently, if w is a permutation of 
y
le type �, then w2 has 
y
le type~�. Note that a permutation of 
y
le type ~� is ne
essarily even. We will usenotation su
h as (~�; 1k�j) to denote a partition whose parts are the parts of~� with k� j additional parts equal to 1. Finally we let z� denote the numberof permutations 
ommuting with a �xed permutation of 
y
le type �, soz� = 1m1(�)2m2(�) � � �m1(�)!m2(�)! � � � :The main result of this se
tion is the following.2.1 Theorem. Let � ` k. Then for n � k we haveN(n;�) = kXj=0 tn�j(k � j)! X�`jm1(�)=m2(�)=0 z�1� ��(~�; 1k�j): (3)
Proof. Let � ` n � k, and let p� = p�1p�2 � � � denote the power sumsymmetri
 fun
tion indexed by �. Similarly s�=� denotes the skew S
hurfun
tion indexed by �=�. Sin
e for any homogeneous symmetri
 fun
tion fof degree n � k we have that hpn�k1 ; fi is the 
oeÆ
ient of x1 � � �xn�k in f ,2



and sin
e the 
oeÆ
ient of x1 � � �xn�k in s�=� is f�=�, we have (using a basi
property [6, (5.1)℄[12, Thm. 7.15.4℄ of the standard s
alar produ
t h�; �i onsymmetri
 fun
tions) f�=� = hpn�k1 ; s�=�i= hpn�k1 s�; s�i:Summing on � ` n givesN(n;�) = *pn�k1 s�;X�`n s�+ : (4)Now [6, Exam. I.5.4, p. 76℄[12, Cor. 7.13.8℄X� s� = 1Qi(1� xi) �Qi<j(1� xixj) ;summed over all partitions � of all n � 0. Sin
e1Qi(1� xi) �Qi<j(1� xixj) = expXn�1 1n  Xi xni +Xi<j xni xnj!= exp Xn�1 p2n�12n� 1 +Xn�1 p2n2n! ;there followsX�`n s� = X�=(1m1 ;2m2 ;:::)`n z�1� pm1+2m21 p2m42 pm3+2m63 p2m84 � � �= X�`n z�1� p~�; (5)where (1m1; 2m2 ; : : :) denotes the partition with mi parts equal to i.It follows from [6, p. 76℄[12, solution to Exer. 7.35(a)℄ that for any sym-metri
 fun
tions f and g we havehp1f; gi = �f; ��p1 g� ;3



where ��p1g indi
ates that we are to expand g as a polynomial in the pi's andthen di�erentiate with respe
t to p1. Applying this to equation (4) and using(5) yields N(n;�) = *s�; �n�k�pn�k1 X�`n z�1� p~�+= *s�;X�`n z�1� (m1 + 2m2)n�k p�n+k1 p~�+ ; (6)where mi = mi(�) and (a)n�k = a(a� 1) � � � (a� n+ k + 1).Fix m1 + 2m2 = n � j in equation (6). Thus � = (�; 2m2; 1m1) for someunique � ` k satisfying m1(�) = m2(�) = 0. Sin
e n!=z� is the number ofpermutations in Sn of 
y
le type �, we have for �xed � ` j thatX�=(�;2m2 ;1m1 ) n!z� = tn�j�nj� j!z� :Moreover, p�n+k1 p~� = pk�j1 p~�:It follows thatN(n;�) = *s�; kXj=0 j!�nj�(n� j)n�k tn�jn! X�`jm1(�)=m2(�)=0 z�1� pk�j1 p~�+= *s�; kXj=0 tn�j(k � j)! X�`jm1(�)=m2(�)=0 z�1� pk�j1 p~�+ :Sin
e [6, (7.7)℄[12, p. 348℄hs�; pk�j1 p~�i = ��(~�; 1k�j);the proof follows. 2Note that the restri
tion n � k in Theorem 2.1 is insigni�
ant sin
eN(n;�) = 0 for n < k. 4



Theorem 2.1 expresses N(n;�) as a linear 
ombination of the fun
tionstn�j, 0 � j � k. Sin
e tn�j�1 = o(tn�j), this formula for N(n;�) is a
tuallyan asymptoti
 expansion. The �rst few terms areN(n;�) = 1k!f�tn + 13(k � 3)!��(3; 1k�3)tn�3+ 14(k � 4)!��(2; 2; 1k�4)tn�4 + 15(k � 5)!��(5; 1k�5)tn�5+ 29(k � 6)!��(3; 3; 1k�6)tn�6 +O(tn�7): (7)Note that by symmetry it is 
lear that if �0 is the 
onjugate partition to �then N(n;�) = N(n;�0). Indeed, sin
e a permutation of 
y
le type ~� is evenwe have ��(~�; 1k�j) = ��0(~�; 1k�j). The exa
t formulas for N(n;�) whenj�j � 5 and j�j � n are given as follows (where we write e.g. N(n; 21) forN(n; (2; 1))): N(n; 1) = tnN(n; 2) = N(n; 11) = 12tnN(n; 3) = N(n; 111) = 16(tn + 2tn�3)N(n; 21) = 13(tn � tn�3)N(n; 4) = N(n; 1111) = 124(tn + 8tn�3 + 6tn�4)N(n; 31) = N(n; 211) = 18(tn � 2tn�4)N(n; 22) = 112(tn � 4tn�3 + 6tn�4)N(n; 5) = N(n; 11111) = 1120(tn + 20tn�3 + 30tn�4 + 24tn�5)N(n; 41) = N(n; 2111) = 130(tn + 5tn�3 � 6tn�5)N(n; 32) = N(n; 221) = 124(tn � 4tn�3 + 6tn�4)N(n; 311) = 120(tn � 10tn�4 + 4tn�5):5



The 
omplete asymptoti
 expansion of tn beginningtn � 1p2nn=2e�n2+pn� 14 �1 + 724pn � 1191152n + � � ��was obtained by Moser and Wyman [8, 3.39℄. In prin
iple this 
an be usedto obtain the asymptoti
 expansion of N(n;�) in terms of more \familiar"fun
tions than tn�j. The �rst few terms 
an be obtained from the formulatn�j = 1p2nn�j2 e�n2+pn� 14 �1 + � 724 � j2� 1pn � � 1191152 + 748j � 38j2� 1n+O� 1n3=2�� ;though we omit the details.Instead of 
ounting the number N(n;�) of SYT with n 
ells 
ontaining a�xed SYT T of shape �, we 
an ask (as also done in [7℄) for the probabilityP (n;�) that a random SYT with n 
ells (
hosen from the uniform distribu-tion on all SYT with n 
ells) 
ontains T as a subtableau. Sin
e the totalnumber of SYT with n 
ells is tn, we haveP (n;�) = N(n;�)=tn:Let ej(�) denote the 
oeÆ
ient of tn�j in the right-hand side of (3), viz.,ej(�) = 1(k � j)! X�`jm1(�)=m2(�)=0 z�1� ��(~�; 1k�j): (8)It follows from Theorem 2.1, using the fa
t that e0(�) = f�=k! and e1(�) =e2(�) = 0, thatP (n;�) = f�k! + e3(�)n3=2 � 3e3(�)� 2e4(�)n2 +O �n�5=2� :The leading term of this expansion was obtained in [7, Thm. 1℄.There is an alternative formula for N(n;�) whi
h, though not as 
on-venient for asymptoti
s, is more 
ombinatorial than equation (3) be
ause it6



avoids using the 
hara
ters of Sn. This formula 
ould be derived dire
tlyfrom Theorem 2.1, but we give an alternative proof whi
h is impli
itly bije
-tive (sin
e the formulas on whi
h it is based have bije
tive proofs).2.2 Theorem. Let � ` k. Then for all n � 0 we haveN(n + k;�) = kXj=0 �nj� X�`k�j f�=�! tn�j: (9)Proof. We begin with the following S
hur fun
tion identity, proved inde-pendently by Las
oux, Ma
donald, Towber, Stanley, Zelevinsky, and perhapsothers. This identity appears in [6, Exam. I.5.27(a), p. 93℄[12, Exer. 7.27(e)℄and was given a bije
tive proof by Sagan and Stanley [11, Cor. 6.4℄:X� s�=� = 1Qi(1� xi) �Qi<j(1� xixj)X� s�=�:Apply the homomorphism ex that takes the power sum symmetri
 fun
tion pnto Æ1nu, where u is an indeterminate. This homomorphism is the exponentialspe
ialization dis
ussed in [12, pp. 304{305℄. Two basi
 properties of ex arethe following: ex(f) =Xn�0[x1x2 � � �xn℄f unn!ex 1Qi(1� xi) �Qi<j(1� xixj) = eu+ 12u2;where [x1x2 � � �xn℄f denotes the 
oeÆ
ient of x1x2 � � �xn in f . Sin
e[x1x2 � � �xn℄s�=� = f�=�; when j�=�j = n;we obtain Xn�0 unn! X�`n+k f�=� = eu+ 12u2 kXj=0 ujj! X�`k�j f�=�: (10)Taking the 
oeÆ
ient of un=n! on both sides yields (9). 27



2.3 Corollary. We haveXn�0X� N(n + j�j;�)s�unn! =  X� s�! e(p1+1)u+ 12u2 :Proof. Multiply (10) by s� and sum on � to getXn�0X� N(n + j�j;�)s�unn! = eu+ 12u2Xj�0 ujj! Xj�=�j=j f�=�s�= eu+ 12u2Xj�0 ujj! Xj�=�j=jhpj1; s�=�is�= eu+ 12u2Xj�0 ujj! Xj�=�j=jhpj1s�; s�is�= eu+ 12u2Xj�0 ujj! X� pj1s�=  X� s�! e(p1+1)u+ 12u2 : 2The 
ase when � 
onsists of a single row (or 
olumn) is parti
ularlysimple, sin
e then ea
h ��(~�; 1k�j) = 1 in (3). We will then write N(n; k) asshort for N(n; (k)). The 
oeÆ
ient ej(�) be
omes simply ej(k) = qj=(k�j)!,where j!qj is the number of permutations w 2 Sn with no 
y
les of lengthone or two. By standard enumerative reasoning (see e.g. [12, Exam. 5.2.10℄)we have Xj�0 qjxj = e�x� 12x21� x : (11)From this and Theorems 2.1 and 2.2 it is easy to dedu
e the following results,whi
h we simply state without proof.2.4 Corollary. (a) We haveN(n + k; k) = kXj=0 �nj�tn�j = kXj=0 qj(k � j)!tn+k�j;8



where qj is given by (11).(b) De�ne polynomials An(x) by A0(x) = 1 andAn+1(x) = A0n(x) + (x+ 1)An(x); n � 0:Then Xk�0 N(n + k; k)xk = An(x)1� x :(
) Let e 12u2+2u =Xn�0 bnunn! :Then N(n + k; k) = bn if n � k.The stability property of Corollary 2.4(
) is easy to see by dire
t 
ombina-torial reasoning. If n � k, then a skew SYT of shape �=�, where � ` n+k and� ` k, 
onsists of a �rst row 
ontaining some j-element subset of 1; 2; : : : ; n,together with some disjoint SYT U on the remaining n� j letters. There aretn�j possibilities for U , soN(n + k; k) = nXj=0 �nj�tn�j;whi
h is equivalent to Corollary 2.4(
).3 Asymptoti
s of f�=�.Rather than 
onsidering the sumP�`n f�=�, we 
ould investigate instead theindividual terms f�=�. The analogue of Theorem 2.1 is the following.3.1 Theorem. Let � ` k and n � k. Then for any partition � ` n wehave f�=� =X�`k z�1� ��(�; 1n�k)��(�): (12)9



Proof. The proof parallels that of Theorem 2.1. Instead of the powersum expansion ofP�`n s�, we need the expansion of s� (where � ` n), givenby [6, p. 114℄[12, Cor. 7.17.5℄s� =X�`n z�1� ��(�)p�:We therefore havef�=� = 
pn�k1 ; s�=��= *s�pn�k1 ;X�`k z�1� ��(�)p�+= *s�; �n�k�pn�k1 X�`n z�1� ��(�)p�+= *s�;X�`k z�1(�;1n�k)��(�; 1n�k)(n� k +m1(�))n p�+= X�`k z�1(�;1n�k)(n� k +m1(�))n ��(�; 1n�k)��(�):But z�1(�;1n�k)(n� k +m1(�))n = z�1� ;and the proof follows. 2Theorem 3.1 
an also be proved by inverting the formula given in [12,Exer. 7.62℄.We would like to regard equation (12) as an asymptoti
 formula for f�=�when � is �xed and � is \large." For this we need an asymptoti
 formula for��(�; 1n�k) when � is �xed. Su
h a formula will depend on the way in whi
hthe partitions � in
rease. The �rst 
ondition 
onsidered here is the following.Let �1; �2; : : : be a sequen
e of partitions su
h that �n ` n, and su
h thatthe diagrams of the �n's, res
aled by a fa
tor n�1=2 (so that they all havearea one) 
onverge uniformly to some limit !. (See [2℄ for a more pre
isestatement.) We will denote this 
onvergen
e by �n ! !. The followingresult is due to Biane [2℄, building on work of Vershik and Kerov.10



3.2 Theorem. Suppose that �n ! !. Then for i � 2 there exist
onstants (de�ned expli
itly in [2℄) Ci(!), with C2(!) = 1, su
h that for any�xed partition � ` k of length `(�) we have��n(�; 1n�k) = f�n0�`(�)Yi=0 C�i+1(!)1An� 12 (k�`(�)) (1 +O(1=n)) ;as n!1.Let 
� = z�1� ��(�; 1n�k)��(�). It follows from Theorem 3.2 that 
(21k�2) =O �
(1k)n�1=2�, while 
� = O �
(1k)n�1� and 
� = O �
(21k�2)n�1=2� for `(�) �k � 2. Hen
e if �n ! ! thenf�n=� = �z�1(1k)��n(1n)��(1k) + z�1(21k�2)��n(21n�2)��(21k�2)� (1 +O(1=n))= f�n � 1k!f� + 12(k � 2)!C3(!)��(21k�2) 1pn +O(1=n)� : (13)Let us note that by [6, p. 118℄[12, Exer. 7.51℄ the integer ��(21k�2) appearingin (13) has the expli
it value��(21k�2) = f�P��i2 ��P��0i2 ��k2� :The leading term of the right-hand side of (13) is independent of !, andin fa
t it follows from [2℄ that f�n=� � 1k!f�f�n holds under the weakerhypothesis that there exists a 
onstant A > 0 for whi
h �n1 < Apn and`(�n) < Apn for all n � 1.

11



Given � > 0, letPar�(n) = f� ` n : (2� �)pn < �1 < (2 + �)pnand (2� �)pn < `(�) < (2 + �)png:It is a 
onsequen
e of the work of Logan and Shepp [5℄ or Vershik and Kerov[13℄ (see e.g. [1℄ for mu
h stronger results) that for any � > 0,X�2Par�(n) f� � tn; n!1:Thus not only is the sum N(n;�) = P�`n f�=� asymptoti
 to f�tn=k! asn ! 1 (as follows from (7)), but the terms f�=� 
ontributing to \most" ofthe sum are \
lose" to f�f�=k!.Another way of letting � be
ome large was 
onsidered by Vershik andKerov in [14℄ and in many subsequent papers (after �rst being introdu
edby Thoma). Let �1; �2; : : : be a sequen
e of partitions su
h that �n ` n andsu
h that for all i > 0, there exist real numbers ai � 0 and bi � 0 satisfyingPi(ai + bi) = 1 and limn!1 �nin = ailimn!1 (�n)0in = bi;where (�n)0i denotes the ith part of the 
onjugate partition to �n (i.e., thelength of the ith 
olumn of the diagram of �n). We denote this situationby �n TVK�! (a; b), where a = (a1; a2; : : :) and b = (b1; b2; : : :). For instan
e, if�2n = (n; n) and �2n�1 = (n; n�1), then �n TVK�! ((1=2; 1=2; 0; : : :); (0; 0; : : :)).The following result is immediate from [14℄.3.3 Theorem. Let �n TVK�! (a; b). Then for any �xed partition � ` k,��n(�; 1n�k) = f�n `(�)Yj=1 Xi ��ji + (�1)�j�1Xi ��ji ! (1 +O(1=n)) :12



It follows that from Theorems 3.1 and 3.3 we have for �xed � ` k theasymptoti
 formulaf�n=� = f�n 24X�`k z�1� `(�)Yj=1 Xi ��ji + (�1)�j�1Xi ��ji !35 (1 +O(1=n)): (14)Now let s�(x = y) denote the super-S
hur fun
tion indexed by � ` n in thevariables x = (x1; x2; : : :) and y = (y1; y2; : : :) [6, Exam. I.23{I.24℄, de�ned bys�(x = � y) = !ys�(x; y) (where !y denotes the standard involution ! a
tingon the y-variables only). (Note that our s�(x = y) 
orresponds to s�(�y = x)in [6℄.) It follows that the expansion of s�(x = y) in terms of power sums isgiven by s�(x = y) =X�`n z�1� ��(�) (p�(x)� p�(y)) :Hen
e from equation (14) we obtain the following result.3.4 Theorem. Let �n TVK�! (a; b). Then for a �xed partition � we havef�n=� = f�ns�(a =�b)(1 +O(1=n)):An expli
it statement of Theorem 3.4 does not seem to have been pub-lished before. However, it was known by Vershik and Kerov and appears inthe unpublished do
toral thesis of Kerov. It is also a simple 
onsequen
e ofOkounkov's formula [9, Thm. 8.1℄ for f�=� in terms of shifted S
hur fun
tions.The asymptoti
s of shifted S
hur fun
tions is 
arried out (in slightly greatergenerality) in [3, Thm. 8.1 and Cor. 8.1℄. A spe
ial 
ase of Theorem 3.4appears in [10, Thm. 1.3℄.Theorem 3.4 
an be made more expli
it in 
ertain 
ases for whi
h thesuper-S
hur fun
tion s�(a = �b) 
an be expli
itly evaluated. In parti
ular,suppose that � 
onsists of an i � j re
tangle with a shape � = (�1; : : : ; �i)atta
hed at the right and the 
onjugate � 0 of a shape � = (�1; : : : ; �j) atta
hedat the bottom. Thus� = (�1 + j; : : : ; �i + j; � 01; � 02; : : :):13



Then (e.g., [4, pp. 115{118℄[6, (4) on p. 59℄)s�(a1; : : : ; ai = � b1; : : : ;�bj) = s�(a1; : : : ; ai)s�(b1; : : : ; bj)Yi;j (ai + bj):In 
ertain 
ases we 
an expli
itly evaluate s�(a1; : : : ; ai) or s�(b1; : : : ; bj), e.g.,when a1 = � � � = ai or b1 = � � � = bj. See [12, Thm. 7.21.2 and Exer. 7.32℄.Note also that when � = � = ; (so � = (ji)) we have simplys(ji)(a1; : : : ; ai = � b1; : : : ;�bj) =Yi;j (ai + bj):A
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