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Abstract. We prove a conjecture of Miller and Reiner on the Smith
normal form of the operator DU associated with a differential poset
for the special case of Young’s lattice. Equivalently, this operator can
be described as ∂

∂p1

p1 acting on homogeneous symmetric functions of

degree n.

1. Introduction

Let R be a commutative ring with 1 and M an m×m matrix over R. We
say that M has a Smith normal form (SNF) over R if there exist matrices
P,Q ∈ SL(m,R) (so det P = detQ = 1) such that PMQ is a diagonal
matrix diag(d1, d2, . . . , dm) with di | di+1 (1 ≤ i ≤ m − 1) in R. It is well-
known that if R is an integral domain and if the SNF of M exists, then it
is unique up to multiplication of each di by a unit ui (with u1 · · · um = 1).

We see that Smith normal form is a refinement of the determinant, since
detM = d1d2 · · · dm. In the case that R is a principal ideal domain (PID),
it is well-known that all matrices in R have a Smith normal form. Not very
much is known in general.

In this work we are interested in the ring Z[x] of integer polynomials in
one variable. Since Z[x] is not a PID, a matrix over this ring need not have

an SNF. For instance, it can be shown that the matrix

[

x 0
0 x + 2

]

does

not have a Smith normal form over Z[x].
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We will use symmetric function notation and terminology from [5]. The
ring Λ of symmetric functions has several standard Z-bases: monomial sym-
metric functions mλ, elementary symmetric functions eλ, complete sym-
metric functions hλ and Schur functions sλ. The power sum symmetric
functions pλ form a Q-basis of ΛQ = Λ ⊗Z Q. The ring ΛQ is a graded
Q-algebra: ΛQ =

⊕∞
n=0 Λn

Q, where Λn
Q is the vector space spanned over Q

by {sλ : λ ⊢ n}. Similarly, Λ is a graded ring.
Regard elements of Λn

Q as polynomials in the pj’s. Define a linear map
T1 on Λn

Q by

T1(v) =
∂

∂p1
(p1v), v ∈ Λn

Q.(1.1)

Remark 1.1. Note that the power sum pλ is an eigenvector of T1(v)
with corresponding eigenvalue 1 + m1(λ), where m1(λ) denotes the number
of 1’s in λ.

Denote by M = M
(n)
1 the matrix of T1 with respect to the basis {sλ : λ ⊢

n} (arranged in, say, lexicographic order). It is known and easy to see that
M is an integer symmetric matrix of order p(n), the number of partitions of
n. Let λ(n) = (p(n) − p(n − 1), . . . , p(2) − p(1), p(1)), so λ(n) is a partition
of p(n). Let the conjugate of λ(n) be λ(n)′ = (jp(n)−p(n−1), . . . , j2, j1) (so
jp(n)−p(n−1) = n). We prove the following result.

Theorem 1.2. Let αk(x) = a1(x)a2(x) · · · ak(x) with ai(x) = i + x (i =
1, 2, . . . , n−1) and an(x) = n+1+x. There exist P (x), Q(x) ∈ SL(p(n), Z[x])
such that P (x)(M + xIp(n))Q(x) is the following diagonal matrix

diag(1, 1, . . . , 1, αj1(x), αj2(x), . . . , αjp(n)−p(n−1)
(x)).(1.2)

As an example of Theorem 1.2, let us consider the case n = 6. First
λ(6) = (4, 2, 2, 1, 1, 1) and λ(6)′ = (6, 3, 1, 1). Hence the diagonal entries of
an SNF of M + xI are seven 1’s followed by

1 + x, 1 + x, (1 + x)(2 + x)(3 + x), (1 + x)(2 + x)(3 + x)(4 + x)(5 + x)(7 + x).

In general, the number of diagonal entries equal to 1 is p(n − 1).
The origin of Theorem 1.2 is as follows. Let P be a differential poset,

as defined in [3] or [4, §3.21], with levels P0, P1, . . . . Let Z[x]Pn denote
the free Z[x]-module with basis Pn. Let U,D be the up and down operators
associated with P . Miller and Reiner [2] conjectured a certain Smith normal
form of the operator DU +xI : Z[x]Pn → Z[x]Pn. Our result is equivalent to
the conjecture of Miller and Reiner for the special case of Young’s lattice Y .
Our result also specializes to a proof of Miller’s Conjecture 14 in [1]. After
proving the theorem, we state a conjecture which generalizes it. It seems
natural to try to generalize our work to the differential poset Y r for r ≥ 2,
but we have been unable to do this.
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2. The proof of the theorem

Instead of Schur functions, we consider the matrix with respect to the
complete symmetric functions {hλ : λ ⊢ n}. Since {sλ : λ ⊢ n} and {hλ : λ ⊢
n} are both Z-bases for Λn, the Smith normal form does not change when
we switch to the hλ basis. We introduce a new ordering on the set Pn of all
partitions of n. The matrix A with respect to this new ordering turns out
to be much easier to manipulate than the original matrix. In fact, we show
that A + xIp(n) can be turned into an upper triangular matrix after some
simple row operations. Then we use more row/column operations to cancel
the non-diagonal elements. The resulting diagonal matrix is the SNF that
we are looking for.

From now on, we fix a positive integer n. The case n = 1 is trivial, so
we assume n ≥ 2.

2.1. A new ordering on partitions.

Definition 2.1. Let λ = (λ1, λ2 . . . , λi, 1) with λ1 ≥ λ2 ≥ · · · ≥ λi ≥ 1
( i ≥ 1). We define λ+ = (λ1 + 1, λ2, . . . , λi) and write λ+ տ λ. We call a
partition λ initial if there is no µ such that µ+ = λ, i.e., λ1 = λ2. We call a
partition µ terminal if µ+ is not well-defined, i.e., m1(µ) = 0, where mi(λ)
denotes the number of parts of λ equal to i.

For a sequence λ0, λ1, λ2, . . . , λt of partitions, we write

λt տ λt−1 տ · · · տ λ0(2.1)

and call it a rising string of length t if λi+1 տ λi, i.e., λi+1 = (λi)+, for
0 ≤ i ≤ t − 1.

In equation (2.1), if λ0 is initial and λt is terminal then we call (2.1) a full
(rising) string. Moreover, we say that λ0 is the initial element of the string
and λt is the terminal element of the string. One cannot add a partition to
a full string to make it longer.

A partition µ = (µ1, µ2, . . . , µi) with µ1 = µ2 ≥ · · · ≥ µi ≥ 2 is not in
any rising string of nonzero length. We also call this µ a (point) string of
length 0; it is both initial and terminal.

Note that every partition µ is in exactly one full string; we denote the
terminal element of this string by T (µ). Thus T (λ) = T (µ) if and only if
λ, µ are in the same string.

Definition 2.2. We define a total ordering � on the set of partitions
of n as follows.

(1) For two partitions in the rising string (2.1), we define λi � λj for
i ≤ j.

(2) For λ, µ in different full strings, we write λ � µ if T (λ) ≤L T (µ),
i.e., T (λ) is lexicographically less than T (µ).
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We arrange the partitions in Pn from largest to smallest according to
the following order:

λ11, λ12, . . . , λ1i1 ;λ21, λ22, . . . , λ2i2 ; . . . ;λt1, λt2, . . . , λtit ,(2.2)

where λj1 տ λj2 տ · · · տ λjij is the jth full string of partitions of n,
and we use semicolons to separate neighboring strings. It’s easy to see that
λ11 = (n), i1 = n, λ1i1 = (1n), and t is the number of terminal elements of
n, which is equal to the number of partitions of n with no part equal to 1,
viz., p(n) − p(n − 1). In fact, these cardinalities i1, i2, . . . , it of strings can
be expressed explicitly. We will see this point after the following example.

Example 2.3. The following is the list of partitions of 6:

6, 51, 412, 313, 214, 16; 42, 321, 2212; 32; 23.

The eigenvalues of M arranged in accordance with this order are by Re-
mark 1.1 as follows:

1, 2, 3, 4, 5, 7; 1, 2, 3; 1; 1.

On the other hand, we can arrange the eigenvalues of M in the following
form:

p(6) − p(5) = 4 : 1 1 1 1

p(5) − p(4) = 2 : 2 2

p(4) − p(3) = 2 : 3 3

p(3) − p(2) = 1 : 4

p(2) − p(1) = 1 : 5

p(1) = 1 : 7.

We see that the eigenvalues (to the right side of the colons) form a tableau
(with constant rows and increasing columns) of shape λ(6) = (4, 2, 2, 1, 1, 1).

Notice that the eigenvalues associated with the first string are 1,2,3,4,5,
and 7 and they form the first column of the above tableau. In fact, the
eigenvalues corresponding to every string form a column of the tableau. This
is not a coincidence, but rather because the eigenvalues corresponding to a
string form a sequence of consecutive integers starting from 1: 1, 2, 3 . . . , i,
except there is a gap for those corresponding to the first string. Therefore
the cardinality of a string is the length of a column of the tableau.

We can easily formalize this argument to prove the following.

Lemma 2.4. Rearrange the cardinalities of the strings i1, i2, . . . , it in
(2.2) in weakly decreasing order: J = (jt, . . . , j2, j1). Then J is exactly the
conjugate of the partition λ(n) = (p(n) − p(n − 1), . . . , p(2) − p(1), p(1)) as
defined in the introduction.

Note that i1, i2, . . . , it are not necessarily in weakly decreasing order.
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2.2. The transition matrix with respect to the new ordering.

Let A = (aµλ) be the p(n)× p(n) matrix of the action of ∂
∂p1

p1 on the basis

hλ, i.e., ∂
∂p1

p1 · hλ =
∑

µ aµλhµ. Here we use the total ordering �, with the

greatest partition (n) corresponding to the first row and column. Recall that
the notation ∂

∂p1
v means that we write v as a polynomial in the power sums

p1, p2, . . . and regard each pi, i ≥ 2, as a constant when we differentiate.

Lemma 2.5. The matrix A = (aµλ) has the following properties.

(1) aµλ 6= 0 only if λ տ µ, µ = λ or T (µ) > T (λ) (greater but not
equal in dominance order).

(2) aµλ = 1 if λ տ µ;
aλλ = m1(λ) + 1;
m1(µ) equals m1(λ) + 1 or m1(λ) + 2 if aµλ 6= 0 and T (µ) > T (λ).

Proof. Let hλ = hλ1 · · ·hλk
· · ·hλi

hj
1, with λ1 ≥ · · · ≥ λi ≥ 2. From

e.g. the basic identity

∑

m≥0

hmtm = exp
∑

i≥1

pi
ti

i

it follows that ∂hm

∂p1
= hm−1. Then (since h1 = p1)

∂

∂p1
p1 · hλ =

∂

∂p1
hλ1 · · ·hλk

· · ·hλi
hj+1

1

= (j + 1)hλ +

i
∑

k=1

hλ1 · · · hλk−1 · · ·hλi
hj+1

1 .

We see that aλλ = m1(λ) + 1. Let µ be the partition such that

hλ1 · · · hλk−1 · · ·hλi
hj+1

1 = hµ, 1 ≤ k ≤ i.

In the case that k = 1 and λ is not an initial element, i.e., λ1 > λ2, then
µ = (λ1 − 1, λ2, . . . , λi, 1

j+1) and thus λ տ µ.
In the other cases, µ is of the form µ = (λ1, λ2, . . . , λr − 1, . . . , λi, 1

j+1)
for some 1 < r ≤ i. Hence T (µ) = (λ1 + j + 1, λ2, . . . , λr − 1, . . . , λi) or
T (µ) = (λ1 + j + 2, λ2, . . . , λi−1) (when i = r and λr = 2). Note that
T (λ) = (λ1 + j, λ2, . . . , λi). We see that T (µ) > T (λ) (in dominance order).
This proves (1) and (2). �

In the following we set a′i = i for i = 1, 2, . . . , n− 1 and a′n = n + 1. We
separate rows and columns corresponding to different strings and write A
in the block matrix form A = (Akl)t×t. We have the following properties of
these Akl’s by Lemma 2.5.

(1) For k > l, Akl = 0.
(2) Akk is an ik × ik lower triangular matrix. Its diagonal entries are

a′1, a
′
2, . . . , a

′
ik

; the entries on the line right below and parallel to
the diagonal are all 1 and all the other entries are 0.
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It looks as follows:

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a′

1 b12
11 b12

12 · · · b12
1i2

· · · b1t
11 b1t

12 · · · b1t
1it

1 a′

2 b12
21 b12

22 · · · b12
2i2

· · · b1t
21 b1t

22 · · · b1t
2it

. . .
. . . · · · · · ·

1 a′

i1
b12
i11 b12

i12 · · · b12
i1i2

· · · b1t
i11 b1t

i12 · · · b1t
i1it

a′

1 · · · b2t
11 b2t

12 · · · b2t
1it

1 a′

2 · · · b2t
21 b2t

22 · · · b2t
2it

. . .
. . . · · ·

1 a′

i2
· · · b2t

i21 b2t
i22 · · · b2t

i2it

. . .

a′

1

1 a′

2

. . .
. . .

1 a′

it

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Furthermore, we have

bkl
ij = 0 if i ≤ j,(2.3)

i.e., Akl is a strict lower triangular matrix if k < l. The reason is that
bkl
ij = aλkiλlj , and if it is nonzero, then we have the following by Lemma 2.5:

i − 1 = m1(λ
ki) ≥ m1(λ

lj) + 1 = j − 1 + 1 = j.

(Here we use that m1(λ
pr) = r − 1 for λpr 6= (1n). It is possible that

λki = (1n), but then again i = n ≥ il + 1 ≥ j + 1.)
Now we replace the a′i on the diagonal of A with an arbitrary fi =

fi(x) ∈ Z[x] and change A into a matrix A(x) with entries in Z[x]. We will
apply some row/column operations to A(x) and transform it into an SNF in
Z[x]. (Some of these operations depend on the fi’s.) This is the same as to
say that there are P1(x), Q1(x) ∈ SL(p(n), Z[x]) such that P1(x)A(x)Q1(x)
is an SNF in Z[x].

Notice that the original matrix M is equal to PAP−1 for some P ∈
SL(p(n), Z). If we take fi = a′i + x (which is ai(x) in our theorem) in the
beginning, then A(x) = A + xIp(n), and thus the SNF P1(x)A(x)Q1(x) is

equal to P1(x)(P−1MP + xIp(n))Q1(x) = P1(x)P−1(M + xIp(n))PQ1(x), as
desired.

2.3. Transformation into an upper triangular matrix. If we use
horizontal lines to separate rows of A(x) corresponding to different full
strings, then A(x) is partitioned into t submatrices. We see that we should
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consider a matrix of the following form:

B =











f1 b11 b12 · · · b1m

1 f2 b21 b22 · · · b2m

. . .
. . . · · ·
1 fs bs1 bs2 · · · bsm











.

We can apply row operations to B and transform it first into

B1 =











1 f2 b21 b22 · · · b2m

. . .
. . . · · ·
1 fs bs1 bs2 · · · bsm

f1 b11 b12 · · · b1m











,

and then into

B2 =











1 f2 b21 b22 · · · b2m

. . .
. . . · · ·
1 fs bs1 bs2 · · · bsm

0 · · · 0 α β1 β2 · · · βm











,

with α = f1 · · · fs and

(−1)s−1βj = b1j − f1b2j + f1f2b3j + · · · + (−1)s−1f1 · · · fs−1bsj.

Apply this process to the t submatrices of A(x). We turn A(x) into the
matrix

A1(x) =

























































1 f2 b12
21 b12

22 · · · b12
2i2

· · · b1t
21 b1t

22 · · · b1t
2it

. . .
. . . · · · · · ·
1 fi1 b12

i11
b12
i12 · · · b12

i1i2
· · · b1t

i11 b1t
i12 · · · b1t

i1it

αi1 β12
1 β12

2 · · · β12
i2

· · · β1t
1 β1t

2 · · · β1t
it

1 f2 · · · b2t
21 b2t

22 · · · b2t
2it

. . .
. . . · · ·
1 fi2 · · · b2t

i21 b2t
i22 · · · b2t

i2it

αi2 · · · β2t
1 β2t

2 · · · β2t
it

. . .

1 f2

. . .
. . .

1 fit

αit

























































,

where αk = f1f2 · · · fk and

(−1)ik−1βkl
j = bkl

1j − f1b
kl
2j + f1f2b

kl
3j + · · · + (−1)ik−1f1f2 · · · fik−1b

kl
ikj .
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Recalling that bkl
ij = 0 for i ≤ j (see (2.3)), we find that

(2.4) f1f2 · · · fj | βkl
j , and as a special case, αil | βkl

il
.

This property is crucial for later cancellation.

Remark 2.6. Next we will show that we can cancel the nondiagonal
entries without altering the diagonal. Then by the definition of αk, we see
that the matrix A(x) has the Smith normal form

diag(1, 1, . . . , 1, αj1 , αj2 , . . . , αjt),

where (j1, . . . , jt) is the rearrangement of i1, . . . , it in weakly increasing or-
der. Combining Lemma 2.4, everything in our theorem is clear now.

2.4. The cancellation of the nondiagonal entries. Now we want
to cancel the nondiagonal elements, completing the proof. For those nonzero
elements above the diagonal, we can do the following.

(C1) First apply column operations to cancel the entries on the rows
with diagonal elements equal to 1 (starting from the first row).

(C2) Then apply row operations to cancel the entries on the columns
with diagonal elements equal to 1.

The matrix turns into the following:

A2(x) =



















































1 0 0 · · · 0 · · · 0 0 · · · 0
. . .

. . . · · · · · ·
1 0 0 · · · 0 · · · 0 0 · · · 0

αi1 0 0 · · · β12 · · · 0 0 · · · β1t

1 0 0 · · · 0
. . .

. . . · · ·
1 0 0 · · · 0

αi2 0 0 · · · β2t

. . .

1
1

. . .

αit



















































.

The only entries we cannot cancel in (C1) and (C2) are those on the inter-
section of rows and columns with αil ’s, i.e., the βkl’s in A2(x). If we can
prove that each βkl is a multiple of αil , then we can apply row operations
to cancel all those βkl’s, and we are done.

To see this, let us first go back to A1(x). We know that at the beginning
βkl

il
was a multiple of αil by (2.4). Then this entry was changed to βkl after

we applied (C1) and (C2). More precisely, (C1) changed it but (C2) did not.
If we look more closely, we find that terms were added to βkl

il
only when we
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were doing the column operations to cancel the nonzero entries below this
entry βkl

il
. We claim that each term which was added to this entry was

actually a multiple of αil . Thus the new term βkl in A2(x) is still a multiple
of αil .

Now let us prove our claim. For simplicity we consider only the entry
β1t

it
. The general case can be treated similarly. The entries which were below

this β1t
it

and which were canceled in (C1) were bkt
cit

(2 ≤ k ≤ t−1, 2 ≤ c ≤ ik)
together with fit which was right above αit .

(a) If bkt
cit

was nonzero, then c ≥ it + 1 by (2.3). To cancel this bkt
cit

, we

added −bkt
cit

times the λk,(c−1) column (i.e., the column indexed by

λk,(c−1)) to the λtit column. Thus −bkt
cit

β1k
c−1 was added to β1t

it
. By

the fact (2.4), f1 · · · fc−1 | β1k
c−1. But c− 1 ≥ it, so this term added

to β1t
it

did have f1 · · · fit = αit as a factor.

(b) To cancel fit , we added −fit times the λt,it−1 column to the λtit

column. This added −fitβ
1t
it−1 to β1t

it
. But again f1 · · · fit−1 | β1t

it−1

by (2.4); we see that this term added is a multiple of αit . �

3. A conjecture.

We conjecture that our theorem can be generalized to the action k ∂
∂pk

pk

for k ≥ 1.

Conjecture 3.1. Let M
(n)
k be the matrix of the map k ∂

∂pk
pk with re-

spect to an integral basis for homogeneous symmetric functions of degree

n. Then there exists P (x), Q(x) ∈ SL(p(n), Z[x]) such that P (x)(M
(n)
k +

xIp(n))Q(x) is the diagonal matrix diag(f1(x), . . . , fp(n)(x)), where fi(x) may
be described as follows. Let M be the multiset of all numbers mk(λ) for
λ ⊢ n. First, fp(n)(x) is a product of factors x + k(ai + 1) where the ai’s
are the distinct elements of M. Then fp(n)−1(x) is a product of factors
x + k(bi + 1) where the bi’s are the remaining distinct elements of M, etc.
(After a while we will have exhausted all the elements of M. The remaining
diagonal elements are the empty product 1.)

We can prove the following special case of the above conjecture. The
proof is based on the result that for a partition λ ⊢ n there is at most one
k-border strip if and only if k > n/2, though we omit the details here.

Proposition 3.2. If k > n/2, then an SNF of M
(n)
k + xIp(n) over Z[x]

is given by

diag(1, . . . , 1, x + k, . . . , x + k, (x + k)(x + 2k), . . . , (x + k)(x + 2k)),

where there are p(n − k) 1’s and p(n − k) (x + k)(x + 2k)’s.

Thus it is known that Conjecture 3.1 is true for k = 1 or k > n/2.
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