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ABSTRACT

In this paper, we prove that the dimension of the space spanned by the characters
of the symmetric powers of the standard n-dimensional representation of S, is as-
ymptotic to n?/2. This is proved by using generating functions to obtain formulas for
upper and lower bounds, both asymptotic to n?/2, for this dimension. In particular,
for n > 7, these characters do not span the full space of class functions on .S,,.

NOTATION

Let P(n) denote the number of (unordered) partitions of n into positive integers,
and let ¢ denote the Euler totient function. Let V be the standard n-dimensional
representation of S, so that V = Ce; @ - -- @ Ce,, with o(e;) = e,; for o € S,,. Let
SNV denote the N*" symmetric power of V, and let yn : S, — Z denote its character.
Finally, let D(n) denote the dimension of the space of class functions on S,, spanned
by all the xn, N > 0.

1. PRELIMINARIES

Our aim in this paper is to investigate the numbers D(n). It is a fundamental
problem of invariant theory to decompose the character of the symmetric powers of
an irreducible representation of a finite group (or more generally a reductive group).
A special case with a nice theory is the reflection representation of a finite Coxeter
group. This is essentially what we are looking at. (The defining representation of S,
consists of the direct sum of the reflection representation and the trivial representa-
tion. This trivial summand has no significant effect on the theory.) In this context

'Supported by an NSERC PGS-B fellowship
2Partially supported by NSF grant DMS-9500714
1



2 THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #RxXX

it seems natural to ask: what is the dimension of the space spanned by the sym-

metric powers? Moreover, decomposing the symmetric powers of the character of an

irreducible representation of S, is an example of the operation of inner plethysm |1,

Exer. 7.74], so we are also obtaining some new information related to this operation.
We begin with:

Lemma 1.1. Let A = (\y,..., \x) be a partition of n (which we denote by A F n),
and suppose o € Sy is a A-cycle. Then xn(0) is equal to the number of solutions
(x1,...,2E) in nonnegative integers to the equation \yxi + -- -+ Agxp = N.

Proof. Suppose without loss of generality that o = (1 2 «-+ X))\ +1 -+ X\ +
Ag) - (A 4+ A1+ 1 - n). Consider a basis vector e{” ® - -+ ® 2" of SNV,
so that ¢; +---+ ¢, = N with each ¢; > 0. This vector is fixed by o if and only if
€1 = -+ = Cy, Cy41 = -+ = Cx4a, and so on. Since yy (o) equals the number of
basis vectors fixed by o, the lemma, follows. O

It seems difficult to work directly with the yy’s; fortunately, it is not too hard to

restate the problem in more concrete terms. Given a partition A = (Ay,..., \z) of n,
define

1
(1) Alg) =

(L=g*)--- (1= g™)
Next, define F,, C C|[[g]] to be the complex vector space spanned by all of these
r(q)’s. We have:

Proposition 1.2. dim F,, = D(n).

Proof. Consider the table of the characters xy; we are interested in the dimension
of the row-span of this table. Since the dimension of the row-span of a matrix is
equal to the dimension of its column-span, we can equally well study the dimension
of the space spanned by the columns of the table. By the preceeding lemma, the
N entry of the column corresponding to the A-cycles is equal to the number of
nonnegative integer solutions to the equation \yx; + -+ + A\yzp = N. Consequently,
one easily verifies that f)(¢) is the generating function for the entries of the column
corresponding to the A-cycles. The dimension of the column-span of our table is
therefore equal to dim F},, and the proposition is proved.

O

2. UPPER BOUNDS ON D(n)

Our basic strategy for computing upper bounds for dim F;, is to put all the gener-
ating functions f)(¢q) over a common denominator; then the dimension of their span
is bounded above by 1 plus the degree of their numerators. For example, one can see
without much difficulty that (1 — ¢)(1 — ¢?)--- (1 — ¢") is the least common multi-
ple of the denominators of the fy(¢)’s. Putting all of the fy(¢)’s over this common
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denominator, their numerators then have degree n(n + 1)/2 — n, which proves

n(n—1)
2

(2) D(n) < + 1.

By modifying this strategy carefully, it is possible to find a somewhat better bound.
Observe that the denominator of each of our f)\’s is (up to sign change) a product
of cyclotomic polynomials. In fact, the power of the ™ cyclotomic polynomial ®;(q)
dividing the denominator of fy(g) is precisely equal to the number of \;’s which are

divisible by j. It follows that ®;(q) divides the denominator of f(¢) at most HJ
times, and the partitions A for which this upper bound is achieved are precisely the
P (n -7 HJ) partitions of n which contain HJ copies of j. Let S; be the collection

of f\’s corresponding to these P (n -7 ? ) partitions. One sees immediately that

the dimension of the space spanned by the functions in S; is just D (n -7 L?J)

n

in fact, the functions in this space are exactly 1/(1 — ¢’) [7] times the functions in
F ..
n—j| ] _ _ _
Now the power of ®;(¢) in the least common multiple of the denominators of all
n

of the f\(q)’s excluding those in S; is only {;J — 1, so the degree of this common

denominator is only n(n + 1)/2 — ¢(j). Therefore, as in the first paragraph of this
section, the dimension of the space spanned by all of the f)’s except those in S; is
at most n(n —1)/2+1 — ¢(j); since the dimension spanned by the functions in S; is

D (n -7 HJ ), we have proved the upper bound

D < =iy 40 (n-i|2)).

If it happens that D (n —j HJ) < ¢(j), then this upper bound is an improvement

on our original upper bound. If we repeat this process, this time simultaneously
excluding the sets S; for all of the j’s which gave us an improved upper bound in the
above argument, we find that we have proved:

Proposition 2.1.
D(n) < @H —zn;max <0,¢(j) -D <n—j EJ))

Finally, we obtain an upper bound for D(n) which does not depend on other values
of D(+):

Corollary 2.2. Recursively define U(0) = 1 and

U(n):@—kl—;max(O,qb(j)—U(n—j EJ))
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Proof. We proceed by induction on n. Equality certainly holds for n = 0. For larger
n, the inductive hypothesis shows that D <n -7 EJ) <U (n -7 EJ) when j > 0,

)
)

D) < nm54)+1—§3m“<0¢<> ("—j[

n(nT—H_;max (o,qb(j)—U("—j{

= U(n).

<. 3

VAN
.| 3

O

Below is a table of values of D(n) and U(n) for n < 23, calculated in Maple, with

P(n) and our first estimate n{n-1) 5 Y 41 provided for contrast. Note that in the range
1 <n <23, we have D(n) = U(n) except for n = 19,20, when U(n) — D(n) = 1. Is
it true, for instance, that

—D(n)+"(”2_1 +1—Zmax (0 3(j) — <n—j EJ))

is bounded as n — oco0?

n 1[2[3[4] 5] 6] 7] 8] o[10]11]12] 13] 14
D(n) 1[2[3[5] 7|11[13[19[23[29(35|45| 51| 62
U(n) 1(2(3|5] 7|{11]13]19|23|29|35(45| 51| 62

nn—1)/2+1|1|2|4|7|11|16|22[29|37 46|56 |67| 79| 92

P(n) 12|35 7|11|15]22|30|42|56|77| 101135

n 15] 16] 17] 18] 19] 20 21| 22| 23

D(n) 69| 79| 90| 106|118 | 134 |146| 161| 176

U(n) 69| 79| 90|106|119 |135|146| 161| 176
n(n—1)/2+1|106 | 121 | 137 | 154 | 172 | 191 | 211 | 232 254

P(n) 176 | 231 | 297 | 385 | 490 | 627 | 792 | 1002 | 1255

TABLE 1. Values of D(n), U(n), n(n —1)/2+ 1, P(n) for small n

Example 1. The first dimension where D(n) < P(n) is n = 7, and it is easy then
to show that D(n) < P(n) for all n > 7. The difference P(7) — D(7) = 2 arises from

the following two relations:
4 3 1

I—2P2(1—2¢ (- (-2 (=21 -2)

and
3 2 1

T—a)(i-a)(i-a7 @-a)i-ap  (-a)(i-a)
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The first relation, for example, says that if y is a linear combination of xy’s, then
4-x((2,2)-cycle) = 3 - x(3-cycle) + x((3, 2, 2)-cycle).

Alternately, it tells us that for any N > 0, four times the number of nonnegative
integral solutions to 2z, + 2x5 + 3+ x4 + x5 = N is equal to three times the number
of such solutions to 3z + x5 + 3 + 4 + x5 = N plus the number of such solutions
to 3z + 2x9 + 2253 = N.

3. LowER BOUNDs ON D(n)

Let A = (A1,..., Ax) F n. The rational function f,(q) of equation (1) can be written
as

f/\(Q) :p/\(laqaq27 - ')7

where p, denotes a power sum symmetric function. (See [1, Ch. 7] for the necessary
background on symmetric functions.) Since the py for A F n form a basis for the
vector space (say over C) A™ of all homogeneous symmetric functions of degree n [1,
Cor. 7.7.2], it follows that if {uy}\-p is any basis for A then

D(n) = dimspanc{u(1,q,¢% ...) : A+ n}.
In particular, let uy = ey, the elementary symmetric function indexed by A. Define
Ai
OVEDY ( ) ) .
According to [1, Prop. 7.8.3], we have

d(\)

- q
= ai-@) =)
Since power series of different degrees (where the degree of a power series is the expo-

nent of its first nonzero term) are linearly independent, we obtain from Proposition 1.2
the following result.

e/\(]-aqaq27 s

Proposition 3.1. Let E(n) denote the number of distinct integers d(\), where A
ranges over all partitions of n. Then D(n) > E(n).

NoTE. We could also use the basis s, of Schur functions instead of ey, since by [1,
Cor. 7.21.3] the degree of the power series s)(1,q,¢?, ...) is d(\'), where X' denotes
the conjugate partition to \.

Define G(n) + 1 to be the least positive integer that cannot be written in the
form ), (AQ), where A F n. Thus all integers 1,2,...,G(n) can be so represented, so
D(n) > E(n) > G(n). We can obtain a relatively tractable lower bound for G(n), as
follows. For a positive integer m, write (uniquely)

! m= () (3) - (3)
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where k1 > ko > -+ > k. > 2 and ki, ky,... are chosen successively as large as

possible so that
kq ko k;
m — _ e >0
2 2 2

for all 1 < ¢ < r. For instance, 26 = (;) + (g) + (;) + (;) Define v(m) = k; +

ky + -+ -+ k.. Suppose that v(m) < n for all m < N. Then if m < N we can write
m = (k’;) + -+ (k;) so that ky +---+ k., < n. Hence if A = (kl,...,kr,ln_zki)
(where 1° denotes s parts equal to 1), then A is a partition of n for which ), (2) = m.
It follows that if v(m) < n for all m < N then G(n) > N. Hence if we define H(n)
to be the largest integer N for which v(m) < n whenever m < N, then we have

established the string of inequalities
(4) D(n) > E(n) > G(n) > H(n).

Here is a table of values of these numbers for 1 < n < 23. Note that D(n) appears to
be close to E(n + 1). We don’t have any theoretical explanation of this observation.

n 11213145 6 7| 8| 9|10|11]12|13|14
D(n) (1235|711 |13][19[23[29|35|45 |51 |62
En)|1]2[3|5|7| 9|13]18|21|27|34|39 |46 |54
G(n)|0|1[1 34| 4| 7]13[13|18|25|32|32]32
H(n)|0|1|1]3|4| 4] 7|11|13]18|19|19|25 |32

n 15116 |17 18| 19| 20| 21| 22| 23
D(n) |69 |79]90| 106 | 118 | 134 | 146 | 161 | 176
E(n) | 61]72|83] 92106118130 145|162
G(n) |40 [49|52| 62| 73| 85|102]| 112127
H(n)|40[43|52| 62| 73| 85| 89102116

TABLE 2. Values of D(n), E(n), G(n), H(n) for small n

Proposition 3.2. We have
(5) v(m) < V2m+3m'/!
for all m > 405.

Proof. The proof is by induction on m. It can be checked with a computer that
equation (5) is true for 405 < m < 50000. Now assume that M > 50000 and that (5)
holds for 405 < m < M. Let p = py; be the unique positive integer satisfying

(o) =r<("2)

Thus p is just the integer k; of equation (3). Explicitly we have

L1+\/WJ
e
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By the definition of v(M) we have

v(M) = pas + v <M— @”))

It can be checked that the maximum value of v(m) for m < 405 is v(404) = 42. Set
qu = (1 +8M +1)/2. Since M — (”é”) < pm < qur, by the induction hypothesis
we have

v(M) < qp + max(42, \/2qy + 3q]1\/§4).
It is routine to check that when M > 50000 the right hand side is less than V2M +
3M'*, and the proof follows. O

Proposition 3.3. There exists a constant ¢ > 0 such that

n2
H(n) > 5 cen’/?
for alln > 1.

Proof. From the definition of H(n) and Proposition 3.2 (and the fact that the right-
hand side of equation (5) is increasing), along with the inquality v(m) < 42 =
[V/2-405 + 3 - 405'4] for m < 404, it follows that

H ([\/%+3m1/41> >m

for m > 404. For n sufficiently large, we can evidently choose m such that n =
[vV2m + 3m'/*], so H(n) > m. Since v/2m + 3m'/* + 1 > n, an application of the
quadratic formula (again for n sufficiently large) shows

3+ \/9+4\/§(n— 1)
2v/2 ’

from which the result follows without difficulty.

m'/t >

O

Since we have established both upper bounds (equation (2)) and lower bounds
(equation (4) and Proposition 3.3) for D(n) asymptotic to n?/2, we obtain the fol-
lowing corollary.

Corollary 3.4. There holds the asymptotic formula D(n) ~ in”.
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