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ABSTRACT

Let G be the group of n�n upper-triangular matri
es with elements in a �nite �eld and

ones on the diagonal. This paper applies the 
hara
ter theory of Andre, Carter and Yan to

analyze a natural random walk based on adding or subtra
ting a random row from the row

above.



1. Introdu
tion

For a prime p, let G

n

(p) = G be the group of unipotent upper-triangular matri
es with

elements in the �nite �eld F

p

. This group has generating set

(1:0) S = fI � E

i;i+1

g 1 � i � n� 1:

A natural random walk may be performed, beginning at the identity, ea
h time 
hoosing one

of the 2(n � 1) generators at random, and multiplying. More formally, de�ne a probability

measure on G

n

(p) by

(1:1) Q

0

(g) =

(

1=2(n� 1) if g = I � E

i;i+1

1 � i � n� 1

0 otherwise :

Let Q

�2

0

(g) = �

h

Q

0

(h)Q

0

(gh

�1

), Q

�k

0

(g) = Q

0

� Q

�(k�1)

0

(g). These 
onvolution powers give

the 
han
e that the walk is at g after k steps. Denote the uniform distribution by

(1:2) �(g) =

1

p

n(n�1)=2

:

If p is an odd prime, Q

�k

0

(g)! �(g) as k !1. To study the speed of 
onvergen
e let

(1:3) kQ

�k

0

� �k = max

A

jQ

�k

0

(A)� �(A)j =

1

2

X

g

jQ

�k

0

(g)� �(g)j :

Given � > 0, how large must k be so kQ

�k

0

� Uk < �? Partial results due to Za
k, Dia
onis,

Salo�-Coste, Stong and Pak are des
ribed at the end of this introdu
tion. There are good

answers if n is �xed and p is large but the general problem is open.

The present paper develops an approa
h to the problem using 
hara
ter theory as de-

s
ribed in Dia
onis and Salo�-Coste [1993℄, Dia
onis [2003℄. This involves bounding the rate

of 
onvergen
e of a random walk driven by a probability measure that is 
onstant on the

union of the 
onjuga
y 
lasses 
ontaining the generating set. Then, a 
omparison theorem is

used to bound the original walk. The 
hara
ter theory of G

n

(p) is a well known nightmare.

In re
ent work, Carlos Andre, Roger Carter and Ning Yan have developed a theory based

on 
ertain unions of 
onjuga
y 
lasses (here 
alled super-
lasses) and sums of irredu
ible


hara
ters (here 
alled super-
hara
ters). The present paper gives a sharp analysis of the


onjuga
y 
lass walk and gives partial results for the original walk.

Here is one of our main results. The 
onjuga
y 
lass 
ontaining I + aE

i;i+1


onsists of

upper triangular matri
es with a in position (i; i+1), arbitrary �eld elements �

1

; �

2

; : : : ; �

i�1

in 
olumn i+1 above this a, arbitrary �eld elements �

1

; �

2

; : : : ; �

n�(i+1)

in row i to the right

of the a. In the blo
k bounded by these �

j

; �

k

, the (j; k) entry is a

�1

�

j

�

k

.

Call this 
lass C

i

(a); 1 � i � n� 1. Thus jC

i

(a)j = p

n�2

.

For p an odd prime, de�ne

(1:4) Q(g) =

(

1=[2(n� 1)p

n�2

℄ if g 2 C

i

(�1) 1 � i � n� 1

0 otherwise
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For p = 2, de�ne

(1:4) Q(g) =

8

>

<

>

:

1=n if g = id

1=[n2

n�2

℄ if g 2 C

i

(1) 1 � i � n� 1

0 otherwise:

Theorem 1. For the random walk (1.4) on the group of unipotent upper-triangular

matri
es G

n

(p), there are universal 
onstants 


i

so that for all n � 2 and all k,

(1:5) 


1

e

�


2

k=(p

2

n logn)

� kQ

�k

� �k � 


3

e

�


4

k=(p

2

n log n)

:

Remarks.

1. The natural analog of the walks (1.1) and (1.4) over the �nite �eld F

q

use generators

fI + a

j

E

i;i+1

g and C

i

(a

j

) where a

j

are an additive basis for F

q

over F

p

. If q = p

u

, then

(1.5) holds with p

2

(n logn) repla
ed by p

2

(nu log(nu)). See Se
tion 3B.

2. The walk (1.4) is easy to implement as a series of 'rank one steps'. To 
hoose an

element of the 
onjuga
y 
lass C

i

(a) uniformly, form a random ve
tor V by 
hoosing

�eld elements V

1

; V

2

; : : : ; V

i�1

uniformly in F

p

, setting V

i

= a and V

j

= 0 for j > i.

Form a random ve
tor W by setting W

k

= 0, 1 � k � i, W

i+1

= 1, W

j

= a

�1

U

j

with U

j

-
hosen uniformly in F

p

; i + 2 � j � n. The matrix I + VW

T

is uniformly

distributed in C

i

(a).

Se
tion Two below reviews the super-
lass theory needed. As new results, it derives

the basi
 upper bound lemma, proves that super-
lass fun
tions form a 
ommutative, semi-

simple algebra indexed by set partitions and derives a 
losed formula for the value of a

super-
hara
ter on a super-
lass with no restri
tions on n and q. Theorem 1 is proved

in Se
tion Three in a stronger norm than (1.3). This is needed for 
omparison theorems.

Se
tion Four gives a 
hara
ter-free proof of Theorem 1 using a new form of stopping time

arguments whi
h may be of independent interest. Se
tion Five gives our analysis of the

original walk (1.1) by 
omparison. The main novelty in the present paper is showing that

super-
lass theory 
an be used to solve problems usually solved by 
hara
ter theory.

Literature Review. For ba
kground on random walk on �nite groups see Dia
onis [1988℄,

Salo�-Coste [1997℄, [2003℄. The 
omparison approa
h is developed in Dia
onis and Salo�-

Coste [1993℄ with re
ent developments surveyed in Dia
onis [2002℄. There have been previous

appli
ations of 
omparison theory in the symmetri
 group and for �nite groups of Lie type.

The present paper is the �rst serious in
ursion into p-groups.

When n = 3, the random walk (1.1) on the Heisenberg Group was studied by Za
k

[1984℄. For �xed n � 3 and large p, sharp rates of 
onvergen
e are given in joint work

with Salo�-Coste [1993A, 1994A,B℄. Roughly, order p

2

steps are ne
essary and suÆ
ient for


onvergen
e. The solution was a
hieved by three quite di�erent routes. In [1994B℄, geometri


volume growth arguments are used. In [1994A℄, the walk is realized as a proje
tion of a walk
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on the free nilpotent group. De
ay bounds of Hebis
h and Salo�-Coste along with Harna
k

inequalities are used. The impli
it 
onstants depend badly on n. They are of order e

n

2

.

Perhaps the earliest large n-results follow from work of Ellenberg [1993℄. If 
 is the

diameter of G

n

(p) in the generating set S of (1.0) he shows there are expli
it 
onstants 
; C

su
h that


(np+ n

2

log p) � 
 � C(np+ n

2

log p):

From this, standard bounds (see e.g. Dia
onis and Salo�-Coste [1993A℄) show that there are


onstants �; � su
h that

kQ

�k

0

� �k � p

n(n�1)=2

�

1�

2

n


2

�

k

:

Thus, for p �xed and n large, order n

7

steps suÆ
e.

Ri
hard Stong [1995℄ has given sharp estimates of the se
ond eigenvalue of the walk

(1.1). He showed there are universal 
onstants 


i

su
h that the se
ond eigenvalue �

1

satis�es

1�




1

p

2

n

� �

1

� 1�




2

p

2

n

. He also showed that the smallest eigenvalue satis�es

�

min

� � 1 +




3

p

2

:

Using these, he shows that if k = 


4

p

2

n

3

log p+ p

2

n� then

kQ

k

0

� �k < e

�


5

�

:

Stong also shows that at least order n

2

steps are needed

Pak [2000℄ treats the 
ase of n large, with steps I + aE

i;i+1

for a 
hosen uniformly.

Using an elegant stopping time argument he shows that order n

2:5

steps are ne
essary and

suÆ
e for this 
ase. The arguments are extended to nilpotent groups in Atashkevi
h and

Pak [2001℄. Coppersmith and Pak [????℄ showed that order n

2

steps suÆ
e provided p� n.

To 
on
lude this survey we note that the parallel walk on the generating 
lass of trans-

positions in the symmetri
 group S

n

had many appli
ations through proje
tions to quotient

walks on subgroups. The subgroup S

k

� S

n�k

yields the Bernoulli-Lapla
e Model of di�u-

sion. The subgroup S

n

w

r

S

2

yields a walk on perfe
t mat
hings, the walk proje
ted onto


onjuga
y 
lasses gives an analysis of 
oagulation-fragmentation pro
ess appearing in 
hem-

istry. These and many further appli
ations are surveyed in Dia
onis [2003℄. For the walk on

upper-triangular matri
es, the proje
tion onto the Frattini quotients gives the basi
 produ
t

walk on F

n�1

p

analyzed in Dia
onis and Salo�-Coste [1993℄. The group G

n

(q) is a semi-dire
t

produ
t of G

n�1

(q) and F

n�1

q

with F

n�1

q

seen as all matri
es in G

n

(q) whi
h are zero ex
ept in

the last 
olumn and G

n�1

(q) seen as all matri
es in G

n

(q) whi
h are zero in the last 
olumn.

The quotient walk on G

n

(q)=G

n�1

(q) is an example of a fa
ilitated kinemati
s model where

a site 
an turn on or o� only if its left most neighbor is on. See Aldous and Dia
onis [2002℄

or Ritort and Solli
h [2002℄ for extensive referen
es. At this writing we do not have a simple

interpretation of the proje
tion of the walk (1.4) on super-
lasses but we presume it will give

a natural walk on set partitions.
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2. Ba
kground Throughout, q = p

u

for a prime p. The group G

n

(q) of n� n matri
es

whi
h are upper triangular with ones on the diagonal is the Sylow p-subgroup of the general

linear group GL

n

(F

q

). Throughout, we write G for G

n

(q). As is well known, G has 
enter

Z(G) 
onsisting of matri
es in G whi
h are zero in all 
oordinates ex
ept (1; n). The 
om-

mutator G

0

equals the Frattini subgroup �(G) whi
h 
onsists of matri
es in G whi
h are

zero along the super-diagonal. It follows that the matri
es (I �E

i;i+1

) 1 � i � n� 1 form a

minimal generating set for G

n

(p) and that there are q

n�1

distin
t linear 
hara
ters.

The 
hara
ter theory and 
onjuga
y 
lasses of G have been a persistent thorn in the

side of group theorists. They are not known for n � 7 and 
onsidered unknowable. Indeed,

Poljak [1966℄ shows that a ni
e des
ription of the 
onjuga
y 
lasses leads to a ni
e des
ription

of wild quivers. Presumably, this does not exist. The diÆ
ulty of applying the orbit method

to G is reviewed by Kirilov in [1995, 1999℄. Further study is in Issa
s [1995℄ who shows that

the degree of a nonlinear 
hara
ter is a power of q. Thompson [2003℄ studies the apparently

diÆ
ult problem of proving that the number of 
onjuga
y 
lasses is a polynomial in q.

In a series of papers [1995A,B, 1996, 1996℄, Carlos Andre has developed what Roger

Carter 
alls super-
lass and super-
hara
ter theory. Super-
lasses are 
ertain unions of 
on-

juga
y 
lasses and super-
hara
ters are sums of irredu
ible 
hara
ters. These have ni
e

duality and orthogonality properties and a very useful super-
hara
ter formula.

We follow an elegant elementary approa
h of Ning Yan [2001℄. This does not have the

restri
tions of earlier work that p > n. It also 
ontains all that we need to analyze the

random walks of interest.

In Se
tion A, super-
lasses are de�ned. The algebra A of super-
lass fun
tions is in-

trodu
ed. Se
tion B de�nes super-
hara
ters and gives their dimension and intertwining

numbers. Se
tion C gives the Andre-Carter-Yan Chara
ter formula. Se
tion D shows these

obje
ts are naturally asso
iated to Bell numbers and set partitions. Se
tion E derives a

Plan
herel formula and the basi
 upper bound lemma needed to prove Theorem 1.

A. Super-Classes. Let U

n

(q) denote the set of upper triangular matri
es with zeros on

the diagonal. The produ
t group G � G a
ts on U

n

(q) by left/right multipli
ation. Let 	

index the orbits of this a
tion. The orbits indexed by 	 will be 
alled transition orbits below.

Yan [Th 3.1℄ shows that ea
h transition orbit 
ontains a unique element with at most one

non-zero entry in ea
h row and ea
h 
olumn. If D denotes the positions of the non-zero

entries and � : D ! F

�

q

denotes the entries, 	 may be represented by pairs (D; �). For

example, when n = 3, there are �ve possible 
hoi
es of D shown in Figure 1 below

Figure 1

0

�

0 0 0

0 0 0

0 0 0

1

A

0

�

0 � 0

0 0 0

0 0 0

1

A

0

�

0 0 0

0 0 �

0 0 0

1

A

0

�

0 0 �

0 0 0

0 0 0

1

A

0

�

0 � 0

0 0 �

0 0 0

1

A

In Se
tion D below we show that the number of allowable 
on�gurationsD is the Bell number

B(n). Here B(1) = 1; B(2) = 2; B(3) = 5; B(4) = 15; B(5) = 52; : : : is the number of set

partitions of n.
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Figure 1 also shows two 
ombinatorial features of D that �gure prominently in later

developments. The Dimension Index d(D) denotes the sum of the verti
al distan
es from

the boxes in D to the super-diagonal f(i; i + 1)g

1�i�n�1

. Thus if all of the boxes in D are

on the super-diagonal d(D) = 0. The Intertwining Index i(D) 
ounts the number of pairs of

boxes in D, that is, (i; j); (k; `) in D, with 1 � i < k < j < ` � n so that the `
orner' (k; j)

is above the diagonal. Pi
torially

(i; j)

(k; j) (k; `)

The n = 3 example above was 
lose to trivial. Here is another with n = 5. On the left,

d(D) = 2; i(D) = 0; on the right, d(D) = 3; i(D) = 1.

0

B

B

B

B

�

0 0 � 0 0

0 0 0 0 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

0

B

B

B

B

�

0 0 � 0 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

As will emerge in Se
tion B, the super-
hara
ters are also indexed by pairs (D; �). The

asso
iated super-
hara
ter has dimension of q

d(D)

and intertwining number q

i(D)

. We will


all the positions in D \boxes" below.

Following Kirilov [1995℄ and Yan [2001℄ we may map transition orbits in U

n

(q) into the

group G by adding the identity to ea
h matrix in the orbit. These will be 
alled super-


lasses and labeled C(D; �). Subtra
ting the identity from ea
h element of C(D; �) gives

the transition 
lass K(D; �). It is 
lear that C(D; �) is a union of 
onjuga
y 
lasses. As

an example, the super-
lass 
orresponding to transition orbit for a single box 
onsists of

matri
es in G with a �xed, non-zero �eld element a where the box is; arbitrary �eld elements

�

i

dire
tly above the box, arbitrary �eld elements �

j

dire
tly to the right of the box. In the

re
tangle above and to the right of the box it has element a

�1

�

i

�

j

. Note that the super-
lass

with one box 
ontaining a in position (i; i + 1) 
ontains the generator I + aE

i;i+1

. Clearly,

the size of the super-
lass 
orresponding to one box is q

s(D)

with s(D) equal to the number

of pla
es above and to the right of the box. Yan shows that any transition 
lass is a sum of

the \elementary" transition-
lasses it 
ontains:

K(D; �) =

X

d2D

K(d; �);

and further, ea
h x 2 K(D; d) 
an be written in exa
tly r(D) ways as su
h a sum, where

(2:0) r(D) = # f(i; j); (k; `) 2 D : i < k; j < `g:

De�ne the super-
lass fun
tions A via

(2:1) A = ff : G! C with f 
onstant on super-
lassesg:
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Thus f 2 A if and only if f(g) = f(g

0

) whenever g � I = h

1

(g

0

� I)h

2

. We show below that

A is a 
ommutative, semi-simple sub-algebra of the 
lass fun
tions on G under 
onvolution

(2:2) f

1

� f

2

(g) =

X

h2G

f

1

(h)f

2

(gh

�1

):

B. Super-Chara
ters. Let U

�

n

(q) be the spa
e of linear maps from U

n

(q) to F

q

. The

group G a
ts on the left and right of U

�

n

(q) via

g � �(m) = �(mg); � � g(m) = �(gm); g 2 G; � 2 U

�

n

(q); m 2 U

n

(q):

The orbits of the produ
t group G � G on U

�

n

(q) are 
alled 
otransition orbits and indexed

by 	

�

. Fix a non-trivial homomorphism � : F

q

to C

�

. For � 2 U

�

n

(q), de�ne v

�

: G! C

�

by

v

�

(g) = �[�(g � I)℄

Yan [2001, se
. 2℄ shows that fv

�

: � 2 U

�

n

(q)g is an orthonormal basis of C [G℄ with the

usual inner produ
t hf

1

jf

2

i =

1

jGj

X

g

f

1

(g)f

2

(g).

By dire
t 
omputation,

gv

�

(�) = v

�

(g)v

g�

(�):

It follows that if L is a left orbit of G a
ting on U

�

n

, the linear span of fv

�

g

�2L

is a submodule

of C [G℄. Let �

�

be the 
hara
ter of this representation for any � 2 L. Yan [2001, R.2℄ shows

that if � and �

0

are in the same right orbit of G a
ting on U

�

n

then �

�

= �

�

0

. The 
hara
ters

f�

�

g

�2	

�

are 
alled super-
hara
ters. Yan [2001, 2.6℄ shows that the super-
hara
ters are in

fa
t super-
lass fun
tions, that they are orthogonal and

(2:3) h�

D;�

j�

D

0

;�

0

i =

(

0 if (D; �) 6= (D

0

; �

0

)

q

i(d)

if (D; �) = (D

0

; �

0

)

Here, the set 	

�

is identi�ed with 	 and the labeling of (D; �) pairs will be used.

One further useful fa
t Yan [2001, 2.4℄: let �

G

be the 
hara
ter of the regular represen-

tation of G; its de
omposition into super-
hara
ters is

(2:4) �

G

(�) =

X

D;�

j (D; �)j

�

D;�

(1)

�

D;�

(�);

where �

D;�

(1) = q

d(D)

is the 
hara
ter degree and j (D; �)j = q

2d(D)�i(D)

is the size of the

G�G orbit in U

�

n

indexed by (D; �). The sum is over all 
otransition orbits.

These fa
ts allow us to prove an apparently new result.

Proposition 1. The spa
e A of super-
lass fun
tions de�ned at (2.1) is a 
ommutative

semi-simple algebra.
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Proof. We will show that A is 
losed under 
onvolution. It is thus a sub-algebra of the


lass fun
tions on G and so 
ommutative. Further, it has a basis of orthogonal idempotents,

the super-
hara
ters, so it is semi-simple.

For ea
h (D; �), let S(D; �) be the labels of the irredu
ible 
hara
ters of G 
ontained

in �

D;�

. By orthogonality of �

D;�

, the S(D; �) are disjoint. From (2.4), every irredu
ible


hara
ter appears in a unique S(D; �). Sin
e ea
h irredu
ible 
hara
ter �

s

appears in the

regular 
hara
ter �

s

(1) times, (2.4) yields that the multipli
ity of �

s

in the appropriate �

D;�

is q

i(D)�d(D)

�

s

(1). Thus

(2:5) �

D;�

(�) = q

i(D)�d(D)

X

s2S(D;�)

�

s

(1)�

s

(�):

It is 
lassi
al that for two irredu
ible 
hara
ters

�

s

� �

t

= Æ

st

jGj

�

s

(1)

� �

s

(�)

See e.g. Isaa
s [1976, 2.13℄. Thus, �

D;�

� �

D

0

;�

0

is zero unless (D; �) = (D

0

; �

0

) and then

(2:6) �

D;�

� �

D;�

(�) = q

2(i(D)�d(D))

X

s2S(D;�)

�

2

s

(1)

jGj

�

s

(1)

�

s

(�) = q

i(D)�d(D)

jGj�

D;�

(�) 2

We may identify the super-
hara
ters as tensor produ
ts of 
ertain indu
ed 
hara
ters

studied by Lehrer [1974℄. First, for 1 � i � n � 1 identify the i-dimensional group G

i

(q)

with a subgroup of G

n

(q) having non-zero entries only in the left i � i upper 
orner. This

subgroup has a normal 
omplement H

i

(q) 
onsisting of matri
es in G

n

(q) having the identity

in the left i� i left upper 
orner. Thus G

n

(q) is the semi-dire
t produ
t of G

i

(q) with H

i

(q).

It follows that any 
hara
ter of G

i

(q) extends trivially to G

n

(q). Let G

i;k

; 1 � k � i � 1

be the subgroup of G

i


onsisting of matri
es that are zero in the kth row (to the right of

the diagonal). For � a 
hara
ter of F

�

q

, let �

i;k

be the 
hara
ter (0; : : : ; 0; �; 0; : : : ; 0) (zeros

ex
ept in the kth pla
e) of the Abelian subgroup of G

i


onsisting of matri
es whi
h are zero

ex
ept in the last 
olumn. Using the trivial 
hara
ter of G

i�1

gives a 
hara
ter ??? of G

i

.

Indu
ing this up to G

n

gives pre
isely �

D;�

with D = f(k; i)g and � uniquely asso
iated to �.

Further, for any D, �

D;�

=

N

d2D

�

d;�

. Details may be found in Lehrer [1974℄ and Yan [2001℄.

C. The Chara
ter Formula. There is a remarkable 
losed form formula for the value

of a super-
hara
ter on a super-
lass. Andre [1996℄ gave su
h a result for p suÆ
iently large


ompared to n. Using tools developed by Yan, we are able to show that Andre's formula

holds for all values of n and p.

Theorem 2. On the group G

n

(q) of upper-triangular matri
es, with ones on the diagonal

and entries in F

q

, the value of the super-
hara
ter �

D;�

on the super-
lass C(D

0

; �

0

) equals

(2:7)

8

>

>

>

<

>

>

>

:

q

p(D;D

0

)

�

 

Y

(i;j)2D\D

0

�(i; j)�

0

(i; j)

!

if D � R(D

0

)

0 Otherwise
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where R(D

0

) is the 
omplement in f1 � i < j � ng of the positions dire
tly above and

to the right of positions in D

0

(thus D

0

� R(D)) and p(D;D

0

) is the number of positions

dire
tly below positions in D whi
h are also in R(D

0

). Finally, � is an isomorphism from F

q

(additively) to C .

Remarks and Examples.

1. D

0

= ; 
orresponds to the identity, whi
h forms a super-
lass by itself. Then, R(D

0

)

is the full upper triangle, the produ
t in (2.7) is one, and p(D;D

0

) = d(D) de�ned in

Se
tion 2A above. Thus

dim �

D;�

= �

D;�

(1) = q

d(D)

2. The random walk Q of (1.4) is supported on the union of 2(n� 1) super-
lasses

C

i

(�1) = C((i; i+ 1); �1); 1 � i � n� 1:

For D

0

= C

i

(�1), R(D

0

) 
onsists of all positions in the upper-triangle whi
h are not

stri
tly above or stri
tly to the right of (i; i + 1). The produ
t in (2.7) has a single

term and p(D;D

0

) 
ounts the distan
e from the entries inD down to the super-diagonal


ounting only positions inR(D

0

). Thus, ifD

i

is the set of positions inD in the re
tangle

stri
tly above and to the right of (i; i+ 1)

�

D;�

(C

i

(�1))

�

D;�

(;)

=

�

q

�jD

i

j

�(��(i; i + 1)) if D � R(f(i; i+ 1)g)

0 Otherwise

We make 
areful use of this in Se
tion 3. We begin the proof of the theorem with a duality

lemma. The super-
hara
ters of G = G

n

(q) are indexed by orbits of G � G on U

�

n

(q) the

set of F

q

-valued linear fun
tions of U

n

(q) taken as a ve
tor spa
e over F

q

. Yan shows these

may also be indexed by Pairs (D; �) as above. Call the set of orbits �

�

with typi
al element

 (D; �).

Lemma 1. Fix � 2  (D; �) and g 2 C(D

0

; �

0

). Then,

(2:8) �

D;�

(g) =

q

d(D)

j (D; �)j

X

�

0

2 (D;�)

�(�

0

(g � I)) =

q

d(D)

jC(D

0

; �)j

X

h2C(D

0

;�

0

)

�(�(h� I)):

Proof. The �rst equality in (2.8) is 2.5 of Yan [2001℄. Write the �rst sum as

X

�

0

2 (D;�)

�(�

0

(g � I)) =

1

jGj

2

X

s;t2G

X

�

0

2 (D;�)

�(s � �

0

� t(g � I))

=

1

jGj

2

X

�

0

2 (D;�)

X

s;t2G

�(s � �

0

� t(g � I))

=

j (D; �)j

jGj

2

X

s;t2G

�(s � � � t(g � I))

=

j (D; �)j

jGj

2

X

s;t2G

�(�(t(g � I)s):

9



The last sum equals

jGj

2

jC(D

0

; �

0

)j

X

h2C(D

0

;�

0

)

�(�(h� I)):

Combining formulae gives the se
ond equality in (2.8) 2

Proof of Theorem 2. Observe �rst that the 
laimed formula (2.7) is multipli
ative: If

D = fÆ

1

; Æ

2

; : : : ; Æ

r

g and the formula is known, then

�

D;�

=

r

Y

i=1

�

Æ

i

;�

:

Now, Yan [2001, th 6.1℄ has shown the super-
hara
ters �

D;�

is multipli
ative. Thus it is

enough to verify for any position Æ

�

Æ;�

(C(D

0

; �

0

)) =

8

>

<

>

:

q

p(Æ;D

0

)

�(�(Æ)�

0

(Æ)) if Æ 2 D

0

q

p(Æ;D

0

)

if Æ 2 R(D

0

) nD

0

0 if Æ 62 R(D

0

)

It will be 
onvenient to use the 
orresponden
e g $ g�I whi
h takes C(D

0

; �

0

) to K(D

0

; �

0

).

As explained in Se
tion 2A above, every transition 
lass K(D

0

; �

0

) 
an be written as a sum

of 
lasses:

K(D

0

; �

0

) =

X

Æ

0

2D

0

K(Æ

0

; �

0

);

with ea
h m 2 K(D

0

; �

0

) expressible in exa
tly r(D

0

) ways { see (2.0). Thus

(2:9): jK(D

0

; �

0

)j =

1

r(D

0

)

Y

Æ

0

2D

0

jK(Æ

0

; �

0

)j

Using (2.8), for any � 2  

�

(Æ; �)

�

Æ;�

(C(D

0

; �

0

)) =

q

d(Æ)

jK(D

0

; �

0

)j

X

m2K(D

0

;�

0

)

�(�(m)):

Using the de
omposition of m as a sum

(2:10)

X

m2K(D

0

;�

0

)

�(�(m)) =

1

r(D

0

)

Y

Æ

0

2D

0

X

m2K(Æ

0

;�

0

)

�(�(m)):

Using properties of trigonometri
 sums,

X

m2K(Æ

0

;�

0

)

�(�(m)) =

8

>

>

>

<

>

>

>

:

jK(Æ; �

0

)j �(�(Æ)�

0

(Æ)) if Æ = Æ

0

jK(Æ

0

; �

0

)j if Æ 2 R(Æ

0

) nR

+

(Æ

0

)

jK(Æ

0

; �

0

)j q

�1

if Æ 2 R

+

(Æ

0

)

0 if Æ 62 R(Æ

0

)

10



We use the following notations.

0

B

B

B

B

�

0 0 � � �

0 0 � � �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

� is in position Æ

0

, � are in positions belonging to R(Æ

0

)

C

and � are in positions belonging

to R

+

(Æ

0

). It follows that the sum (2.10) is

q

�

P

Æ

0

2D

0

1

R

+

(Æ

0

)

(Æ)

�(�(Æ)�

0

(Æ))

1

D

0

(Æ)

1

r(D

0

)

Y

Æ

0

2D

0

jK(Æ

0

; �

0

)j:

The theorem folows from this, (2.8), (2.9) and the obvious fa
t

p(Æ;D

0

) = d(Æ)�

X

Æ

0

2D

0

1

R

+

(Æ

0

)

(Æ) 2

D. Set Partitions and Bell Numbers. The algebra A of Proposition 1 has a 
lose


onne
tion with set partitions and Bell numbers. Indeed, the allowable sets D 
orre-

spond to set partitions of [n℄ by de
laring i and j to be in the same blo
k if D 
ontains

(i; j). For example, when n = 3, the �ve subsets D displayed in Figure 1 
orrespond to

1=2=3; 12=3; 1=23; 13=2; 123. Given a set partition, we asso
iate D, a set of pairs (i; j) with

1 � i < j � n, by beginning with 1 and adding a box (1; j) to D for the smallest distin
t

entry j in the same blo
k with one (if one is a singleton,no box is added). Then add a box

(2; j) if j is the smallest entry in the blo
k with 2 (no box is added if there is no larger

entry). Continue with 3; 4; : : : ; n� 1. As an example, 25=14=3 
orresponds to

0

B

B

B

B

�

0 0 0 � 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

Under this 
orresponden
e, partitions with b blo
ks map to patterns with n� b boxes.

There is an extensive enumerative theory of set partions, see e.g. Fristed [1987℄ or Pitman

[2003℄ for authoritative surveys. We have not seen previous study of the statisti
s d(D) or

i(D). From the de
omposition of the regular representation (2.4) we have the generating

fun
tion

q

n(n�1)=2

=

X

D

q

2d(D)�i(D)

(q � 1)

jDj

:

Andre [1996℄ had earlier proved a dual formula 
orresponding to the de
omposition into

super-
lasses.

11



The number B(n; q) of super-
lasses equals the dimension of the algebra A. Yan [2001,

4.1℄ gives the following re
urren
e

B(n + 1; q) =

n

X

k=0

�

n

k

�

(q � 1)

n�k

B(k; q); B(0; q) = 1:

This is easy to see: a 
on�guration 
ounted by B(n+1; q) 
ontains some number of boxes on

the super-diagonal. Call this n�k; 0 � k � n. Any 
hoi
e rules out n�k rows and 
olumns

and leaves at most k boxes to be further pla
ed. This 
an be done in B(k; q) ways; of 
ourse

the (q � 1) fa
tor a

ounts for the labeling by F

�

q

. Note that when q = 2, this be
omes the

usual re
urren
e for Bell numbers.

Lehrer [1974℄ has shown that the irredu
ible 
hara
ters of maximal degree are also

super-
hara
ters 
orresponding to boxes (1; n); (2; n� 1); (3; n� 2); : : : along the main anti-

diagonal. He shows that `most' representations (a

ording to Plan
herel measure) have

maximal degree.

Finally, Borodin [1995℄ has derived elegant probabilisti
 limit theorems for the number of

Jordan Blo
ks in a random element of G. These and other results are des
ribed in Fulman's

Survey [2002, Se
. 4℄.

E. Some Fourier Analysis. Throughout, G = G

n

(q) and A is the algebra of super-
lass

fun
tions of G. The Fourier Transform of f 2 A at the 
lass indexed by D; � is

b

f(D; �) =

X

g

f(g)��

D;�

(g) = jGjhf j�

D;�

i:

From the 
onvolution formula (2.4) and linearity we have, for f , h 2 A,

(2:11)

[

f � h(D; �) = q

�d(D)

b

f(D; �)

b

h(D; �):

As usual, the Fourier transform of the uniform distribution �(g) = 1=jGj is

b�(D; �) =

(

1 if D is empty

0 otherwise:

Also, for any probability distribution Q 2 A,

b

Q(;) = 1. The following version of the

Plan
herel Theorem is basi
 to what follows.

Proposition 3. Let Q 2 A be a probability distribution. Then

kQ

�k

� �k

2

2

=

1

jGj

2

X

D;�

Non�empty

q

�i(D)

�

�

�

�

�

b

Q(D; �)

q

d(D)

�

�

�

�

�

2k

:

Proof. For any h 2 A,

h =

X

D;�

hhj�

D;�

i

h�

D;�

j�

D;�

i

�

D;�

:
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Thus

khk

2

2

=

X

D;�

jhhj�

D;�

ij

2

q

�i(D)

:

This implies

kQ

�k

� �k

2

2

=

1

jGj

X

g

jQ

�k

(g)� �(g)j

2

=

X

D;�

Non�empty

jhQ

�k

j�

D;�

ij

2

q

�i(D)

:

Now use (2.11). 2

Corollary. (Upper Bound Lemma) Let Q 2 A be a probability distribution, then

4kQ

�k

� �k

2

TV

�

X

D;�

Non�empty

q

�i(D)

�

�

�

�

�

b

Q(D; �)

q

d(D)

�

�

�

�

�

2k

:

Proof. 4kQ

�k

� �k

2

TV

=

�

X

g

jQ

�k

(g)� �(g)j

�

2

� jGj

X

g

jQ

�k

(g)� �(g)j

2

= jGj

2

kQ

�k

� �k

2

2

2

Remark. Let us relate the analysis of this se
tion to the 
lass-fun
tion analysis of Dia
onis

[2003℄. If G is any �nite group and h is a 
lass fun
tion of G,

h =

X

�

hhj�

�

i�

�

where the sum is over all irredu
ibles representations and �

�

(g) = Tra
e(�(g)).

Orthonormality of 
hara
ters implies khk

2

2

=

X

�

jhhj�

�

ij

2

.

If G = G

n

(q) and h is a super-
lass fun
tion, Proposition 3 gives h as a sum of super-


hara
ters.

(2:12) h =

X

 

hhj�

 

i

h�

 

j�

 

i

�

 

:

Thus khk

2

2

=

X

 

jhhj�

 

ij

2

q

�i( )

where  runs over (D; �) pairs. De
ompose the super-


hara
ter �

 

into irredu
ibles as in (2.7)

(2:13) �

 

=

X

�2S( )

m(�;  )�

�

:
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using (2.12), (2.13)

(2:14) hhj�

�

i =

hhj�

 

i

h�

 

j�

 

i

m(�;  )

thus

X

�

jhhj�

�

ij

2

=

X

 

X

�2S( )

�

�

�

hhj�

 

i

h�

 

j�

 

i

m(�;  )

�

�

�

2

=

X

 

jhhj�

 

ij

2

j�

 

j�

 

ij

2

X

�2S( )

m

2

(�;  )

=

X

 

jhhj�

 

ij

2

h�

 

j�

 

i

:

Thus, as must be, the two formulae for khk

2

2

agree.

From (2.14) we see that if h 2 A and

b

h( ) = 0 then

b

h(�) = 0 for ea
h � in S( ).

3. Proof of Theorem 1 and Extensions

In this se
tion we use the Fourier transform of the probability measureQ of (1.4) together

with the upper bound lemma of Se
tion 2E to prove Theorem 1. Throughout, the L

2

norms

are bounded. We �rst treat the 
ase when q = 2 with holding at the identity, both to have

a theorem for this 
ase and be
ause the analysis is easiest here. We then treat the 
ase of a

general �nite �eld F

q

; Theorem 1 is the spe
ial 
ase where q = p. Finally we give the lower

bounds whi
h show our upper bounds are essentially sharp.

A. q = 2. On GL

n

(2) 
onsider the probability measure Q, de�ned in (1.4).

The Fourier transform at the super-
hara
ter indexed by (D; �) is

(3:2)

b

Q(D)

2

d(D)

=

1

n

+

1

n

n�1

X

i=1

2

�jD

i

j

(�1)

Æ(D;i)

Æ(R

i

; D):

When q = 2, � doesn't enter. We write D

i

for the number of positions in D stri
tly inside the

re
tangle with lower left 
orner at (i; i+ 1). The indi
ator 1(D; i) is one or zero as (i; i+ 1)

is in D or not and 1(R

i

; D) is one or zero as D is disjoint from positions in the row (and


olumn) stri
tly to the right (above) (i; i + 1).

From proposition three, the L

2

or 
hi-square distan
e is given by

(3:3) jGj

2

kQ

�k

� �k

2

2

=

X

D 6=;

2

�i(d)

�

�

�

b

Q(D)

2

d(D)

�

�

�

2k

�

X

D 6=;

�

�

�

b

Q(D)

2

d(D)

�

�

�

2k

:

This is an upper bound for the total variation distan
e (1.3). Thus the following theorem

proves the upper bound for Theorem 1 when q = 2.

Theorem 3. On G

n

(2), with Q de�ned by (3.1), let k = n(5=2 logn + 
=2), for 
 > 0.

Then

jGj

2

kQ

�k

� �k

2

2

� 4e

�


:
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Proof. Fix a non-empty set of positionsD and 
onsider the transform

b

Q(D)=2

d(D)

at (3.2).

Let m be the number of positions in D stri
tly above the super-diagonal and let ` be the

number of positions in D on the super-diagonal. We always have m+ ` � n� 1. Also, sin
e

D is non-empty, m+ ` � 1.

We may upper bound the transform by repla
ing negative terms in the sum by 0 and

positive terms in the sum by 1. Ea
h of the ` super-diagonal positions in D 
ontributes a

zero and ea
h of the m non-super-diagonal positions 
ontributes a zero. This shows that

b

Q(D)

2

d(D)

� 1�

m + `

n

:

We may lower bound the transform by repla
ing positive terms in the sum by 0 and negative

terms in the sum by -1. Ea
h of the ` super-diagonal positions in D 
ontributes a -1 and

ea
h of the m non-super-diagonal positions 
ontributes a 0. This shows that

b

Q(D)

2

d(D)

�

`

n

:

Hen
e,

�

�

�

�

�

b

Q(D)

2

d(D)

�

�

�

�

�

� max

�

1�

m + `

n

;

`

n

�

:

To bound the sum in (3.3) note that there are at most

 

n

2

m

! 

n

`

!

� minfn

2(m+`)

; n

2(m+n�`)

g:

su
h sets D.

We know 
an bound the rightmost sum in (3.3) by

X

1�m+`�n�1

n

2(m+`)

�

1�

m+ `

n

�

2k

+

X

1�m+`�n�1

n

2(m+n�`)

�

`

n

�

2k

:

The �rst sum is bounded above by

n

n�1

X

s=1

n

2s

�

1�

s

n

�

2k

;

while the se
ond sum is bounded above by

n

n�1

X

s=1

n

4s

�

1�

s

n

�

2k

:

In both 
ases, use 1� x � e

�x

to bound by e

�


for k = n(5=2 logn+ 
=2). 2

Remark. The 
onstants 
an be slightly improved (our estimates were made simple for

dida
ti
 purposes). The lower bound in Se
tion 3C shows they 
annot be improved by mu
h.

15



3B. Proof of Theorem 1 (Upper Bound). Let p be an odd prime. We want to upper

bound

S =

X

D;�

�

�

�

�

�

Q(D; �)

p

d(D)

�

�

�

�

�

2k

:

We impli
itly extend � to all (i; j) by zero outside D.

Let D be a set of \positions". De
ompose it into D = on(D) [ o�(D), where on(D)

(resp. o�(D)) are the positions in D that are on (resp. o�, i.e. above) the super-diagonal.

We know from Theorem 2 that

(3:4)

Q(D; �)

p

d(D)

=

1

n� 1

n�1

X

i=1

w

i

(D)
os(2��(i; i+ 1)=p);

where the \weights" w

i

(D) satisfy 0 � w

i

(D) � 1 and w

i

(D) = 0 whenever there is s su
h

that (i; s) 2 D or (s; i+1) 2 D. Let Z(D) be the set of i = 1; : : : ; n�1 su
h that w

i

(D) = 0.

Also, nowhere in (3.4) do the values �(i; j); j > i + 1, appear.

Let I

+

(�) (resp. I

�

(�)) be the set of i = 1; : : : ; n� 1 su
h that 
os(2��(i; i+1)=p) > 0

(resp. < 0). Then,

Q(D; �)

p

d(D)

�

1

n� 1

X

i2I

�

(�)\Z(D)





os(2��(i; i+ 1)=p); and;

Q(D; �)

p

d(D)

�

1

n� 1

X

i2I

+

(�)\Z(D)





os(2��(i; i + 1)=p):

Hen
e, S � S

+

+ S

�

, where

S

�

=

X

D;�

 

1

n� 1

X

i2I

�

(�)\Z(FD)





os(2��(i; i+ 1)=p)

!

2k

:

Let us fo
us on S

+

{ the 
omputations for S

�

are similar. What we are summing

does not depend on the values that � takes on o�(D) [ (on(D) \ I

�

(�)). Let a(D) be the


ardinality of Z(D) and b(D) be the 
ardinality of o�(D). Noti
e that a(D) > b(D). Also,

let 


�

(D) be the 
ardinality on (D) \ I

�

(�).

Repla
ing �(i; i + 1) by h

i

, we thus get

S

+

=

X

D

(p� 1)

b(D)

[p=2℄




�

(D)

X

h

1

;:::;h




+

(D)

 

1

n� 1




+

(D)

X

i=1


os(2�h

i

=p)

!

2k

;

where the h

i

runs through f�p=4; : : : ; p=4g, ex
luding the 
ase where all h

i

are zero. In the

sum, p

b(D)

(resp. [p=2℄




�

(D)

) 
omes from summing over all possibilities for the values of � on

o�(D) (resp. on(D) \ I

�

(�)).

16



Rewrite as

S

+

=

X

D

(p� 1)

b(D)

[p=2℄




�

(D)

 




+

(D)

n� 1

!

2k

X

h

1

;:::;h




+

(D)

 

1




+

(D)




+

(D)

X

i=1


os(2�h

i

=p)

!

2k

;

where D runs through sets of positions satisfying 


+

(D) � 1.

First, we 
laim that, for all 1 � 
 � n� 1, and the range of the h

i

restri
ted as above,

X

h

1

;:::;h




 

1







X

i=1


os(2�h

i

=p)

!

2k

� �e

�� k=(p

2

n log n)

;

for universal �; �, uniformly in p; n and 
. Indeed, this follows from Theorem 1 in [Dia
onis

and Salo�-Coste, Se
tion 5℄ with an expli
it bound. See in parti
ular, example two of Se
tion

5. Salo�-Coste [2003, Th 8.10℄, gives another proof.

Se
ond, we prove that,

X

D

(p� 1)

b(D)

[p=2℄




�

(D)

 




+

(D)

n� 1

!

2k

� 1 + �

m

;

where �

m

! 0 as n!1, also for m = �p

2

n log(n) with � large enough, uniformly in p. (All

we need here is to bound by a 
onstant.)

Call the sum T . Sin
e a(D) + 


+

(D) + 


�

(D) � n� 1 and a(D) > b(D), we have

T �

X

D

p

b(D)+


�

(D)

 

1�

b(D) + 


�

(D)

n� 1

!

2k

:

There are at most

�

n

2

b

�

�

�

n� 1




�

sets of positions with b(D) = b and 


�

(D) = 
. This

number is bounded by n

2(b+
)

. Hen
e,

T � 1 +

X

1�b+
�n�1

n

2(b+
)

p

b+


 

1�

b+ 


n� 1

!

2k

:

(The 1 takes 
are of the 
ase b + 
 = 0.)

Call T

0

the sum on the right. We have

T

0

� n

n�1

X

`=1

(pn)

2`

 

1�

`

n� 1

!

2k

� n

n�1

X

`=1

(pn)

2`

e

�2m`=(n�1)

:

17



Now,

(pn)

2`

e

�2m`=(n�1)

� e

�2`(�p

2

log(n)�log(p)�log(n))

� e

�2` log(n)(�p

2

�log(p))

:

Choose � > 0 so that �p

2

� log(p) � 1, for all p � 3. Then,

T

0

� n

e

�2 log(n)

1� e

�2 log(n)

� 2=n;

and that tends to zeros as n in
reases. This 
ompletes the proof of the upper bound for

Theorem 1.

Remark. It is straight-forward to give a bound for the analogous walk over F

q

. Let

q = p

u

. Let a

1

; a

2

; : : : ; a

u

2 F

q

be a basis for F

q

as a ve
tor spa
e over F

p

. For a 2 F

q

,

de�ne Tr(a) = a + a

p

+ a

p

2

+ : : : + a

p

u�1

. As in Lidl and Niederreiter [1997, 2.30℄, let

b

1

; b

2

; : : : ; b

u

2 F

q

be a dual basis, thus Tr(a

i

b

j

) = 1

i=j

. Choose � in Theorem 2 as

�(a) = e

i

2�

p

Tr(a)

:

In Theorem 2, �eld elements

�(i; j) =

u

X

k=1

�

k

a

k

;

are written in basis a

k

and transform variables

�

0

(i; j) =

u

X

k=1

�

k

b

k

;

are written in basis b

k

. Then

�(�(i; j)�

0

(i; j)) = e

2�i

p

P

�

k

�

k

:

From here, the analysis follows more or less as above with n repla
ed by nu, if Q

0

is de�ned

on G

n

(q) by

Q

0

(g) =

8

>

<

>

:

1

2u(n�1)

if g = I � a

j

E

i; i+1

1 � j � a; 1 � i � n� 1

0 Otherwise

Theorem 1 holds as stated provided q is odd and m = p

2

nu log(nu). Further details are

omitted.

3C. Lower Bounds. A lower bound on the L

2

or 
hi-squared distan
e whi
h mat
hes the

upper bound of Theorems 2 and 3 
an be obtained from the expression for jGj

2

kQ

�m

� �k

2

2

18



in terms of the Fourier transform (3.4). Keep only terms 
orresponding to D having a single

position on the super diagonal and � = 1 on that entry. Then

jGj

2

kQ

�m

� �k

2

2

� (n� 1)

"

1�

1

n� 1

 

1� 
os

 

2�

p

!!#

2k

:

Elementary 
al
ulus estimates show that the right side is not small when m � 
p

2

n logn for


 �xed.

A lower bound for total variation 
omes from 
onsidering the quotient walk on G=�. As

explained in the introdu
tion, this evolves as the walk on F

n�1

p

whi
h pro
eeds by pi
king

a 
oordinate at random and adding �1 to this 
oordinate. For this walk a p

2

n logn lower

bound (for total variation) is well known. See e.g. Salo�-Coste [2003, Th 8.10℄. Further

details are omitted.

4. A Probabilisti
 Argument.

In this se
tion we give a 
on
eptually simple probabilisti
 proof of Theorem 1 for the

walk based on generating 
onjuga
y 
lasses. The argument is a hybrid of strong stationary

times as in Aldous and Dia
onis [1986℄, Dia
onis and Fill [1990℄ and Fourier analysis on

F

n�1

p

. It is related to the stopping time arguments used by Pak [2000℄ and Uyemura-Reyes

[2002℄.

Consider the measure Q de�ned at (1.4). As explained there, the random walk based on

multiplying by su

essive 
hoi
es from Q may be des
ribed as follows: If the 
urrent position

of the walk is X

t

2 G

n

(p), the next position is determined by multiplying on the left by

a matrix having � = �1 in position (i; i + 1), independent, uniformly 
hosen �eld elements

�

1

; : : : ; �

i�1

in the 
olumn above (i; i + 1), independent uniformly 
hosen �eld elements

�

1

; : : : ; �

n�(i+1)

in the row to the right of (i; i + 1). The entries in the (k; `) position in the

re
tangle with 
orner at (i; i+1) are ��

k

�

`

. The �rst proposition shows that the elements in

the row above (i; i + 1) and in the 
olumn to the right of (i; i + 1) in X

t+1

are independent

and identi
ally distributed and remain so in su

essive steps of the walk.

Proposition 1. Let S be a subset of f(i; j); 1 � i < j � ng. Let M be a random matrix

in G

n

(q) with fM

ij

g

(i;j)2S

uniformly distributed and independent of ea
h other and other

other entries in M . Let N be a se
ond random matrix independent of M . Then, the entries

in positions of S in the produ
t MN (or NM) are uniformly distributed, and independent

of ea
h other and the other entries in the produ
t.

Proof. Start with

(MN)

ij

=

X

k

M

ik

N

kj

=M

ij

+ T

ij

;

where T

ij

is a term involving elements ofM and N distin
t fromM

ij

. It follows that (MN)

ij

is uniform for all (i; j) 2 S. To prove independen
e, argue 
olumn by 
olumn, working from

the right. Entries in (MN) with the largest values of j o

urring in S have unique entries

whi
h do not o

ur in other terms in S. These are thus independent of ea
h other and the
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rest of the entries. Then 
onsider entries with the se
ond largest value of j in S, and so on.

The argument for NM is similar. 2

The above proposition says, on
e an entry is random, it stays random. Returning to the

random walk generated by Q, let T be the �rst time ea
h position (i; i + 1) 1 � i � n � 1

has been 
hosen at least on
e. It follows from the proposition that at time T = t, all the

entries at or above the se
ond diagonal are independent and uniformly distributed, even

given T = t. This last is a partial analog of strong stationarity.

Let � = �(G

n

(q)) be the Frattini subgroup. This 
onsists of matri
es M in G with

M

i;i+1

= 0 1 � i � n�1. We thus see that for any s; t with n�1 � t � s, PfX

s

2 AjT � tg

is right � invariant. The following proposition gives a pre
ise sense in whi
h the distribution

of T and the rate of 
onvergen
e of the the indu
ed walk on G=� 
ombine to give a bound on

the rate of 
onvergen
e of the walk on G

n

(p) to the uniform distribution �. The proposition

is a variation of proposition (2.2) of Uyemura-Reyes (2002).

Proposition 2. Let H be a normal subgroup of the �nite group G. Let Q be a probability

on G with X

t

; 0 � t < 1 the asso
iated random walk. Let

�

Q be the indu
ed probability

on G=H with Z

t

; 0 � t <1 the asso
iated random walk. Suppose T is a stopping time for

X

t

, with

PfX

t

2 AjT � tg

right H invariant. Then, for 1 � t <1,

kQ

�t

� �k � k

�

Q

�t

� ��k+ 2PfT > tg:

Proof. Choose 
oset representatives z

i

1 � i � jG=Hj. Write the walk as X

t

= (Z

t

; H

t

).

Observe

PfZ

t

= z;H

t

= hg �

1

jGj

= PfT � tg[PfZ

t

= z;H

t

= hjT � tg �

1

jGj

℄ +

PfT > tg[PfZ

t

= z;H

t

= hjT > tg �

1

jGj

℄:

Thus,

2kQ

�t

��k � PfT � tg

P

z;h

jPfZ

t

= z;H

t

= hjT � tg �

1

jGj

j+

PfT > tg

P

z;h

jPfZ

t

= z;H

t

= hjT > tg �

1

jGj

j:

The se
ond term is bounded by 2PfT > tg. For the �rst sum use

(PfZ

t

= zjT � tg � 1=jG=Hj)P (T � t) =

�

P (Z

t

= z)�

1

jG=Hj

�

�

(P (Z

t

= zjT > t)� 1=jG=Hj)P (T > t)


ombining bounds (and dividing by two) gives the result �

Propositions one and two lead to another proof of Theorem 1. Indeed, use Proposition 2 with

t as given. For the stopping time T take the �rst time all positions (i; i+1) have been 
hosen
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at least on
e. The 
lassi
al 
oupon 
olle
tors problem (Feller [1968℄) gives PfT > tg � e

�


.

The pro
ess Z

i

on G=� was analyzed in Dia
onis and Salo�-Coste [1993A, Se
. 6.1℄. They

show universal �; � with

kPfZ

t

2 �g � �

Gj�

k � �e

��t=p

2

n log n

:

Combining bounds 
ompletes the proof.

Remark. Our �rst proof of Theorem 1 used 
hara
ter theory to prove an approximation in

L

2

(�). This allows the walk to stand as a base of 
omparison. There is no sharp 
omparison

based on total variation bounds.

5. A Comparison Argument

This se
tion uses 
omparison te
hniques and the bounds on the 
onjuga
y walk Q in

Theorem 1 to get rates for the original walk Q

0

supported on generators I �E

i; i+1

, 1 � i �

n�1, as at (1.1). Throughout, p is an odd prime,G isG

n

(p), and � is the uniform distribution

on G. Let L

2

(�) be the real fun
tions of G with inner produ
t hf

1

jf

2

i =

X

g

f

1

(g)f

2

(g)�(g).

We 
aution the reader that we use results from Dia
onis and Salo�-Coste [1993A℄ whi
h uses

this inner produ
t multiplied by jGj.

The quadrati
 form E (resp. E

0

) asso
iated with Q (resp. Q

0

) is

E(f jf) =

X

s;t

(f(s)� f(t))

2

�(s)Q(ts

�1

);

(resp. Q

0

in pla
e of Q).

Lemma 5 of Dia
onis and Salo�-Coste [1993A℄ shows that if there is a 
onstant A su
h that

E � AE

0

then

(5:1) jGj

2

kQ

�k

0

� �k

2

2

� jGj

2

(�

2k

min

+ e

�k=A

+ kQ

�bk=2A


� �k

2

2

)

with �

min

the smallest eigenvalue of the Q

0

-walk. To give a suitable A, write ea
h element

in the support of Q as a produ
t of generators (I � E

i; i+1

). Let jgj be the length of g 2 G

and N(�i; g) the number of times I � E

i; i+1

, is used in the 
hosen representation for g.

Theorem 1 of Dia
onis and Salo�-Coste [1993A℄ shows that

(5:2) E � AE

0

with A = max

s

1

Q

0

(s)

X

g

jgjN(s; g)Q(g);

with the maximum taken over s = �i; 1 � i � n� 1.

Lemma 1. Any element g 2 supp(Q) 
an be written with jgj � 2np and N(�i; g) � 4p.

Proof. The elements of the 
onjuga
y 
lasses C

i

(�1) are des
ribed in Remark Three

following Theorem 1. They are matri
es in G with �1 in position (i; i + 1), arbitrary �eld
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elements �

1

; �

2

; : : : ; �

i�1

in the 
olumn above (i; i + 1), arbitrary �eld elements �

j

i + 2 �

j � n in the row to the right of (i; i + 1) and entry ��

a

�

b

in position (a; b) 1 � a �

i� 1; x+ 2 � b � n, with zeros elsewhere.

It is straight-forward to write su
h an element as a produ
t of generators. Begin by

writing down I +E

i; i+1

. Conjugating this by I �E

i�1; i

puts a one in position (i� 1; i+1)

leaving remaining entries unperturbed. Next 
onjugating by I � E

i�2; i�1

puts a one in

position (i � 2; i + 1). Continuing, gives a matrix with ones above entry (i; i + 1). With

these ones, general entries �

1

; �

2

; : : : �

i�1


an now be built up, working from the top down.

This results in a matrix with �1 in position (i; i+1), �

1

; : : : ; �

i�1

in the 
olumn above this

entry and zeros elsewhere.

From here, 
onjugate by (I + E

i+1; i+2

); : : : ; (I + E

n�1; n

) to put ones in the i

th

row.

Then, working from the right, build up the required pattern of �

j

. The remaining entries in

the matrix are all as they need to be to give the general entry of C

i

(�1).

Ea
h 
onjugation uses two generators so the �nal representing word has length at most

2np. Further, any �xed generator is used at most 4p. 2

Using the bounds in Lemma 1 in (5.2) gives

(5:3) E � AE

0

with A = 8n

2

p

2

:

The �nal ingredient needed is a bound of Stong for the smallest eigenvalue. Using basi


path arguments, Stong [1995℄ shows

�

min

� �1 +

2

p

2

:

Combining bounds we see that

jGj

2

kQ

�k

0

� �k

2

2

� jGj

2

n

(1� 2=p

2

)

2k

+ �e

k=8n

2

p

2

+ kQ

bk=16n

2

p

2




� �k

2

2

o

:

This is small provided k � (n

4

logn)(p

2

log p).

Remarks.

1. The �nal result is \o�". Stong's results show order n

3

steps suÆ
e for �xed p, and

Pak [2000℄ shows that n

2:5

steps suÆ
e when p = 2. It is possible to improve the

dependen
e on p by building up �

a

=�

b

in Lemma 1 more 
leverly. An indi
ation of the

problem 
an be seen in the bound (5.3). From our work on Theorem 1, we know that

the se
ond eigenvalue of the Q 
hain is from the super-
hara
ter with D = f(1; 2)g

and �(1; 2) = 1; this eigenvalue is

b

�

1

= 1 �

1

n�1

�

1 � 
os

�

2�

p

��

= 1 �

2�

2

(1+o(1))

np

2

. The

minimax 
hara
terization of eigenvalues shows that (5.3) implies �

i

� 1 �

(1�

e

�

i

)

A

this

gives �

1

� 1�




n

3

p

4

while Stong's results show 1�




1

np

2

� �

1

� 1 �




2

np

2

. This suggests

that the paths we have 
hosen 
an be improved, perhaps by randomization.

2. There is an amazing development of Mathemati
s 
onne
ted to minimal fa
torizations

in Berenstein, Formin and Zelevinsky [1996℄. Las, this does not seem to help improve

our bounds.
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We have in
luded this se
tion to show what a straight-forward use of 
omparison yields.

We hope that someone will be motivated to improve our results.
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