POSETS OF WIDTH TWO AND SKEW YOUNG
DIAGRAMS

RICHARD P. STANLEY

ABSTRACT. Let P be a finite poset of width two, i.e., with no
three-element antichain. We associate with P a skew Young dia-
gram Y (P) and discuss some of the properties of the map T. In
particular, if we regard Y(P) as a poset in a standard way, then

the linear extensions of P are in bijection with the order ideals of
T(P).

1. INTRODUCTION

We follow [4][5] for terminology involving posets, Young diagrams,
etc. Let P be a finite poset of width at most two, i.e., with no three-
element antichain. We will associate with P a skew Young diagram (or
skew shape) Y (P) = A\/p with the property that the linear extensions
w of P are in a natural bijection with the diagrams v/u contained in
A/, denoted v/pu = YT (w). Equivalently, regarding A/u as a poset in
a standard way (defined in Section 3), the linear extensions of P cor-
respond to the order ideals of A/u. The squares of A/u are in bijection
with the incomparable pairs of elements of P. With this identification,
the subdiagrams v/ are the inversion sets of the linear extensions w.
Since there is a known determinantal formula for the generating func-
tion for subshapes of A/u according to size, the same is true for linear
extensions of P according to number of inversions.

The map T is also well-behaved with respect to the descent sets of
the linear extensions of P (with respect to a certain labeling of the
elements of P). In particular, define a corner square of v/u to be a
square u € v/u with no square v € v/ directly to the right or directly
below u. Then the corner squares of T (w) correspond to the descents
of w, and the diagonals on which these corner squares lie determine the
descent set.

The proofs of our results are straightforward; the main point of the
paper is just to point out the connection between width two posets and
skew Young diagrams.
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FIGURE 1. A poset P and its corresponding skew shape T(P)

2. THE CORRESPONDENCE T

A finite poset P of width at most two is obtained, up to isomorphism,
by taking two disjoint chains C; : 1 <2 < ---<mand Cy :m+1<
m+2 < -+ < m+n (one or both of which may be empty) and adjoining
additional relations of the form ¢ < j or ¢ > j for ¢ € (' and j € Cs.
We call the triple (P,C4,Cy) an (m,n)-ladder, It costs us nothing in
our treatment to assume that every element of P is contained in a
two-element antichain; such width two posets we call full.

Consider an n x m array R of squares (i, j), where the columns of
R are indexed by m,m — 1,...,1 from left-to-right and the rows by
m+1,m+2,...,m+n from top-to-bottom. Define T (P, Cy,Cs) to be
the subarray of R consisting of those pairs (squares) (7,j) with i > j,
such that ¢ and j are incomparable in P. Thus ¢« € (5 and j € C].
When no confusion will result we write Y (P) for Y (P, Cy, Cy). Figure 1
shows a poset P and the corresponding set T(P) of squares. The
squares in Y(P) are 52,51,64,63,62,74,73. Note that by definition,
the number #Y(P) of squares in T(P) is the number of two-element
antichains (or incomparable pairs of elements) of P. The assumption
that P is full is equivalent to the statement that no row and no column
of R is empty, i.e., every row and every column of R contains at least
one square of Y(P). We say that T(P) is a full subset of R.

Theorem 2.1. T(P) is a skew Young diagram. Conversely, given a

full skew Young diagram \/p contained in an n X m rectangle R, there
is a unique full (m,n)-ladder (P, Cy,Cy) such that \/p = Y (P, Cy, Cs).

Proof. To show that Y(P) is a skew Young diagram, it suffices to prove
the following three assertions.
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FIGURE 2. The regions defined by a full skew shape in a rectangle

(1) If (4,a) € Y(P), (i,¢) € Y(P), and a < b < ¢, then (i,b) €
T(P).

(2) If (a,j) € T(P), (¢,j) € T(P), and a < b < ¢, then (b,j) €
T(P).

(3) If (¢,5) € T(P) and (k,h) € Y(P) with i < k and j < h, then
(i,h) € Y(P) and (k,j) € T(P).

Write u || v to denote that u and v are incomparable in a poset Q).
For the first assertion, note that for any poset (), with elements ¢ and
a<b<ecifi| aandil ctheni | b. The second assertion is similar
(or equivalent to the first by symmetry). In any poset P, if i < k,
h < j,i] 7, and h || k, then it is easy to check that i || h and & || j.
This proves that YT(P is a skew Young diagram.

Conversely, let A\/u be as in the statement of the theorem. Let
A be the set of squares in R above A/u and B the set of squares
below. See Figure 2 for an example. Define a poset P with elements
[m +n] = {1,2,...,m,} as follows. If (i,j) € A then set i < j. If
(1,7) € B then set i > j. It is straightforward to check that these
relations define a poset P for which T(P) = \/p.

We claim that P is unique. Otherwise there is a different (m,n)-
ladder (@, C1,Cs) with the same incomparable pairs, and hence the
same comparable pairs {i,j}. Thus there exists i € C; and j € Cy
such that + < j in P and j < ¢ in Q. If j is comparable to all k£ > i in
P then j is comparable to all elements of P; hence P is not full. Thus
J is incomparable to some k > 7 in P. But j cannot be incomparable
to some k > ¢ in ) since j < i in ). This contradicts the assumption

that P and () have the same incomparable pairs.
O
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Corollary 2.2. Let m,n > 1. The following sets have equal cardinal-
1ty.

e Full (m,n)-ladders.
o Full skew Young diagrams \/p inside an n X m rectangle R.

Let us denote the cardinality in the previous corollary by f(m,n).
What can be said about this number? For instance,

f,n) = 1

f(2,n) = %( 24+ 3n—2)

f(3,n) = 11—2(n4 + 8n® + 11n? — 20n + 12)

f(4,n) = ﬁ(nﬁ +15n° + 67n* + 45n° — 1400 + 300n — 144).

It’s not hard to see that for fixed m, f(m,n) is a polynomial in n of
degree 2m — 2.

Given a full poset P of width two, there is another poset (in fact, a
distributive lattice) that we can associate with P and whose elements
are in bijection with the incomparable pairs of P. See [5, Exer. 3.72].
We don’t know, however, of any connection with the present paper.

3. INVERSIONS AND ORDER IDEALS

Given P as above, let £(P) denote the set of linear extensions of P,
regarded as permutations w = ajas - - - apa, in the symmetric group
Gyan. Thus if a; < a; in P then ¢ < j. An inversion of w is a pair
(a;,a;) where i < j and a; > a;. The inversion set Z(w) is the set
of all inversions of w. For instance, w = 5126374 is a linear extension
of the poset P of Figure 1, with inversion set (abbreviating (a,b) as
ab) Z(w) = {51,52,53,54,63,64,74}. Note that 53 and 54 will be
inversions for any w € L(P). If Y(P) = A/u, then these pairs 53 and
54 index the squares of 1. The inversion set Z(w) consists of the squares
of the shape v = (4,2,1) contained in A and (necessarily) containing
p. In fact (as we will soon prove), this construction gives a bijection
between linear extensions w € L£(P) and skew shapes v/u contained in
A/p. The squares (i, ) of v are just the inversions of w.

We can regard \/u as a poset in a standard way, namely, a square u
is covered by a square v if v borders u on the right or on the bottom.
The skew shapes v/u contained in A/ are then just the order ideals of
A/p. Thus we have the curious fact that T converts linear extensions
to order ideals.
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Theorem 3.1. Let Y(P) = A/u. The map I is a bijection from L(P)
to partitions v satisfying p C v C X, where we are identifying v with
the set of squares (i,7) of its diagram (using the indexing defined in
Section 2).

Proof. 1t follows directly from the definition of Y that for all w € L(P)
and all (7,j) € p, we have (i,7) € Z(w). Moreover, if (i,5) € Z(w)
then (7,7) € A. To show that Z(w) is an order ideal, it suffices to show
that (1) if (¢,7) € Z(w) and ¢ > m + 1 then (i — 1,5) € Z(w), and (2)
if (i,7) € Z(w) and j < m then (i,j + 1) € Z(w). To show (1), since
(7,7) € Z(w) we have that ¢ precedes j in w and i > j. Buti—1 <1
in Psincem+1<m+2<---<m+n. Hence i — 1 precedes 7 and
therefore also precedes j in w, so (i — 1, j) € Z(w). The proof of (2) is
similar.

It remains to show that if y C v C A, then there is a w € L(P)
with Z(w) = v (identifying v with its set of squares (i,j)). Let
V' = (V,vh,...,v,) denote the conjugate partition to v. Consider
the sequence
(3.1)
v=N+1LN,_+2,..  N+mm—A\+1,m—I+2,...,m—\,+n).

For instance, if m =5, n =4, and v = (4,2,2,1), then v = (1, 3,4, 7,9,
2,5,6,8). It is straightforward to check that in general v € &,,,, and
that v=! € L(P) with Z(v™!) = v, completing the proof. O

Example 3.2. We illustrate the above proof by continuing the example
m=5n=4,v=(4,2,2,1), and v = (1,3,4,7,9,2,5,6,8) (1 and A
are irrelevant). In Figure 3 the row or column indexed by k as described
in Section 2 and illustrated in Figure 1 is now indexed by v, as defined
in equation (3.1), where v = (vy,...,v9). It’s not hard to see why
v < -+ <wsand vg < --- <wvg and {vy,...,v9} = [9]. Moreover, for a
square (7,7) of the rectangle, we have v; < v; if and only if (i,7) € v.
This implies that v™' € £(P) and Z(v™') = v (regarded as a set of
pairs (i,7)).

There is a determinantal formula due to Handa and Mohanty [3] (see
also Gessel and Loehr [2]) for the sum

A= Z q"l.
uCrCA

By Theorem 3.1 we can “transfer” this result to linear extensions of
width two posets P, yielding the following corollary.
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FIGURE 3. The shape v = (4,2,2,1) from Example 3.2

Corollary 3.3. Let (P,Cy,C5) be an (m,n)-ladder with Y(P) = \/p.

Write inv(w) for the number of inversions of a permutation w. Then

O KA@ — K+ 1) q(ig“)+(z‘—j+1>w]

weL(P) t—g+1 1<i,j<n
Here (A;;‘jil) denotes a q-binomial coefficient, and we set (Z) =0 if
b < 0.
For instance, if P is given by Figure 1, then
(e 10
S | f (@)1
weL(P) 3 3
0 (e ()

= ¢’ +3¢° +4¢" +5¢° +4¢° + 4¢" +2¢° + ¢*.

The set J(Q) of order ideals of any finite poset @), ordered by inclu-
sion, forms a finite distributive lattice [5, §3.4]. There is a nice way
to see from the skew shape A/u = Y(P) what is the Hasse diagram of
J(P) for an (m,n)-ladder P. Adjoin to the n x m rectangle R con-
taining Y (P) another row at the top and column at the right to form
an (n+ 1) x (m + 1) rectangle R'. Given a square u of R, let K, be
the largest subrectangle of R for which u is the lower left-hand corner.
Call a square u of R’ sticky if \/u U K, is a skew diagram (contained in
R'). Partially order the set S of sticky squares by defining ¢ to cover s
if t borders s on the left or on the bottom. Thus the upper-right corner
square of R', which is always sticky, is the minimal element 0 of this
partial ordering. We omit the straightforward proof of the following
result.
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FIGURE 4. The distributive lattice corresponding to the
skew shape 321/11

Theorem 3.4. The poset S is isomorphic to J(P).

An example of Theorem 3.4 is given in Figure 4. We take m =n =3
and A\/p = (3,2,1)/(1,1). The squares of A\/u are marked with an X.
The sticky squares are shaded. The Hasse diagram of the distributive
lattice J(P) is shown on the right.

There is a further corollary to Theorem 3.1. The weak (Bruhat)
order W(&y) of the symmetric group &y may be defined by v < w if
Z(v) € Z(w). Thus from Theorem 3.4 we obtain the following result.
(We give T(P) the poset structure defined preceding Theorem 3.1.)
We omit the details of the proof.

Corollary 3.5. Let P be a poset of width two (not necessarily full)
on [m + n] containing the two chains 1 <2 < --- < m and m+1 <
m+2<---<m-+mn. Then the set L(P) is an interval in the weak
order isomorphic to the distributive lattice J(YT(P)).

The fact that £(P) is a distributive lattice is also a consequence
of the characterization by Stembridge [6, Thm. 3.2] of intervals in
W(&,,) (or more generally in the weak order of any Coxeter group) that
are distributive lattices, together with the characterization by Billey-
Jockusch-Stanley [1, Thm. 2.1] of fully commutative elements of &,, as
the 321-avoiding permutations.

4. DESCENT SETS AND CORNER SQUARES

In addition to the inversion set Z(w) for w € L(P), it is also easy
to determine from Y(P) the descent set of w. Recall that if w =
aj - Gpin € Spin, then the descent set Des(w) is defined as

Des(w) ={1<k<m+n—1:a,> ag1}.
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FIGURE 5. The corner squares of v = (4, 3,2, 2, 2)

Let D = A/ be a skew diagram in an n x m rectangle R, with rows
and columns indexed as before. We may assume that D is full, i.e.,
R has no empty row or column. For a square u = (i,7) € D, define
e(u) = i+ 35 —m — 1. Thus the the top right corner square u has
e(u) = 1.

Theorem 4.1. Let Z(w) occupy the squares of the partition v. Let
C(v) be the set of corner squares of v. Then

Des(w) = {e(u): u € C(v)}.

In particular, the number des(w) of descents of w is equal to the number
#C(v) of corner squares of v.

Example 4.2. Let m =4, n =5, and v = (4, 3,2,2,2). Then Figure 5
shows that Des(w) = {1, 3,7}. The three corner squares are shaded.

Proof of Theorem 4.1. Suppose that w = w; ---wy is any sequence of
integers, and there are numbers a < b < ¢ < d such that w, > wy and
wp > w.. We then say that the inversion (wp,w,.) is inside (wq,wq).
Note that if (w,, w,) is an inversion, then there is a descent (w., wey1)
inside (wq, wyq). If (4,7), (k, h) € T(P), then (k, h) is inside (¢, j) if and
onlyifk >iandj <h (usingl <2<---<mandm+1<---<m+n
in P). It follows that the inversion (i,j) € Y(P) corresponds to a
descent in w if and only if (7, j) is a corner square.

Now let (i,j) be a corner square corresponding to the descent r
of w, ie., i = w, > w,11 = j. The elements of P less than 5 and
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preceding j in w are 1,2,...,7 — 1. The elements of P greater than j
and preceding j in w are m+1,m+2,...,i. Thus the total number of
elements preceding j is i+j—m—1 = e(i, j), completing the proof. [
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