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Abstra
t

In this paper, we prove that the dimension of the spa
e spanned by the 
hara
ters

of the symmetri
 powers of the standard n-dimensional representation of S

n

is as-

ymptoti
 to n

2

=2. This is proved by using generating fun
tions to obtain formulas for

upper and lower bounds, both asymptoti
 to n

2

=2, for this dimension. In parti
ular,

for n � 7, these 
hara
ters do not span the full spa
e of 
lass fun
tions on S

n

.

Notation

Let P (n) denote the number of (unordered) partitions of n into positive integers,

and let � denote the Euler totient fun
tion. Let V be the standard n-dimensional

representation of S

n

, so that V = C e

1

� � � � � C e

n

with �(e

i

) = e

�i

for � 2 S

n

. Let

S

N

V denote the N

th

symmetri
 power of V , and let �

N

: S

n

! Z denote its 
hara
ter.

Finally, let D(n) denote the dimension of the spa
e of 
lass fun
tions on S

n

spanned

by all the �

N

, N � 0.

1. Preliminaries

Our aim in this paper is to investigate the numbers D(n). It is a fundamental

problem of invariant theory to de
ompose the 
hara
ter of the symmetri
 powers of

an irredu
ible representation of a �nite group (or more generally a redu
tive group).

A spe
ial 
ase with a ni
e theory is the re
e
tion representation of a �nite Coxeter

group. This is essentially what we are looking at. (The de�ning representation of S

n


onsists of the dire
t sum of the re
e
tion representation and the trivial representa-

tion. This trivial summand has no signi�
ant e�e
t on the theory.) In this 
ontext
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it seems natural to ask: what is the dimension of the spa
e spanned by the sym-

metri
 powers? Moreover, de
omposing the symmetri
 powers of the 
hara
ter of an

irredu
ible representation of S

n

is an example of the operation of inner plethysm [1,

Exer. 7.74℄, so we are also obtaining some new information related to this operation.

We begin with:

Lemma 1.1. Let � = (�

1

; : : : ; �

k

) be a partition of n (whi
h we denote by � ` n),

and suppose � 2 S

n

is a �-
y
le. Then �

N

(�) is equal to the number of solutions

(x

1

; : : : ; x

k

) in nonnegative integers to the equation �

1

x

1

+ � � �+ �

k

x

k

= N .

Proof. Suppose without loss of generality that � = (1 2 � � � �

1

)(�

1

+ 1 � � � �

1

+

�

2

) � � � (�

1

+ � � �+ �

k�1

+ 1 � � � n). Consider a basis ve
tor e





1

1


 � � � 
 e





n

n

of S

N

V ,

so that 


1

+ � � � + 


n

= N with ea
h 


i

� 0. This ve
tor is �xed by � if and only if




1

= � � � = 


�

1

, 


�

1

+1

= � � � = 


�

1

+�

2

and so on. Sin
e �

N

(�) equals the number of

basis ve
tors �xed by �, the lemma follows.

It seems diÆ
ult to work dire
tly with the �

N

's; fortunately, it is not too hard to

restate the problem in more 
on
rete terms. Given a partition � = (�

1

; : : : ; �

k

) of n,

de�ne

f

�

(q) =

1

(1� q

�

1

) � � � (1� q

�

k

)

:(1)

Next, de�ne F

n

� C [[q℄℄ to be the 
omplex ve
tor spa
e spanned by all of these

f

�

(q)'s. We have:

Proposition 1.2. dimF

n

= D(n).

Proof. Consider the table of the 
hara
ters �

N

; we are interested in the dimension

of the row-span of this table. Sin
e the dimension of the row-span of a matrix is

equal to the dimension of its 
olumn-span, we 
an equally well study the dimension

of the spa
e spanned by the 
olumns of the table. By the pre
eeding lemma, the

N

th

entry of the 
olumn 
orresponding to the �-
y
les is equal to the number of

nonnegative integer solutions to the equation �

1

x

1

+ � � �+ �

k

x

k

= N . Consequently,

one easily veri�es that f

�

(q) is the generating fun
tion for the entries of the 
olumn


orresponding to the �-
y
les. The dimension of the 
olumn-span of our table is

therefore equal to dimF

n

, and the proposition is proved.

2. Upper Bounds on D(n)

Our basi
 strategy for 
omputing upper bounds for dimF

n

is to put all the gener-

ating fun
tions f

�

(q) over a 
ommon denominator; then the dimension of their span

is bounded above by 1 plus the degree of their numerators. For example, one 
an see

without mu
h diÆ
ulty that (1 � q)(1 � q

2

) � � � (1 � q

n

) is the least 
ommon multi-

ple of the denominators of the f

�

(q)'s. Putting all of the f

�

(q)'s over this 
ommon
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denominator, their numerators then have degree n(n + 1)=2� n, whi
h proves

D(n) �

n(n� 1)

2

+ 1:(2)

By modifying this strategy 
arefully, it is possible to �nd a somewhat better bound.

Observe that the denominator of ea
h of our f

�

's is (up to sign 
hange) a produ
t

of 
y
lotomi
 polynomials. In fa
t, the power of the j

th


y
lotomi
 polynomial �

j

(q)

dividing the denominator of f

�

(q) is pre
isely equal to the number of �

i

's whi
h are

divisible by j. It follows that �

j

(q) divides the denominator of f

�

(q) at most

j

n

j

k

times, and the partitions � for whi
h this upper bound is a
hieved are pre
isely the

P

�

n� j

j

n

j

k�

partitions of n whi
h 
ontain

j

n

j

k


opies of j. Let S

j

be the 
olle
tion

of f

�

's 
orresponding to these P

�

n� j

j

n

j

k�

partitions. One sees immediately that

the dimension of the spa
e spanned by the fun
tions in S

j

is just D

�

n� j

j

n

j

k�

:

in fa
t, the fun
tions in this spa
e are exa
tly 1=(1 � q

j

)

b

n

j




times the fun
tions in

F

n�j

b

n

j




.

Now the power of �

j

(q) in the least 
ommon multiple of the denominators of all

of the f

�

(q)'s ex
luding those in S

j

is only

j

n

j

k

� 1, so the degree of this 
ommon

denominator is only n(n + 1)=2 � �(j). Therefore, as in the �rst paragraph of this

se
tion, the dimension of the spa
e spanned by all of the f

�

's ex
ept those in S

j

is

at most n(n� 1)=2 + 1� �(j); sin
e the dimension spanned by the fun
tions in S

j

is

D

�

n� j

j

n

j

k�

, we have proved the upper bound

D(n) �

n(n� 1)

2

+ 1� �(j) +D

�

n� j

�

n

j

��

:

If it happens that D

�

n� j

j

n

j

k�

< �(j), then this upper bound is an improvement

on our original upper bound. If we repeat this pro
ess, this time simultaneously

ex
luding the sets S

j

for all of the j's whi
h gave us an improved upper bound in the

above argument, we �nd that we have proved:

Proposition 2.1.

D(n) �

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

:

Finally, we obtain an upper bound for D(n) whi
h does not depend on other values

of D(�):

Corollary 2.2. Re
ursively de�ne U(0) = 1 and

U(n) =

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)� U

�

n� j

�

n

j

���

:

Then D(n) � U(n).
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Proof. We pro
eed by indu
tion on n. Equality 
ertainly holds for n = 0. For larger

n, the indu
tive hypothesis shows that D

�

n� j

j

n

j

k�

� U

�

n� j

j

n

j

k�

when j > 0,

and so

D(n) �

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

�

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)� U

�

n� j

�

n

j

���

= U(n):

Below is a table of values of D(n) and U(n) for n � 23, 
al
ulated in Maple, with

P (n) and our �rst estimate

n(n�1)

2

+ 1 provided for 
ontrast. Note that in the range

1 � n � 23, we have D(n) = U(n) ex
ept for n = 19; 20, when U(n) �D(n) = 1. Is

it true, for instan
e, that

�D(n) +

n(n� 1)

2

+ 1�

n

X

j=1

max

�

0; �(j)�D

�

n� j

�

n

j

���

is bounded as n!1?

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

U(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

n(n� 1)=2 + 1 1 2 4 7 11 16 22 29 37 46 56 67 79 92

P (n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135

n 15 16 17 18 19 20 21 22 23

D(n) 69 79 90 106 118 134 146 161 176

U(n) 69 79 90 106 119 135 146 161 176

n(n� 1)=2 + 1 106 121 137 154 172 191 211 232 254

P (n) 176 231 297 385 490 627 792 1002 1255

Table 1. Values of D(n), U(n), n(n� 1)=2 + 1, P (n) for small n

Example 1. The �rst dimension where D(n) < P (n) is n = 7, and it is easy then

to show that D(n) < P (n) for all n � 7. The di�eren
e P (7)�D(7) = 2 arises from

the following two relations:

4

(1� x

2

)

2

(1� x)

3

=

3

(1� x

3

)(1� x)

4

+

1

(1� x

3

)(1� x

2

)

2

and

3

(1� x

3

)(1� x

2

)(1� x)

2

=

2

(1� x

4

)(1� x)

3

+

1

(1� x

4

)(1� x

3

)

:
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The �rst relation, for example, says that if � is a linear 
ombination of �

N

's, then

4 � �((2; 2)-
y
le) = 3 � �(3-
y
le) + �((3; 2; 2)-
y
le):

Alternately, it tells us that for any N � 0, four times the number of nonnegative

integral solutions to 2x

1

+2x

2

+ x

3

+ x

4

+ x

5

= N is equal to three times the number

of su
h solutions to 3x

1

+ x

2

+ x

3

+ x

4

+ x

5

= N plus the number of su
h solutions

to 3x

1

+ 2x

2

+ 2x

3

= N .

3. Lower Bounds on D(n)

Let � = (�

1

; : : : ; �

k

) ` n. The rational fun
tion f

�

(q) of equation (1) 
an be written

as

f

�

(q) = p

�

(1; q; q

2

; : : : );

where p

�

denotes a power sum symmetri
 fun
tion. (See [1, Ch. 7℄ for the ne
essary

ba
kground on symmetri
 fun
tions.) Sin
e the p

�

for � ` n form a basis for the

ve
tor spa
e (say over C ) �

n

of all homogeneous symmetri
 fun
tions of degree n [1,

Cor. 7.7.2℄, it follows that if fu

�

g

�`n

is any basis for �

n

then

D(n) = dim span

C

fu

�

(1; q; q

2

; : : : ) : � ` ng:

In parti
ular, let u

�

= e

�

, the elementary symmetri
 fun
tion indexed by �. De�ne

d(�) =

X

i

�

�

i

2

�

:

A

ording to [1, Prop. 7.8.3℄, we have

e

�

(1; q; q

2

; : : : ) =

q

d(�)

Q

i

(1� q)(1� q

2

) � � � (1� q

�

i

)

:

Sin
e power series of di�erent degrees (where the degree of a power series is the expo-

nent of its �rst nonzero term) are linearly independent, we obtain from Proposition 1.2

the following result.

Proposition 3.1. Let E(n) denote the number of distin
t integers d(�), where �

ranges over all partitions of n. Then D(n) � E(n).

Note. We 
ould also use the basis s

�

of S
hur fun
tions instead of e

�

, sin
e by [1,

Cor. 7.21.3℄ the degree of the power series s

�

(1; q; q

2

; : : : ) is d(�

0

), where �

0

denotes

the 
onjugate partition to �.

De�ne G(n) + 1 to be the least positive integer that 
annot be written in the

form

P

i

�

�

i

2

�

, where � ` n. Thus all integers 1; 2; : : : ; G(n) 
an be so represented, so

D(n) � E(n) � G(n). We 
an obtain a relatively tra
table lower bound for G(n), as

follows. For a positive integer m, write (uniquely)

m =

�

k

1

2

�

+

�

k

2

2

�

+ � � �+

�

k

r

2

�

;(3)
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where k

1

� k

2

� � � � � k

r

� 2 and k

1

; k

2

; : : : are 
hosen su

essively as large as

possible so that

m�

�

k

1

2

�

�

�

k

2

2

�

� � � � �

�

k

i

2

�

� 0

for all 1 � i � r. For instan
e, 26 =

�

7

2

�

+

�

3

2

�

+

�

2

2

�

+

�

2

2

�

. De�ne �(m) = k

1

+

k

2

+ � � �+ k

r

. Suppose that �(m) � n for all m � N . Then if m � N we 
an write

m =

�

k

1

2

�

+ � � � +

�

k

r

2

�

so that k

1

+ � � � + k

r

� n. Hen
e if � =

�

k

1

; : : : ; k

r

; 1

n�

P

k

i

�

(where 1

s

denotes s parts equal to 1), then � is a partition of n for whi
h

P

i

�

�

i

2

�

= m.

It follows that if �(m) � n for all m � N then G(n) � N . Hen
e if we de�ne H(n)

to be the largest integer N for whi
h �(m) � n whenever m � N , then we have

established the string of inequalities

D(n) � E(n) � G(n) � H(n):(4)

Here is a table of values of these numbers for 1 � n � 23. Note that D(n) appears to

be 
lose to E(n+ 1). We don't have any theoreti
al explanation of this observation.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D(n) 1 2 3 5 7 11 13 19 23 29 35 45 51 62

E(n) 1 2 3 5 7 9 13 18 21 27 34 39 46 54

G(n) 0 1 1 3 4 4 7 13 13 18 25 32 32 32

H(n) 0 1 1 3 4 4 7 11 13 18 19 19 25 32

n 15 16 17 18 19 20 21 22 23

D(n) 69 79 90 106 118 134 146 161 176

E(n) 61 72 83 92 106 118 130 145 162

G(n) 40 49 52 62 73 85 102 112 127

H(n) 40 43 52 62 73 85 89 102 116

Table 2. Values of D(n), E(n), G(n), H(n) for small n

Proposition 3.2. We have

�(m) �

p

2m+ 3m

1=4

(5)

for all m � 405.

Proof. The proof is by indu
tion on m. It 
an be 
he
ked with a 
omputer that

equation (5) is true for 405 � m � 50000. Now assume that M > 50000 and that (5)

holds for 405 � m < M . Let p = p

M

be the unique positive integer satisfying

�

p

2

�

�M <

�

p+ 1

2

�

:

Thus p is just the integer k

1

of equation (3). Expli
itly we have

p

M

=

�

1 +

p

8M + 1

2

�

:
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By the de�nition of �(M) we have

�(M) = p

M

+ �

�

M �

�

p

M

2

��

:

It 
an be 
he
ked that the maximum value of �(m) for m < 405 is �(404) = 42. Set

q

M

= (1 +

p

8M + 1)=2. Sin
e M �

�

p

M

2

�

� p

M

� q

M

, by the indu
tion hypothesis

we have

�(M) � q

M

+max(42;

p

2q

M

+ 3q

1=4

M

):

It is routine to 
he
k that when M > 50000 the right hand side is less than

p

2M +

3M

1=4

, and the proof follows.

Proposition 3.3. There exists a 
onstant 
 > 0 su
h that

H(n) �

n

2

2

� 
n

3=2

for all n � 1.

Proof. From the de�nition of H(n) and Proposition 3.2 (and the fa
t that the right-

hand side of equation (5) is in
reasing), along with the inquality �(m) � 42 =

d

p

2 � 405 + 3 � 405

1=4

e for m � 404, it follows that

H

�

d

p

2m+ 3m

1=4

e

�

� m

for m > 404. For n suÆ
iently large, we 
an evidently 
hoose m su
h that n =

d

p

2m + 3m

1=4

e, so H(n) � m. Sin
e

p

2m + 3m

1=4

+ 1 > n, an appli
ation of the

quadrati
 formula (again for n suÆ
iently large) shows

m

1=4

�

�3 +

q

9 + 4

p

2(n� 1)

2

p

2

;

from whi
h the result follows without diÆ
ulty.

Sin
e we have established both upper bounds (equation (2)) and lower bounds

(equation (4) and Proposition 3.3) for D(n) asymptoti
 to n

2

=2, we obtain the fol-

lowing 
orollary.

Corollary 3.4. There holds the asymptoti
 formula D(n) �

1

2

n

2

.
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