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1 Introduction.

A recent paper [7] of McKay, Morse, and Wilf considers the number N (n;T)
of standard Young tableaux (SYT) with n cells that contain a fixed standard
Young tableau 7" of shape « = k. (For notation and terminology related to
symmetric functions and tableaux, see [6] or [12, Ch. 7].) They obtain the
asymptotic formula

tnf

N(n;T) ~ o (1)

where f* denotes the number of SYT of shape « and ¢,, denotes the number
of involutions in the symmetric group &,. Note that N(n;T) = N(n;U)
whenever 7" and U are SYT of the same shape. Hence we can write N(n; «)
for N(n;T). Moreover, it is clear that

N(n;a):Zf)‘/a, (2)

AFn

where /¢ denotes the number of SYT T of skew shape \/a.

In Section 2 we extend equation (1), using techniques from the theory of
symmetric functions, to give an explicit formula for N (n; ) as a finite linear
combination of ¢,_;’s, from which in principle we can write down the entire
asymptotic expansion of N(n;«). In Section 3 we apply similar techniques,
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together with asymptotic formulas for character values of &,, due to Biane
2] and to Vershik and Kerov [14], to derive the asymptotic behavior of f/®
as a function of A for fixed «.

2 A formula for N(n;a).

Let x*(\) denote the value of the irreducible character x® of &y on a permu-
tation of cycle type A - k (as explained e.g. in [6, §1.7] or [12, §§7.17-7.18]).
Let m;(u) denote the number of parts of the partition p equal to 7, and write
i for the partition obtained from p by replacing every even part 2¢ with the
two parts ¢,¢. For instance,

n=(6,65421) = i=(533,3,322111).

Equivalently, if w is a permutation of cycle type u, then w? has cycle type
fi. Note that a permutation of cycle type /i is necessarily even. We will use
notation such as (ji, 1¥77) to denote a partition whose parts are the parts of
ft with k — j additional parts equal to 1. Finally we let z, denote the number
of permutations commuting with a fixed permutation of cycle type u, so

2, = 1) oma(p) my () ma(p)! -

The main result of this section is the following.

2.1 Theorem. Let at k. Then for n > k we have

b e ok
N(n;a) =) o > X (1), (3)
=0 ml(u)i;fz(u)=0

Proof. Let A = n > k, and let py = py,p», - - - denote the power sum
symmetric function indexed by A. Similarly sy, denotes the skew Schur
function indexed by A\/a. Since for any homogeneous symmetric function f
of degree n — k we have that (p? ", f) is the coefficient of @ ---x,_ in f,



and since the coefficient of x; -+ -2, in 55/, is e we have (using a basic
property [6, (5.1)][12, Thm. 7.15.4] of the standard scalar product (-,-) on
symmetric functions)

= 0 saa)
= (P1 "sa,50).
Summing on A - n gives

N(nsa) = <pwsa, 23A> . (4)

AFn

Now [6, Exam. 1.5.4, p. 76][12, Cor. 7.13.8]

1
2 9= [L(L =) [[o; (1 — @izy)’

A

summed over all partitions A of all n > 0. Since

1 1 . o
L2 Tl —aw) ‘”‘pzﬁ(;wﬁzxi%)

<y n>1 i<j
2
P2n—1 Pn
= e S .

Xp(zzn—1+ 2n>’
n>1 n>1
there follows
AFn A=(1m1,2"m2 . )n
= D u'ms (5)
AFn

where (1™1,2™2 . .) denotes the partition with m; parts equal to i.

It follows from [6, p. 76][12, solution to Exer. 7.35(a)] that for any sym-
metric functions f and g we have

0
<p1fag>:: <f755}g>7
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where a%lg indicates that we are to expand g as a polynomial in the p;’s and

then differentiate with respect to p;. Applying this to equation (4) and using

(5) yields

an—k B
N(na) = <Sa7 W ZZA 1p5\>

AFn

= <Sa; Z 23 H(my + 2mg) g p7 " p

AFn

)

where m; = m;(\) and (a),—x =ala—1)---(a—n+k+1).

Fix my + 2my = n — j in equation (6). Thus A = (p,2™2,1™) for some
unique p F k satisfying my(u) = mo(pu) = 0. Since n!/zy, is the number of

permutations in &G,, of cycle type A, we have for fixed pt j

n! n\ 7!
Z A W et
)‘:(.u’:2m2’1m1) A ] K

Moreover,

—n+k, . _ k—j

Py Py =DP1 "Pa-

It follows that

N(n;a) = <50n k j!<?>(n—j)n—kt2!j >

)
my (p)=mg(n)=0

_ tnj -1 k—j
- <SOH (k _])' Z zu p]_ pﬂ :
7=0

kg
my (p)=my(pn)=0

Since [6, (7.7)][12, p. 348]
(50,1 7Pa) = X" (1, 1%79),

the proof follows. O

that

-1,k
<, D1

_]pﬁ>

Note that the restriction n > k in Theorem 2.1 is insignificant since

N(n;a) =0 for n < k.



Theorem 2.1 expresses N(n;a) as a linear combination of the functions
tn—j, 0 < j < k. Since t,_;_1 = o(t,_;), this formula for N(n; ) is actually
an asymptotic expansion. The first few terms are

| 1
O (3, 153,
Kl g X L s

1
2,21 Y, 4+ ——— (5,17 ),

+ﬁ){a(3, 3, lkiﬁ)tnfﬁ + O(tn—7)- (7)

Note that by symmetry it is clear that if o' is the conjugate partition to «
then N(n;a) = N(n;a'). Indeed, since a permutation of cycle type fi is even
we have x*(ji,177) = x*(j1,1*7). The exact formulas for N(n;a) when
la] < 5 and |a| < n are given as follows (where we write e.g. N(n;21) for
N(n;(2,1))):

N(n;1l) = ty
1
N(n;2) = N(n;11) = itn

1
N(m;3) = N(m5111) = ot +2t0)

1

N(n:d) = N(n:1111) = 2—14(tn+8tn_3+6tn_4)
N(n:31) = N(n;211) = %(tn—Qtn@
N(n;22) = %(tn—4tn_3+6tn_4)
N(n;5) = N(n;11111) = %%(tn+20tn3+30tn4+24tn5)
N(n:d1) = N(n;2111) = 3—10(tn+5tn_3—6tn_5)
N(ni32) = N(m5221) = o-(tn — 4ty 5+ 6t o)
1



The complete asymptotic expansion of ¢, beginning

1 s 7 119
tn ~ — Tl/2 7_+\/Ef_ ]_ — -
Y A S YW AR T

was obtained by Moser and Wyman [8, 3.39]. In principle this can be used
to obtain the asymptotic expansion of N(n;«) in terms of more “familiar”
functions than ¢, ;. The first few terms can be obtained from the formula

1 ni a 1 7T 7\ 1 119 7. 3 ,5\1
tyi = —= +vn 1 IR T I S ANt B
J \/Qn rer ' < * <24 2) Vn <1152 * 48‘7 8J ) n

().

Instead of counting the number N (n; «) of SYT with n cells containing a
fixed SYT T of shape «, we can ask (as also done in [7]) for the probability
P(n;«) that a random SYT with n cells (chosen from the uniform distribu-
tion on all SYT with n cells) contains 7" as a subtableau. Since the total
number of SYT with n cells is t,, we have

though we omit the details.

P(n;a) = N(n;a)/t,.

Let €j(c) denote the coefficient of ¢,_; in the right-hand side of (3), viz.,

1 -1 . a(~ 1k—J
SO =G X AN, ®)

I
my (p)=mg(n)=0

It follows from Theorem 2.1, using the fact that ey(a) = f*/k! and e, (a) =
ea(a) = 0, that

P(n:a) = % efbg/o;) B 363(05)71—2264(05)

+0 (n’5/ ’).
The leading term of this expansion was obtained in [7, Thm. 1].

There is an alternative formula for N(n;«) which, though not as con-
venient for asymptotics, is more combinatorial than equation (3) because it
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avoids using the characters of &,,. This formula could be derived directly
from Theorem 2.1, but we give an alternative proof which is implicitly bijec-
tive (since the formulas on which it is based have bijective proofs).

2.2 Theorem. Let ot k. Then for all n > 0 we have

N(n+k;a) = zk: <?> ( > fa/“) bn—j- 9)

§=0 pk—j

Proof. We begin with the following Schur function identity, proved inde-
pendently by Lascoux, Macdonald, Towber, Stanley, Zelevinsky, and perhaps
others. This identity appears in [6, Exam. [.5.27(a), p. 93][12, Exer. 7.27(e)]
and was given a bijective proof by Sagan and Stanley [11, Cor. 6.4]:

1
S\ = Safu-
; ILA =) - [Ty (1 — wiz) ; 8
Apply the homomorphism ex that takes the power sum symmetric function p,,
to 01,u, where u is an indeterminate. This homomorphism is the exponential
specialization discussed in [12, pp. 304-305]. Two basic properties of ex are
the following:
un
ex(f) = Z[x1$2 o 'xn]fg
n>0 ’
1 12
exX = e 2 ,

[L(T =) [Lig; (1 = 2zy)

where [z1x9 - - x,]f denotes the coefficient of x1x- -2, in f. Since

(2122 -+ )83 /0 = M9, when |\ a| = n,

we obtain
u" Ao u+tLu? : ! a/p
Do 2 M=ty oy e (10)
n>0  Arn+tk =0 " kg

Taking the coefficient of «"/n! on both sides yields (9). O



2.3 Corollary. We have

SN N+ afsa (ZS ) st

n>0 «

Proof. Multiply (10) by s, and sum on « to get

ZZN(n+|a|;a)saZ—T = evtav’ Z Z felrs,

n>0 «a J>0 Ia/ul =J

— u+ u? Z Z <p{;5a/u>5

J>0 Ia/u|:j

— euta?’ Z Z (P51 5a)5a

]>0 Ia/ul—j

— eu-l-uz ijlsﬂ

]>0

1

The case when « consists of a single row (or column) is particularly
simple, since then each x*(ji,1¥77) = 1 in (3). We will then write N(n; k) as
short for N(n; (k)). The coefficient e;(«) becomes simply e;(k) = ¢;/(k—7)!,
where jlg; is the number of permutations w € &,, with no cycles of length
one or two. By standard enumerative reasoning (see e.g. [12, Exam. 5.2.10])

we have
o—o—1ia?

> gl = ——. (11)

j>0

From this and Theorems 2.1 and 2.2 it is easy to deduce the following results,
which we simply state without proof.

2.4 Corollary. (a) We have

N(n +k; k) = i(>n]=2

J=0 J=0

n+k 7



where q; is given by (11).
(b) Define polynomials A, (x) by Ag(xz) =1 and
Anpa(z) = A, (2) + (z + 1) Ap(z), n20.

Then

ZNn+k'k‘ A()

k>0 L—a
(c) Let

—u +2u_Zb U’_'

n>0

Then N(n+k; k) =b, if n < k.

The stability property of Corollary 2.4(c) is easy to see by direct combina-
torial reasoning. If n < k, then a skew SYT of shape A\/«, where A - n+k and
a F k, consists of a first row containing some j-element subset of 1,2,...,n,
together with some disjoint SY'T' U on the remaining n — j letters. There are
tn—; possibilities for U, so

Nt ik =3 <?> b,

J=0

which is equivalent to Corollary 2.4(c).

3 Asymptotics of /.
Rather than considering the sum ) _,, M we could investigate instead the

individual terms f»/¢. The analogue of Theorem 2.1 is the following.

3.1 Theorem. Letat k andn > k. Then for any partition A\ = n we

have
=32 1R )X (). (12)

vk



Proof. The proof parallels that of Theorem 2.1. Instead of the power
sum expansion of >, sy, we need the expansion of s, (where A = n), given
by [6, p. 114][12, Cor. 7.17.5]

3/\—2371 /\

ukEn

We therefore have
f)\/a = <p?7k7 S)\/a>

= <Sap?'“, >z 1x*(u)pu>

ukk

871 k B
= < S —> 2 M W >
ukEn

S 32X 1"%m—k+mamnm>

vk

_ Z ey (1= K g (1) X (0, 179X ().

But

iy (n =k ma(v)), = 27,

and the proof follows. O

Theorem 3.1 can also be proved by inverting the formula given in [12,
Exer. 7.62].

We would like to regard equation (12) as an asymptotic formula for f/«
when « is fixed and A is “large.” For this we need an asymptotic formula for
x (v, 1"7%) when v is fixed. Such a formula will depend on the way in which
the partitions A increase. The first condition considered here is the following.
Let A', A%, ... be a sequence of partitions such that A\ - n, and such that
the diagrams of the A\"’s, rescaled by a factor n~'/? (so that they all have
area one) converge uniformly to some limit w. (See [2] for a more precise
statement.) We will denote this convergence by A" — w. The following
result is due to Biane [2], building on work of Vershik and Kerov.

10



3.2 Theorem. Suppose that \* — w. Then for i > 2 there exist
constants (defined explicitly in [2]) C;(w), with Cy(w) = 1, such that for any
fized partition v =k of length ((v) we have

L(v)
N (w10 = ] Coa(w) | 072 D 1+ 0(1/n),

1=0

as n — Q.

Let ¢, = z, ' x (v, 1" F)x*(v). It follows from Theorem 3.2 that ¢y i) =
O (C(]_k)nil/2), while ¢, = O (cqryn™) and ¢, = O (C(Q]_k—Z)nil/Q) for ((v) <
k — 2. Hence if A — w then

= (b M) + 2gh X R ER14)) (14 0(1/0)

= 7 (0 O eI = oam ). as)

7

Let us note that by [6, p. 118][12, Exer. 7.51] the integer x*(21%~2) appearing
in (13) has the explicit value

f)\”/a

> (3) -S4

e (2152) = o

The leading term of the right-hand side of (13) is independent of w, and
in fact it follows from [2] that f*/* ~ Lf*f* holds under the weaker
hypothesis that there exists a constant A > 0 for which A} < Ay/n and
L(A™) < Ay/n for all n > 1.

11



Given € > 0, let

Par((n) ={AFn: 2—-evn<A <(2+e)vn
and (2 —€)y/n < L(\) < (2+€)y/n}.

It is a consequence of the work of Logan and Shepp [5] or Vershik and Kerov
[13] (see e.g. [1] for much stronger results) that for any € > 0,

Z A ~tn, n— 0.

AePar(n)

Thus not only is the sum N(n;a) = >, fM% asymptotic to f,/k! as
n — oo (as follows from (7)), but the terms f»¢ contributing to “most” of
the sum are “close” to f*f*/k!.

Another way of letting A\ become large was considered by Vershik and
Kerov in [14] and in many subsequent papers (after first being introduced
by Thoma). Let A', A%, ... be a sequence of partitions such that A" F n and
such that for all ¢ > 0, there exist real numbers a; > 0 and b; > 0 satisfying
Zi(ai + bz) =1 and

n

lim + = a;
n—oo N
).

lim g = b,
n—oo M

where (A"); denotes the ith part of the conjugate partition to A" (i.e., the

length of the ith column of the diagram of A™). We denote this situation

by A" RN (a;b), where a = (ay,as,...) and b = (by, by, ...). For instance, if

A2 = (n,n) and A2*! = (n,n—1), then A* =35 ((1/2,1/2,0,...); (0,0,...)).

The following result is immediate from [14].

3.3 Theorem. Let \* 25 (a;b). Then for any fized partition v - k,

L(v)

N 1) = (Z ol + (<1 Z@”f) (1+0(1/n).

J=1

12



It follows that from Theorems 3.1 and 3.3 we have for fixed o = &k the
asymptotic formula

L(v)
e | ] (Z 4 (1 zm) (+00/m). (14)

vhk j=1 \ i

Now let sy(z / y) denote the super-Schur function indexed by A - n in the
variables x = (1, z3,...) and y = (y1, y9, . ..) [6, Exam. 1.23-1.24], defined by
sx(x/ —y) = wysr(z,y) (where w, denotes the standard involution w acting
on the y-variables only). (Note that our s)(x /y) corresponds to sy(—y /x)
in [6].) It follows that the expansion of sy(x/y) in terms of power sums is
given by

sa(@ /) =D o' W) (pul@) = pu(y)) .

vkn

Hence from equation (14) we obtain the following result.

3.4 Theorem. Let \" 25 (a;b). Then for a fized partition o we have

fE = Psala) =)L+ O(1/n).

An explicit statement of Theorem 3.4 does not seem to have been pub-
lished before. However, it was known by Vershik and Kerov and appears in
the unpublished doctoral thesis of Kerov. It is also a simple consequence of
Okounkov’s formula [9, Thm. 8.1] for f»/* in terms of shifted Schur functions.
The asymptotics of shifted Schur functions is carried out (in slightly greater
generality) in [3, Thm. 8.1 and Cor. 8.1]. A special case of Theorem 3.4
appears in [10, Thm. 1.3].

Theorem 3.4 can be made more explicit in certain cases for which the
super-Schur function s,(a/ —b) can be explicitly evaluated. In particular,
suppose that « consists of an i X j rectangle with a shape p = (u1,. .., 1;)
attached at the right and the conjugate v’ of a shape v = (14, ..., v;) attached
at the bottom. Thus

= (1 + G,y i+ Jy V1, Vo).

13



Then (e.g., [4, pp. 115-118][6, (4) on p. 59])

Sa(a,l, cey ai/ — bl, Cey —bj) = S“(al, Ceey ai)S,,(bl, cey b]) H(az + b])
2
In certain cases we can explicitly evaluate s, (a1, ...,a;) or s,(b1,...,0;), e.g.,
when a; = -+ =a; or by = --- = b;. See [12, Thm. 7.21.2 and Exer. 7.32|.

Note also that when g = v =0 (so a = (5*)) we have simply

S(ji)(al, .. .,ai/ — bl, Cey —b]) = H(a@ + b])

(Y]
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