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1 Introduction

This chapter introduces the two research areas presented in this dissertation.

1.1 Computational Aspects of Power Efficiency

Fokianos, Kedem, Qin, Short (FKQS) (2001) [9] introduced a semipara-
metric approach to the one-way layout that relies on an exponential dis-
tortion between each of the m distributions associated with the m ran-
dom samples. The classic approach to the one-way layout assumes that
each of the m distributions are Gaussian with a common variance. Un-
der the Gaussian assumption, the density ratios of the m distributions
are exponential distortions of the form g;(z)/g,(x) = exp(a; + Bix) for
i =1,...,m — 1 where one of the m distributions is chosen as the refer-
ence distribution G, (z) with density g.(x). The semiparametric approach
generalizes the classic approach by generalizing the form of the density ratios
to gi(z)/gr(x) = exp(ay + Bih(x)) for i = 1,...,m — 1 where h(zx) is cho-
sen based on the application. The semiparametric approach utilizes a profile
likelihood in order to develop maximum likelihood estimators for each of the
distortion parameters {(a;, ;) :i=1,...,m — 1} and for the reference dis-
tribution G, (x). The resulting semiparametric test evaluates the maximum
likelihood estimator for 3; in order to test whether the unknown distortion
parameter 3; equals zero; in other words, whether the two distributions are
the same. The density ratios are examples of weight functions that depend
on an unknown finite-dimensional parameter 8. Gilbert (2000) [12] examines
the large sample theory of maximum likelihood estimates in semiparametric
biased sampling models with respect to a common underlying distribution
G. In that paper, Gilbert characterizes conditions, on the weight functions
and on the random samples and their distributions, in order that (9, Gn)
is uniformly consistent, asymptotically Gaussian, and efficient, where 6 and
Gy, are the maximum likelihood estimators of @ and G. As an example of
this semiparametric approach, Qin and Zhang (1997) [21] tested the validity
of logistic regression under case-control sampling with m = 2 and h(z) = =.
More recently, [9] applied this semiparametric approach to rain-rate data
from meteorological instruments. Simulation results in [9] have shown that
the semiparametric test compares favorably with the common ¢-test.

A natural way to compare the semiparametric test and the t-test is to
use the concepts of relative efficiency and Pitman efficiency [2]. Relative
efficiency is the ratio of the sample sizes for each test needed to achieve
a desired power when the m distributions are different. The limit of the



relative efficiency as each of the m — 1 distorted distributions converge to
the reference distribution in a prescribed manner is called the Pitman ef-
ficiency. This chapter presents as original work an analysis of the relative
and Pitman efficiency of the semiparametric test versus the common t-test
when there are m = 2 distributions. As part of this analysis, the generalized
Glivenko-Cantelli theorem from [30] and the theory of extremum estimators
from [1] are used to find asymptotic Gaussian test distributions of the semi-
parametric test and the ¢-test under the alternative hypothesis that the two
random sample distributions are different. The asymptotic Gaussian test
distributions are found for four examples of the random sample distribu-
tions: a Gaussian example, two gamma examples, and a log normal exam-
ple. An efficiency analysis is then developed that establishes a theoretical
efficiency based on Gaussian test distributions. The asymptotic Gaussian
test distributions for each of the four examples are then applied to find the
corresponding theoretical efficiency. Simulation results are then reported
that verify the theoretical results for each example of the random sample
distributions. For the Gaussian example, the efficiency of the semiparamet-
ric test versus the t-test is very close to one when the distortion parameter
(3 is close to zero. For the other three examples, the semiparametric test
is more efficient than the ¢-test for large parameter ranges of the random
sample distributions.

1.2 Computational Aspects of State Space Models

Linear state space models provide a methodology for studying time series
in discrete time [3], [7], [10], [13], [14], [17], [26], [29]. A large class of linear
state space models provide a way to formalize the relationship between an
unobservable time series (consisting of unknown states) and an observable
time series. R. E. Kalman (1960) [13] introduced the Kalman filter as a
sequential algorithm that provides a predictor (one step ahead) estimate and
a filter estimate of each state based on the available observations at each
time point under a Gaussian assumption, see also [3], [7], [10], [14], [17], [26],
[29]. As part of the Kalman predictor and filter, variances (called precisions)
are provided of the residuals between each state and its predictor and filter
estimates. An important extension to the Kalman filter was the development
of the state space smoother by Rauch (1962) [24] and by Bryson and Frazier
(1963) [5], see also Rauch, Tung, and Striebel (1965) [25]. The state space
smoother provides smoother estimates of all existing or past states as new
or future observations become available [7], [10], [14], [17], [29]. Precisions
of the smoother residuals are also provided. The state space smoother has



several equivalent forms [7], [10], that include: the fixed interval smoother,
the fixed point smoother, and the fixed lag smoother. Asymptotic analysis
has shown that the precision of the Kalman filter estimate of the state
associated with the most recent observation converges to a steady state
value under certain conditions [7], [10], [29].

Under the Gaussian assumption the Kalman estimates of each state and
precisions are the conditional means of each state and conditional error
covariances given the available observations. These Kalman estimates of
each state are optimal in the sense that the associated precisions are the
minimum possible within the class of state estimators given the available
observations. It turns out that the Kalman equations still hold when the
Gaussian assumption is removed. In this case, the Kalman estimates of
each state are the projection of each state on the subspace spanned by
the available observations and the precisions are the minimum least square
error estimators within the class of linear state estimators, see section 4.2
and problems 4.4 and 4.6 in [29] and section 12.2 in [4]. In this case, these
Kalman estimates of each state are suboptimal in the sense that the resulting
precisions are larger that the precisions associated with the true conditional
mean of each state given the available observations.

This chapter provides as original work an analysis of the smoother pre-
cisions where the observable and unobservable time series are univariate
and where the state space parameters are constant. This analysis starts by
introducing a likelihood smoother form of the state space smoother based
on a general multivariate version of the linear Gaussian state space model.
This analysis then applies the likelihood smoother to a univariate version
of the linear Gaussian state space model with constant parameters in order
to develop a variety of upper and lower bounds on the smoother precisions
and also to develop the asymptotic behavior of the smoother precisions as
the number of observations increases. These asymptotic smoother precision
values provide a way to evaluate the future evolution of the smoother preci-
sion values associated with a finite time series as new observations become
available. This chapter concludes by introducing the partial (suboptimal)
state space smoother that provides a smoother like estimate of each state
that only relies on a limited number of future observations.



2 Computational Aspects of Power Efficiency

In this chapter the relative efficiency of the semiparametric test versus the
common t-test is investigated. Section 2.1 summarizes some of the pub-
lished mathematical theory behind the semiparametric approach. Section
2.1.1 identifies four examples of random sample distributions that are ana-
lyzed in detail throughout this chapter. Section 2.2 extends the current the-
ory behind the semiparametric approach by developing a relative efficiency
analysis of the semiparametric test versus the t-test. Section 2.2.1 develops
an asymptotic Gaussian distribution for the semiparametric test under the
alternative hypothesis that the two random sample distributions are differ-
ent. An asymptotic distribution for the semiparametric test is found using
each of the random sample examples identified in subsection 2.1.1. Section
2.2.2 also develops an asymptotic Gaussian distribution for the ¢-test un-
der the alternative hypothesis that the two random sample distributions are
different. An asymptotic distribution for the t-test is found using each of
the random sample examples identified in section 2.1.1. Section 2.2.3 devel-
ops a relative efficiency analysis of the semiparametric test and the t-test
given their asymptotic Gaussian test distributions. This section develops a
relative efficiency using each of the random sample examples identified in
subsection 2.1.1. In order to complement the relative efficiency theory, this
section also contains a simulation study that supports the theoretical results
for each of the random sample examples in subsection 2.1.1.

2.1 Some Preliminary Statistical Formulations

This section briefly presents the formulation of the semiparametric approach
from [9] that is developed further in subsequent sections.

The classical one-way analysis of variance with m = ¢ + 1 independent
random samples is described as follows:

Til, .-, Tin, ~ X1 with pdf g1 (z)

Tl ... Tan, ~ Xg with pdf g, ()
Tl -y Tmn,, ~ Xm with pdf g, (z)
where g, () is arbitrarily labeled as the reference probability density, and

where g;(z) is a probability density with finite mean and variance:
(,uj,ajz-),j = 1,...,m. Assuming that each of the m probability densities



is Gaussian with common variance (03 = -+ = 02, = 02) implies an expo-

nential distortion for each of the first ¢ distributions, relative to the mth
distribution, of the form

g;(z) .
:eXp(OZ'—Fﬁ‘ZE),]:l,...,q (1)
gm(x) J J
fim — 143 i — p
o m ] o j m .
Oéj—?, ﬁj—T, Jj=1...,q

The semiparametric approach generalizes the analysis of the one-way
layout by dropping the Gaussian probability density assumption and by
generalizing the form of the exponential distortion:

wj(z|aj, ;) = =exp(aj + Bih(x)), j=1,...,¢ (2)
wm(x|amyﬁm) = 17 (amyﬁm) =0

where h(x) may assume various forms as shown in several examples below.
Various generalizations of (2) have been suggested by Gilbert, Lele, and
Vardi (1999) [11], and by Qin (1998) [20]. Observe that (2) is a special case
of a weighted distribution as defined by Patil and Rao (1977) [19].

Let xj = (211, .. ,Z1n, ) identify the random sample from the jth prob-
ability density, for j = 1,...,m; let t = (¢1,...,t,) = (&},...,x},) iden-
tify the combined data from each of the m probability densities where
n =nj + - + Ny, identifies the combined sample size; let p; = nj/ny,, j =
1,...,m denote the sample proportions; and let g(x) = g, (z) identify the
reference density. Then the semiparametric approach finds a maximum like-
lihood estimator for G(z) (the cdf of g(x)) over the class of step cdf’s with
jumps at the observed values t; € t.

With p(t;) = dG(t;),i = 1,...,nand (o, B) = (a1, .., ), (B1,---,53)) €
R?4, the likelihood becomes,

g

L(e,B,G) = [ [ p(t:) [ ] expen + Bib(a)) - [ [ explag + Boh(zqs)) (3)
i=1

j=1 7j=1

Fixing (o, 3) and then maximizing (3) with respect to p(t;), subject to m
constraints that the p(t;) and each of the distortions sum to 1,

i=1 i=1



results in the following formulas for p(¢) and g(t)
p(tle, B) = 1/ [0+ Ar(wi(tlon, Br) —1) + -+ + Ag(wg(t]og, Bg) — 1)]

G(tla, B th < t)p(tile, B)

where the Lagrange multipliers A = {\1,...,A\;} = A(a,8) depend on
(a, B) since the m constraints must be satisfied and where I (B) is the indi-
cator of the event B. The resulting proﬁle likelihood is £(a, B, G).

The estimates (&, 3) = ((é1,...,a,), (b1, .-, 0,)"), for the true distor-
tion parameters (o, 3;), are Solutlons of the following score equations in
terms of the profile likelihood L(e, 3,G) (see [9]) for j =1,...,q,

0
O:a—logﬁ = —Aj Zpt\a wjt]a],ﬂj)
@ (&.8)
0
0= a5 logl| = Zh(azﬂ —Aj Zh p(til&, B w](t \a],ﬂj)
J (&,8) i=1

Hence the Lagrange multipliers take the form )\(d,B) = {ny,...,ng} in
order to meet the m constraints. The resulting formulas for p(t) and g(t)
with the Lagrange multipliers fixed at A = {n,...,n,} are

p(tle, B) = 1/(nm g(tl, B))
G(tla,B) = ZItZSt (tilo, B)

Dq(t|a718) = 1+p1w1(t|a17ﬁ1)+"'+pqwq(t|aqaﬁq)-

Define the semiparametric log-likelihood as I(a, 3) = log E(a,ﬁ,é). The
estimates (d,B) are also solutions of the score equations in terms of the
semiparametric log-likelihood (e, 3). Under regularity conditions, the so-
lutions (&, B) are consistent and asymptotically normal with mean (ay, 3),
and a 2¢ x 2q covariance matrix £2/n (see [9])

Jn (g B gg) 4, (gﬂg) ~N(0,9), 2=8'Vs! (4)

1
V = Var [%

vo(2 9 0o oY
=Gy 90 900 )

1
VI <ao,ﬂo>} L 9VI(00.80) 8 s



For the general case (¢ > 1,m = q + 1), definitions for the matrices S and
V that compose Q are found in [9]. For the case (¢ = 1,m = 2), Qin and
Zhang (1997) [21] showed

q_ Ltn [Ao Alyl_wr 0} )

pl Al A2 pl O O

A —E(X—f> k=0,1,2
F\D (Klaefo) )T T

Under the null hypothesis that the m probability densities are the same,
Hy : B, = 0, the asymptotic distribution of 3 reduces as shown in [9]

vaB AN (0,4 )
Var(h(X.,)) = /h2(a:)dG(a:) — (/ h(a:)dG(a:)>2.

For the case (¢ = 1,m = 2), Aj; = p1/(1 + p1)? is a scalar as shown in [9],
such that under Hy:

anf

Var(h(X,))

(0,1) (6)

_ 32 d 2
or &1 = nm\/ar( (Xm))B” = X(1)

and Hy is rejected for extreme values of Z, or Xj. Since Var(h(X,,)) is
generally unknown, Var(h(X,,)) is estimated using:

2
Var th p(ti|a, B (Zh p(tila, B )

so the actual semiparametric statistic is:

\/_ — ~
Zn \/ﬁ(l"‘/)l) Var(h(X:,))0



2.1.1 Some Distortion Examples

The previous section has already identified one weighted distribution exam-
ple, namely a Gaussian example in (1). This section identifies other weighted
distribution examples that are used throughout this chapter.

2.1.1.1 Gaussian Example The first example restates the Gaussian
distribution example, where each of the m random variables X; has a dif-

ferent mean parameter p; and has a common variance parameter o>.

X'Ngj(x):N(,uj,a2),jzl...m

B(X;) =y, Var (X;) = o*

B (X7) = o + 1],

E(X]?’) :20’2,%,

E(X}) =20 (0 +2u13)

9;() :
wj (x|, B5) = =exp(a;+Gix), j=1...q
J( | J J) gm(ﬂj) ( J J )
i Bi) = =1...
(ajvﬁ]) ( 20_2 ’ 0_2 > y J q

h(X;)=X; ~N(pj,0%), j=1...m

2.1.1.2 Gamma Example I The second example identifies a gamma
distribution example, where each of the m random variables X; has a com-
mon shape parameter ., and has a different scale parameter (3,;.

Xj ~gj(z) = Gamma (ay, By;), j=1...m
E(X;) = a,B,;, Var (X;) = a, 03

B (xf) = Dot k1.2,

gi(@) _ LA i
g:n(:lt) =exp(a;+Bz), j=1...¢q

B ﬁym> 1 ) _

L 0) = 1 1...
(0,5} <a7 Og(ﬁ'm By B 7= !
h(X;) = X; ~ Gamma (o, 8y), j=1...m

wj (zlay, B;) =




2.1.1.3 Gamma Example II The third example is again a gamma dis-
tribution example, where each of the m random variables X; has a different
shape parameter c.,; and has a common scale parameter 3,.

Xj ~ gj(x) = Gamma (v, By), j=1...m
E(X;) = ay;8,, Var (X;) = O"mﬂ?y
I' (o + k)
A g ko
E(Xj) - To % E=1,2,...
_ gi(@)

wj (z]ag, By) = (@) P (oj + Bjlog(r)), j=1...q

<ozj> B (log I;(&”WT)) + (0ym — ay5) log ﬂv> _—

= L i=1...q

B (@yj — aym)

h(X;)=1log(X;),ji=1...m

F(Oz«/j —l—t)
[ (o)

Mlog(Xj) (t) = ﬁfya t> —ay;

2.1.1.4 Log Normal Example The fourth example identifies a log nor-
mal distribution example, where each of the m random variables X; has a
different (i parameter and a common 012 parameter.

E(X;) = e“li+"l2/2, Var (X;) = o2t} (e"l2 — 1)

E (X]’.f) — kiRt /2 1 9

gi(z .
wj (z|ay, B5) = () =exp (o + Bjlog(z)), j=1...¢q
gm (@)
Him = P puj —
8. = m J J n ) =1...
(aﬁﬁj) ( 2O_l2 ) 0_[2 > y J q

h(X;) =log (X;) ~ N (myj,07), j=1...m



2.2 Efficiency Development

Throughout this section, usage of the term ”T test” refers to the t-test.
Experimental power comparisons between the Z,, and T tests have provided
empirical evidence that the Z,, test compares favorably with the T test when
the underlying probability densities are Gaussian, i.e. the two tests appear
to have practically the same power over specific parameter ranges. When
the underlying probability densities are not Gaussian, the power of the Z,
test appears in some cases to be greater than the power of the T test. This
section quantifies the theoretical power relationship between the Z, and T
tests by examining the efficiency of the T test in relation to the Z, test. To
develop this efficiency, the asymptotic distributions for the Zn and T test
statistics are identified.

2.2.1 Asymptotic Distribution of the Z, Statistic

In this section the asymptotic distribution of the Z, statistic is examined
for the case (¢ = 1,m = 2), under the alternative hypothesis, H; : 5y # 0,
where (a, 3) renames the distortion parameters (aq,31) and where the true
distortion parameters of («,3) are denoted as (ag,3p). This examination
proceeds by expanding Z,, minus a suitable offset, into a linear combination
of four random variables. The law of large numbers, the abstract Glivenko-
Cantelli theorem, and the asymptotic properties of extremum estimators
are applied to find the asymptotic limit for the coefficients of the random
variables. The multivariate central limit theorem is applied to find the as-
ymptotic joint distribution of the random variables. The asymptotic results,
for the coefficients and for the random variables, are combined to find the
asymptotic distribution for the modified Z,, statistic. The modified Z,, sta-
tistic is:

2= T = Vi s = \ [P (36,305 — o)

536, 0) = Var(h(X2)) = (@ B) — (i (6. 5))’
02 = Var (h(X2)) = e — (un)?
(e, B) = S 1 (8) P (ti]a, B) ) pye = B (h’“(XQ)) k=1,2,
=1

10



=% . . . .
The Z,, random variable expansion proceeds by deriving an alternate
. ~%* . . ~ ~ A
expression for Z, based on a Taylor series expansion for O'}%(Oé, () around

(a0, Bo)

L [ <6}21(a0750) —0j + V', 8)] 4., <Z:;§>> (n(a ﬁﬁO)Jr )
Op\ O, Th

67 (a0, Bo) — o Bo + [ning Qn <5} — 040)
&h(d,ﬁ)‘i‘Uh n &h(&aﬂ)—i_ah ﬁ_ﬁo
where the gradient V67 (o, 3) € R? is a column vector, where Q,, € R? is a
row vector defined as follows

Qn = Qu (@), (4. 4)
= (0. 6n(@8) (6n(a. ) + 1)) + 6o ViR (@, D) oy ()

and where the mean value theorem shows that (&, ﬁ) satisfies

(a2 = A (@.8) + (1= V) (a0, o), A € [0,1]
<d,6) = (a;\,ﬂ)f\) for some A € [0,1] . (8)

A Taylor series expansion of the score equation around (ag,3p) and the
mean value Theorem 6.7 from Kress (1998) [16] provides an expression for

(& — ao, B Bo):
0=VI (0475)’(@,3) = VI (0475)’ (a0,B0) / VV/Z OO”B)\) <ﬁ Bo ) d)\

where the gradient Vi(a,3) € R? is a column vector and the hessian
VV'i(a, 3) € R?*? is a matrix that satisfies

(d,[ﬂ) = (045\,5}) for some \ € [0,1] . (9)

11



. ~ % . . .
The resulting Z,, random variable expansion is:

M2 (54 )8 — o)
N CUPI o Po
=\ (ftn2 (a0, Bo) — pip2) (6. B) +on

o jmn2 - fin (0, Bo) + fn
- (fn(0, Bo) — pn) < 5.6 B £ o )50
e G [1 vV g r Ly
" (on(@ ) + o) L7 (@A) 7 VEH@ D080

. . . . . >
which is written in vector notation as: Z, = DY,

— (ftn (0, Bo) + mn) Bo

D= 1 Bo (10)
5 (A B) + 1 / -1
0 (@0) +on \ = [L 9V B)pn] @
Yin N
Yl vl L (a0, Bo) — pn
Yn = }/2" = " /;Lhz (Oéo,ﬁ(]) — HUp2 (11)
Yin w Vi (a’ﬂ)’(ao,ﬁo)

where the gradient VI(«, ) € R? is a column vector, the hessian VV'l(«, 8) €
R2%2 is a matrix, and Q,, € R? is a row vector.

Assumption 2.1. The following list defines convergence conditions that
allow ZZ to converge to a Gaussian random variable Z :

e h(z) is continuous and non-constant with respect to g(z),
ie. Py(xz: h(x) =m) =0 for all m € R.

e h¥(z) is integrable with respect to g;(x) for j = 1,...,m and for
k=1,2,34.

The convergence conditions defined under Assumption 2.1 are used to

12



show the following convergence results:

(4.8) = (a0, 50) (12)

fun (a0, Bo) = pn (13)
ACTHE (14)

V67 (@.6)] (s, = Yok (00, 0) (15)

—% V'L, B)| (5, %8 (ao, fh) (16)
Y, %Y ~N(0,3). (17)

The law of large numbers is applied in Lemma 2.1 and Corollary 2.1 to
show the convergence result (13). The subsequent convergence results (14)
through (16) are shown in Lemma 2.3 and Corollaries 2.4, 2.6, and 2.8

~

under the hypothesis that (&, ), (¢, 6), (&, ﬂ) £ (a0, Bo). The convergence
in probability result (12) is shown in Lemmas 2.4 though 2.6. The uniform
convergence results of the abstract Glivenko-Cantelli theorem are applied
in Lemmas 2.3 and 2.4 to show (12), (14), (15), and (16). The asymptotic
properties of extremum estimators are applied in Lemma 2.4 to show (12).
With regard to (15) and (16), the convergence in probability of (&, 3) and
(d,B) to (g, ) are shown in Corollary 2.9 as a consequence of (d,ﬁ)
converging in probability to (g, p) from (12). The multivariate central
limit theorem is applied in Lemma 2.8 to show (17). The convergence results,
(12) through (16), are used together in Lemma 2.7 to show the limit in
probability of D,,. The convergence results for D,, and Y ,, are used together
in Theorem 2.2 to show the asymptotic distribution for Z;

As described at the beginning of this section, the asymptotic distribu-
tion for Z. is found for the case (¢ = 1,m = 2). Note that some of the
intermediate results, Lemmas 2.1 through 2.3, are shown for the general
case m = ¢+ 1 > 2 since the extension is trivial. In Lemma 2.1, the law of
large numbers is applied to show a generalization of (13).

Lemma 2.1. For general m > 1, if a function f(x) is integrable with respect
to gj(:E) fOTj = 17 cee, M, and Zf (a(]vBO) = ((0401, o ,QOq),)a (ﬁ(]lv cee 760(])/)

represents the true distortion parameters, then fork=1,...,m
n
> F(ta)wpltilaok, Bor)p(tilow, By) “ Ef(Xy) . (18)
i=1

13



Proof: The following weighted function of f(x) for k = 1,...,m is in-
tegrable with respect to gj(x) for j = 1...m since f(x) is integrable by
assumption

' wk($|a0ka Bok:) < Pi

Applying the law of large numbers, see van der Vaart (1998) [30] Example
2.1 and Proposition 2.16, shows that:

Zf Jwi(ti| ok, Bor )Pt xo, Bo)

1 .
Z H_Zf x]z Wk x]z|a0kyﬁ0k) b

as p
a8 ZE <f(Xj)wk(Xj|a0k,ﬁ0k)m>

Corollary 2.1. For m = 2 with k = m, if h(x) is integrable with respect to
gj(x) for j =1,2, and if (ag, Bo) represents the true distortion parameters,

then fun(co, Bo) = pn, proving (13). W

The abstract Glivenko-Cantelli theorem is applied to establish uniform
convergence results for a class of parametric functions. The following Defi-
nitions 2.1 and 2.2, Theorem 2.1, and Example 2.1, are taken from van der
Vaart (1998) [30] section 19.2.

Definition 2.1. A class F of measurable integrable functions f is called
P-Glivenko-Cantelli if

[lS*

[P f = Pfllr= sup

§:f$l l/fdP

or equivalently, if there exists a sequence of random variables A,, such that
IPnf — Pfllr < Apand A, 220

where x1,...,Z, is a random sample from the probability distribution P.

14



Definition 2.2. Given two functions [ and u, the bracket[l, u] is the set of
all functions f with [ < f < wu. An e-bracket in L, (P) is a bracket[l, u] with
P(u —1)" < &". The bracketing number Nj(e, F, L(P)) is the minimum
number of e-brackets needed to cover F. The bracketing functions [ and
must have finite L, (P)-norms but need not belong to F.

Theorem 2.1 (Abstract Glivenko-Cantelli). Every class F of measur-
able [integrable] functions such that Njj(e,F,L1(P)) < oo for every e > 0
is P-Glivenko-Cantelli. B

Example 2.1 (Parametric Class). Let F = {fg € L1(P) : 0 € O} be a
collection of measurable [integrable] functions indexed by a bounded subset
© C R? Suppose that there exists a measurable function m such that

|fo, () — fo, (x)] <m(x)]01 — O2||, every 01,02 € © .

If |m|p, = P|m|" < oo, then there exists a constant K, depending on ©
and d only, such that the bracketing numbers satisfy

diam ©

Ny (ellmllprs Fo Lo (P)) < K ( :

d
> , every 0 < e < diam © .
The Lipschitz condition shows that fg, —em < fg, < fo, +em if |61 — 02| <
e. Hence a 2¢||m|| pr-bracket in L,(P) for the parametric class of functions
F takes the form [fg —em, fg +em]. B

Thus the bracketing number Ny(e, F, L1(P)) in Example 2.1 is finite for
every € > 0 and the class of integrable functions F is P-Glivenko-Cantelli.

The abstract Glivenko-Cantelli Theorem 2.1 for a parametric class from
Example 2.1, is applied to establish uniform convergence results as defined
by (20) below, for a class of integrable functions parameterized by (a, 3),
when an integrable Lipschitz condition is met as defined by (19) below.

Lemma 2.2. For general m > 1, let F; = {f(-|a, B) € L1(Gj) : (a0, B) €
®} for j = 1,...,m denote m parametric classes of functions where each
class denotes a collection of functions indexed by a bounded subset ® C R
that are integrable with respect to the probability distributions G; associated
with the densities gj. If f(-|o,3) € F; has an integrable Lipschitz bound
m;(-) with respect to G; as defined by

‘f(x’alugl) - f(x‘a27ﬁ2)| < m]('x) H(alaﬁl)/ - (a27162)/H (19)
for every (!, 8Y),(a?, 3% € ®
E(mj(X;)) < oo forje{l...m}
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then each class F; is Gj-Glivenko-Cantelli, by the abstract Glivenko-Cantelli
Theorem 2.1 as applied in Example 2.1 to a parametric class of functions,
resulting in uniform convergence almost surely for all functions f € F;

P, f — Pfllz, = sup Zf (zjile, B) — E(f(Xjla, B))| “> 0. W (20)

Definition 2.3. For general m > 1, let F;(f1, f2) for j = 1,...,m denote
m parametric classes of functions as defined below that are indexed by a
bounded subset ® C R?¢ which contains the true distortion parameters
(a0, By) and that are integrable with respect to the probability distributions
G associated with the densities g;

Fi(f1, f2) = {f (e, B) = fl(')fz('!a,ﬁ)m (@, 8) €O} (21)
WherefleLl( )ngL (G)andfefCLl(G)

Definition 2.3 associates m abstract parametric classes of integrable func-
tions with each of the m densities {g1,...,gm}. This structure allows the
abstract Glivenko-Cantelli theorem to be applied to a random sample from
each of the densities in order to show a uniform law of large numbers con-
vergence result over the functions in each class. At this time the function
parameters of each class, fi1 and f2, have only been defined in the abstract.
Fach of these function parameters are specialized in Definitions 2.4 and 2.5
to well defined functions in order to show specific uniform law of large num-
bers convergence results. The parametric index © describes any bounded
subset of R?¢ such that each resulting class of indexed functions Fi(f1, f2)
for j = 1,...,m meets the integrable conditions imposed on f1, f2, and f.
In the subsequent analysis, the parametric index © will be specialized as
needed to show each of the convergence results (12), (14), (15), and (16).

Corollary 2.2. Under the conditions of Lemma 2.2 with F; specialized to
Fi(f1, f2) with parametric index © from Definition 2.3, applying (20) or
applying the law of large numbers, for any fized (a, B) € O, shows

Zfl )atilee, B)p(tilex, B)
:Z:ni fl(xji)ﬁ(:”ﬂ'a’ﬂ)%

q $ji|aaﬁ

oy e Xl pi

16



Lemma 2.3. Under the conditions of Lemma 2.2 with F; specz'alized to

F;i(f1, f2) with parametric index © from Definition 2.3, if (o, B, ) (a0, By) €

@ then

Zfl f2 t |a*,/8 ) (tz|a*7ﬁ*) —>E(f1( )f2 (Xm|a07180)) .

Proof: For any random sequence (o, 3,) il (a1,81) € ©® as n — oo,
applying (20) from Lemma 2.2 or the law of large numbers for (o, 3,), and
applying Slutsky’s theorem shows

1 &
n—jZf(ﬂfji|a*,,3*) - E(f (Xj|041751))‘
i=1

%Zf(xjﬂal,,@ﬁ —E(f (Xj|a1751))‘ (23)
i=1

1 &
+ n_ ij (:EJZ) H(a*,,@*)' - (ahﬁl)/H
J =1

£o.

Consequently, as (a, 3,) il (a0, By), the general convergence in probability
result follows, that

Zfl f2 t ’a*76) (t ’a*ug*)

m

1
—Zn ZZ:fl zji) f2 (xjilae, By )W (24)

J

ZE( Dz X;le. Bo) q<Xjrao,ﬁo>>

1

E (f1(Xm) f2(Xm|ew, By)) - B

Definition 2.4. For m = 2, let .7-"(“3(@) = Fj(h*(z),1) with parametric

index ® C R? for k = 0,1,2 and j = 1,2 define 6 classes of integrable
functions that are specialized versions of F;(f1, f2) from Definition 2.3.

Remark 2.1. The function f(z|a, ) € fj(‘lk) (®) has partial derivatives of
all orders with respect to (a, 3). A Taylor series expansion for f(z|a, ) €

17



,7-"(“2(@) around (a, §) € © given the gradient V = (8 , 866) and the mean
value theorem 6.7 [16], are used to find a Lipschitz bound that depends on

(a, B) and on the maximum vector norm ||v]|so = max; |v;]
f(zlal,8') = f (2la®.5) = V'f (ala”, 8) [ (', ") = (a2, 5%)']
[ (la, 8Y) = f (ala?,8%)] < max [|9'F (zlax, B, [ (o' 68) = (0%, 82

1<A<1
(a)\yﬁ)\):)‘( 75)+(1_)‘)(a2752)7)‘6[071]
(o, %) = (ax=, Br+) for some \* € (0,1) .

The previous display leads to an integrable Lipschitz bound mﬁ,i(a;) that

does not depend on («, 3)

¥ (0.0) €@ V'] el B = =it o) B (1 )|

< o [P @) 10,8 (@) OO
<p; (|1 @] + 1+ @)
= mﬁ%(m) . (25)

Given any bounded subset ® C R?, it is easy to show that the integrable
conditions of Definition 2.3 are met since for any f(z|a, 5) € F. (| k) (©) with
(o, 3) € ©® and with j =1,2 and k =0,1,2

£ (ala, B)] < |f (2]0,0)] + m{) (@) [| (e, )]

Hence fi(z) = hk(az) € Li(G)), f(z|o,B) € Li(G;), and mg‘lll(a;) € Li(G))
for j =1,2 and k£ = 0, 1,2 under the convergence conditions of Assumption
2.1. Also fao(z|o, ) =1 € Loo(Gy) for j =1,2.

Corollary 2.3. Under the conditions of Lemma 2.3 with F;(f1, f2) special-
ized to .7-"(“3(@) = F;(h*(x),1) with parametric index © from Definition 2.4
with j = 1,2 and k = 0,1,2, if h(z) is integrable with respect to gj(x) for
71=12 andl =0,1,2,3, then for any fized (o, B) € © and for any sequence

(Oé*,ﬁ*) (a(]vﬁO) €O

nk )
i (0, ) = th tlaﬁ)SJ;E(%) (2)

i (s, B) 5 g (27)
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Proof: Under the assumptions, f(z|a, ) € ,7-"(“2(@)) is integrable with
(

respect to gj(x) for j = 1,2 and k = 0,1,2, and m; “1( ) is integrable with

respect to g;(x) for j = 1,2 and k = 0,1,2 so that the integrable Lipschitz
condition (19) is met. Hence the results of Corollary 2.2 are valid for any
fixed (« ﬁ) € © and the results of Lemma 2.3 are valid for any sequence

(Oé*,ﬁ*) (aovﬁO) €6. 1

Corollary 2.4. Under the conditions of Corollary 2.3, if (&, B) Ll (g, Bo) €
O, then ,&hk(éz,ﬁ) Eil wpk for k =1,2. Hence &i(&,ﬁ) £ o2, proving (14).
|

To analyze Q,,((&, B), (a, 6)), previously defined in (7), as (&, B), (a, ﬂ) il
(a0, B0), the convergence in probability of V&7 (a, ﬁ)‘ (é.6) is shown. Note

that the convergence in probability of c}}%(d, B), has already been proven in
the previous Corollary 2.4.
With regard to convergence in probability of Vah ! (@.4) the defin-

ition of 62 (a, 3) is used to find V&2 (o, 3) as follows

Zh2 p(tile, B (Zh p(ti|a, B > (28)

aaa Zh2 P2 (ti]ev, B)ws (ti]er, B)na (29)
+ 2 (o, B) (Z h(t:)P? (tile, B)uwn (¢, ﬁ)m)
=1
%&% Z B3 (t)p2 (ti] e, B)wn (tilev, B)ny (30)

+ 20 (« (th 2(ti|ov, )wl(ti\a,ﬁ)m) .

Definition 2.5. For m = 2, let .7-"(“3(@) = F;(h*(z), prwi (x|, B)/ D1 (2|, B))
with parametric index ® C R? for k =0,1,2,3 and j = 1,2 define 8 classes
of integrable functions that are specialized versions of F;(fi, f2) from Defi-

nition 2.3.
Remark 2.2. The function f(z|o, ) € .7-";‘ k)(@) has partial derivatives of
all orders with respect to (o, 3). A Lipschitz bound m(‘ ])g( ) is found, by
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using a Taylor series expansion for f(z|a, 3) € F. (|2k) (®) around (o, 3) € ©
given the gradient V = (-2 I aﬁ) by using the mean value theorem 6.7 [16],

and by using the maximum vector norm || - ||
Vi(p)e®: V(e H
< pi |1t @) 1 @i, P (@)l
<o (1 0]+ i
=it (2) . (31)

Given any bounded subset ® C R?, it is easy to show that the integrable
conditions of Definition 2.3 are met since for any f(z|a, 5) € F. (|2k) (©) with
(o, 3) € ©® and with j =1,2 and k =0,1,2

£ (ale, B)] < |f (2]0,0)] + m{2) (@) [| (e, B)]| 0

Hence fi(z) = h*(z) € Li1(G;), f(z]a, B) € L1(G;), and mﬂ,i( ) € L1(Gy)
for j = 1,2 and k =0, 1,2 under the convergence conditions of Assumption

2.1." Also folelar §) = pruw (ela, 8)/Di (zla, B) € Loo(Gy) for j = 1,2,

Corollary 2.5. Under the conditions of Lemma 2.3 with F;(f1, f2) spe-
cialized to .7-"](|2]3(@) = F;(h*(z), prwr(z|a, B)/ D1 (x|, B)) with parametric
index © from Definition 2.5 with j = 1,2 and k = 0,1,2,3, if hl(z) is inte-
grable with respect to g;(x) for j = 1,2 and 1 =0,1,2,3,4, and (o, B) Lt
(v, Bo) € O then

k
th P (1, B (1, B)nn p1E<h <)l§zl>&<’ifozwg$ﬁo>>

_ (M)
=mk <D1(X1\040750)> .

Proof: Under the assumptions, f(z|a, ) € ,7-"](|2k) (®) is integrable with

respect to g;(x) for j = 1,2 and k = 0,1,2,3, and mﬁ,)ﬂ(x) is integrable
with respect to g;j(x) for j = 1,2 and k = 0,1,2,3 so that the integrable
Lipschitz condition (19) is met. Hence the results of Lemma 2.3 are valid

for (a*vﬁ*) E’ (OéO)ﬁO) €6. 1
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Corollary 2.6. Under the conditions of Corollary 2.5, if (&, ﬁ) Ll (g, Bo) €
O, then

WX n2(x,)
Vot B [ D1(X1|0160750) ~ Bl ormiom
G PN@s TP g p( o) (o)

D1 (X1]0,0B0) D1(X1]ao,B0)
= VO'%L (Oé(), ﬂo)

proving (15). B

Corollary 2.7. Under the conditions of Corollaries 2.4 and 2.6, applying
(14) and (15) shows that Q,,((é&, B), (&, B)) from (7) converges in probability

to Q(ap, Bo) defined as

B p15o [QMhE (%) E (%ﬂ |
Q (a0, fo) = (20,% + p15o {2/%1;(%) - El(%)] -

The convergence in probability of —n_lvvll(a,ﬁﬂ(d 3 to S(av, o) is
shown by using the almost sure convergence of functions in the previously de-
fined classes of functions f € .7-";213 (©) = F;(h*(2), prwi (x|, B)/ D1 (2|, B))
with parametric index @ from Definition 2.5 where j = 1,2 and k =1, 2.

p1 ( 1 =370 p(tile, B)ws (tile, B) >
L+ p1 \ iy 2oit b)) — 2205 h(ta)p(tila, B)wi (ti] e, B)
(32)

V(0. ) =
_ 1 ( o pti] e ) 1 >
1+ p1 \Doimy h(t)p(tile, B) — T2 Z:Zl h(z2;)

The components of VV'l(«, 8)/n are

0?1

da? (aq;m_ 1+p (Z (tilev, Bywn (tilex, )nl) (33)
0% Ua,B)

0adB n 1+p <Zh 2(tila, 3 wl(ti!a,ﬂ)m)

9 (a, ) 1 5
o5 " T 1t <Z~;h2(ti)p2(ti‘a7ﬁ)wl(ti’a’mm)
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Corollary 2.8. Under the conditions of Corollary 2.5, if (¢, ﬁ) Ll (g, Bo) €
O, then

1 P p1 L D(Xll Bo) B D(?f()\(l)ﬁ)
_ Vvll(a 6)‘ N 1 1|%0,00 1 21 «@0,00
7 (o, Bx) h(X1) h?(X1)

n L0 B prxqaesy) B oiloss

(34)
= S(a0750)
1 P

—= VV'L{(0,8)] (5 = S (a0, o) (35)

The previous display (35) proves (16). B

To complete the convergence in probability analysis of D,,, the con-
vergence in probability of (&, B) to (ap,Bo) is shown using the asymptotic
properties of extremum estimators as developed by Amemiya (1985) [1]. De-
finition 4.1.1, in Amemiya [1], defines three modes of uniform convergence
to 0 for a non-negative sequence of random variables gr(0) that depend on

a parameter vector 6.

(i) P(lim7_oosupgee 97(0) = 0) = 1 is described as convergence almost
surely uniformly in 6 € ©.

(ii) lim7_o0 P(supgee 97(0) < €) =1 for any € > 0 is described as conver-
gence in probability uniformly in 8 € ©.

(iii) limy .~ infgee P(g7(0) < €) =1 for any € > 0 is described as conver-
gence in probability semiuniformly in 8 € ©.

Asreported in Amemiya [1], the first mode of uniform convergence (i) implies
the second mode (ii) and the second mode (ii) implies the third mode (iii).
The first mode of uniform convergence (i), is equivalent to the almost sure
convergence of the functions, f € F; for j = 1...m, as shown in (20). The
second mode of uniform convergence (ii), is one condition of Theorem 4.1.6
(out of six conditions), in Amemiya [1], to show that an extremum estimator
converges in probability to the actual parameter.

In order to apply the theory of extremum estimators, the stochastic func-
tion I, (o, B) = l(a, ) +nlog(ng) is identified with gr(0), where maximizing
ln(cr, B) with respect to (a, 3) is equivalent to maximizing I(«a, 3) with re-
spect to (a, ), since the difference between I, («, 5) and I(«, 3), nlog(ns),
is a constant relative to (o, 3). Let ©,, = {(au, Bx) : Vi, (ax, fx) = 0} so

that (&, 8) € O,,.
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Lemma 2.4. If h*(z) is integrable with respect to gj(z) for j = 1,2 and
k = 1,2 and if h(x) is non-constant with respect to go(x) then one of the
roots (au, Bx) € Oy, converges in probability to (ag, Bo).

Proof: Let ©® denote an open bounded convex subset of R? containing
(v, Bo). Application of Theorem 4.1.6, from Amemiya [1], shows that the
result is true under the following conditions:

(A) VV'l,(a, B) exists and is continuous for (a, 3) € © an open convex
neighborhood of (ayg, Bo),

(B) n~'VV'l,(a, B)l(a.,8.) converges in probability to a finite nonsingular
matrix —S(ag, f) = lim n "EVV'l,(a, 8)](aq,5,) for any sequence
(aux, Bx) converging in probability to («v, o),

(C) n~ 2V ln(e, 8)|(an,80) — N(0, B(ag, o))
where B(a, fp) = lim n‘lE(Vln(a,ﬁ)\(ao,ﬁo)) X (V'ln(a,ﬂ)](ao,ﬁo)),

(D) n!,(a, 3) converges to a nonstochastic function in probability uni-
formly in («, 3) € © an open neighborhood of (ayg, 5o),

(E) —S(a, Bp) defined in condition (B) is a negative definite matrix,

(F) The limit in probability of n='V'V'l,,(a, 3) exists and is continuous for
(e, B) € © a neighborhood of (ag, By).

Condition (A) is immediate after examining (33). Condition (B) is
proven by starting with a consequence (34) from Corollary 2.8 of the abstract
Glivenko-Cantelli Theorem 2.1 for a parametric class with a parametric in-
dex © and by applying a result of the law of large numbers (18) from Lemma
2.1, in order to show

VY (0] ) > 8 (00, 60) 2 (0, 52) D (a0, )

1 as
~ YVl (@, 8)] (4 50 = —S(a0, Bo)

and by direct calculation to show

1 /
;E vV, (a,ﬁ)|(a0ﬂo) = —S(a,fp) forn=1,... .
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S(ayg, By) is shown to be nonsingular by evaluating the determinant of S(«v, 5o)
when |h(z)| is non-constant with respect to ga(z).

14+ p1
P1

det M = E <%> E (W) - <%>

= (E (h* (X)) — E* (h(X.))) E? <m>

1 ) w1 (ZL'|O[0,60)
Xi|aw, Bo) ) D1 (x|, Bo)

Hence det M = 0 when h(X,) is a degenerate (variance 0) random variable,
and det M # 0 when |h(X,)| is non-constant almost everywhere or equiva-
lently when |h(X32)| is non-constant almost everywhere since g, (z) and ga(x)
have the same support, see [6] equation 4.7.4 and Lemma 4.7.1,

With regard to condition (C), Lemma 2.8 will show (17). Equations
(40), (41), and (43) show that

let M =

S(ao, Bo)

X~ g @) =B (57 7 (@)

(14 pm)?
P1
= B (ag, ) -

With regard to condition (D), starting with (32) for («, 3) € ©, applying
a result (26) from Lemma 2.3 with parametric index ©, and applying the
law of large numbers, shows

Var (n 2 Vi, (a, [3)|(a0 60) Vo, n=1,2,...

piw1(X;l06)
L9l () % 1-Y7 1E( D105 o) >
n ) iw (X |a,
" T \E(h (X)) S0, B (h(X;) e
1

The following anti-derivative of Vg(«, ) with respect to («, 3) is suggested,
assuming the usual regularity conditions so that integration and differenti-
ation may be interchanged

2

9(0.8) = 75 | o1 o+ BE(H )= 3o o Dy (X5 )
=B lu (0, ) (37)
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It will be shown that n='l,(a, 3) converges to g(a, 3) almost surely uni-
formly in (o, 3) € ® an open neighborhood of (ay, 5p).

Definition 2.6. Let F1(®) and F»2(®) denote two classes of functions, that
are indexed by a bounded subset ® C R? containing (ag, 3), and that are
integrable with respect to the probability distributions G; and G4 associated
with the densities g; and g9, as defined by:

F1(0) = {fi(z|a, B) = log(D1(z|a, B)) — (e + Bh(x)) : (o, B) € O}
F2(0) = {fa(z|a, B) = log(D1(z|a, B)) : (v, B) € O}

where f1 S Ll(Gl) and f2 e ly (Gg)

The functions fi(x|a, 3) € F1(O®) and fo(x|a, B) € F2(O) have partial
derivatives of all orders with respect to (a,3). A Taylor series expansion,
for fi(z|a, 8) and for fo(x|a, B) around (a,3) € O, and the mean value
theorem 6.7 [16], identifies the following Lipschitz bound m(x)

1_ .2
fl (33|O[1,ﬁ1) - fl ($|Oé2,ﬁ2) = V/fl (3§‘|Oé)\1,ﬁ)\1) <gl _ gQ>

1_ .2
fa (zla', BY) = fa (x]a?, 5%) = V' fa (z]aye, By2) <g1 B g2>
(s ) = X (@, 87) + (1= A') (0%, 8%) , A€ (0,1), i = 1,2

V(. 8) €O |V} (zla, B)|, = —mu, h@)|
< (1t (@) =m () .

V (0, 8) €O : |V fa (z]o, B)|| . = %(1, h () .
<m(x) .

Given any bounded subset ® C R?, it is easy to show that any fi(zle, B) €
F;(@®) is integrable with respect G; with (o, 3) € ©® and with j = 1,2

[fi (xla, B)] < |5 ([0, 0)[ +m () [[(c, B) ]l

Hence fj(z) € L1(G;) and m(x) € L1(Gj) for j = 1,2 under the assumptions
of this lemma. Applying Lemma 2.2 to f;(z|a, §) € F;(®) for j = 1,2 shows

Sup ij $92|a ﬁ (f] (Xj|0£,ﬁ)) .

n;
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Given the following identities for I,,(c, §) and g(c, 3)

—ln (o, B) = ( P1 > [nil Za + Bh (x1;) — log (D1 (14|, B))

L+p

( ! > Zlog (D1 (221l )

L+p

9(009) = (T2 )l 9B (h (X0) = B (g (1 (Xilo, 9)

1
_ (1 - p1> E (log (D1 (X2|a, B)))

then the combined result from the previous display shows that n =11, (c, 3)
converges to g(a, 3) almost surely uniformly in (a, 3) € ©.

1
sup | Lin (o, 9) —g(a,m‘
(a,8)€@ | T

P1
sup

1 &
( 6)6®1+Pl n_lzfl(”“’li‘o"@—E<f1<X1\a,5>>‘

4+ sup " Zfz (w24]cr, B E(f2(X2‘0475))‘

(a,8)c@ 1+ p1

as*
= 0.

Condition (D) is proven by specializing ® to an open bounded subset of R?

containing (ayg, Bo).
Condition (E) is proven by showing that the matrix M defined above is

positive definite. Let X = (x1,22)" # 0.
/ _ Ay Ar| (=1
X' MX = (a;l xg) |:A1 A2:| <x2>
= on% + 2A1x1x2 + Agxg
Al ) A2\
_ Ay — 21
( \/on2> +< ’ A0>x2
= VAz +ix 2+idet(M):z:2
VAT T A :

Hence M is positive definite if and only if det(M) > 0. So the result
is proven when |h(z)| is non-constant with respect to go(z) resulting in

det(M) > 0 as shown for condition (B) above.
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For condition (F), the law of large numbers is applied to find the limit of
n1VV'l,(a, B) for (a, 3) € ©. As a stronger result, the abstract Glivenko-
Cantelli theorem is applied to find the limit of n='VV’l,(c, 3) uniformly
in (o, B) € ©. For either application

D RE )P (tilar, B) wr (tila, B) m
=1

2
as E hk X PjwW1 (Xj|04,ﬁ)>
n (1 e Bt

_ k wy (Xo|a, B) (1 + prwy (Xa|aw, fo)
=t <h (X2) Dy (Xa|a, B) < Dy (Xa|a, B) >>
= plAk(Oé,ﬁ), k= 0,1,2

l , as P1 Ag (0475) Ay (aaﬂ)

nVV (@ 6) 1+p1 [Al (a,8) Az (a,ﬁ)}
_ E%VV’ln (@, 3) . (38)

In summary, the six conditions (A) through (F) have been proven. Hence,
one of the roots (ax, ) € ©,, converges in probability to (g, Fp). B

The previous extremum estimator analysis shows that one of the roots
(ax, Bx) € ©,, converges in probability to (a, Fy). If there are multiple local
maximums of g(«, 3) that satisfy the six conditions (A) through (F), then
this analysis does not determine which one of the local maximums of g(a, 3)
is the limit in probability of (d,ﬁ) € 0,. To complete this analysis, it is
shown that g(a, 3) has a unique global maximum at (ag, 5p) and that (&, B)
converges in probability to (g, Bo)-

Lemma 2.5. Under the conditions of Lemma 2.4, if h(x) is continuous then
g(a, B) has a unique global mazimum at (o, Bo).-

Proof: Let ® denote a bounded subset of R? that contains two local max-

imums (g, fy) and (aq,31) of g(a, B), i.e. (ag,Bo),(a1,01) € O. Starting
with (32) with (o, 8) = (au, B«) € ©,, and applying the convergence prop-

erty (23) of Lemma 2.3 to the classes of functions .7-";‘1]3 (®) = F;(h¥(x),1)

with parametric index ® for j = 1,2 and k = 0,1 where (a., ) € O, il
(a1,01) € O, and where (d,ﬁ) €0, il (g, Bo) € O, shows that (au, Ox)
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and (&, 3) are zeros of the function Vg(a, )

1
0= EVln (04*,6*) i Vg (ala/Bl)

0= %Vln (a,B) L Vg (aof) .

After a little algebra, the previous display is rewritten as

_ (W (X2|Oéo,ﬁ0)>_ <w1 (X2|Oé1,ﬁ1)>
" E<D1(X2|011751) b Dy (Xa|a1, 51)

« _ o [ h(X2) w (X2|ao, Bo) (X2) wy (Xa|au, B1)
Mh:E( k Dy (Xa|at, 1) > < Dy ( Xz\a1751)>
(R (X2) = pp) wi (Xa|ao, Bo)
0_E< K (X2|041,ﬁ1)>
_ (h(X2) — p3) w1 (Xo|a, Br)
_E< K Dy (X |041751)>
oPo(h(X2)
0=E <(h (Xa) = ui) Dy (Xa|aq, 1) >
eﬁl(h Hp,
- <(h(X2) Hi) D, (X2\041751))

It is easy to show for z € {x : h(x) — pj # 0} and By < fr that
(h (!E) _ M;;) eﬁo(h(x)_/‘;) < (h (!E) _ M;’;) eﬁ1(h(x)—u;) )

Using the previous display and assuming h(z) is continuous and non-constant
with respect to g(x) results in

. eﬁo(h(Xz)—MZ) i} eﬁl(h(Xz)—MZ)
E <(h(X2) — Hp) Dy (Koo B0 (X2|a1,ﬁl)> <E ((h (X2) — pz) Dy (Xqlon. 51) (X2|a1,ﬁ1)>

implying that 81 < fy. A similar analysis for 57 < Gy implies that Gy < (.
Hence there exist a single zero («, fp) of the function Vg(a, §) implying a
unique global maximum (ag, Bp) of the function g(c, (3).

As an alternate proof of g(«, 3) having a global maximum at (g, 5o),
Vg(a, 3) is shown to equal zero at (g, 3) and VV'g(a, 3) is shown to be
negative definite for all (o, 3) € R%. Using the following bounds on the first
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and second partial derivatives of n=!l,(a, 3),

0 (o, B) 0 (o, B) 1<
Fa—— <1, ‘% - ‘Sﬁg‘h(xt)’

P UaB)|

0a?2 n -

0% o, B) 1<
9008 n ‘SE;W‘”)"

82 l(avﬁ) 1 - 2
‘8—@ - Sﬁ;h ()

and using Corollary 2.4.1 of Theorem 2.4.2 from [6], shows
1 1
V.g (Oé, ﬁ) = EEVln (Oé, ﬁ) ) Vv/g (Oé, ﬁ) = Eﬁvvlln (Oé, ﬁ)

where h¥(z) for k = 1,2 is assumed to be integrable with respect to g;(x) for
j = 1,2. The structure of Vg(«, 3) from (36) implies that Vg(ag,5y) = 0.
The structure of VV'g(a, 8) from (38) implies that —V'V’g(«, 3) is positive
definite for all (o, 3) € R? if and only if the determinant of —V'V'g(c, ) is
positive for all («, 3) € R%. The Cauchy-Schwarz inequality shows

1+ p

det <—TVV’9(04,5)> = Ao (o, B) Ao (o, B) — AT (o, B) > 0.

The determinant equals 0 if and only if |h(z)| is constant almost every-
where with respect to go(z). Hence under the assumptions of this lemma,
VV'g(a, 3) is negative definite for all (o, 3) € R2. Thus with Vg(ag, 5o) =
0, a second order Taylor series expansion of g(«, 3) around («,3y) shows
that g(«, #) has a global maximum at (ag,Gy). B

Lemma 2.6. Let © denote a bounded subset of R? that contains (ag, B) as
an interior point. If n= 1, (a, ) converges uniformly in probability to g(c, 3)
for (o, B) € © where g(a, B) has a global maximum at (v, o) and if h(x)
is non-constant with respect to go(x) then (d,B) converges in probability to

(@0, fo)-

Proof: Let © denote a closed bounded subset of © that contains (ag, Go)
as an interior point and that contains the boundary of @ denoted as 9(®y).
Using the assumption that n=1,,(«, ) converges uniformly in probability to
g(a, B) for (a, B) € O, and using the assumption that g(«, ) has a unique
global maximum at (ag, 5p), shows that

p <%ln (a0, fo) > sup lln (%5)) —1.

(a,B)€0(O®0) T
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The set in the previous display implies the existence of a local maximum for
n ', (o, B) at (o*, %) in the interior of Oy .

The determinant of n='V'V'l,,(a, 3) is shown to be greater than or equal
to 0 by applying the Cauchy-Schwarz inequality for vectors (identified as
inequality le.1) from [23]. The singular condition occurs if and only if h(t;)
is constant for all i = 1,...,n. Hence n='VV'l,(a, 3) is negative definite
almost surely under the assumptions of this lemma. A second order Taylor
series expansion of n~'V'V'l,,(a, ) about (a*, 3*) shows that there exists
a single global maximum of n~'1,,(a, #) at (&, B) almost surely.

Hence the result is proven since the existence of a single local maximum
almost surely such that (a*, 3*) = (&, 3) shows

P (%zn (a0, ) >  sup iy (a,ﬂ)) <P ((aﬁ) c ®0> 1.

(a,8)€0(O0) T

A~

Corollary 2.9. Under the conditions of Lemma 2.6, if (&, [3) il (v, Bo)
and (ov, By) = A&, B) + (1 — N)(aw, Bo) for some A € (0,1) then (a, Bs) A
(040750).

Proof: The result is proven by letting ® denote any open bounded
convex subset of R? containing (g, 39) and applying Lemma 2.6 to show

P((d,ﬁ) c @) <P((a,3) €O > 1.1

Corollary 2.10. Under the conditions of Lemma 2.6, if (&, ) Ll (v, Bo)
then applying Corollary 2.9 to (8) and (9) shows the convergence in proba-

\

bility of (&, ) and (&, B) to (a,Fp). A

The following display summarizes the convergence results proved above

(dvﬁ) £) (O[O)ﬁ(]) from (12)

fun (00, B0) = pun from (13)

63 (d,ﬁ) T o} from (14)

Vi (.6)] (5, Vi (00 o) from (15)

—% vVl (O"ﬁ)‘(dﬁ) LS (a0, Po) from (16)
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Lemma 2.7. Under the convergence conditions defined in Assumption 2.1,
D,, from (10) converges in probability to D = D(«ay, By) as follows

D, L D(ao, o) = — (—2uBo, Bo, Q (a0, 50) S (@0, 50)) - (39)

20,

Proof: The continuous mapping theorem, Slutsky’s theorem, and Corol-
laries 2.1, 2.7, and 2.8 are applied to prove the result that D, LD m

Remark 2.3. Next the asymptotic distribution is shown for Y ,,, as previ-
ously defined in (11), using the following decomposition

Y; .
Y;" g [ (a0, Bo) — pn
Y, = an = - /3;12 (@0, Bo) — ip2 (40)
n
Yin n Vi (a’ ﬁ)|(ocoﬂo)
1 & 1 &
= — Y,—-E(Y)+— Y. —E(Y,
_ h@)
D1(I1L|0¢oﬂo) P1
h2(z1;) 1 P
le — M1 Dl(leIIOCOvﬁO) R Ml = p1
D1 (z15]ag,B0) L+p I+p1 p1
Z14
D1 (x14]00,080) 1+e
h(:ml)
D1 (224]00,00) 1
h?(22:) 1
Yo = M, D1(:c2i1|ocoﬂo) , My = 1 1
D1 (x2]00,080) L+ p I+p 1
h(x2i)wi (z2:]20,60) EY

D1 (z2i]a0,50)
Yli ~ (E(Yl),Var(Yl)), = 1,...,711
YQZ' ~ (E(Yg),VaI'(Yg)), 1= 1,...,712 .

Notice that E(fi,x (g, 8o)) = ppr = E(h(X2)) for k = 1,2 where fi,x(ag, Bo)
depends on (ag, Bp) but pur does not depend on (ap,fp). This is true
because [i,x (g, By) consists of two random samples from X; and X, with
means that satisfy

plh l’lz 2 hk ZUQZ
fin (00, Bo) = n Z D (15|, Bo) n2 Z D1 (2] v, Bo)
X _ Plhk (X1) hk (X2) _ k
e (o o) = <m> o (m) ~o (1 o)
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where the individual means depend on (ag, By) but the sum of the means
does not depend on («g, Bo).

Lemma 2.8. Assuming h¥(x) is square integrable for k = 0,1,2 with re-
spect to g1(x) and go(x), then Y, converges in distribution to a multivariate
Gaussian distribution Y :

Y, = (Yin, Yan, Yan, Yan)' 2 Y = (11, Y2, Y3, V3) ~ N(0,%)  (41)
¥,=Var(Y,)=Var(Y;)+ Var(Yy) =X

Proof: The multivariate central limit theorem ([23], 2¢.5) is applied to
show the convergence in joint distribution of Y, by showing every linear
combination of Y, converges in distribution to a univariate Gaussian dis-
tribution

2 =NY, 52 = NY ~N(0,NZA) (42)
A= (A A2 g, )

The Lindeberg-Feller form of the central limit theorem ([23], 2¢.5) is applied
to show (42).

:GZj,j:1,2, izl,...,nj

Zji

1
Let Zji = —)\/ (Yﬁ — E(YJ)) ~G
Vi

Zj ~ (E(Z;),Var (Z;)) = <0, pi)\'Var (Y5) A) ,j=1,2
J

Let C’2 ZVar 21i) —i—ZVar (22;)

= p—XVar (Y1) A+ noX'Var (Y2) A
1
= no N3, A

The Lindeberg-Feller convergence condition, as specialized to (42), is satis-
fied for any € > 0

2 2
(Z /z>eC’n dGZh + Z |z|>eChn dGZZz )>

— 2 [ 1 >€C’n)z2dGzl(z)+m/I(|z| > £Cy) 22G 2, (2)

—0asn oo
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since Var(z,) = X', X = X'E\ is constant and finite for all n and since the
convergence of the two integrals to zero follows by applying the dominated
convergence theorem, hence

im1 210+ D21 2 d
VN,
which proves the result that
ni ng ni no
VPl 1 1
NY,=Y=> 21i+—=) 2= z1i+ ) %2

LN(0,NEN) . =

N (0,1)

In order to calculate Var(Y ;) and Var(Y'y), the following definitions
are useful for £k =0,...,4, for i =0,1,2, and for j =0,1,2

oy iR
w1 (X2|a0, Bo)

2
Dg =E <h(X2)m — B1> .

D1 (Xs|ag, Bo

The resulting expressions for Var(Y ;) and Var(Y,) are

[Ann Az A Ain]
_ Agr Az Az Ay
Var (Y1) = M, Aor Aoz Ao Ao M
A Az Ag A
[B11 Bia Bip Ci1]
B Bo1 By By Cop
Var (Yz) = M; Boi Bo2 Boo Cor Ms .
[ Ci1 Co1 Coi Do |
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A little algebra is used to simplify 3,, = Var(Y';) + Var(Y )

Yin Yln Yr3n
Let 5 = |21 22| _ Var <Y2n> Cov <Y2n> <Y4n>
et 3, = s, Vol C Y3\ [ Yin v Ys,,
ov Y4n Y2n ar Y4n
5, = p1 [ (B2 — Bf — p143) (B3 — B1By — P1A1A2)}
1+ p1 [(B3 — B1By — p1A1As) (By — B3 — p1A3)

) ) (LAO—Az) <LA1—A0A1)
ety | () e

P {(Bl — A1) Ay (B1— A1) Aﬂ
(14 p1)? [(Ba—A2) Ag (B2 — Ag) A1~

(43)

3o =
Theorem 2.2. Under the convergence conditions identified in Assumption
~ % ~ %
2.1, Z, converges to a Gaussian random variable Z .

Proof: The convergence in distribution of Z; as n — oo is established
using Slutsky’s theorem, Lemma 2.7, and Lemma 2.8

Zn=D.Y,%7 =DY ~N(0,D'ED). (44)

The matrix algebra of D'YD is simplified by taking advantage of the
structure of S(ayg, fy) in order to define

p1 Ao Ay
S =S (ag,bo) =
(a(] ﬁO) 1+P1 |:A1 A2:|
M = [12 s—l] so that MY ~ E (0, MXM)
3 X3 . 1 ng_l
[zg Vl] = M=M= [8‘12’2 S~1v,St

Vi1 A Al 1o

1_1—|-p1 A1 A2 0 0

5, = P [(31—141) 0}
1+p1 [(B2—A2) 0
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and then rewritting the distribution of the random variable 7" as
7" = DMY ~N (0,DiMXMD:,)
1
D, = Son (—2unBo, Bo, Q (a0, 50))
Oh
MY = (Yb Yo, Yam Yﬁo)/

()~ 0 (7)o

Under the alternative hypothesis, Hy : fy # 0 with Gy fixed, Theorem
2.2 shows an asymptotic Gaussian distribution result

5 [mna ((%h(@’@)@ _ 0h50> DY, %7 =DY ~N(0,D'ED) .

This asymptotic Gaussian distribution will be used in section 2.2.3 in order
to approximate the relative efficiency of the ¢-test to the semiparametric
test. Section 2.2.3 also describes another type of efficiency called Pitman
efficiency. To justify using this asymptotic Gaussian distribution in order to
approximate the Pitman efficiency the following convergence in distribution
result, a generalization of Theorem 2.2, is also needed

7 = (on(6, 35 - onpa) 2 7" ~ N (0,1)

where the true distortion parameter (3, at time index n represents a sequence
of alternative hypotheses, H;y : 3, # 0, such that 8, — Gy = 0. In general
the results of Theorem 2.2 for any fixed 3y # 0 do not imply the previous
display.

Assumption 2.2. The following list defines convergence conditions that
~ % ~ %

allow Z,, to converge to a Gaussian random variable Z as the true distortion

parameter (3, converges to (o:

e The random variable X; is distributed according to a sequence of
density functions {p,(x) : n = 1,2,...} where X7 ~ g1 = p, at time
index n such that p, — pg almost everywhere where pgo(z) defines
another density function.

e The random variable X5 is distributed according to the density func-
tion go at all time indexes n: Xo ~ go.
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e The sequence of distortion parameters (o, 5,) converges to the limit-
ing distortion parameters (ayg, 5p) where the density ratios p,(x)/g2(x) =
exp(ay, + Bph(x)) identify (ay,, 8,) and where the limiting density ratio
po(x)/g2(z) = exp(ap + foh(x)) identifies (ao, o).

e h(z) is continuous and non-constant with respect to the density go
such that Py, (z : h(z) =m) =0 for all m € R.

e hF(x) is integrable with respect to the sequence of densities {g2, py :
n=0,1,2,...} for k = 1,2,3,4 such that E,|h*(X1)| — Eo|h*(X1)|
where the E,, notation denotes expectation according to the p,, density.

For the last convergence condition, |h¥(x)| is bounded by 1 + h*(x) for
ke {1,2,3}. If E,h*(X1) — Eoh*(X1) then E,|h*(X,)| — Eo|h*(X;)]| for
k € {1,2,3} by applying Pratt’s extended dominated convergence theorem
from Appendix 2B [23].

In the sequel, let the operators E,, () and Var,(-) denote expectation and
variance with respect to a density that varies with (o, 5,).

Lemma 2.9. Under the convergence conditions listed in Assumption 2.2,
Y, converges in distribution to a multivariate Gaussian distribution Y :

d(Bn
Y = (Yin, Yan, Yan, Vin)' B Y = (¥4, 3, Y3, Y1)’ ~ N(0, 50)

¥, = Var, (Y,) = Var, (Y;) + Var, (Y5) 2 5 .

where Y ,, Y 1,Y 9 are defined in (40) with («g, Bo) replaced by (cu,, Bn) such
that at time index n

Yy~ (E, (Y1), Var, (Y1)

Y2 ~ (En (YQ) ,Varn (Yg)) .

Proof: As shown in Lemma 2.8, the multivariate central limit theorem
([23], 2¢.5) is applied to show the convergence in joint distribution of Y,
o= NY, "8 NY N (0,XE0N)

A= (A1, A2, A3, 0q)

The Lindeberg-Feller form of the central limit theorem ([30], Proposition
2.27) is applied to show the previous display. Let zj;, Cy, and p,x remain
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defined as in Lemma 2.8 such that for i =1,...,n;, 7 =1,2, and k = 1,2
Zjq ™ Gn,zj-i = Gn,Zj

Z; ~ (En (2;), Varn (Z;)) = <0, pinVarn(Yj)A>

ni n2
C',% = Z Var,, (z1;) + Z Var,, (22;)
i=1 i=1
=N, A
ik =E (hk (Xg)) .

As described in Remark 2.3, p,x for & = 1,2 do not depend on (ay,, 5,)
so that the centering constants in the definition of Y, in (40) do not vary
with (o, 8,). The Lindeberg-Feller convergence condition, as specialized to

2ji/Chr, is satisfied for any € > 0
2\ 2
—~ dGn’z z(z)
Tn >e (Cn> ? )

ni 2 n2
S (£
i=1"|cn|>¢ n i=1"|C

__ M 2 1 2
o /I(!z\ > C0) 26 () + 3 /I(\z! > Cy) Gz, (2)
o1+ 1
< VLT [ 1l > <00 el Nga ()i

—0asnToo

where

q(x|A) = A3 + (IMa] + [Aa]) [B(2)] + | Xo| ()
ni no
213 22
2li Var 2L —1
;Var Cﬂ—i—; ar .

since Var,(z,) = NZ,A — XN'Zg\ = Varg(z) and the integral converges
to zero by applying Pratt’s extended dominated convergence theorem from
Appendix 2B [23], hence

ity 21 + D2 20 d(sy)
n2>\’2n>\

N(0,1)

which proves the result that

XY, BN (0,200 . m
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P(Bn .
In order to show that D, ) D(ay, Bo) as B, — Po, it suffices to prove

the convergence results of (12), (13), (14), (15), and (16) as 3, — [o. These
convergence results will be shown by proving uniform convergence results
for the appropriate classes of functions using a specialized weak version of
the abstract Glivenko-Cantelli Theorem.

Lemma 2.10. Let X denote a random wvariable with o density function
p(x) and let f(x) denote an integrable function with respect to p(x) such
that py = E(f(X)) < oo, then the characteristic function ¢(t) of f(X) is
differentiable everywhere such that

¢t+h) —o()
h

= B(if @ e gy @) =" (). [ (@) < V2
P (t) = }LIE% o (t) = E(z’f () ez’tf(x))
¢/ (0) = iﬂf .

Proof: Direct calculation shows that the characteristic function ¢(t) sat-
isfies the following

$(t+ h;i —0() _ g <eitf(9c) (cos (nf (z)) 1h> +isin (hf W) =¢" (1) -

First order Taylor series expansions of cos(hf(x)) and sin(hf(x)) around
h = 0 shows

cos (hf (z)) =1— f(z)sin (hef (z)) h, he € (0,h)
sin (hf (z)) = f (z)cos (hsf (x)) h, hs € (0,h) .

Hence the approximate derivative ¢"(t) of the characteristic function ¢(t)
can be rewritten as

¢" (1) = B (if (2) ) fy )
Jn (@) = cos (hsf () + isin (hef (%)), he,hs € (0,h) .
It is easy to see that for any fixed x
fo(2) =1, |fn(@)]® = cos® (hsf (x)) +sin® (hef (2) < 2.

Application of the dominated convergence theorem to ¢ (t) as h — 0 under
the assumption that the random variable f(X) is integrable proves the final
two results since

6" (1) < E|if (@) ™y (2)| < EIf (@) V2 < o0 . W
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Lemma 2.11. Let {X,, : n=1,2,...}, denote a sequence of random vari-
ables with densities p,(x), and let Xy denote another random variable with
density po(x) such that p, — po almost everywhere. Let f(x) denote a func-
tion that is integrable with respect to the sequence of densities {pg,p1,... }.
If E|f(X,,)| — E|f(Xo)| < oo then the sequence of characteristic functions
bn(t) for f(X,) and the sequence of approximate derivatives ¢!'(t) for the
characteristic functions ¢, (t) converge uniformly to the characteristic func-
tion ¢o(t) for f(Xo) and its approzimate derivative ¢} (t)

sup bn () — o ()] — 0
o (1) — oy (1] — 0

Sltlp\% (0) — ¢ (0)] — 0.

sup
t

Proof: For the first result, applying Scheffe’s convergence theorem in-
volving densities (theorem XV) from [23] or applying Pratt’s extended dom-
inated convergence theorem from Appendix 2B [23], as n — oo shows

/\pn —po (z)|dx — 0

since the integrand is dominated by p,, (x)+po(z) such that as p,(x) — po(z)
almost everywhere and

/(pn(x)‘Fpo(x))da::2—>2:2/p0(m)da;<oo.

For any ¢, the absolute difference between the characteristic functions is

bounded by
)= ou(0) = | [ €7 1, (2) = o 0| < [ (@) =0 (0]

The three previous displays prove the first result that the the sequence of
characteristic functions ¢, (t) of f(X,) converges uniformly to the charac-
teristic function ¢g(t) of f(Xo).

For the remaining results, assume without loss of generality that E|f(X,,)| <

oo for all n. Lemma 2.10 is applied to find a bound for the absolute difference
between the approximate derivatives of the characteristic functions

o (6) — ¢ ()] = \ [ @ 5 @) (o ) = po () d
< / 1 @) V2 pa(a) — po(e)] de .
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The integrand in the bound of the previous display is bounded by | f(2)|v/2(pn (z)+
po(x)) such that as p,(x) — po(z) almost everywhere and

/|f($)|\/§(pn($)+po (2)) dz — 2B | f (Xo)| < oo

Hence the remaining uniform convergence results for the sequence of approx-
imate derivatives of the characteristic functions ¢/ (t) and ¢ (0) for X, is
proven by applying Pratt’s extended dominated convergence theorem from
Appendix 2B [23]. &

The following version of the weak law of large numbers is an extension of
Proposition 2.16 in [30] to cover the case where the random sample densities
pn, converge to a density pg almost everywhere.

Proposition 2.1. Let {X,, : n = 1,2,...} denote a sequence of random
variables with density functions p,(x) and let Xy denote a random vari-
able with density function po(x) such that p, — po almost everywhere. Let
f(x) denote an integrable function with respect to the sequence of densities
{po,p1,...}. Let p > 0 define a sample proportion and let n, = np/(1+ p)
define a sample size proportional to n. Let @, , = {xp; : 1 = 1,...,n,}
denote a random sample of size n, from X, n € {1,2,...}. If E|f(X,)| —
E|f(Xo)| then

Po,f = nip S Flan) B Pof = BF (X0)
i=1

Proof: Let ¢, (t) denote the characteristic functions of f(X,) and let
¢0(t) denote the characteristic function of f(Xp). By Lemma 2.10 the char-
acteristic functions ¢, (t) for f(X,), n € {0,1,2,...} are differentiable for
all ¢ such that

n (t) =1+ tey, (0) .

Let t,, =t/n,. Applying Fubini’s theorem shows for each fixed ¢ that

Be®ref = (g (t)))™ = <M> p (0 (tn,))"™

¢0 (t"p)
Lt e (0~ ()" ( gt )
— (1 + » 20 () 1+ npqﬁo (0) )
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By Lemma 2.11, the sequence of approximate derivatives ¢! (0) of the char-
acteristic functions of f(X,,) converges uniformly to the approximate deriv-
ative ¢§(0) of the characteristic function of f(Xy), which shows as n — oo

o (0) = 65" (O] supy. |t (0) = o4 (0)
|¢0 (tnp)| B ‘@0 (tnp) ‘
=0.

a” (0) = ¢y (0)
¢0 (tnp)

—

=1 o

Lemma 2.10 also shows that ¢}(0) is continuous at ¢ = 0 such that
(bg"p (0) — ¢ (0) =4Ef (Xo) as n, — .

Combining the three previous displays shows the characteristic function for
P, »f converges as n — oo

EeitProf _, o0,t05(0) — ez’tEf(Xo) '

The previous display demonstrates pointwise convergence of the character-
istic function for P, ,f to the characteristic function of the constant random
variable Ef(Xp). By Levy’s continuity theorem (Theorem 2.13 [30]), P, ,f
converges in distribution to Ef(X). The result is proven since convergence
in distribution to a constant implies convergence in probability. l

Petrov (1995) [22] develops a weak law of large numbers result for tri-
angular arrays of random variables. Under the assumptions of Proposition
2.1 the weak law of large numbers result of Theorem 4.11 [22] is valid if the
following condition is met as n — oo where m,, denotes the median of p,,(z)

o [ L =malim)’

14+ ((z —mp)/m

)2pn (z)dx — 0.

Pratt’s extended dominated convergence theorem from Appendix 2B [23] is
applied to show the previous convergence condition as n — oo since

n ((x —my)/n1)? S (@ — mn)? /mn o
T 8= [ g

((z —my)/m)
14+ ((z — mn)/n1)2

since the integrand on the right hand side of the previous display converges
pointwise to zero and since E,, (| X1| + |my,|) — Eo(|X1| 4+ |meo|) under the

<1

&= ma] < Je] + [mal, '
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assumption that each density in the sequence of densities {pg,p1,p2,...}
has a unique median so that ms, = mg or under the assumption that the
sequence of medians converges to a finite limit.

Theorem 2.3. Let {X,, : n =1,2,...} define a sequence of random vari-
ables with density functions p,(z) and let Xy define a random wvariable
with density function po(x) such that p, — po almost everywhere. Let
F ={fo(x) : 0 € O} denote a parametric class of measurable functions and
let m(z) denote a measurable function as defined by Example 2.1 that are
integrable with respect to the probability distributions {Py, Py, Pa,...}. Let
p > 0 define a sample proportion and let n, = np/(14p) define a sample size
proportional to n. At time index n let xn, = {xn; 11 =1,...,n,} denote
a random sample from Pn. If Po|fo| = E|fo(Xn)| — Polfol = Elfo(Xo)| for
all fg € F and P,m = Em(X,,) — Pom = Em(Xy) as n — oo then

—>0

[Pn,pfo — Pofollx = sup Z fo (2ni) — Efg (Xo)

foeF | T

Proof: Given a bracket size of €, Example 2.1 implies that in order to
cover F with a finite number of e-brackets in L1 (FPp) it is sufficient to cover
© with a finite number of balls of diameter ¢/(2Pym). Example 2.1 bounds
the minimum number of e-brackets in L;(F) needed to cover F by

diam © x P0m>d

€

Ny(e,F, Li(Ry)) < K <

Let Nr. = Ny(e, F, L1(Fo)) and let F; = {fg € F : fo € jth e-bracket},
for j =1,...,Nr.. Choose a single function in each parametric Subclass
fo € Fc; and denote it as fg for j = Nz and let F. = {fg(])

., Nz} The j-th e-bracket of the form [lj, u;] is constructed using f%)
such that for fg ., fo € Fc j where ||0;) — 0] < ¢/(2FPym)

€ €
= fo;) — 2Pym 2Py

For any fg € F and a bracket size € there exist an F, ; with fg, fg(j) € Fej

Applying the e-bracket inequalities from the previous display shows that

‘]P)n,pfe - POfO’ S ]Pn,pfe(j) - POfB(j) +

The previous display, true for any fg € F.; given an e-bracket, implies the
following supremum over all fg € F given an e-bracket

sup |Pn,pf9 - P0f0| < sup Pn,pf@ . —FPyfe,.
fo€F fe(j)e]-'6 @ @ 2P

5 M < fo < fo + m=uj, Py(uj—1;) =e€.

€
W‘Pn7pm—P0m‘ +e€.

[Py pm — Pom| + € .
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Given n,e > 0 choose a bracket size ¢ < 1/3 and choose N, . by applying
the weak law of large numbers from Proposition 2.1 such that for n > N, .

P

€ n .
P <_2P0m “Pn,pm — POm’ < g) > P(]]P’mpm — Pom‘ < 2P0m) >1— 5 ]

9
2N.7:,e

Pupfo, — Pofo,| < g) >1- for all fo,, € F

Hence for n > N, . the previous two displays show that

n €
<z |>1-=
3

P
sup 5

Pnpfo) = Poleg,
foj) €%

P <sup |Pn.pfo — Pofol <77> >1—¢.
fe€F

The result is proven since 77, > 0 are arbitrary. l

The asymptotic properties of extremum estimators from Amemiya [1] is
applied to show the convergence in probability property of the estimators
(&, B) — (g, Bo) as n — oo. As defined previously prior to Lemma 2.4, let

ln(()é,ﬁ) = l(()é,ﬁ) + nlOg(nQ)'

Lemma 2.12. Under the first four convergence conditions of Assumption
2.2, if h(x) is integrable with respect to the sequence of densities {g2,po, P1,--- }
such that E,|h(X1)| — Eo|h(X1)| and if h?(x) is integrable with respect to
the densities {g2,po}, then (d,B) converges in probability to (cg, Bo)-

Proof: Let © define a bounded compact subspace of R? that includes the
sequence of distortion parameters (o, 3,) for n € {1,2,...} and includes
the limiting distortion parameters (ag,3p) such that (an,3,) — (a0, 5o).
Let O} = {(a,8:) 1 ln(ax, Bx) = max(ygco ln(a,B)}.  Application of
Theorem 4.1.1 from Amemiya [1], shows that (au,:) € ©) converges in
probability to (ag, 5y) under the following conditions

(A) The parameter subspace © is a compact subset of R? that includes
(a0750)7

B) [,,(«a, 3) is continuous in («, 3) € O for all t = (z/, z})" and is a mea-
10 T2
surable function of ¢t for all («, 3) € ©,

(C) ly(a, B) converges to a nonstochastic function g(a, ) in probability
uniformly in (a,3) € © as n — oo, and g(a,3) attains a unique
global maximum at (ag, o).
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Condition (A) is satisfied by construction. Condition (B) is also satisfied
since the profile log-likelihood equation [(c, (3) is continuous in (a, ) € ©
and since h(x) is integrable with respect to the densities ¢, (z) and go(z).

With regard to condition (C), Definition 2.6 defines two classes of func-
tions F1(®) and F2(®) with parametric index ® that are used to prove
the uniform convergence in probability condition (D) for Lemma 2.4. The
proof of condition (D) for Lemma 2.4 shows that F1(®) and F5(®) are
parametric classes with a common Lipschitz bound m(z) = 2(1 + |h(z)]).
By assumption h(x) is integrable with respect to the sequence of densities
{92,p0,P1,- .. } such that E, |h(X7)| — Eo|h(X1)|. Hence m(x) and the func-
tions fi(x|a, B) € F1(O®) are also integrable to the same sequence of densities
such that E,|m(X1)| — Eglm(X1)| and E,|f1(X1|a, B)| — Eol f1(X1|e, 8)]
by applying Pratt’s extended dominated convergence theorem from Appen-
dix 2B [23]. The specialized weak Glivenko-Cantelli Theorem 2.3 is applied
to show for fi(z|a, 8) € F1(O)

P o,

Zfl (15, B) — E (f1 (X1]ev, 3))

n
121

sup
(a,3)EO

Lemma 2.2 was previously applied to fa(z|a, 5) € F2(©) to show

as*
sup

(a,8)€®

Zf2 (@2ila, B) — E (f2 (Xa|e, B))| =

n
211

The combination of the two previous displays proves the uniform conver-
gence in probability condition

1
sup |—l, (a,ﬁ)—g(aaﬂ)‘
(a,8)€® [T

S(a?;)[;e T 1 Zf1 (w13, B) — E(f1 (X1|Oé,ﬁ))‘

ny
+ sup Toi|a, Xsla,
(aﬁ)e@1+p1 ng 4 Zf2 2| ﬁ (f2( 2| ﬁ))‘
By

The function g(«, 3) and its gradient and hessian have the following forms,
as shown in the proof of Lemma 2.4 for condition (D), and as shown in the
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alternate proof of Lemma 2.5, under the limit condition that X; ~ g1 = pg

9(0,5) =B 1o o, )
Vg (0,5) = B~ Vi (0, )

VV'g(0,0) = B-V V'L (0,6)

The actual form of g(a, 3), its gradient Vg(o, 8), and its hessian VV'g(a, 3),
are identified in (37), (36), and (38) within Lemma 2.4. The proof of
Lemma 2.5 shows that g(a,3) has a global maximum at (g, ) where
Vg(ao, 39) = 0 and where the hessian VV'g(«, 3) is positive definite for all
(o, ) € R? under the assumption that h(z) is non-constant with respect to
g2. Hence the proof that (au, x) € @) converges in probability to (ag, Bo)
is complete.

Lemma 2.6 is applied to complete the proof that (&,B) converges in
probability to (ag, Bp), since n~11,,(«, ) converges uniformly in probability
to g(a, B) for (o, ) € © where g(a, 3) has a global maximum at (ag, 5y),
and since h(x) is non-constant with respect to go by assumption. Hence the
result is proven. W

The proofs of Corollaries 2.9 and 2.10 remain valid as follows.

Corollary 2.11. Under the convergence conditions of Lemma 2.12,
(Bn) 5 5 P(Br)

pra P . N
Zf (avﬁ) - (Oé(),ﬁ(]) then (avﬁ) and (Oé,ﬁ) - (a(]vﬁO)' u

The following Lemma 2.13 provides a counterpart to Lemma 2.3 as
(an, Bn) — (ap,B0). This lemma utilizes the abstract parametric classes
F;(f1, f2) with parametric index © for j = 1,2 from Definition 2.3. This
lemma, with F;(f1, f2) for j = 1,2 specialized to f](‘lk) (®) for k =1,2 from

Definition 2.4 and specialized to .7:](‘2,3 (®) for k = 0,1,2,3 from Definition
2.4, is applied in Lemma 2.14 to show specific random sample convergence
results as (aq, Br) — (o, o).

Lemma 2.13. Under the first three convergence conditions of Assumption
2.2 with m = 2 and with the parametric classes of functions F;(f1, fa)
with parametric index O for j = 1,2 from Definition 2.3 with Lipschitz
bounds m;(x), if the functions f(z|a,B) € Fi(fi, f2) and mq(x) are in-
tegrable with respect to the sequence of densities {po,p1,p2,...} such that
En|f(Xila, B)] — Eolf(Xila, B)| and E,mi(X1) — Egma(Xy), if the func-
tions f € Fa(f1, f2) and mo(x) are integrable with respect to the density ga,
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and if (c, ) "2 (a0, o) € ©, then

P (ﬁn

Zfl ) f2 (tilom, Bn) D (am, Bn) = =" E(f1 (X2) f2 (X2]aw, Bo))

Zfl ) fo (tilos, B2) (e B) 2 B (f1 (X2) fo (Xaloo, o)) -

Proof: The proof of this lemma makes use of expressions (23) and (24)
from Lemma 2.3. Expression (23) for j = 1 converges in probability to
0 for any nonrandom sequence (ax,3x) = (an, Bn) — (ao, Bo) by applying
Theorem 2.3 with F specialized to Fi(f1, f2) with parametric index © and
by applying Proposition 2.1 with f(z) specialized to mi(z). Expression
(23) for j = 2 converges almost surely to 0 for any nonrandom sequence
(s, Bx) = (an,y Bn) — (a0, Bo) by applying Lemma 2.2 and by applying the
strong law of large numbers. Combining in (24) the convergence results from

the two previous statements for j € {1,2} proves the first result.

Expression (23) for j € {1,2} converges in probability to 0 for (a., 8x)  — Fln)

(g, Bo) by applying Theorem 2.3, Proposition 2.1, Lemma 2.2, the weak law
of large numbers, and by applying Slutsky’s theorem. Combining in (24) the
two convergence results from the previous statement for j € {1,2} proves
the second result. W

Lemma 2.14. Under the convergence conditions defined in Assumption 2.2

N P(Bn

,LL (ana/BN) L ) Mh
. 3) FBn)

o (0.5) = ot
~ P n

VO‘%L (a,ﬁ)‘(dﬁ') (ﬁ ) VO‘h (@0, Bo)
1o, P(By)
—; Vvl(avﬁ)‘(dﬁ) - S(a(]vﬁ()) :

Proof: Let © denote a bounded subset of R? that contains {(ay, B,) :
n=0,1,2,...}. Aspreviously shown, the functions f € .7-"(“3(@) = F;(h*(z),1),
Jj € {1,2} Wlth parametric index @, k € {1,2}, have Lipschitz bounds
mg‘lll(a;) = p;(|h¥(z)| + |K*T(2)]). Also the functions f € .7-"(“3(6)
F;(hk (z), prwi (z|a, B)/ D1 (], B)) with parametric index ©, j € {1,2},

k € {0,1,2,3}, have Lipschitz bounds m(‘;( ) = 3p;(|R* ()| + [KFHL(2)]).

Under the assumptions of this lemma, the functions f € fl(‘lk) (®) and
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(1)

my, .. (z) are integrable with respect to the sequence of densities {po, p1,...}
for k € {1,2}. The functions f € ,7-"1(|1,2(®) are bounded by |h*(z)| such

that P,|f| — Po|f| by applying Pratt’s extended dominated convergence
theorem from Appendix 2B [23]. The Lipschitz bounds m(l)(x) converge

1)k
under the X7 densities such that anﬁl)g — Pomﬁ])ﬂ. Also the functions
fe ,7-"2(|1k( ) and mé‘ ]1(33) are integrable with respect to the density go. Sim-

ilarly, the functions f € *7:1(|212(®) and mﬁi(m) are integrable with respect

to the sequence of densities {pg,p1,...} for k € {0,1,2,3}. The functions
fe ‘7:1(|2k(@) are bounded by |h*(z)| such that P,|f| — Py|f| by apply-
ing Pratt’s extended dominated convergence theorem from Appendix 2B
[23]. The Lipschitz bounds m )( ) converge under the X; densities such

1)k
that anﬁ,l — Pomgzli. Also the functions f € .7-"2(|2]2(@) and mf‘,)ﬂ(:n) are
integrable with respect to the density gs.

s P n .
Lemma 2.12 shows that (&, ) ) (g, Bo) under the assumptions of

this lemma.
The first result is proven, under the assumptions of this lemma, by start-
ing with the definition of iy« from (26), and applying Lemma 2.13 to the

functions f € ,7-"(“2(@)) for j € {1,2} and k =1 as (an, Bn) — (@0, Po)-
The second result is proven, under the assumptions of this lemma, by
starting with the definition of &}% from (28), and applying Lemma 2.13 to the

functions f € .7-"](|1,3(®) for j € {1,2} and k € {1,2} as (&, () ) (a0, Bo)-

The third result is proven, under the assumptions of this lemma, by
starting with (29) and (30), applying Corollary 2.11 to (&, (), applying
Lemma 2.13 to the functions f € ,7-"](|1k)(®) for j € {1,2} and k = 1 as
(&, 5) PBn) (v, Bo), applying Lemma 2.13 to the functions f € .7-"](|2,3(@) for
je{1,2}and k € {1,2,3} as (&, §) (—B>")(
theorem.

The fourth result is proven, under the assumptions of this lemma, by
starting with (33), applying Corollary 2.11 to (¢, (), applying Lemma 2.13
to the functions f € .7:;‘2]3(6) for j € {1,2} and k € {0,1,2} as (&, 3) )
(v, Bo), and applying Slutsky’s theorem. W

ap, fp), and by applying Slutsky’s

Lemma 2.15. Under the convergence conditions defined in Assumption 2.2,
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D,, converges in probability to D(c, o) as defined in (39)

P(Bn)
AU

D (a0, fo) = —— (280, o, Q a0, fo) S~ (a0, ) -

D
" 20,

Proof: Lemma 2.14, the continuous mapping theorem, and Slutsky’s
theorem are applied to prove the result. W

Theorem 2.4. Under the convergence conditions of Assumption 2.2, Z;
~ %
converges to a Gaussian random variable Z .

Proof: The convergence in distribution of ZZ as 3, — o is established
using Slutsky’s theorem, Lemma 2.15, and Lemma 2.9

7. =Dy, "% 7 = D'Y ~N(0,D'SD)

where D = D(w, (5p) as defined in (39). B

Corollary 2.12. If the limiting distortion parameters (co, Bo) identify a null
distortion (O,Q) then the limiting distribution of 7" is a standard Gaussian
distribution: Z ~ N(0,1).

Proof: Direct calculations are used to show the following

p [T pior [0 0
QO,0:0,202,SO,O:7[ },Vozi .
(0.0) = (0:203) . $(0.0) (1+p1)% Lon 2 (1+p)' [0 1

The result is proven by first calculating D(0,0)

(1+ p1)2 (

D(0.0)= P1Oh

0, 0, —pn, 1) =(Di, Ds, D3, D)

D'SD = (D3 Dy) Vo (gi) =1.1
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2.2.1.1 Gaussian Example In this section, an example of the asymp-
totic Z" distribution is calculated where X 1 and Xo have Gaussian distrib-
utions with different means 1 and s and with a common variance o2 = 1,
as described in section 2.1.1.1.

Concerning the convergence conditions of Assumption 2.1, h(x) is contin-
uous and non-constant with respect to the Gaussian density, and h*(z) = 2*
is integrable with respect to the Gaussian density for £k = 1,2, 3,4 as iden-
tified in section 2.1.1.1. Hence the convergence conditions are met that
allow (&, B) to converge in probability to their true value («v, 5y). Also the
convergence results of (13), (14), (15) (16), (17) are valid. In conclusion,
Zn converges in distribution to Z" identified in (44). Figure 1 graphs the
variance of Z" versus the difference in means of X1 and Xs.

Variance of Semiparametric Statistic versus difference in M eans
238 T T T T T

26

24

22

Figure 1: Variance of 7" versus w1 — p2 when Xq ~ N(uq,1), Xo ~ N(ug,1).

Concerning the convergence conditions of Assumption 2.2, the Gaussian
density p(z|u, 0?) is a continuous function of its parameters (j, o2) such than
g1(x) = p(x|p1,0%) — ga(x) = p(x|pg,0?) for all z € R as p1 — p2. The
distortion parameters (ay,, 3,,) are also continuous functions of the Gaussian
parameters (i, 0?) as identified in section 2.1.1.1 such that (ay, 3,) — (0,0)
as g1 — po. The function h(z) = z is continuous and non-constant with
respect to the Gaussian density, k¥ (x) = z* is integrable with respect to
the sequence of Gaussian densities for k£ € {1,2,3,4} as identified in section
2.1.1.1, and E, X} — EoXl as 1 — 2. Hence the convergence conditions
have been met that allow Z to converge in distribution to Z" ~ N(0,1) as

Gn — 0.
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2.2.1.2 Gamma Examples I and II In this section, two examples of
the asymptotic 7" distribution are calculated using gamma distributions.
For Example I, X; and X5 have gamma distributions with a common shape
parameter o, = 1 and with different scale parameters 3,1 and 3,2 as de-
scribed in section 2.1.1.2. For Example II, X; and X, have gamma distri-
butions with different shape parameters a.,; and a2 and with a common
scale parameter 3, = 1 as described in section 2.1.1.3.

Concerning the convergence conditions of Assumption 2.1 for the Gamma
I example, h(x) is continuous and non-constant with respect to the gamma
density, and h* (x) = z* is continuous, non-constant, and integrable with re-
spect to the gamma density, for k = 1,2, 3,4 as identified in section 2.1.1.2.
For the Gamma II example, h(x) is continuous and non-constant with re-
spect to the gamma density, and h¥(z) = log¥(z) is integrable with respect
to the gamma density, for £ = 1,2, 3,4, since the moment generating func-
tion, Miog(x;)(t) j = 1,2, exists for ¢ in a neighborhood of 0 as identified
in section 2.1.1.3, see Cassela and Berger (1990) [6] Definition 2.3.3 and
Theorem 2.3.2. Hence the conditions are met that allow (&, B) to converge
in probability to their true value («vy, By). Also for both examples, the con-
vergence results of (13), (14), (15), (16), (17) are valid. In conclusion, Z,
converges in distribution to Z* identified in (44).

Concerning the convergence conditions of Assumption 2.2 for the Gamma
I and II examples, the gamma density p(x|c,,y) is a continuous func-
tion of its parameters (c,3,) such that gi(z) = p(z|ay, By1) — g2(x) =
p(z|ay, By2) for all z € RT as By1 — Bye and gi(z) = p(zlay, By) —
g2(x) = p(z|aye, By) for all z € RT as ay1 — 2. The distortion parame-
ters (o, B,) are also continuous functions of the gamma parameters (., 3;)
as identified in sections 2.1.1.2 and 2.1.1.3 such that (ay,5,) — (0,0) for
both Gamma I and II examples as 3,1 — (3,2 or ay1 — a42. The func-
tions h(x) = z for the Gamma I example, and h(z) = log(x) for the
Gamma II example, are continuous and non-constant with respect to the
gamma density; h*(z) is integrable with respect to the sequence of gamma
densities for k£ € {1,2,3,4} as identified in sections 2.1.1.2, 2.1.1.3, and
above; E,Xi — EoX{ as B,1 — B42; and E,log*(X1) — Eplog*(X1) as
ay1 — iy since the moment generating functions converge. Hence the con-
vergence conditions have been met that allow Z, to converge in distribution
to Z° ~N(0,1) as £, — 0.
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Figure 2 graphs the variance of 7" versus a range of 3,1 parameter values

for X; with 8,2 = 3 for X,. Figure 3 graphs the variance of 7" versus a
range of a1 parameter values for Xy with a2 = 3 for Xs.

12

Variance of Semiparametric Statistic versus Gbetal
T T

Figure 2: Variance of Z versus By1 when X; ~ Gamma(l,3y1), Xo ~
Gamma(1,3).

Variance of Semiparametric Statistic versus Galphal
T

Figure 3: Variance of 7" versus ay1 when X; ~ Gamma(oy,1), Xo ~
Gamma(3,1).
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2.2.1.3 Log Normal Example In this section, another example of the
asymptotic 7" distribution is calculated where X; and X» have log normal
distributions with different p;; and po parameters and with a common o? =
1 parameter as described in section 2.1.1.4.

Concerning the convergence conditions of Assumption 2.1, h(x) is contin-
uous and non-constant with respect to the log normal density, and h*(z) =
log®(x) integrable with respect to the log normal density for & = 1,2,3,4,

given
B (n* (X)) =B (Y}) where X; ~ LN (juj,0f) , ¥ ~ N (uj,07)

and using the moments identified in section 2.1.1.1. Hence the conditions are
met that allow (&, B) to converge in probability to their true value (ag, 5p).
Also the convergence results of (13), (14), (15), (16), (17) are valid. In
conclusion, Z, converges in distribution to Z  identified in (44). Figure 4
graphs the variance of 7" versus a range of p;; parameter values for Xy with
o = 0 for Xo.

Concerning the convergence conditions of Assumption 2.2, the log normal
density p(x|p,o}?) is a continuous function of its parameters (y,07) such
that g1(z) = p(zlun,of) — ga(x) = p(zlwz,of) for all z € RT as puyy —
2. The distortion parameters (a,,[3,) are also continuous functions of
the log normal parameters (p, O'l2) as identified in section 2.1.1.4 such that
(o, Bn) — (0,0) as py3 — pya. The function h(x) = log(z) is continuous
and non-constant with respect to the log normal density, h*(z) = log(x)
is integrable with respect to the sequence of log normal densities for k €
{1,2,3,4} as identified above, and E,, log*(X1) — Eglog*(X1) as p1 — o
Hence the convergence conditions have been met that allow Z; to converge
in distribution to Z°~ ~ N(0,1) as 3, — 0.
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Variance of Semiparametric Statistic versus difference in M eans

L L L L L L L
-15 -1 -05 0 0.5 1 15 2

Figure 4: Variance of 7" versus w1 when X7 ~ LN(py1,1), Xo ~ LN(0,1).

2.2.1.4 Limiting Example as («g, ) approaches 0 In this section,
the limiting distribution for a sequence of 7" random variables is calculated
as (ag, o) approaches 0.

0
0 0 0 L ph —mn
oh
31— _ P < 7, Hp3 — Mh:uh2>
(1+ p1)? \Hn3 — Hnftn2  fips = L
D'MXMD; — (0 0)3 (8) + (0 op) Vi <00h> =1 (45)

The previous display shows the distribution of A approaching a N(0,1) dis-
tribution as (g, ) approaches 0. This result is expected since the original
Zn statistic converges to a N(0,1) random variable when (ag, fy) equals 0,
see section 2.1 (6).
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2.2.2 Asymptotic Distribution of the T Statistic

In this section the asymptotic distribution is found for the common T sta-
tistic. In the first subsection, the independent random samples are as-
sumed to be distributed according to two Gaussian densities with differ-
ent means and with a common variance. In subsequent subsections, this
Gaussian assumption is relaxed. Let T2 rename the T? random variable
defined by Cassela and Berger (1990) [6] in Theorem 11.2.2 for the case

k = 2. Let 1 = (x11,...,%1pn,)" represent a random sample from X;. Let
Ty = (w21,...,T2n,) represent a random sample from X, independent of
.

Ti1y-- > TIng ~ X7 with gl(a:) = (/Ll,d%) pdf
L1y Loy ~ Xy with gg(ﬂ:) = (/,1/270'%) pdf
2 = (@ —2) — (un — f-))* +no (B — 2.) — (2 — 1))

n 2
S

1
ng—((nl—l)S%—i-(ng—l)S%)

n—2

n;

s? = 1 Z(z,—j:)2 for j =1,2
J nj_li_l J J

1 & 1 Gn
a_:j.:n—j;xjiforjzlﬂanda_j..:E;;%‘i

For the case where X7 and X5 have Gaussian distributions with a common
variance, then T2 follows an F distribution with (1,n—2) degrees of freedom,
and T,, follows a student ¢ distribution with (n — 2) degrees of freedom

X1 ~ N(py,0%) and X; ~ N(uq,0°)

T% ~ Fl,n—2 and Tn ~ tn_g .
After a little algebra, the T,, random variable is rewritten as

T VI (T = 1) = /75 VM2 (T2 — o)

Under the null hypothesis Hg : 11 = po, the T, random variable becomes

Ty, = ning <i’1. — i’g.) .
V n Sp
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2.2.2.1 Asymptotics of T Statistic Assuming Normality In this
section, the independent random samples are assumed to come from two
Gaussian densities with different means p; # po and with a common vari-

ance 0'2.

X;~N (M170-2) , Xo ~N (/L270-2)

Lemma 2.16. If 1, a random sample from X1 ~ N(uy,o0?), is indepen-
dent of x2, a random sample from Xo ~ N(ua,0?), then T, converges in
distribution to a standard Gaussian random variable N(0,1).

Proof: The asymptotic distribution of T,, is found by using the inde-
pendence property of X; and Xs, by applying the law of large numbers,
by applying the continuous mapping theorem, and by applying Slutsky’s
theorem

(vmi =) wx o) 4 (2) ~ N 0.0

1 _ P1
\/ ;1 Z T+p1 2

g

SQEUQandTnﬁT*:

2 ~N(0,1). W  (46)

Under the null hypothesis Hy : p11 = uo, the Ty, statistic also converges
to a standard Gaussian random variable

Ton = 4/ A2 <”“’1‘ — x2‘> < Ty ~ N(0,1) . (47)
n Sp

As shown in sections 2.2.2.2 and 2.2.2.2.1, the multivariate central limit
theorem is applied to find the asymptotic distribution of Ty, minus a suitable
offset under the conditions of the alternative hypothesis H; : p1 # po when
X1 and X5 are not necessarily Gaussian. In this section a direct approach,
that does not rely on the multivariate central limit theorem, is used to find
the asymptotic distribution of Ty, minus a suitable offset when X7 and X5
are Gaussian. Also in this section, the mean and variance for the offset Ty,
statistic is shown to converge to the mean and variance of the asymptotic
distribution for the offset T, statistic under the Gaussian assumption.

In the following display, the Ty, statistic minus a suitable offset, is
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rewritten as the linear combination of three random variables

« _ Jmng (X1 — T 1 — M2
e Ty = T (22 _ i)
p

1 1 1
VA (T — ) — gy [

V2 (2. — pi2)

SpV 14 p1 SpV 1+ p1
H1 — K2 P1 \/— 2 2
- n(S,—o
<S§U+Sp02> (14 p1)? (Sp )
which is rewritten in vector notation as Tj,, = D] Y,
1 1
1 _
gpl +ppll Yin Vi (21— p)
D, = _S_p 1+p1 s Y= |y | = V12 (‘%22 - /142)
e p1 Y3n Vn (Sp - 02)
Sio+S,0? (1+p1)?

For convenience of notation, the components in the decomposition of T,
are denoted as (D,,, Y ). The components of (D,,,Y ) represent stochastic
quantities that are different from the identically labeled components in the
decomposition of ZZ, see (10) and (11). In other words, the symbols D,
and Y,, are overloaded.

Lemma 2.17. If 1, a random sample from X1 ~ N(uy,0?), is indepen-
dent of x3, a random sample from Xo ~ N(uz,0?), then Ty, converges in
distribution to a Gaussian random variable Tj).

Proof: Section 2.1.1.1 identifies the first four moments for X;. The law of
large numbers and the continuous mapping theorem are applied to find the
asymptotic limit for Sf, and S, since X jk is integrable for j = 1,2 and k =
1,2. Hence, D,, converges to D. Since 31, and y9, are independent, the joint
distribution for (y1,,%2,)" is the product of the marginal distributions for
y1n, and for yo,. The bivariate Gaussian distribution for (y1,,y2,)" remains
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the same for all n, while the marginal distribution for ys, evolves with n

312, — o2 and Sp— o
/
D, - D= (/i -1 /& a2
<y1n> _ <\/n1 (Z1- —u1)> N (0,0%L,) % <y1> ~ N (0,0°L)
Yon V2 (Ta- — pi2) Y2 ’

52. ni —1
(nj—l)—2~Gamma< 32 ,2),]':1,2
o

\/_S ~Gamma<n 2 \/_ )
2 n—2

n
Ysn = V1 (S2 = 0%) ~ <0, 2204> — (0,20) .
n —_—
The asymptotic distribution for ys,, is found by using the moment generating
function for ys,

—2

My,, (t) = (1 - ﬂ2202t>_nT VAot <nf >

(1

(9] k
B 9, Mm—2 1/ vn

log My, (t) = —v/no*t — -

vn

22
n_2at<1
k=1
n

:ma4t2+Rn (t)

n—281( vn oo\ | vn L,

= — [ X =20% AL 1
R, (t) 5 kz_gk<n_2a>, _20t<

n=2(va_ ,\’&1/ v ,\"°
= 202 = 20%) .
2 (n—ZJ ) §k<n—2a

The remainder term R, (t) converges to zero, so that the mgf for ys, con-
verges to the mgf for a Gaussian random variable for all t in a neighborhood
of zero. Hence, by the convergence of mgfs theorem 2.3.4 [6], y3,, converges
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in distribution to a Gaussian random variable

k

n—2 1
1t <

vn 202

IR, (t)] < 40 20 t

My, — e”4t2, t € (—o0,00)
d
Ysn — y3 ~ N (0,20") .

Each of the components of Y,, are independent, since Z1. and S% are inde-
pendent and Z. and S3 are independent. So that the distribution of Y, is
the product of the joint distribution for (y1,,,¥2,)" and the marginal distri-
bution for ys,. Hence, the distribution of Y, converges to a multivariate
Gaussian distribution. The asymptotic distribution for T, follows by ap-
plying Slutsky’s theorem

/
1
Dy — D= ( 1+p1 o \/ 1£101 m%ém Y (1f;1)2>
y,%y=
204
* P1 (:u'1 - /142)2
Ty, — TO—DY ~ N 01+§(1+p1) 2 . (48)

For convenience of notation, the components in the decomposition of the
asymptotic random variable T{ are denoted as (D,Y’). The components
of (D,Y) represent random variables that are different from the identically
{a}})eled components in the decomposition of the asymptotic random variable
Z , see (44).
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As a check of (48), it is possible to show directly that (E(T,,), Var(Tg,))

N2
converges to (0,1 + %(H_p;l)g (g 052) )-

Proposition 2.2. If X1 ~ N(u1,0?) and X ~ N(ua,0?) are independent
then E(T§,,) converges to zero.

Proof: First, the mean of (Z;. —Z2.)/S, is found, using the independence
of the elements of (Z;., Za., Sg)

1
Ty — T - —2\z I (%2
E<w1 Ty ) _ <n > (n32) (49)
Sp o 2 ) T(%?)
and then the limit is found as n — oo using Stirling’s gamma approximation.

Letng—2andp*z ; -2
1
n—2\2T (") 1D (pe+1)
= (p+1)2 50
( 2 ) r(z2) - PP T )
. PTE T 4+1)  VIre Pt
=e2 (p+1)2

P amerltt TOHD)

n_9
_ ol <n_2>% 3 VT reery vamenp
= 1

% —2 \/ﬂe_p*pz*—i_? r (p + 1)

Ixlxl=1

and E <$1'S_x2'> LN H = M2 where - is shorthand for @O .
» o

It will be shown in Lemma 2.18 that
2 (n=3
. <n—2>F(32)_1 3
7 ) 17 (5) 2
1 1
n—2>2r(“7—3> )((n—2>2r(%—3> )
=n =51 = +1].
(( 2 I (252) 2 I (252)

The previous display and equation

50) are used to show

(
r
r
T
r



Hence, the result is proven that

e = 5o (52 ()

50.1

N
N
7N

3
N
[}
~_
N=
=
|
LML
NIRNN
no
S— | —"
|
—_
~

Lemma 2.18.

n— 2) (%) n 3
n 2 )2 (51)
() B 1) =
Proof: A change of variable and Stirling’s gamma function approxima-
tion are used to analyze (51)

Letng—2,p*:n2 —Q,Elndqz%9
n—2>r2(’%> )
n 2/ 1 (52)
<< ) )

(¢ (=) ) )

lim
L E )

so that equation (55) is a large number approximation for (52).



With (1 — ¢/2)% = exp((2/q) In(1 — ¢/2)), L’hospital’s rule shows

2
1—9)ael —1 22(1-HIm(1-4) +
lim( g)ie — lim —e! (1_2>q (1-9) n(l 1) +a
ql0 q ql0 2 - 54
2(1 - In(1-4) +
ole=1lim (1-3) n(l 3)+a
ql0 - 5¢°
—In(1-4
— — lim n( - 2)
a0 2¢— 5¢2
1(1_-a)!
_ hm2( 2)
qlo 2—3q
1
4
Hence, the previous display converges to the desired result as ¢ | 0
1 11 1 3
(54) — 2 x1x ~2 +2x1xe e :—5—1—2:5.. (56)

Use of Stirling’s gamma function approximation in (53) is appropriate
due to the following result.

Lemma 2.19. Equation (55) is a large number approzimation for (52).

Proof: The following bounds on Stirling’s gamma function approxima-
tion are taken from Rao (1973) [23] le.7

=
3
Il
S

w2
3
Il
3
VR
(‘D’_l
7N
3|3
[ ] ]
=N
N~
7N
3|3
[ ] ]
=] Ot
N~
i
S
|
—_
~



The limit for R,, is found by using L’hospital’s rule. The limit for S,, was
previously found, see (55) and (56).

:hme%(%(llsq)_%_%(llsq)JF%)l<< 1 >2_< 1 >2>

al0 3 1—5¢ 1—3¢q
=1><%><(1—1):

i S, =

Hence (53) is a large number approximation for (52) since
n—2 F2(7L;3)
n=2y Y3 )
n <( D) )F2(n52)

lim — =
n <e (ﬁ) (ﬁ) - 1>
Proposition 2.3. If X1 ~ N(u1,0?) and Xo ~ N(ua,0?) are independent
then the variance of T, converges to the variance of Tj).

Proof: The result is proven using the previous results of (49) from Propo-
sition 2.2 and of (51) from Lemma 2.18.

2

E
(n% + n%) o + (i — pa)? <n — 2) (= pa)”
(

o n—4 o
ning T1. — To-
Var (Tp,,) = Var < )
0 n ) Sp
_ <1+ 2 > o P 2(#1—#2) n
n—4 (14 p1) o? n—4
pr (—p)” [ <”—2> 2 (%3?)
(L+p)?* 07 2 )2 (%)
gyl (1 — p2)”



2.2.2.1.1 Gaussian Example
In this section, an example of the asymptotic T( variance is calculated where
X1 and X5 have Gaussian distributions with different means uy and uo, and
with a common variance o2 = 1 as described in section 2.1.1.1. Figure 5
graphs the variance of T{j versus the difference in means of X; and Xo.

Variance of T Statistic versus difference in Means
15 T T T T T

1
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 5: Variance of T{ versus p; — pa when X3 ~ N(uq,1), Xo ~ N(ue,1).

2.2.2.2 Asymptotics of T Statistic Without Assuming Normality
In this section, the independent random samples are assumed to come from
two distributions, not necessarily Gaussian, with finite mean and variance

Til, ..., T1n, ~ X1 With g1 (z) = (,ul,a%) pdf
1, -+, T, ~ X2 With g2 (LE) = (/,1/2,0'%) pdf .

With these assumptions, the asymptotic distribution of Ty,, minus a suit-
able constant, is found under the conditions of the alternative hypothesis

Hy @y # po.
% ning (1. —Ta- M1 — U2
Let Tg,, =4/ < — )
" n Sp op

o2 P1 1 o2
P l+m 1+p1 °

U%—F
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By direct linear expansion, T, is expressed as the linear combination of
four random variables and a bias term

% nng (T — @1 To. — po i1 — U2
Ton =1/ - -S

on n < Sp Sp " OpSyp ( p)>

_ jmng (T — p1 T — Mo

V n Sp Sp
nn 1 -1 —
b e (e n2op M2 lea) (i)
n n n—2 opSp (0p +Sp)

= /1 (Z1. — 1) D1y + /iy (23, — E (X1)) D2y,
+ /2 (T2 — p2) D3n + /n2 (73. — E(X3)) Dan + By,

where the coefficients are defined as

D, = Pl 961+M1 Mz)( n >
In =
\/1+p18 (14 p1)? ap+S) n—2

Vo 1—|—p1) ap+S <n—2>
Do = p1 1 (Zo- +M2 #2)< n >
3n = — R

1+p18 1_|_p1 Jp+S) n—2

D4n = —

D2n

n
(1+ pl) pSp (Up + S:n) <” - 2)
and where the bias term is defined as

_ 1 op(—p2) Vn
Bn =2 (1+p1)2sp(‘7p+sp)(n_2).

Tg,, is then written in vector notation.

Té, = DLY , + By

Dy, Yin \/?2(961 — (/l1)2))
_ D2n _ Yon \/n—l j‘1- -k Xl
Dn = 7YTL = - _ 57
D3, Y3n V12 (T2 — p2) (57)
Dy, Yan V2 (75, — E (X3))

It follows immediately that Y, has a mean of 0. Assuming that the first
four moments are finite for X; and Xs, then Y, has a constant variance
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matrix for all n
Y, ~(0,%), = ﬁl 2?2] , 3, = Var (éj:]EEé;}))) (58)

. o2 B (X3) - e (X2)
o) e ) ()2 )

Lemma 2.20. If the first two moments of X1 and X9 are finite, then D,
converges in probability to D and B, converges in probability to zero.

, =172

Proof: The law of large numbers and the continuous mapping theorem
are applied to show

—Zx]ZHEkaorje{l 2}, ke {1,2}
J =1

Sp = 0p .

The previous display is used to find the convergence in probability limit for
the four coefficients in D,, and the bias term B,,/ D}, assuming the first two
moments of X7 and X5 are finite

P1 Ml Mz
‘/1+p10p + 4/ (tp0) 3#1
Dy

P1 Hl u2
P D —4/
Dn — D = 2 = 1+p1 3
D3
pP1 142 (Hl u2
Dy 1+P1 Up 1+p1
p1 ul ug
1+p1
P P (1 — p2)

— — 5 x0=0.-1

(1+p) Op
Lemma 2.21. If the first four moments of X1 and Xy are finite, then
the random vector Y ,, converges in distribution to a multivariate Gaussian
random vector Y .

Proof: The multivariate central limit theorem ([23], 2¢.5) is applied to
find the asymptotic distribution for the random vector Y ,, assuming the
first four moments of X7 and X5 are finite

Y, %Y ~N(0,%), Var (Y,) =% = Var (V)
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by showing every linear combination of Y, converges in distribution to a
univariate Gaussian distribution

2 =AY, L 2= XNY ~N(0,NZA) (59)
A= (A1) A= (M Aiz)s Ao = (Mar, Aw)

The Lindeberg-Feller form of the central limit theorem ([23], 2¢.5) is applied
to show (59).

Let 2 Loy (T B e —a j=1,2,i=1...n
i — T ——/\j zis — UZ:y = 1,4 = L1...7y
¢ \/E ’ ‘sz_ <X> ! ! !

Zj ~ (E(Z;),Var (Z;)) = (0, p—)\;Zj)\j> L j=1,2
j

ni n2
Let C% = Z Var (z1;) + Z Var (z9;)

= %)\’129\1 + n2A/222A2
1

= ’I’LQ}\’E)\

The Lindeberg-Feller convergence condition, as specialized to (59), is satis-
fied for any € > 0

(2. e
— dG.,,(z) + dG,,(
C? <Z |z|>£Chn ! Z |z|>eChn 2:(7)

i=1
1

:Xle))\ /I(\z] > ECn)szGzl(Z) + m/[(!z\ > ECn)zszZZ(z)

—0asn oo

since Var(z,) = XXX is constant and finite for all n and since the con-
vergence of the two integrals to zero follows by applying the dominated
convergence theorem. Hence

n
iy 21 T D2 2 4
naX I

which proves the result that

\/p_l ni 1 ng 1 ni no
NY, = —Zzli+ —ZZ% =— <ZZ12'+ZZ2¢)
Vi V2o vi2 \im i=1

LN(0,NEN) . =

4 N(0,1)
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In conclusion, Lemmas 2.20 and 2.21 are combined to find the asymptotic
distribution for T,.

Theorem 2.5. If the first four moments of X1 and Xy are finite, then T,
converges in distribution to a Gaussian random variable T.

n

Proof: The asymptotic distribution for T, is found, by applying the
results of Lemmas 2.20 and 2.21, and by applying Slutsky’s theorem

T}, = DLY, + B,/D; > Tj=D'Y ~N(0,D'SD) . B

In order to derive the Pitman efficiencies, the following results show
that Tf,, converges to a standard Gaussian distribution Tj ~ N(0,1) if
91(z) = pp(x) — g2(x) almost everywhere as n — co. In the sequel, let the
operators E,(-) and Var,(-) denote expectation and variance with respect
to a density that varies with n.

Lemma 2.22. Let {p,(x) : n = 0,1,2,...} define a sequence of density
functions where Xy ~ p,, at time index n such that p,(x) — po(x) almost
everywhere. Let Xo ~ go. If E,|X¥| — Eo|XF| for k € {1,2} and X% is
integrable for k € {1,2}, then D,, converges in probability to D and B,
converges in probability to zero.

Proof: At time index n, let {x,; : ¢ = 1,...,n;} denote a random
sample from the probability distribution P, associated with the density p,,.
Proposition 2.1 with f(z) = z and f(x) = 2% and with p = p; shows that

1“1 kP
— B E(XF for ke {1,2) .
nl;xm—) 0Aq, IOT {7}

Let x9; ~ g9 for ¢ = 1,...,n5. The independent identically distributed
version of the weak law of large numbers is applied to show

1 & P
n—22x52 = EXY, for ke {1,2}, .
i=1

The two previous displays together with the continuous mapping theorem

are used to show S, Py op. The previous statement in combination with the
two previous displays proves the result. B

Lemma 2.23. Let {p,(x) : n = 0,1,2,...} define a sequence of density
functions where Xy ~ p,, at time index n such that p,(x) — po(x) almost
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everywhere. Let Xo ~ go. If En|XF| — Eo|XF| for k € {1,2,3,4} and X}
is integrable for k € {1,2,3,4}, then the random vector Y, converges in
distribution to a multivariate Gaussian random vector Y

Y, "%y ~ N0,3)

{2 n [210

Var, (Y,) =%, = — ¥y = } = Var, (Y)

)
where Y, remains as defined in (58) with EX{C replaced by Ean for k €
{1,2}, where X1,, and 3¢ have the same structure as 31 defined in (58) with
E'X{f replaced by Ean in X1, for k € {1,2,3,4} and with E'X{C replaced by
EgXF in 19 for k € {1,2,3,4}, and where 3o remains the same as defined
in (58).

3

Proof: As shown in Lemma 2.21, the multivariate central limit theorem
([23], 2¢.5) is applied to show the convergence in joint distribution of Y,

o= NV, 2 XY N (0, MZ0N)

A= ( /1)\/2),, A= (M1, A12,), Ag = (Aa1, Aa2) .

The Lindeberg-Feller form of the central limit theorem ([30] , Proposition
2.27) is applied to show the previous display. Let zj and C), remain defined
as in Lemma 2.21 such that for i =1,...,n; and j = 1,2

210 ~ G oy = Gn,zy5 22i ~ Gayy = Gy,
1
Zy~ (ETL (Zl) , Vary, (Zl)) = <07 p_Allzln)q)
1
1
Zg ~ (E (ZQ) ,Var (ZQ)) = <0, p—>\/222)\2>
2
ni no
= ZVarn (z13) + ZVar (22i) = 2N\ .

i=1 i=1

The Lindeberg-Feller convergence condition, as specialized to z;;/Cy, is sat-

isfied for any € > 0
2\ 2
— | dG.,, (2
1 (&) @t )>

ni 2 n2
Sy IR CHRENER )
i=1"|cn |7 N i=1" |0,

1
o [ 1021 > £C) PG () + 5 [ 1021 > 2C) G (2

—0asn T oo
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where

n1 214 n2 Z9;

Var = + Var—t = 1

2 Varg + ) Ve

i=1 i=1
since both integrals converge to zero by applying Pratt’s extended dominated
convergence theorem from Appendix 2B [23] with Var,Z; — VargZ; < oo
and with Var Zy < oo and since AX’X, A — X3¢\ < 0o, hence

im1 210 + )iy 220 d(Py)

vV ’I’LQ}\/En}\

which proves the result that

N (0,1)

XY, PN (0, MS0A) . m
Theorem 2.6. Let {p,(xz) : n = 0,1,2,...} define a sequence of density
functions where X1 ~ p, at time index n such that p,(x) — po(x) almost
everywhere. Let Xo ~ go. If E,|XF| — Eo|XF| for k € {1,2,3,4} and
X§ is integrable for k € {1,2,3,4}, then T, converges in distribution to a
Gaussian random variable Tj).

n

Proof: The asymptotic distribution for T, is found, by applying the
results of Lemmas 2.22 and 2.23, and by applying Slutsky’s theorem

Ti, = DY, + B, "% T) = D'Y ~N(0,D'SD) . ®

In order to satisfy the convergence conditions that E,|X¥| — Eo| XF¥| for
k € {1,2,3,4}, it suffices to show that E, X} — EqX{. The remaining mo-
ment convergence conditions are satisfied by applying Pratt’s extended dom-
inated convergence theorem from Appendix 2B [23] since |2*| for k € {1,2, 3}
is bounded by 1 + z*. In order to satisfy the integrable moment conditions
on X¥ for k € {1,2,3,4}, it suffices to show that X3 is integrable. The re-
maining integrable moment conditions are satisfied since EXj < oo implies
that E|X%| < oo for k € {1,2,3} by applying the Lyapunov inequality.

Corollary 2.13. If the limiting density po(x) is the same as the reference
density go(x) then the limiting distribution of Tj; is a standard Gaussian
distribution: T ~ N(0,1).

Proof: Under the assumptions where y1 = pg and 03 = 02 = 012), direct

calculation shows that
2

!
_ 1 1 1 _ _|Op ¥
D= (\/ T+p1 op’ 0, / 1-7—1pl o’ 0) ; Mo =X = Lp *]
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Hence the result is proven since D'3¢D =1. B

For convenience of notation, the components in the decomposition of the
random variable T, are denoted as (D,,,Y ), and the components in the
decomposition of the asymptotic random variable T( are denoted as (D,Y).
The components of (D,,,Y ) and of (D,Y") are different from the identically
labeled components in the decompositions of the random variable Z; and
of the asymptotic random variable Z", see (44). In a similar manner, the
covariance structure X of the random variable Y from the decomposition of
the asymptotic random variable Ty is different from the identically labeled
covariance structure of the random variable Y from the decomposition of
the asymptotic random variable 7"

The next subsection shows that the variance of T reduces to (48) under
the Gaussian assumption.
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2.2.2.2.1 Gaussian Example
In this section, an example of the asymptotic T|j distribution is examined
where X7 and X5 have differing Gaussian distributions. The integrable mo-
ment condtions of Theorem 2.5 are satisfied since the Gaussian distribution
has finite moments of all orders

X NN(,uj,ajz-) , for j=1,2
E (X7) = 2051
E(X}) =207 (07 +243) .

The additional convergence conditions of Theorem 2.6 are also satisfied since
the Gaussian density is a continuous function of its parameters such that the
X7 density g1(x) = N(u1,0%) converges to the Xo density go(x) = N(ug,03)
as (p1,0%) — (ug,0%) for all z € R and since the fourth moment is a
continuous function of the Gaussian parameters. The resulting variance for
Y and distribution for Ty follow

Var (V) =X = [2(3)1 2?]
2
1 204
_ 2 J .
DIV [2,Uj 2(%2_’_2/”) , for j=1,2

T;=D'Y ~N(0,D'SD)

D D
D'SD = (D1 D)) %4 <D;> + (D3 Dy) 3y <Di>

1 o < 1t o 2)
= S\ 1+ 57— —pe
ooz \ o o 1)
2 2
P10 L 1 92 2)
S|\ 1+ 557 (11— p2
1+plag< 3 (14 pryPod V1)
_ (0%+p10’§) 1 . (pm‘f—l—aé)
(ot +03) 27 (po? +03)°

(11 — p2)”

If X; and X have common variances o = 03 = o2 as described in section
2.1.1.1, then the resulting variance for Ty is consistent with previous results
from (48)

p1 (1 — po)?

DSD—1+2 -

2(1+p)* o
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2.2.2.2.2 Gamma Examples I and II
In this section, two examples of the asymptotic T( distribution are exam-
ined where X7 and X5 have differing gamma distributions. The integrable
moment condtions of Theorem 2.5 are satisfied since the gamma distribution
has finite moments of all orders

X; ~ Gamma (an;j, 8y5), for j =1,2

E (Xj) = ay;By;

E (ij) = ayj(ay; + 1)@20

E (ng) (0 + 1) (ay; + 2)5

E (X]) = ayjan; + D0y +2)(ar; +3)85; -

The additional convergence conditions of Theorem 2.6 are also satisfied since
the gamma density is a continuous function of its parameters such that the
X density g1(z) = Gamma(a,1, 8y1) converges to the Xy density ga(x) =
Gamma(ay2, 8y2) as (ay1,041) — (42, B42) for all € RT and since the
fourth moment is a continuous function of the gamma parameters. The
resulting variance for Y and distribution for T follow:

Var (V) =% = [21 0}

0 3

1 2(ay; +1)8y; :
S — o vJ VI =1,2
J awﬁw [2(0471' + 1)57]’ Q(O“/j + 1)(20471' +3) *20] Y ,

T;=D'Y ~N(0,D'SD)

D D
D'SD = (D, D3) %, (D;>+(D3 Dy) By <Di>
1 af —p2) p1 2 (i —p2)® o}
— 1—-2 + a1 +3
L+ p1 02 < ﬁ” 0% eI 205 (1+p)°
2 2
p1_ 03 —p2) 1 2 (11 — pi2) 1
1+ 206, + B2 (a2 + 3
1+p102< ” % L+p e ) 205 (1+p)°
01 + p10’2) 2 2 (1 — po2)
= 55 — 201 (0181 — 02By2) — 5
(p10% + 03) (o1 = o36n) (p103 +03)*
(Ml—ﬂ2)2

+p1 ((a’yl +3) plo'%ﬁil + (0472 +3) 035?{2) 3 -

2 (prof + 03)
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For the Gamma I example, where the gamma distributions for X; and
X5 have a common shape parameter a1 = a2 = o, as described in section
2.1.1.2, the resulting variance for T} is

2 2
D/ED _ ( yljplﬁ'f) . 2/)1 ( 31 B 32) (571 - 572) 5 (60)
(plﬂfyl + 672) (Plﬁgl + 632)
(ﬂ'yl - 672)2

+ p1 (ay +3) (/315?;1 + ﬂf‘;g) 5 -
2 <p1ﬁ«2/1 + ﬁ«%z)

Figure 6 graphs the variance of T( versus a range of 3,1 parameter values
for Xy, with 8,2 = 3 for X5, and with a, = 1 for both X; and Xs.

Variance of T Statistic versus Gbetal
T T T

L L L L L L L
1 15 2 25 3 35 4 45 5

Figure 6: Variance of Tf versus 3,1 when X; ~ Gamma(l,/3,1), Xo ~
Gamma(1,3).
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For the Gamma II example, where the gamma distributions for X; and
X5 have a common scale parameter 3,1 = 3,2 = 3,, as described in section
2.1.1.3, the resulting variance for Ty is

(a1 + pray2)

D'SD =
(pla'yl + 0472)

(61)

(1 — 0472)2

2 (/0104“/1 + (172)3

+ p1 (praq1 (@y1 — 1) + aqz (q2 — 1))

Figure 7 graphs the variance of T{j versus a range of a,; parameter values
for Xy, with a.,o = 3 for X, and with 8, = 1 for both X; and Xs.

Variance of T Statistic versus Galphal
T T T

Figure 7: Variance of T{ versus a,; when X; ~ Gamma(ay,1), Xo ~
Gamma(3,1).
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2.2.2.2.3 Log Normal Example
In this section, another example of the asymptotic T distribution is exam-
ined where X7 and X5 have log normal distributions with different u;; and
w2 parameters and with a common O'l2 parameter as described in section
2.1.1.4. The integrable moment condtions of Theorem 2.5 are satisfied since
the log normal distribution has finite moments of all orders

X; ~ LN (,ulj,alz) , for j=1,2
E (X]’f) — ek“lj+k2012/2, fork=1,...,4.

The additional convergence conditions of Theorem 2.6 are also satisfied since
the log normal density is a continuous function of its parameters such that
the X density g1(z) = LN(u1,07) converges to the X, density go(z) =
LN(/LlQ,O-?) as g3 — 2 for all z € R and since the fourth moment is a
continuous function of the log normal parameters. The resulting variance
for Y and distribution for Ty follow:

w_ |21 0
Var (V) =X = [0 22]
, (eo’l2 . 1> eulj+3crl2/2 <e2ol2 o 1)
zj:e2ﬂlj+0'l j:1,2

eulj+3crlz/2 <e2ol2 _ 1) e2,ulj+3ol2 <e4ol2 _ 1) ’
T; = D'Y ~ N (0, D'SD)

D D
D'SD = (D, Dy)%, <D;>+(D3 Dy) By (Di) .
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Figure 8 graphs the variance of T{) versus a range of y;; parameter values
for X7, with ;o = 0 for Xo, and with O'l2 =1 for both X; and Xs.

Variance of T Statistic versus difference in Means
T T

L L L L L L L
-2 -15 -1 -05 [ 0.5 1 15 2

Figure 8: Variance of T{j versus p;; when X; ~ LN(1,1), Xo ~ LN(0,1).

2.2.2.2.4 Limiting Example as (u1,0?) Approaches (us,03)
In this section, the limiting distribution for a sequence of T{ random vari-
ables is found as (p1,0%) approaches (2,03). For this case, the variance of
T( approaches the limit in the following display.

(mv%ﬁiﬁm(uw%)DlzD - (1 +101> (55) [(1 0) =2 (é)} (62)

() @[ 0=0)

=1

So that the distribution of Tj, approaches a N(0, 1) distribution as (u1,07)
approaches (pa, O’%). This result is expected, since the original Ty, statistic
converges to a N(0, 1) random variable under the null hypothesis when X; ~
N(u1,0%) and Xa ~ N(uz2,03) and when (u1,0%) = (u2,03), see (47). This
result may be explicitly verified using the previous examples.
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2.2.3 Relative Efficiency of T to Z, Statistics

The Z, statistic is used in testing the null hypothesis Hy : 3y = 0. The
Ty, statistic is used in testing the null hypothesis Hy : u; = p2. Under the
assumption that X7 and X are normally distributed with common variance

Bo = (1 — pa) /0>,

both of the statistics Z,, and Ty, are testing the null hypothesis that both
of the normal distributions are the same.

This section uses relative efficiency and then Pitman efficiency, as de-
scribed by Bickel and Doksum (1977) [2] 9.1.A, in order to compare the
performance of the Z, and Ty, tests. Relative efficiency compares the sam-
ple sizes needed to achieve a desired power when the alternative hypothesis
is true Hy : By # 0 or equivalently p1 # ps. Since the Z; random variable is
asymptotically normal, a sample size N, > 0 is found to achieve a specified
power for the Z, test in terms of ®. Also since the T§,, random variable is
asymptotically normal, another sample size Ny > 0 is also found to achieve
a specified power for the Ty, test in terms of ®. Let P, represent the prob-
ability distribution of the statistics when the null hypothesis is true. Let P;
represent the probability distribution of the statistics when the alternative
hypothesis is true. Then for the Z,, statistic

PO (‘ZNZ > Z(l — OéHO/2))
~1—® (Z(l — aH()/2)) + & (Z(OéHO/2)) = O[O
P (‘ZNZ‘ > 2(1 — amo/2))

=P (ZN > z(1 — ago/2) — \/N_Z(lT\/il)ahﬁ())
+ P ( < —2(1—apo/2) — \/Nizﬂ)ffhﬁo

Qj‘I><<\/_ Vo 0h50—2(1—0H0/2)> /U< >> (63)
ro (VR f ot~ =1 am/D)) /o () (60
where o2 (Z ( ) Var ( )
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and similarly for the Ty, statistic

Py (ITon,| > 2(1 — amo/2))
~1—® (Z(l - aH()/2)) + & (Z(OéHO/2)) = O[O
Py (|Ton,| > 2(1 — amo/2))

=P <T8Nt > Z(l — OZH()/Z \/_ \/—1 Ml IU2)>

(L+p1) op
* VPl (p1 — p2)
P Ton, < —2(1— 2) — /N
+ 1( 0N, apo/2) t(1+p1) P

(1= pa) 2(1— aHo/2)> Jo (T;;)> (65)

> << ‘a + ,0 Tp
L << a + 5 (‘“U‘p“?) — (1 - aHo/2)> /o (T;;)) (66)
(

where o2 (T}) = Var (T}) .

In order to compare the power of the Z, and T, tests, when the alternative
hypothesis is true, it is natural to evaluate the ratio N;/N,, of the sample
sizes needed to achieve a specific power value v. As N, and N; grow, one of
the power probabilities, from (63 or 64) and (65 or 66), increases to one; the
other, to zero. Without loss of generality, assume that 5y > 0 and pq > po
so that the first probability in each power, (63) and (65), increases to one
as the sample size grows. Equating the power of the Zn test to the power
of the Ty, test, approximating the power of the Zy test using (63), and
approximating the power of the Ty, test using (65), leads to the following

P (‘ZNZ‘ > Z(l — aH0/2)> =P (’TONt’ > Z(l — aH0/2)) =7
_ \/N_Z(H—%Uhﬁo —2(1 = amo/2)

o () =z (v) - (67)
*(Z)
VBT (w4
:\/E(le) Jg(Ta) (1 HO/Z). (68)

For the case 0 < v < 1 where N, and N; are finite, equations (67) and
(68) are used to calculate initial sample size approximations for N, and N
that give initial power values from (63)+(64) and (65)+(66) that are greater
than or equal to the desired power value of v due to (64) and (66). The
correct sample sizes N, and N; are then found by decrementing the initial
sample size approximations until (63) + (64) ~ v and (65) + (66) =~ . The

78



ratio Ny /N, of the sample sizes needed to achieve a specific power, is called
the relative efficiency of Ty, to T

For the case v ~ 1 where N, > 0 and N; > 0, equating (67) and (68)
leads to the following relative efficiency equations

Ny
N, (w1 — p2) (U 7

— o1fo %p o (Tp) I z(1—apo/2) oy 1 o (T})
(11— p2) & (Z*> \/N_Z(lﬁ) (1 — pi2) o <Z*)
(71)

Either of the two relative efficiency equations, (69) or (71), is used to find
the limit (if it exists) of the relative efficiency as - increases to one while the
other parameters are held constant. The limit of the relative efficiency as
increases to one is called the asymptotic relative efficiency of Ty, to Zn or
A.R.E. Van der Vaart (1998), in [30] section 8.2, provides an alternative limit
definition for relative efficiency that is equivalent to the ratio o2(T)/02(Z").

Pitman efficiency, denoted as e(T,, Zn), provides a way to compare the
two test statistics, To, and Z,. Pitman efficiency is found by evaluating
the ratio of sample sizes Ny/N, over a sequence of alternative hypotheses
H; : (y # 0 or equivalently 111 # ps asn — oo such that Gy — 0 and p; — po
and such that the level value and power value of (67) and (68) remain fixed
at ago and « for each n. Requiring the power v to remain constant im-
plies that /N3y — ¢, # 0 as N, — oo and /Ny(u1 — pe)/op — ¢ # 0 as
N; — o0, i.e. that the sequences fy = O(1/y/n) and (u1—p2)/op = O(1/y/n)
as n — o0o. In the Pitman efficiency analysis of the examples that follow,
the moment functions (u1,0%) = (p1,07)(O1n), (12,03) = (2, 03)(O2), and
the distortion parameters (ag, 5y) = (a0, 50)(O1n, O2) = (aun, Br), are func-
tions of the distorted and reference densities parameters g1(x|®1,) = pp(z)
and go(2|®3), such that ®2 remains fixed and ¢;(z|®1,) — g2(z|©3) for
every ¢ € R as ©1,, — ©5. Theorems 2.6 and 2.4 show that the conver-
gence in distribution of Ty, to Tj and of Zn toO 7" are valid as n — oo
when p, — g2, (11,03)(O1,) — (112,02)(02), (an, Bn) — 0 and under ad-
ditional convergence conditions. In the examples that follow, only one of
the distorted densities parameters 61, € @1, will vary such that @, — O,
as 01, — 0 € Oy. Let 61, = 05 + 0,,, (m,a%)(@n) = (m,a%)(@ln), and

79



(0, Bo)(6n) = (a0, 50)(O1p, O2). Note that the convergence in distribution
properties of Theorems 2.6 and 2.4 are valid over any sequence 6, — 0 as
n — oo which is a stronger result than just requiring the convergence in
distribution properties to be valid over sequences 6,, = O(1/y/n). Theorem
14.19 from [30] provides a slope formula for the Pitman efficiency under
conditions that are satisfied by the conditions and results of Theorems 2.6
and 2.4 with positive slopes p/.(0), 7, (0) > 0 (see below). This theorem
examines the Pitman efficiency over sequences 6,, = O(1/y/n). The Pitman
efficiency slope formula is

s (0) = % 12 (6n) = 1B (600)
o (1O
(o2 = (55 ) (72)

In equations (70) and (71), allowing /N (u1(6,) — p2) to converge to a
finite limit ¢ # 0 as n — oo, such that both p;(60,,) — uo and 5y (6,,) converge
to zero while o,(6,) converges to a finite positive constant and while ag
and - are held constant, results in the sample size ratio converging to a
limit. It is easy to show that the Pitman efficiency slope formula (72) is
equivalent to the limit from the previous statement as 6, — 0 such that
VN0, — c¢* # 0 with ¢* finite and with oo and v fixed

= lim 7#2((%)/9” = lim LZ(en) = lim &

wp(0) — 0n=0 pr(6)/6n  0n=0 i1 (Bn) /N (s (9)—pz)—c ¥ N

since as ¢, — 0 such that +/N.6, — ¢* #0
(/Llyo-%) (en) - (ﬂQaO-%) ) 02 (Tzk]) —1
(a0, Bo) (0) — (0,0, 0*(Z7) — 1

VN (1 (00) — p12) = JN_zena,,wn)“T;f") ol (0) = c

Equation (67) is used to show as 6, — 0

o <Z*) z2(y) + z2(1 — apo/2) o (Z*) z2(y) + z(1 — apgo/2)

V Nzen = Hn =

s on o (0n) s 12(0n) /6
2(Y) +2(1 —amo/2) _ .
— \/PT ; =C .
oz (0)
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2.2.3.1 Gaussian Example As an example, assume X; and X5 have
Gaussian distributions with different means p # pe and with a common
variance o2 as described in section 2.1.1.1. Note that h(z) = x. For this
Gaussian example, the relative efficiency equation (71) is specialized to equa-
tion (73) below

Ty .-« T1ng, ~ X1 With N (,ul,0'2) pdf
T21y -+ L2ng X2 with N (,u2,0'2) pdf

2 2
Mo — HT M1 — [H2
(Oé(),ﬂ()):< 2 17 >7 0%20'12120'2

202 o2
op o op
= , opBp——m—m—= =1
(1 —p2)  (pa — p2) (1 — p2)
% o (T§) | 2(1 = amno) o 1 o (TF) (73)

s (z) VN (1 = p2) o (z)

Holding the distribution parameters (p1, po, o) constant, while increasing
the power v of the Z, and Ty, tests to one, results in the sample size ratio
converging to the asymptotic relative efficiency of Z, to Tq,.
N, o (T§
ARE. = lim —% = &
'y—>1 Nz 0.2 <Z*>

Allowing /N, (u1 — p2) to converge to a finite limit ¢ # 0, so that u; —
us and By converge to zero with o2 constant, results in the sample size
ratio converging to the Pitman efficiency of Ty, to Zn. The variance of
T{, converges to one as 1 approaches ug in (48). In general, as previously
shown in (45), the variance of A converges to one as 3y approaches zero.

. 2 (%) _ . 2 *\
lim o (Z > =1, (mllg)aoa (Ty) =1
e <T0n, Zn> = lim — =1
VN (1 =iz e N

Figures 1 and 5 graph the variances of 7" and T} separately when o2 = 1.
Figure 9 graphs the variances of 7" and T} together when 0% = 1.
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Figure 10 graphs the relative efficiency of Ty, to Z, when o2 = 1, and
when apg = .05. In Figure 10, the relative efficiency is nearly one, in a
neighborhood of 11 = po. In other words, the sample sizes are approximately
the same, for the T, and Z, tests, in order to achieve the same power value,
when the difference in means is small. Outside of this neighborhood of p; =
s, the relative efficiency of Ty, to Zn decreases with larger power values.
In other words, the Ty, test requires smaller random samples, relative to
the semiparametric test, in order to achieve the same power value, as the
power value increases.

Variances of Semiparametric and T Statistics versus differe nce in Means

0.8,
-2

Figure 9: Given Xy ~ N(u1,1), X2 ~ N(ug,1), the solid line is the variance
of Z versus p1 — 2, the dashed line is the variance of T( versus p; — po.

Relative Efficiency of T Statistic to Semiparametric Statis tic

L L L L L L L
-15 -1 -05 0 05 1 15 2

Figure 10: Relative Efficiency N;/N, curves of Ty, to L, VETSUS 1 — o,
when X7 ~ N(ug,1), Xo ~ N(ue,1), and when agy = .05. The curves,
starting from the top, correspond to different power values of v = .7, .8, .9,
.99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let p1, = po + 0, = p1(0,).

:%:;, NT(O):%

Hz (Hn) = O'hﬁ() (Hn) = f? :u'/Z (O) =

e (Tons Za) = (1 (0) /1t (0))* =1

pr (0n)

>

Power simulation results for the Zn and Ty, tests in Table 1 show how
well the asymptotic power approximates finite sample behavior where X; ~
N(p1,1), X9 ~ N(pg,1), and where 3 — po = 0.2,0.5. Power simulation
results for the Ty, and Zn tests are also provided in Table 2 where X; ~
N(p1,1), Xo ~ N(ug, 1), and where p3 — po = 1.0. The combined Sample
Sizes values N, = nj + ng were calculated with p; = 1 via (67) and (63)
+ (64) to provide the specified agg = 0.05,0.01 error and to provide the
specified Asymptotic Power values for Z,, that approximate a power of v =
0.80,0.90. The Asymptotic Power values for Ty, were calculated for the
combined Sample Sizes values N; = nj + ng with p; = 1 from (65) +
(66). Relative Efficiency values were approximated using (69). A Relative
Efficiency value less than one implies a larger Asymptotic Power value for
the Tq,, test versus the Asymptotic Power value for the Zon test.

Table 1: Power simulation results for the Z, and Ty, tests, using 500
independent runs, where X; ~ N(pi,1) and X3 ~ N(pg,1), and where
Ap = — e = 0.2,0.5.

Ap | agg | Sample Sample Sample | Asymptotic | Rel.
Sizes Levels Powers Powers Eff.
ny, N2 Zna TOn Zrn TOn Zn(’}')y TOn (69)
0.2 | .05 | 394, 394 | .046, .046 | .800, .800 | .8009, .8010 | 1.0000
0.2 | .05 | 527, 527 | .042, .042 | .902, .902 | .9003, .9003 | 0.9999
0.2 | .01 | 585, 585 | .010, .010 | .808, .808 | .8003, .8003 | 1.0000
0.2 | .01 | 746, 746 | .008, .008 | .890, .888 | .9003, .9004 | 1.0000
0.5 | .05 64, 64 | .048, .048 | .824, .820 | .8032, .8038 | 0.9984
0.5 | .05 86, 86 | .054, .052 | .902, .900 | .9024, .9030 | 0.9979
0.5 | .01 95,95 | .010, .012 | .804, .798 | .8036, .8042 | 0.9987
0.5 | .01 | 121, 121 | .004, .004 | .906, .904 | .9014, .9020 | 0.9982
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Table 2: Power simulation results for the Z, and Ty, tests, using 500
independent runs, where X; ~ N(pui,1) and X3 ~ N(pg,1), and where
Ap =y — pz = 1.0.
Ap | agg | Sample | Sample Sample | Asymptotic | Rel.
Sizes Levels Power Power Eff.
ny, N2 Zna Ton Zn> Ton Zn('y)y Ton (69)
1.0 | .05 | 17,17 | .070, .070 | .852, .850 | .8081, .8162 | 0.9789
1.0 | .05 | 23,23 | .058, .056 | .934, .934 | .9040, .9114 | 0.9726
1.0 | .01 | 25,25 | .008, .006 | .838, .826 | .8092, .8172 | 0.9826
1.0 | .01 | 32,32 | .012, .012 | .908, .914 | .9029, .9103 | 0.9768

In Tables 1 and 2, the important columns to compare are the Sample
and Asymptotic Powers columns. The Sample Powers values for the Z,
and Ty, tests identify the proportion of simulation runs that failed the Hg
test at the agg level. The Sample Levels values for the Zn and T, tests
identify the proportion of simulation runs that failed the Hy test at the agq
level when the null hypothesis was true. For the simulations in Table 1,
the Sample Sizes values are large enough so that the Sample Powers values
are in agreement with the corresponding Asymptotic Powers values. For
the simulations in Table 2, the Sample Sizes values are relatively small, so
that some of the Sample Powers values are not quite in agreement with
the corresponding Asymptotic Powers values. In both Tables 1 and 2, the
Sample Powers values for the Zn and Ty, tests are nearly equal and are
compatible with the Relative Efficiency values near 1.

The actual distribution of Tp,,, when X1 ~ N(uy,02) and Xo ~ N(ua,02),
and when p1 # ps, is known to follow a non-central ¢ distribution, with n—2
degrees of freedom, and with a non-centrality parameter §

H1 — K2
g

_ VPL
5_\/51‘1'01

For this example, it is interesting to compare the asymptotic power of Ty,
against the true power of Ty,. Figures 11 and 12 graph the asymptotic
power of Ty, versus ¢ = 6/v/2 with agg = 0.05,0.01.
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Asymptotic P-values for T statistic versus Phi Asymptotic P-values for T statistic versus Phi

0.8

0.6 B

L
15 155 16 1.65 17 175 18 185 19 1.95 2 2 2.1 2.2 23 2.4 25 26 27 28 2.9 3

Figure 11: Asymptotic power of Tg,, versus ¢ with agg = 0.05. The curves,
from the top, correspond to different degrees of freedom of v = 00, 60, 30, 20.

Asymptotic P-values for T statistic versus Phi Asymptotic P-values for T statistic versus Phi

0.8 B

0.7+ B

Figure 12: Asymptotic power of Ty, versus ¢ with agg = 0.01. The curves,
from the top, correspond to different degrees of freedom of v = o0, 60, 30, 20.

Examination, of the (0o, 60) degrees of freedom curves in Figures 11 and
12, reveals that these curves are in close agreement with the correspond-
ing curves in the Pearson and Hartley chart for the Power of the F tests
found in Scheffe (1959) [27], where the numerator degrees of freedom is one.
As expected, the other curves in Figures 11 and 12 with fewer degrees of
freedom are in less agreement with the corresponding curves in the Pearson
and Hartley chart, since the sample sizes are too small for the asymptotic
distribution of Tj,, to closely approximate the true distribution of Ty,.
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2.2.3.2 Gamma Example I As another example, assume X; and X
have gamma distributions with a common shape parameter o, and with
different scale parameters 3,1 # (3,2 as described in section 2.1.1.2. Note
that h(z) = z. For this Gamma Example I, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (74) and (75)
below

Tt ..., &1p, ~ X1 with Gamma (o, 8y1) pdf
T21, ..., Top, ~ Xo with Gamma (o, By2) pdf

(17, 03) = (B anB3;), j = 1,2
(ag, Bo) = (a In <@> <L _ L)) 52 — g2
7 ! ﬁ’yl 7 672 ﬁ»ﬂ P ok 2

Op _ 1 i /01631 + 632 (74)
(1 —p2) (B —By2)\ oy p1+1

% \/ (Br2/8:)° + 1

(75)

onfo =
(1 — p2) 1+,

The asymptotic relative efficiency of Toy, to Z, follows directly. With regard
to the Pitman efficiency of Ty, to Z,, the variance of T converges to one
as 3,1 approaches (3,5 in (60). In general, as previously shown in (45), the
variance of Z~ converges to one as [y approaches zero.

ARE. = lim M _ <(572/ By)* + Pl) o? (Tp)

y—1 Nz 1 —+ P1

1, lim % (T =1
(ﬁ'yl_ﬁw2)_’0 ( 0)

lim o2 <Z*)
Bo—0

N
lim tq

€ (TOTM Zn) N
\% NZ(ﬁwl _6“/2)_’5 z

Figures 2 and 6 graph the variances of 7" and T§ separately when «, = 1.
Figure 13 graphs the variances of 7" and T( together when o, = 1. Figure
14 graphs the relative efficiency of Ty, to Z, when a, = 1, and when
apgo = .05.
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In Figure 14, the relative efficiency is nearly one, in a neighborhood of
By1 = B2 = 3. Figure 14, also identifies some interesting relative efficiencies
of Ton t0 Zy, outside a neighborhood of 3,1 = 3,2 = 3. For smaller power
values v = .7,.8,.9, the relative efficiency of Ty, to Zn is greater than one,
when 3,1 < 3,2 = 3. As the power value increases, the relative efficiency
of Ton to Z, decreases, so that at a power value of v = .99, the relative
efficiency of T, to Z, is less than one. In contrast, the relative efficiency of
Ton to Zy, increases for By1 > By2 = 3 as the power values increase.

Variances of Semiparametric and T Statistics versus Gbetal

12

L L L L L L L
1 15 2 25 3 35 4 45 5

Figure 13: Given X; ~ Gamma(1l, 31), X2 ~ Gamma(1, 3), solid line is the
variance of Z~ versus By1, dashed line is the variance of T versus 3,1.

Relative Efficiency of T Statistic to Semiparametric Statis tic
T T T T T

15+

05

0

Figure 14: Relative Efficiency N;/N, curves of Ty, to Zi, VEISUS B41, when
X1 ~ Gamma(l,8y1), X2 ~ Gamma(l,3), and when ayg = .05. The
curves, starting from the top left, correspond to different power values of
=.7,.8,.9, .99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let 8,1, = 8y2 + 0.

p1 (0n) — /0 0n
pr () = 1Ef()e) - = ; N
p\Un
(5502 + s (B2 +6.)°)

1 1
pz (0n) = onfo (0n) = /0y B2 <ﬁ_~,2 - m>

 (0) = iz (0) = ¥

(re)- (48 -

Power simulation results for the Zn and Ty, tests in Table 3 show how
well the asymptotic power approximates finite sample behavior where X; ~
Gamma(l, 3y1), Xo ~ Gamma(l,3), and where 3,1 = 2,2.5,3.5,4. The
combined Sample Sizes values N, = nj + no were calculated with py = 1
via (67) and (63) + (64) to provide the specified ago = 0.05,0.01 error and
to provide the specified Asymptotic Power values for Z, that approximate
a power of v = 0.80,0.90. The Asymptotic Power values for Ty, were
calculated for the combined Sample Sizes values N; = ny + ng with p; =1
from (65) + (66). Relative Efficiency values were approximated using (69).
A Relative Efficiency value less (or greater) than one implies a larger (or
smaller) Asymptotic Power value for the Ty, test versus the Asymptotic
Power value for the Z, test.
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Table 3: Power simulation results for the Z,, and Ty, tests, using 500 inde-
pendent runs, where X; ~ Gamma(1, 31), X2 ~ Gamma(l, 3).

By1 | amo Sample Sample Sample | Asymptotic | Rel.
Sizes Levels Powers Powers Eff.
Ny, N2 Zna Ton Zna Ton Zn('y)y Ton (69)
.05 84, 84 .050, .056 | .776, .696 | .8010, .7344 | 1.1662
.05 122, 122 | .058, .050 | .926, .904 | .9002, .8825 | 1.0584
.01 119, 119 .018, .012 | .822, .698 | .8008, .6858 | 1.2345
.01 164, 164 | .016, .006 | .892, .838 | .9009, .8532 | 1.1285
2.5 | .05 442, 442 | .044, .042 | .786, .748 | .8002, .7715 | 1.0733
2.5 | .05 614, 614 | .056, .052 | .908, .878 | .9004, .8911 | 1.0321
2.5 | .01 644, 644 | .014, .010 | .798, .754 | .8001, .7531 | 1.0978
2.5 | .01 848, 848 | .010, .012 | .908, .880 | .9001, .8793 | 1.0592
3.5 | .05 707, 707 | .048, .046 | .792, .830 | .8005, .8251 | 0.9381
3.5 | .05 920, 920 | .054, .052 | .894, .910 | .9001, .9180 | 0.9623
3.5 | .01 | 1068, 1068 | .014, .010 | .790, .836 | .8003, .8365 | 0.9247
3.5 | .01 | 1327, 1327 | .010, .006 | .882, .908 | .9001, .9180 | 0.9461
.05 217, 217 | .042, .030 | .802, .858 | .8004, .8475 | 0.8843
.05 277, 277 | .058, .054 | .874, .906 | .9007, .9227 | 0.9217
.01 332, 332 | .010, .010 | .802, .890 | .8008, .8667 | 0.8641
.01 405, 405 | .012, .010 | .896, .936 | .9006, .9341 | 0.8965

In Table 3, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Zn and Ty,
tests identify the proportion of simulation runs that failed the Hj test at
the apo level. The Sample Levels values for the Z,, and Ty, tests identify
the proportion of simulation runs that failed the Hg test at the agg level
when the null hypothesis was true. For these simulations in Table 3, the
Sample Sizes values are large enough so that the Sample Powers values are in
agreement with the corresponding Asymptotic Powers values. Also for these
simulations, the Sample Powers values for the Z,, and Ty, tests support the
Relative Efficiency values. A larger (or smaller) Sample Power value for the
Ty, test versus the Sample Power value for the Zn test is compatible with
the smaller (or larger) than one Relative Efficiency value.
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2.2.3.3 Gamma Example IT As another example, assume X; and Xo
have Gamma distributions with different shape parameters a1 # a2 and
with a common scale parameter 3, as described in section 2.1.1.3. Note that
h(x) = log(x). For this Gamma Example II, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (76) and (77)
below

Z11, ..., %1n, ~ X1 with Gamma (a1, 8y) pdf
T21, ..., Ton, ~ Xo with Gamma (a2, 8y) pdf

(:“jvajz) = (awﬂw a’YjB?y)’ J=12

(a0, Bo) = <10g Llog) | (ay2 — ay1)log By, (ay — av2)>

INEY
o2 — I (ay2) _ I (ay2) ?
" T (o) <T (ay2) >

op P10~1 + Qy2
= (a1 — @ 76
(Ml _MQ) o1 + 1 /( ~v1 'Y2) ( )
op P1041 + Qy2
opfPo————— = opy | —————= . 77
hﬁo(m_m) Y a— (77)

The asymptotic relative efficiency of Tg,, to Z, follows directly. With regard
to the Pitman efficiency of Ty, to Zn, the variance of T{ converges to one
as a1 approaches o in (61). In general, as previously shown in (45), the
variance of Z~ converges to one as 3y approaches zero.

N 2 T*
ARE = lim =% — o7 <f’1%1 +%2> o* (T}
v—1N,

)
p1+1 o2 (Z*)

lim o2 (Z) =1, lim o%(T) =1

Bo—0 (cy1—ay2)—0

~ N
e (Ton, Zn) = lim N_t = U%ayg
VN (a1 —aq2)—e 7

By inspection, a}% depends only on a2, not on 3,5. Figures 3 and 7 graph
the variances of Z' and T§ separately when 3, = 1. Figure 15 graphs the

variances of Z" and ?‘5 together when 3, = 1. Figure 16 graphs the relative
efficiency of Ty, to Z, when 3, = 1, and when ayg = .05.
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In Figure 16, the relative efficiency is greater than one, in a large neigh-
borhood of a,; = a,2 = 3. For smaller power values v = .7,.8,.9, the
relative efficiency of Ty, to Zn is greater than one when a1 < a2 = 3,
except when a1 is close to 1. As the power value increases, the relative
efficiency of To, to Z, increases, so that at a power value of v = .9999, the
relative efficiency of Ty, to Lo i8 greater than one for a,; = 1. In contrast,
the relative efficiency of Ty, to 7., decreases for Q41 > a2 = 3 as the power
value increases.

Variances of Semiparametric and T Statistics versus Galphal
T T T T T

Figure 15: Given X; ~ Gamma(cy1, 1), X2 ~ Gamma(3, 1), solid line is the
variance of Z" versus a1, dashed line is the variance of T versus ov;.

Relative Efficiency of T Statistic to Semiparametric Statis tic
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Figure 16: Relative Efficiency N;/N, curves of Ty, to Zn, versus o1, when
X1 ~ Gamma(a,i,1), Xo ~ Gamma(3,1), and when ago = .05. The
curves, starting from the bottom left, correspond to different power values
of v =.7,.8,.9, .99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let ayi, = a2 + 0.

N[

pr (0n) = = » br (0) = «
( ) Up(en) 0y + —1+1p1 On T( ) 72

nz (en) = onfo (en) = opbn, //Z (0) = 0Oh
- L0)) 2
() () e

Figure 17 graphs the Pitman efficiency of Tg, to Z, over a range of
ay2. This figure shows that the Pitman efficiency decreases towards one as
a function of a..

Pitman Efficiency of T Statistic to Semiparametric Statisti ¢

Figure 17: Pitman Efficiency of To, to Z,, versus .o, when X5 ~
Gamma(an,1).

Power simulation results for the Zn and Ty, tests in Table 4 show how
well the asymptotic power approximates finite sample behavior where X; ~
Gamma(ayg, 1), Xo ~ Gamma(3,1), and where o1 = 2,2.5,3.5,4. The
combined Sample Sizes values N, = nj + no were calculated with p; = 1
via (67) and (63) + (64) to provide the specified agg = 0.05,0.01 error and
to provide the specified Asymptotic Power values for Z, that approximate
a power of v = 0.80,0.90. The Asymptotic Power values for Ty, were
calculated for the combined Sample Sizes values N; = ny + ng with p; =1
from (65) + (66). Relative Efficiency values were approximated using (69).
A Relative Efficiency value greater than one implies a smaller Asymptotic
Power value for the Ty, test versus the Asymptotic Power value for the Zn
test.
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Table 4: Power simulation results for the Z,, and Ty, tests, using 500 inde-
pendent runs, where X; ~ Gamma(c,1,1), X2 ~ Gamma(3,1).

ay1 | ago | Sample Sample Sample | Asymptotic | Rel.
Sizes Levels Powers Powers Eff.
ny, N2 Zna Ton Zna Ton Zn('y)y Ton (69)
.05 37,37 | .056, .050 | .812, .770 | .8095, .7729 | 1.0944
.05 48,48 | .056, .054 | .906, .878 | .9064, .8688 | 1.1316
.01 55, 55 | .010, .008 | .814, .772 | .8020, .7671 | 1.0739
.01 68, 68 | .012, .014 | .882, .848 | .9003, .8632 | 1.1066
2.5 | .05 | 151, 151 | .054, .056 | .776, .740 | .8013, .7446 | 1.1496
2.5 | .05 | 199, 199 | .044, .042 | .886, .848 | .9015, .8517 | 1.1708
2.5 | .01 | 227,227 | .006, .010 | .816, .746 | .8017, .7370 | 1.1377
2.5 | .01 | 284, 284 | .008, .012 | .876, .830 | .9004, .8446 | 1.1566
3.5 | .05 | 169, 169 | .050, .048 | .814, .706 | .8004, .7216 | 1.2111
3.5 | .05 | 231, 231 | .040, .046 | .916, .856 | .9009, .8455 | 1.1896
3.5 | .01 | 249, 249 | .012, .008 | .814, .704 | .8008, .6975 | 1.2237
3.5 | .01 | 323, 323 | .010, .010 | .890, .824 | .9009, .8278 | 1.2038
.05 46, 46 | .046, .042 | .806, .722 | .8075, .7243 | 1.2302
.05 63, 63 | .058, .054 | .890, .836 | .9017, .8477 | 1.1876
.01 66, 66 | .014, .012 | .816, .712 | .8030, .6874 | 1.2556
.01 87, 87 | .008, .012 | .914, .838 | .9020, .8257 | 1.2157

NN NN

=R e e

In Table 4, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Zn and Ty,
tests identify the proportion of simulation runs that failed the Hj test at
the apo level. The Sample Levels values for the Z,, and Ty, tests identify
the proportion of simulation runs that failed the Hg test at the agg level
when the null hypothesis was true. For these simulations in Table 4, the
Sample Sizes values are large enough so that the Sample Power values are in
agreement with the corresponding Asymptotic Power values. Also for these
simulations, the Sample Powers values for the Z,, and Ty, tests support the
Relative Efficiency values. A smaller Sample Power value for the Ty, test
versus the Sample Power value for the Z,, test is compatible with the larger
than one Relative Efficiency value.
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2.2.3.4 Log Normal Example As another example, assume X; and
X5 have log normal distributions with different p;; # pio parameters and
with a common ‘712 parameter as described in section 2.1.1.4. Note that
h(x) = log(z). For this log normal example, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (78) and (79)
below

Tls- ..y Tiny ~ X1 with LN (1,07
Ta1, - .., Tony ~ X with LN (2, 07

) >
) b
(150%) = (ewzn zumal(oz_l)) -1

2
Mg — /m M1 — 2 9 9
o, = , , 0r =0
(a, Bo) < 2572 o7 > h=0]

pleQ(Ml—Mz) +1 6‘712 -1
o0 ! ) (et 1) ( 1 ) -

(11 — p2) p1+1 et —mz — 1
2 - o? _
Uhﬁoi _ i (Ple (i —pu2) 4+ 1) <€ 1 1) (1 — piro | (79)
(1 —p2) o p1+1 etii—mz — 1

The asymptotic relative efficiency of T, to Z, follows directly. With re-
gard to the Pitman efficiency of Ty, to Zy, as previously shown in (62), the
variance of T}, converges to one, since (u1,07) approaches (us, 02) as i1 ap-
proaches p2. Also as previously shown in (45), the variance of A converges
to one as (3 approaches zero.

y—1 IN,

Ne Ip 2 o2 (Tp)
ARE. =lim N = < hﬁo( M2)> = >

lim o2 <Z*) 1, lim o (T§) =1
Bo—0 (11 —pi2)—0
- N 1
e (Ton, Zn) lim N—t =— (e"l2 — 1)
Vv Nz(#u—,ulz)—’c o l

Figures 4 and 8 graph the variances of Z* and T; separately when 01 = 1.
Figure 18 graphs the variances of 7" and g together when al = 1. Figure 19
graphs the relative efficiency of Ty, to Z, when ‘71 =1, and when apg = .05.
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In Figure 19, the relative efficiency is greater than one, for u;; € (—2,2).
In fact, the relative efficiency increases as the power value increases, or as
the difference |1 — pu2| increases.

Variances of Semiparametric and T Statistics versus differe nce in Means
T T T T T T T

L L L L L L L
-2 -15 -1 -05 [ 0.5 1 15 2

Figure 18: Given X; ~ LN(u1,1), X2 ~ LN(0,1), the solid line is the
variance of Z" versus 1, the dashed line is the variance of T versus .

Relative Efficiency of T Statistic to Semiparametric Statis tic
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Figure 19: Relative Efficiency N;/N, curves of Ty, to Zn, versus f41, when
X1 ~ LN(g1,1), Xo ~LN(0,1), and when agg = .05. The curves, starting
from the bottom left, correspond to different power values of v = .7, .8, .9,
.99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let pj1, = iz + 0n-

p1 (On) — pio e —1
pr (0n) = 0_729 Y T T
p\¥n o 2 1 2
(e b 1> (1'7‘101 e + 1+p1)

o () = (e —1)

0, ,
2 (Bn) = onfi (6n) = 7 iy (0) = k=

0y
/ 2 o? _
e (TOmZn> — (“/Z (0)> _ Lzl
o (0) o

Power simulation results for the Zn and Ty, tests in Table 5 show how
well the asymptotic power approximates finite sample behavior where X7 ~
LN(u1,1), X9 ~ LN(0,1), and where pj; = .2,.3,.4,.5. The combined
Sample Sizes values Ny = nj + ny were calculated with p; = 1 via (68) and
(65) + (66) to provide the specified aprg = 0.05,0.01 error and to provide
the specified Asymptotic Power values for Ty, that approximates a power of
v = 0.80,0.90. The Asymptotic Power values for Z,, were calculated for the
combined sample size N, = ny + ng with p; =1 from (63) + (64). Relative
Efficiency values were approximated using (69). A Relative Efficiency value
greater than one implies a smaller Asymptotic Power value for the Ty, test
versus the Asymptotic Power value for the Z, test.
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Table 5: Power simulation results for the Z,, and Ty, tests, using 500 inde-
pendent runs, where X; ~ LN(g1,1), X3 ~ LN(0,1).

M1 | o Sample Sample Sample | Asymptotic | Rel.

Sizes Levels Powers Powers Eff.

ny, N2 Zn> Ton Zn> Ton Zn> TOn('y) (69)

.05 692, 692 | .046, .050 | .950, .820 | .9604, .8002 | 1.7597
.05 929, 929 | .048, .044 | .989, .926 | .9905, .9002 | 1.7637
.01 | 1028, 1028 | .008, .012 | .972, .806 | .9746, .8002 | 1.7574
.01 | 1313, 1313 | .008, .010 | .996, .916 | .9945, .9002 | 1.7610
.05 319, 319 | .050, .050 | .974, .836 | .9655, .8004 | 1.8206
.05 430, 430 | .046, .044 | .990, .912 | .9923, .9000 | 1.8326
.01 473, 473 | .010, .010 | .966, .836 | .9786, .8009 | 1.8138
.01 606, 606 | .006, .010 | .996, .926 | .9957, .9002 | 1.8246
.05 190, 190 | .048, .056 | .970, .858 | .9724, .8006 | 1.9204
.05 259, 259 | .054, .052 | .998, .932 | .9948, .9009 | 1.9483
.01 280, 280 | .008, .014 | .976, .856 | .9836, .8007 | 1.9045
.01 362, 362 | .010, .010 | .998, .938 | .9972, .9004 | 1.9297
.05 132, 132 | .056, .046 | .970, .868 | .9805, .8019 | 2.0680
.05 182, 182 048, .054 | .994, .944 | .9971, .9014 | 2.1230
.01 193, 193 | .010, .008 | .992, .868 | .9891, .8022 | 2.0369
.01 252, 252 | .012, .012 | .996, .960 | .9986, .9008 | 2.0864
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In Table 5, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Zn and To,
tests identify the proportion of simulation runs that failed the Hj test at
the agg level. The Sample Levels values for the Zn and Ty, tests iden-
tify the proportion of simulation runs that failed the Hg test at the agyg
level when the null hypothesis is true. For these simulations, the Sample
Sizes values are large enough so that the Sample Power values for the Z,
test are in agreement with the corresponding Asymptotic Power values. For
these simulations, the Sample Sizes values are not large enough in general
so that the Sample Power values for the T, test are not in agreement in
general with the corresponding Asymptotic Power values. Also for these
simulations, the Sample Powers values for the Z, and Ty, tests support the
Relative Efficiency values. A smaller Sample Power value for the Ty, test
versus the Sample Power value for the Z,, test is compatible with the larger
than one Relative Efficiency value.
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3 Computational Aspects of State Space Models

This section develops an asymptotic theory for state space smoother preci-
sions and introduces a partial state space smoother. Subsection 3.1 defines
a general multivariate linear Gaussian state space model and provides sev-
eral examples of an ARMA time series that is recast in terms of a linear
Gaussian state space model. Subsection 3.2 identifies and shows the formu-
las for the Kalman Predictor, Filter, and Smoother. Subsection 3.3 develops
a likelihood smoother form of the state space smoother based on the general
multivariate version of the linear Gaussian state space model introduced in
subsection 3.1. Subsection 3.4 applies the likelihood smoother to a univariate
version of the linear Gaussian state space model with constant parameters
in order to develop various bounds on the smoother precisions, to develop
simple formulas for the smoother estimates and precisions, and to develop
limits for the smoother precisions. Subsection 3.4.1 generalizes this theory
to account for missing observations. Subsection 3.5 introduces the concept
of a partial state space smoother and provides several examples.

3.1 Linear Gaussian State Space Models

This section on linear Gaussian state space models is adopted from Kedem
and Fokianos (2002) [14]. Let Bg.n = {Bo,.-.,08n} represent a sequence
of N +1 (unknown) states, Fn = {Y'1,...,Y n} a sequence of N observa-
tions, and Xy = {X1,..., X n} the corresponding covariate sequence. Let
F represent the information available to the observer at time t using the
following convention:

-7:0:07 Ft:{Yly"'7Yt—17 Yt}:{ft—lth}'

The linear Gaussian state space model is defined by the following linear
system of equations:

Initial Information: By ~ Np(bo, W)
System Equation: B, =FiB,_1 +w:, we~Ny(0,W,) (80)
Observation Equation: Y, = 2,03, + vy, vy ~ Ngy(0,Vy)

where {83y}, {w; : t = 1,...,N}, and {v; : t = 1,..., N} are mutually
independent collections of independent random vectors; where the system
equation is true for ¢ = 1,..., N and the observation equation is true for

all Y; € Fy, ie. for t = 1,...,N; where all distribution parameters
{bp, Wo, W,V for t = 1,...,N} are known; where F; fort = 1,...,N
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are known matrices; and where z; for t = 1,..., N are known matrices that
may contain covariates from AX’; such as past observations or may contain
parameters that are known at time ¢. Each state 3, for t =0,..., N can be
thought of as an unknown covariate or as an unknown random parameter
at time t. Thus the concept of ”state” in the linear Gaussian state space
model can be interpreted in several ways.

3.1.1 Examples of Linear State Space Models

An ARMA(p, q) process defined by ¢(B)Y; = 6(B)w; where:
BY; = Y1,
¢(B)=1—¢1B—--- = ¢,B",
9(B)=1+6B+---+6,B7,

has many state space representations (80). Kedem and Fokianos (2002) [14]
developed one such representation for the ARMA((p, q) process by using:

#(B)X; = w; or X; = ¢~ 1(B)wy,
Y; = 0(B)X; = 0(B)¢~ " (B)w,
#(B)Y; = 0(B)w, .

The corresponding state space model can be written as:

¢1 e ¢r—2 ¢T—1 QST 1
1 .- 0 0 0 0
Be=1|: - : : B+ we
o .- 1 0 0 0
o --- 0 1 0 0
By = (Xp,. ., Xi—r1)
=1 61 6 - 6,_1)8,

where r = max(p, ¢+ 1), where ¢; = 0 for j > p, and where §; = 0 for j > q.
Durbin and Koopman (2001) [7] provide an alternate state space repre-
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sentation for the ARMA(p, q) process as follows

i d1 1 0 1
3 : B i
= : t—1 T . Wi
¢r—1 0 :
L ¢7" 0O - 0 97"—1
Y:

$Yi 1+ Y 01w+ O w0
B, = D3V 1+ + Yo ppo +Oows + - - + Op w3

HTY;f—l + er—lwt
Vi=(1 00 ... 0)8.

Durbin and Koopman [7] also provide a state space representation for the
ARIMA (p, d, q) process as defined by ¢(B)(1 — B)?Y; = 6(B)w;.

3.2 Kalman Predictor/Filter and State Space Smoother

Given a sequence of observations Fy = {Y'1,...,Y y}, the linear state space
model is used to estimate the (unknown) state sequence B3y., = {3y, - .., 8:}-
The estimation of 3, given Fg, or the estimation of its conditional distri-
bution f(8Fs), s < N, is called prediction if ¢ > s; filtering if t = s; or
smoothing if ¢ < s.

In the Gaussian case of the linear state space model, the Kalman Pre-
diction and Filtering methods and the Space Space Smoothing method cal-
culate the conditional mean vector and the precision matrix of 3,|F;. For
t=1,...,N let

/Bt\s = E[Bt|'7:s]7 Pt\s = E[(IBt - IBt\s)(Bt - ﬂt\s)/] :

The covariance matrix, between the residuals 8, — 3, and the observations
Yy,..., Y, being zero for all £ and s implies that Py, is also the conditional
variance of 3,|F, i.e.

Py, = E[(B; — Bt|s)(13t - Bt\s)/] = E[(B8,; — 6t|s)(13t - ﬁt\s)/’fs] = Var(B,|F).

Letting Bgg = bo, Pojo = Wy, and using the initial condition BolFo ~
Np(Bojo» Pojo), leads to the following Kalman methods, see [14].
The Kalman Prediction method, for t =1... N, calculates:

Bii—1 = FiBi_1i—1,
Py =FP,_ ,_1F,+W,.
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The Kalman Filtering method, for t = 1... N, where K, is the Kalman
Gain, calculates:
Bur = Bur—1 + Ki(Y — 21By—1),
Pt\t =[I - Ktz:t]Pt\t—la
Ky =Py 12z Py 120+ Vi L
The State Space Smoothing method, for t = N ... 1, calculates:

Bi—yn = Bi—1jt—1 + Be(Byn — Byji—1)
P, yin = Pi_1-1 + Bi(Pyn — Py_1)By,

B, = Pt_1|t_1F;Pat1_1.

The Kalman Prediction result follows immediately from using the State
Space equations (80) given 3,_;|Fi—1 ~ Np(ﬁt_”t_l, Py 1)

The Kalman Filtering result follows from using the State Space equations
(80) and the Kalman Prediction result to show:

(ﬁt) Fi1 ~N,, K 5t|t—1 > ( Py P12z )}
Y, Praf\ziByi—1) "\2iPyi—1 2iPy_1ze + Vi

and by applying the Normal distribution to Conditional Normal distribution

t ranSfOrmatiOn:
Y l'l"Y ’ 2 Y :3 EY Y

BlY ~ Np(ngy, Zgy)
Ky = EBY] = Mg+ E,Bsz_fly(Y — py)
Sy = Var[B|Y] = Zg3 — Sy 3y Sys -

Derivation of the State Space Smoothing result is lengthly using a clas-
sical statistical approach. A Bayesian approach, due to Kiinsch (2001) [17],
follows. For ¢t < N — 1, consider

f'
!/ (’Bt|’8t+1"7:N) =f (IBt|IBt+17'7:t) = ! (ﬂt;l(ft)f](:tﬂ)t‘ :
t+
F, WL F
cexp [—(B; — Fi}iBr) —— 2t+1 ARY(C F; ' Bi1)

-1
/Pt‘t

—(By — Bye) T(ﬁt — Bye)
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where the proportionality constant does not depend on 3;. Completing the
square in the previous display where (3;|8;,1, F n) ~ N(my, R;) and where

Rt_l = F;5+1Wt_+11Ft+1 + P_\l

=R [Ft-i-th—i—llBt-i-l + Py, Igt\t]
= Ry [F£+1Wt_+11:8t+1 + R Bt — F£+1W;4}1Ft+1:8t\t]
= B + RF WL (Bt — Broap)-
and then manipulating the following identify
(F:f-i-th—i-lFt-l—l + Pt\t >Pt|tF;+1 = let—i-th_—i-ll (Wt+1 + Ft+1Pt|tF£+1)
R 'P,,F},, = FQ+1W;31Pt+1|t
RtFt+1Wt+1 = Pt\tFt+1P
R; = Pt\tF +1Pt+1\tWt+1F:€:-1
= Pt\tF:€+1Pt+1\t (Pt+1\t - Ft+1Pt|tF;+1) F;+11
gives the following conditional mean and conditional variance
my = By, + Pt|tF1,t+1Pt_+11|t(:3t+1 — Bitape)
R, = Py, — P,,Fi, P Fi 1Py, .

tH1t

41t
Using conditional expectation leads to

Bt|N =E (8| Fn) :E(E (IBt|IBt+17-7:N) |-7:N) = E (my|Fy)

= Byt + Bey1(Begrn — Brape)

By = Pt|tFt+1Pt+1|t

Similarly for the Precision matrix
Pt\N =E [(@ - Bt|N)(Bt - Bt|N),‘fN}

E[(8; — m) (B, — mt)/|-7:N]
< = By (ms — By | F v |

[(ﬁt my) (8, — my) By, Fn] |F ]
+E |(mq — By (me = By)'|Fn]
=E (Rt|.7:N) + Var (my| F y)
= Py — Biy1 Pyt Biyq + Bii Prn By
=Py, — Byy1 (Pyyyyy — Poyn) Bl -

+E

r—1|—|l—||—|
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3.3 Likelihood Smoother

Finding the mode of the posterior distribution for 3.y|F n provides an
alternative method of deriving the state space smoother. The posterior
distribution for 3. |F n is given by:

N N
f (Bon|Fn) = [Hf(Ytrﬂ»] [Hf (ﬂtrﬂt_l)] F(Bo) /f(Fn) . (81)
t=1 t=1

The posterior log-likelihood function, ignoring a constant that depends only
on Fy, is given by:

N N
log f (Bo.n|Fn) = log f(YilB,) + > _log f (B;18,_1) +log f (By) -
t=1 t=1
(82)

When each of the conditional distributions has a Gaussian distribution:

Yi|By ~ fu, (Yt - Z;Bt) =Ny (0, V)
BilBi—1 ~ fuw, (Bt - Ft,@t—l) =N, (0, W) (83)
180 ~ f’wo (/80 - bO) = NP (07 WU)

then the posterior log-likelihood, ignoring a constant that does not depend
on By.y, is given by:

N
Z (Yt - Z:&Bt)/ Vt_l (Yt - Z:&Bt)

t=1

N —

log f (Bo.n|Fn) = -

(B, — FiBy ) Wi (B, — FifBy_,)

~
Il
,_.

N | — [\’):}—t
NE

(By —bo) W5t (By — bo) -

Finding the mode B():N = {,BO|N, e BN\N} of the posterior log-likelihood
by maximizing the posterior log-likelihood using

ONt1xp) = VIng(BO:N‘fN)’,@&N

0 oY
V=(—,...,—
(5[‘10’ ’5ﬁN>
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leads to the following system of state estimating equations:

0 = log f (Bo.n|FN)
85 Box
~ ~ / “ !
= (;81|N - F150|N> WilF, - <50\N - bo) w,!
0 = log f (Bo.n|FN) fort=1,...,N -1 (84)
8Bt Bon

A~ ~ / ~ N /
= (ﬂt+1|N - Ft+1ﬂtuv> WL Fip - (ﬂtuv - Ftﬂt_uzv) wt
R /
+ (Y- #Byy) Vi'z

0' =

98 log f (Bo.n|FN) -

- (YN N ZEVBNIN), V]_VleV - (BN|N - FNBN—1|N)/ W]_\,1 )

Under the Gaussian assumption (83), the posterior mode and the condi-
tional mean are the same so that the posterior distribution mode estimates
Bo.y = {Bt‘N t =0,...,N} are the same as the state space smoothing

estimates 35y = {,Bt‘ Ny it =0,...,N}. The following result provides a
direct algebraic proof that the state space smoother estimates maximize the
posterior log-likelihood.

Lemma 3.1. If the Gaussian assumption in (83) is true, then the state
space smoothing estimates mazimize the posterior log-likelihood

O(N+1><p) = Vlnf(lBON’fN)’,BgN ’ (85)

Proof: Starting with the Kalman filtering equations, applying the iden-
tity zNVN = PN\NKN and using a little algebra shows

Ky <YN - Z/NIBN\N> = (I - Knzy) <5N|N - 5N|N—1>
= PN\NP]_V}N_l (ﬂN|N - 5N|N—1)

2NV (YN - Z/NBN\N> P]_V\N 1 (ﬁN\N _'BN\N_l) '
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Next, starting with the state space smoothing equations shows

By — FNBy_yny =T — FnBy) <5N|N - 5N|N—1)

= WNP]_VTN_l <5N|N - 5N|N—1)
wy! (/BN|N - FNﬁN—1|N) PX/|N 1 <5N|N - 5N\N—1>
= 2y V3! <YN - z’N,BN‘N> .

Hence:

0
0= a3y log f (Bo.n| Fn)

'BlgzN
Further analysis of the state space smoothing equations shows
Bt|N - Ft,@t—l\N = (I — FiBy) (ﬂt\N - ﬂt\t—l)
= WP t\t 1 (BtIN Bue- 1)

or
! (ﬁtuv - Ftﬁt—l\N) = t\t 1 <5t|N Bije— 1)

F, W (ﬂt+1\N - Ft+1,3t\N> = Ft+1Pt_+1|t (ﬂt+1\N - 5t+1|t>
= P,JtlBtJrl (ﬁt+1\N - 5t+1|t)
= Patl <ﬁt|N - Bt|t>

so that

Fi WL <5t+1|N - Ft+15t|N) -w,! <5t|N - Ftﬁt—uz\r)
(Pt_‘t Pt_‘t 1) Byn — Patlﬂt\t + P;tl_lﬂt\t—l :
Additional analysis of the Kalman Filtering equations shows
0= K, <Yt — Z;@w) + KtZQBﬂN — By + (I - Ktz:t) Bijt—1
and applying the identities
Py

VK =2 Vi | Pl Kz = Pl - Py

-1
1|t tlt—1 ‘ Pt\t (I -Kiz) =P
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shows
0==zV;' (Yi—28yy)
+ <Pt_‘t1 - Pt_‘tl_l) Biyn — Patlﬂt\t + Pt_|t1_1:8t\t—1
= 2V (Yt —ZBy N)
+F W <5t+1|t - Ft+15t|N) -w;! <5t|N - Ftﬁt—uN) :

Hence fort=1,...,N — 1

0=

log f (Bo.n| Fn) (87)

9
0B,

k
50:N

As shown previously by starting with the state space smoothing equa-
tions, with initial conditions Bgjg = bp and Pgjg = Wo:

Fiw! (,31\1\7 - F150|N) = Paé <:80\N - ﬂo\o) =wy! (,30\1\/ - bo)

Hence:

0= ——log f (Bo.n| Fn)
9B Bé.n
Intermediate results (86), (87), and (88) prove the desired result (85). W
The system of state estimating equations associated with the mode of
the posterior log-likelihood (84) has the following tridiagonal block matrix
representation

0 (s8)
0

[ Ay  —Cy 1 [/ By~ 2NV Yy
—-C% Bn-1 —Cn_ Bn-1N 2NV Yo
-C, By -C; BN 21ViY,
L -Ci D |\ By Wby

where fort=1,..., N
Ay = VV]_V1 + ZNV]_Vlle
Bi=F, W Fi+ W, 42V, 'z
Ct - Wt_lFt
D=FW'F, +W;!
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which is given the following symbolic tridiagonal block representation

MNIB?VZO = >]k\/:O (89)

where M y has a tridiagonal block structure with Os in the off tridiagonal
block entries. Substituting the actual states By.c = (Bn,...,00) for the
state space smoothers ,8?\,:0 in the system of state estimating equations (89)
and applying the linear Gaussian state space model (80) shows

W]_Vle — ZNVX[l’UN
~FyWilwy + Wil jwnor — 2y VR jonva
MNBN:O_YATV:O:

—FIQWQ_I’UJQ + Wl_lwl — Z1V1_1’Ul
—F\Wilw + W' B,

which implies the following distribution for the smoother residuals assuming
M, is invertible

MnByon ~N(0,%y) or By ~ N (0, M ¥, M)
Brow = Bo — Bio
= (5t_5t\N:t:Na'”70)/ .
Applying the state space model, where {3y}, {w; : t = 1,...,N}, and

{vy : t = 1,...,N} are mutually independent collections of independent
random vectors, leads to ¥,, = M ,,. Hence

MNBN:0|N ~N(0,My) or BN:O\N ~N(0,M") . (90)

It is easy to see that W also has a tridiagonal block structure if the mutual
independence of {wy : t = 1,...,N}, and {vy : t = 1,..., N} is relaxed
such that w;, and v, are mutually dependent for ¢; = ¢ and are mutually
independent for t1 # to where t1,to =1,..., N.

One way to solve (89) for the state space smoothers ﬁ?v:o is to use the
inverse of M y if the inverse exists

k — *
ﬂN:o = MNIYN:O .

Another way to solve (89) for the state space smoothers ﬁ?v:o is to use
Gaussian elimination to take advantage of the tridiagonal block structure of
M y.
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Definition 3.1. The likelihood smoother form of the state space smoother
is a two pass method for calculating the state space smoother estimates plus
a method for calculating the corresponding precision matrices. The first
pass consists of using Gaussian elimination to calculate the Kalman filter
estimates by removing the upper diagonal of M y in (89). The second pass
consists of using Gaussian elimination to calculate the state space smoother
estimates by removing the lower diagonal of M y in (89). The state space
smoother precision matrices are found by using Gaussian elimination to find
the diagonal components of M J_Vl.

Formulas are developed in the next section, for the likelihood smoother
estimates and precisions, given a univariate linear Gaussian state space
model with constant parameters.

3.4 Asymptotic Precision Analysis

In this section the limiting precision, limy_,o Py for fixed ¢ € [1,..., N],
is investigated for a special case of the Linear Gaussian State Space model:

Initial Information: Bo ~ N (bg, Wp)
System Equation: By = ¢Bi_1 + wy, wy ~ N (0, W) (91)
Observation Equation: Y = 0B + vy, vy ~ N (0,V)

where {6}, {wy : t = 1,...,N}, and {v; : t = 1,..., N} are mutually
independent collections of independent random variables; where the system
equation is true for t = 1,..., N and the observation equation is true for all
Y; € Fn,ie fort=1,...,N; where §; for t = 0,..., N are scalars and
Y; € Fn are scalars; and where |¢| < 1 and |n| < 1.

The system of state estimating equations (89) associated with the above
linear Gaussian state space model (91) has the following tridiagonal form

A —C 1/ Bwiwv YN
-C B -C 5]\1_1‘]\/ %YN—l
-¢ B -C Bin %byl
i —-C D]\ Byn W
where
1 ,’72 1 ¢2 ,’72
A= —+ — B=_—+ -+ =
w + Vv w + w + Vv
¢ 1 ¢
= — D = A
¢ w Wo + w
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which is given the following matrix notation

MNB{/CV:O\N = Y}kV:0|N (92)

where M  is a tridiagonal matrix with Os in the off tridiagonal entries, and
where ﬁlfV:O\N = (BN - 750\N)/ is a vector of the state space smoother es-
timates for the state vector Bx.o = (BN, - - -, o) given all of the observations
in Fy.

The distribution of the smoother residuals BN:0|N = (ﬁN‘N, e 750\N)/
from (90) is used to evaluate each precision Pyn = Var @\ yfort=0,....N

M By ~N(0,My) or Byon ~N(0,My') .

Using the structure of the matrix M p, it is possible to bound each Var Bﬂ N-

Proposition 3.1. Given the linear Gaussian state space model defined in
(91), then

1 ¢+ =
(Wo W‘ ’) < Var fon < Wo

1+2|¢] + ¢ 2\ 3 4
<T+V SVarﬁt\Ngﬁ,tzl,...,N—l (93)

Lol n?\" : v
< W +V SVCW’[;N\NSE

Proof: The properties of positive definite matrices are used to establish
the lower and upper bounds on Var By for t =1,..., N. It is easy to show
that M y is positive definite. Let Xy = (zn,...,2)". Then

1 1
NMNXy = Ay + Y Baf+Daxj— Y 2Czmw
t=N-1 t=N

2

ZI: - 2<Z533t$t 1+ ¢? »Tt 1 L.
Wy

2
)
V$t+

+

0 for XN #O.
In order to establish the lower bounds in (93) choose (pn, p, €) as follows

1 W 1+ ¢? 7 W ¢* |9l
1 P | 4
W PN v W TwoPv T W W+Wo w0
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and define the following positive definite matrix M) as

2
W~ PN C
C

M(l) =

2 2
c 5 c
¢
I ¢ w T

The positive definite property M5y = My + My > My > 0 implies
My >M (_5, see Amemiya (1985) [1] Appendix 1 Theorem 17, where

2
24+ (1—pn) & o 2
2 J‘S[‘f +(1-p) %

M) =
28+ (1+¢€) i

Note that the positive definite property M (5) > M y is equivalent to M ;) —
M > 0 where the matrix combination My — My is positive definite and
where both M (5) and My are each positive definite. Hence lower bounds

for each Var By, t=0,..., N, are identified in terms of (PN, py€)

w Wo

1+¢2 772 -1
1-— t
i + ( p)v ,

2 -1
Var BOW > <2¢— +(1+¢) L)

Var BﬂN > <2
~ 1 7’,2 -1
Var fyy > <2W + (1 —pn) V) :

The desired lower bounds in (93) are found by allowing (pn, p, €) to change
so that the inequalities in (94) converge to equalities.
With regards to the upper bounds in (93), it is convenient to define

2
Ui
95
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The analysis proceeds by decomposing X'’y M x X n in terms of A(p)
/ 2 c* 2
XvMyX N =A(p)zyy — 2CxyrN—_1 + M:EN_l + (A—A(p)) xy

2

Tt—1
Ml A(p)

+Z( 0= i7)

t=N-1

(o)

M(g)XN—l-XNM( )X

1

+ Z A —2C$t$t 1+ —=
=N—
1

where
[A(p) -C ]
C
—C A(p) + Ap) —-C
M(g) = .
02
i ¢ Al
(A — Alp) . ]
B—Alp) - Ac(p)
My =
(4) o
B —A(p) - Ap)
C2
I D — 357

M (3) is positive semi-definite for all values of p € R. M 4) is positive definite
for selected values of p as follows

L

- =4+ _ - > 0 for p € (0,1
Ap)  Wo W Al pelo.l)

2 2 2
B—A(p)—AC(’p)—A A()—i—%—% > 0 for p € [0,1)
A—A(p):(l—p)n—; >0 for pe[0,1) .

Consequently My = M 3+ M4 > 0, My > M4 > 0 implies M]_V1 <
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M(_Zl% Upper bounds are established in terms of p for Var @t‘N, t=0,...,.N

_ o2\t
Var By < <D - m)

_ o2\ !
Varﬂt|N§<B—A(p)—m> ,t=1,...,N—-1 (96)

Var 5N\N <(A—A(p)~".

It is easy to show that (B — A(p) — %)_1 and (A — A(p))~! are minimized
for p € [0,1) when p = 0. The upper bounds in (93) are found by choosing
p=0 1

It is possible to tighten the upper bounds in (93) by considering two
special cases and by continuing to analyze the behavior of the function A(p)

introduced in Proposition 3.1, see (95).

Proposition 3.2. Given the linear Gaussian state space model defined in

(91)

~ 1 (Z52 772 1 7’]2 ! !
‘/(J,T’ 8 < —+ —— — + — 9?

and if * /W + 1/Wy > |¢|/W then

- 1=20g| +¢* P\
< | —+ = t=1,...,N—1
Var /BﬂN ~ < W + Vv ) 9 ’ (98)
. 1— 2\ !
Var 6N|N < <7V[J¢’ + %)

else if ? /W + 1/Wy < |¢|/W then

2 2\ —1\ 7!
~ 21 11 /1 ¢
Vi <2 (T t=1,...,N—1
arﬂtW-(v WO+WWO<WO+W T

2 2\ —1\ 7!

- 211 (1 ¢

P L .
VMBN|N_<V+WW0<WO+W> >

Proof: With regards to the upper bounds in (98), assume that ¢>/W +
1/Wy > |¢|/W, and choose (pn,p,e) so that the inequalities in (94) are
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satisfied and 1 — & > 0. Define the following positive definite matrices

2 -

-%_pNnV 1 Q_C 2
¢ BE-g —C
M(5)E :
2 2
o YE-of -C
@
i —C w + e
(L+pn) ¥ 2 ‘
(1+p)
M(6)E
2
(1+p) ¥
1—¢
L Wo

such that My = M5y + M > 0, My > M > 0, and Mﬁl < M(_6§

Hence upper bounds for Var Bﬂ n are identified in terms of (py,p,e) for
t=0,...,N

Var BO|N <

1—

- 1%
Wﬂ@w<ﬂl+m45?t:L”wN—1

~ 4V
Var By iy < (1+pn) IF-

The desired upper bounds in (98) for each Var Bt‘ N, t=1,...,N, are found
by allowing (pn, p,€) to change such that the inequalities in (94) converge
to equalities. The corresponding upper bound for Var Bo\ N s (1/Wo+ (¢? —
o)/ W)~

With regard to the upper bounds in (99), the upper bounds in (96) as
a function of A(p) are analyzed for p € (—o0,1). The function A(p) has a
local maximum, a local minimum, and a singularity point between the local
maximum and the local minimum. Let p; denote the local maximum, let po
denote the local minimum, and let ps denote the singularity point

Vi V1

V1
= =—(1-|¢) == .

- _(1 - g = ——

If (D — C%/A(p2)) > 0 then the upper bounds in (98) are valid; otherwise,
different upper bounds are found by decreasing p from 0 such that (D —
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C?/A(p)) — 0. Let ps denote the value of p such that (D — C?/A(p3)) =0

o Lavi/n e
pS p3 - W() WT]2 WO W .
It is easy to show that p3 < po is equivalent to ¢*/W +1/Wy > |¢|/W. For

p2 < p3, the upper bounds in (99) for each Var By, t=1,..., N, are found

by allowing p — p3. As p — p3 the corresponding upper bound on Var Bo| N
is +o0.

The bound (D—C?/A(p))~! on Var BO|N for p € (—o0, 1) is minimized as
p approaches 1. The upper bound in (97) for Var @0‘ w is found by allowing
p—1. 1

Note that the bounds for each Var Bﬂ Ny, t € [0,..., N] identified in
Proposition 3.2 can be shown by direct computation to be tighter or equal
to the bounds provided in Proposition 3.1.

Corollary 3.1. If {3, : t =0,...,N} is stationary, i.e. bgp =0 and Wy =
W/(1—¢?), then direct calculation shows that ¢> /W +1/Wo = 1/W > |¢|/W
for || < 1. Hence the first set of bounds (98) in Proposition 3.2 apply. B

Next, the tri-diagonal property of the M n matrix is exploited to provide
simple formulas for the state space smoothers in 'B?V:OI ~ and for the elements

of M]_\,1 that correspond to the covariances of (Btl‘N, Btz‘N), t1,t9 =0,...,N.

Proposition 3.3. Given the linear Gaussian state space model defined in
(91) then the Kalman filter and smoother estimates are calculated as follows

Bojo = bo

e\ C 1
Pin = (A - c?) (le ! c—mﬁw)
o2\ C C?
@t:(A_G_I) <%%+G_I<A_z>ﬁt‘”‘l>’tzz""’N

1 C? C
ByN = 7 <A—§> Byt + = Beryn, t=N—-1,...,1
t+1 t t+1

1 1 C
Boin = G_’{Woﬁo‘o + G_’{BHN

where

o {D 1y =
j= o :
B T, 3 >1



Proof: Gaussian elimination of MN:B?V:OW = Y*N:O\N for N = 1,2 to
remove the upper diagonal in M y shows that the Kalman filter estimates
are

Bojo = bo
g (a-CY (ny, , C b0
= Gt vt arw
N\t C (n C b
=(A-= o+ — (v +—=-2)) .
Patz < G;) <V2+G§<V1+GIW0>>

Induction shows the following formulas for the Kalman filter estimates at
time indices t — 1 and ¢ for ¢ > 1

o2\t n

C (n C by
— | ==Y, — ...
e (v 1+G’{Wo> >>

o2\ (1 C (1
ﬁtt—<A—G—2k> <VYt+G—I(VYZ_1+

C n C b()
+ G_§<VY1+G_TWO>>> .

The previous display is used to prove the recursive formula result for the
Kalman filter estimate 3y, given f§;_y;—1 with ¢ > 1.

n
—Y,_
<V t—2 +

Gaussian elimination of MNB?V:O\N = Y}k\,:ow for N = 1,2 to remove
the upper diagonal in M y results in the following system of equations

! 7 B BN
_c 1 (4 _ L)
o 1 BN-1|N Gy < or ;) Pv-1n—
_c ' ) '
G; 10 ﬁl‘N G; (A — %) ﬁl‘l
— == 1 1
: or 1\t a7 wa Pojo

The previous display is used to prove the recursive formula result for the
state space smoother estimate 3y y given 5,1y and given the Kalman filter
estimate [3;; with ¢ > 1. Hence the complete result is proven. W
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Lemma 3.2. Given the linear Gaussian state space model defined in (91)

_ C 5
CO,U(ﬁO‘N?/BﬂN) :m X X G—NV(ZT'/B()IN, t:17,N

A :j=1
) — 2 . .
I B—G? 23 >1

—1

Proof: Gaussian elimination is used to solve My Xy = eny1 where
ent1 = (0,...,0,1)". The Gaussian elimination of M y proceeds by elimi-
nating the lower diagonal starting from the left and then by eliminating the
upper diagonal starting from the right. For N = 3 the resulting solution for
X 3 is

- Cov ( Bon, B35 %Sﬂz
w2 | | Cov{BonsBon ) | %Jn
Xo=14 ] = 55 - @0
Cov ( Bon, b1 81
0 - (D — C_)
Var oy Cs
Generalizing the result in the previous display for N > 3 proves the result.

Corollary 3.2. If {#; :t =0,...,N} is stationary, i.e. bg =0 and Wy =
W/(1 — ¢?), then direct calculation shows D = 1/W and G5 = A. Hence
G}k :Gj_l forj e {2,3,...}. |

Lemma 3.3. Given the linear Gaussian state space model defined in (91)

N o2\ 7!

X o+ X ¢ VCLT@N‘N, tZO,,N—l

Cov (@waﬁNlN) ~ Gin Gy

Proof: Gaussian elimination is used to solve M y X y = e; where e; =
(1,0,...,0)". The Gaussian elimination of M y proceeds by eliminating the
upper diagonal starting from the right and then by eliminating the lower
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diagonal starting from the left. For N = 3 the resulting solution for X y is

N Var B3 n <A_g_2)_l
3 - :
" Cov ( Ban, B35 _;
1 Cov ( By~ B3N &r 2
T 55 c
Cov ( Boin, B3| v [eiiat!

Generalizing the result in the previous display for N > 3 proves the result.
[ |

Lemma 3.4. Given the linear Gaussian state space model defined in (91)

. o2\ !
Varﬁt|N:<GN—t+1——*> ,t=1,...,N—1
Gy
. C C .
CO’U(ﬁtllN?ﬁt‘N) = X oo X §V0r6t|N7 tl :07...,t— 1
t1+1 t
= = C C ~
CO’U(ﬁt‘NMBtﬂN) = Gi X X G—V(]’rﬂﬂ]\h tl :t+177N .
N—t1+1 N—t
Proof: Given a fixed t € [1,..., N — 1], Gaussian elimination is used to

solve My Xy = eny_t+1 Where ey_;+1 is a vector consisting of N + 1 zeros
except for a one in element number N — ¢+ 1. The Gaussian elimination of
M y proceeds by eliminating N — ¢ elements in the lower diagonal starting
from the left and then by eliminating ¢ elements in the upper diagonal
starting from the right. The remainder of the elements in the upper and
lower diagonals are then eliminated. For N = 3 and ¢ = 2 the resulting
solution for X3 is

2 A C

- Cov (52\N’ﬁ3\N) G2

. -1
2 2
X — T2 . Var 62|N . (B — G_l — G_§>

5 - Bin, B - C

gl Cov ( By N, BN S
0 5z og

Cov ( Bojw+ B ol

Generalizing the result in the previous display for N > 3 proves the result.
[ |

Corollary 3.3. Given the linear Gaussian state space model defined in (91)

Varﬁt‘N:Lx-ux G Varﬁow, t=1,...,N .
GN_t11 GNn
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Proof: The following variance ratio equation is shown by simple algebra
fort=2,...,N—1

~ * 2
Var Byn Gi < Gy

T GN_i41 t

Var B;_1|n5 Gyt — g—j ~ Gnei1
Generalizing the previous display for t = 1 and t = N proves the result. B

Remark 3.1. The vector of state space smoother estimates can be calcu-
lated using ,B?V;m N=M 1_V1Y*N:0\ n since M is positive definite as shown in
Proposition 3.1 and is invertible. As shown in Proposition 3.3 and Lemmas

3.2 through 3.4, Gaussian elimination can be used to solve MN,BIfVZ(]‘N =
Y?\/’:O\N for ,Blfv:ow and to invert M y for the smoother precisions in Var BI;V:O|N =
M ;,1. The likelihood smoother form of the state space smoother consists

of a two pass method to calculate the state space smoother estimates and a
method to calculate the state space smoother precisions. The first pass of
the likelihood smoother estimate method calculates

a=]" S
T = B_G(;i s orj=1,...,
1 1
* L -
Bojo W050|0 oo
* 02 n C %
By = <A - G_Q“) Byt = VY} + G—?ﬁt_l‘t_l fort=1,...,N.

The second pass of the likelihood smoother estimate method calculates

2N\t
BniN = <A - G—}kv> Bnin
1

ﬁt|N = @ (ﬁt|t+0ﬁt+l\N> fort:N—l,...,O .
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The likelihood smoother precision method calculates

2

—1
Pt|N:V3rBt|N:<GN_t+1—%> fort=N—-1,...,1
t

The first pass is equivalent to performing Kalman prediction and filtering
to obtain Oyy and the second pass calculates the state space smoother
estimates 3y for £ = N,...,0 based on the first pass. When new observa-
tions become available, then only the end of the first pass and the complete
second pass of the likelihood smoother estimate method as well as the likeli-
hood smoother precision method need to be redone. Note that an alternative
Gaussian elimination procedure can be used to solve M N:B?V:m N = Y for

Blfvzo‘ n by first removing the lower diagonal of M and then removing the
upper diagonal of M . This alternative Gaussian elimination procedure is
less efficient than the likelihood smoother estimate method introduced above
in the sense that the alternative Gaussian elimination procedure would have
to be redone in total when new observations become available.

Before establishing the limit as N — oo for Var gt\N’ t€[0,...,N], the
behavior of GG; and G;'f is established as [ — oo

Lemma 3.5. The properties of G defined in Lemma 3.2 include

B+ VBT iC?
Gj—>Goo: )

Ang<Gj+1<Goo,j:1,2,.... (101)

as j — o0 (100)

Proof: The following bounds is used to prove (101)
A<G; <G <B, j=12 ... (102)

By direct calculation A + C?/A < B proves (102) for j = 1. The general
result (102) for j > 1 is proven by induction. Hence G; — G as j — oo.
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At convergence G, has two possible solutions

02
o . BEVBE-AC?

Direct calculation shows that the larger solution for G identified in (100)
is the only solution that satisfies (102) such that A < G&. Induction is used
to prove (101). W

Lemma 3.6. The properties of G defined in Proposition 3.3 include

B ++V/B? — 4C?
G Gr =t - — G as j — o0 (103)
If D< Gy then D < G; <G <G, j=1,2,... (104)
If G, <D then G5, <G <G; <D, j=1,2,.... (105)

Proof: By direct calculation C?/A < D and C?/A < G% < B. Induction
for j > 2 is used to show the general result that

C? ‘

Z<G;<B,j:2,3,... (106)
If G} < G% then induction shows C2?/A < G; <Gjy <Bforj=12,....
If G3 < G% then induction shows C2?/A < Gii <Gj <Bforj=23,....
Hence G; — G7%_ as j — oo. At convergence G has two possible solutions

2
G’;o:B—g* & (G2)? - BG: +C*=0
o - B+ V/B? —4C?

2

Direct calculation shows that the larger solution for G%_ identified in (103)
is the only solution that satisfies (106) such that C2/A < G?,. Induction is
used to prove (104) and (105). W

Limits and bounds on each Var Bﬂ N, t €10,..., N] are now established
using Lemmas 3.2 through 3.6.

120



Theorem 3.1. Limits for each Var @t‘N, tel0,...,N] as N — oo are
_ o2\t
Vi D——
ar Bon — ( Goo>

- o2\ !
Var Byn — (Goo - @> , for fized t € [1,...,00)
t

_ o2\t
Vi A- .
o B = ( Gz:o>

Var Bo| N is bounded as follows

o2\ ! ~ o2\
<D—@> < V(IT’B()IN<<D—Z> .

If D < G then bounds on each Var BﬂN, te(l,...,N] are as follows

2\ 1 ~ 2\ —1
<Goo C> <V(I7“ﬁt|N<<G2—C—> ,tE[l,...,N—l]

e D
c2\ ! . o2\ !
<A — Ggo> < Var ﬁN|N < <A — 3)

else if D > G then bounds on each Var Bt‘N, te[l,...,N] are as follows

2\ —1 B 2\ —1
<GOO_%> <Va7”ﬁtN<<G2_C > 7t€[177N_1]

G%

o2\ ! . e\t

Note that the bounds for each Var @\ N, t €]0,...,N] identified in The-
orem 3.1 can be shown by direct computation to be tighter or equal to the
bounds provided in Propositions 3.1 and 3.2.

The following corollary provides the asymptotic precision for Py where
t no longer remains fixed as a function of N, for example t = ¢(N) = kN
where k € (0,1).

Corollary 3.4. Ift = t(N) such that t(N) — oo and N — t(N) — oo as
N — oo then Pynyn — (Goo — C?/GE) 1 = (2Go — B) ™! as N — 0.

As a check on the precision Pyjy = Var ﬁN‘ ~, the following corollary
shows that the equation for Pyy satisfies the Kalman predictor and filter
methods.
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Corollary 3.5. The equation for Pyn = Var BN|N from Lemma 3.3 satis-
fies the Kalman predictor and filter methods such that

VPnin-1

e Pyn_1 =Py v + W
n?*Pyin-1+V | |

Pyiy =

Proof: Inverting the equation for Pyy in the previous display with
respect to Py_1y—1 shows

1 VPnN
Py qnv-1 = ? (7 — W>

V —n?Py|n
1
LU D
2 -1
¢ PN\N_nV

Inserting the equations for Py_yy_; = Var 5N—1\N—1 and Py|y = Var @N‘N
from Lemma 3.3 into the left and right hand sides of the previous display

and reducing shows
2 -1
Lh.s. = <A— ? )
Gh_1

2\ —1
rhs. = <G*N - W) .

Hence the result is proven since G, = B — C? / Gy_; from Proposition 3.3.
[ |

The following proposition shows how the asymptotic filter precision sat-
isfies the steady state Riccati equation, see [29] section 4.3.

Proposition 3.4. The asymptotic one step ahead predictor precision Pyq =
¢?*P+W satisfies the steady state Riccati equation where P = limpy_, o Pyiy =
(Goo — ¢? /W)~ identifies the asymptotic filter precision

Piy =6 (1= 0Py (PP +V) ) P+ W

Proof: Algebraic manipulation of the steady state Riccati equation shows
that P,1 is a zero of the following quadratic equation

1 2 1 2 2
W%Pil—l—<——¢——n—>P+1—1=0-
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Hence Py has two possible roots

1 2 2 1 2 2\ 2 1 n2

i —<——W—nv>i\/<w—w—"v> +dwt
+1: 12
2wt

It will be shown that the larger of the two possible roots is the correct value.
The asymptotic filter precision P satisfies

02 2
ploa-" g, -2
Goo Cioo w

1 ¢2 2 1 ¢2 2 2 ¢22

(W_W"i'nV)"i'\/(W_W"i'nV) +aw v

- 5 .

Hence P! is a zero of the following quadratic equation
1 ¢ ¢* 1
P (- 4+ L )p L —g.
< * WV
The above quadratic equation can also be derived by starting with the steady
state equation for the asymptotic filter precision, see [7] section 4.2.3.

P*P+ W
(2P + W)+ 1

and deriving the following quadratic equation in P

2,2 1 2 2
¢—"—P2+<——¢—+”—>P—1:0.

wVv

The larger of the two possible roots of the previous quadratic equation in P
satisfies P x P~! = 1 where P~! = G, — ¢?/W from above and where

2 2 2 2 2 2 2
(-5 8)+(F- 5+ ) re5E
P= $2 n?
2wy
. ¢2,’72 -1 B_m_¢2
N wv 2 w )

Hence the asymptotic one step ahead predictor precision satisfies

Py =¢*P+W




Remark 3.2. The results of this section can be generalized to the following
linear state space model where the Gaussian assumption has been removed

Initial Information: Bo ~ (bo, Wp)
System Equation: B = ¢Bi_1 + wy, wy ~ (0, W) (107)
Observation Equation: Yy = 0B + v, ve ~ (0,V)

where {6}, {wy : t = 1,...,N}, and {v; : t = 1,..., N} are mutually
independent collections of independent random variables; where the system
equation is true for ¢ = 1,..., N and the observation equation is true for
all Y; € Fy, ie fort =1,...,N; where §; for t = 0,..., N are scalars
and Y; € Fy are scalars; and where |¢| < 1 and |n| < 1. Defining a new
sequence of smoother estimates as Bo: N= {Bt‘ N :t=0,...,N} that satisfy
the following system of state estimating equations similar to (92)

MNBN:0|N =Y N OF BN:O\N = My'Yi
A~ ~ !
BNO|N = (ﬁt‘N N t = N,...,O)
such that t}}e distrib}ltion for thq associated collection of smoother residuals
defined as Bg.y = {0y =Bt — Byn :t =0,... N} satisfies

MNIBN:OUV ~ (0,My) or BN:O\N ~ (0,My")
IBN:0|N = (ﬁt\N:t:Nw"’O)/ :

Hence the results of this section are applicable to the smoother residuals in
Bo.n associated with the linear state space model defined in (107).

3.4.1 Missing Observations

In this section, the results of the previous section are generalized for the
case where some observations are unavailable, both in the past and in the
future given a reference time point. When there are no missing observations,
then the results of this section reduce to the results of the previous section
where all observations are available. Initially the Linear Gaussian State
Space model, as defined in (91), is assumed true. Denote the available
observations as F n+ and denote the available observation index as N*

N*={tell,...,N]:Y; is available }
Fn-={Y;:te N*}.
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The conditional distribution of B¢, y|Fn+ is a multivariate Gaussian dis-
tribution since the distribution of (8p.n, Fn+) is a multivariate Gaussian
distribution. Consequently, finding the mode of the posterior distribution
for By.n|F N+ is equivalent to finding the mean of the posterior distribution
for By.n|F n+. The posterior distribution for By, y|F n+ is given by

f (Bo.n|F ) = [H f (Y16

teN*

N
[Hf(ﬁtWt—l)] f(Bo) /f(Fn-) -
t=1

The mode (and mean) 3%. = {Bojn=»- -+ Bnn=} of the posterior distribu-
tion can be found by maximizing the log likelihood using

On+1) = Viog f (Bon| Fn+)

_(o 0y
S ERREA]

The resulting system of state estimating equations can be written as

ﬁ‘];\.]'*

[AN|n- —C 1 [/ B VYN N
—-C  By_yn+ —C BN—1|n+ VYN-1|N-
—C Byn- —C Bi|n+ %3;1\1\7*
i -C D | \ PBon- W
where
L4+ i NenNt
AN‘N* - 1 N N*
W ¢
14-¢2 ﬁ t e N*
Byn- = 1m2+v  t=1,...,N-1
i t¢ N
¢
=2
w
1 ¢?
D=—+2
Wo W
Y; :teN*
YN+ .
0 :t¢N
or in matrix notation as
MN*ﬁ{ng:O\N* = 7V:0|N* (108)
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where :8?\/:0|N* = (5N‘N*, e ,60|N*)’ is a vector of the state space smoother
estimates for the state vector By.0 = (Bn,.-.,00) given the available ob-
servations in F y«.

It is easy to show that M n+ is positive definite and invertible. Analyzing
the system of equations associated with V log f(8o.n|F n+), when the Linear
Gaussian State Space model (91) is true with Fy = Fn+, and defining the
vector of smoother residuals as BN:O\N* = (BﬂN* = Bi—Byn-:t=N,...,0),
shows

MN*BN:OUV* NN(O,MN*) or BN:O|N* NN(O,M]_Vi) .

Similar to previous results in the previous section, entries in M J_Vl are
calculated to find the precision values Py« = Var By, for t =0,..., N.

Lemma 3.7. Given the linear Gaussian state space model defined in (91)
with Fn = F N+

V(M“ ﬁ0|N* = <D — C )

GN‘N*

. . C .
COU(ﬁO|N*7ﬁt|N*>:G7X"'XG Varﬁo‘N*,tzl,...,N
N—t+1|N* N|N*

Gj\N* = 2 . .
By-jiiNe — g a1 <I=N

Proof: The result is proven by using Gaussian elimination to solve
M N+« Xy = eny1 where entq = (0,...,0,1). The Gaussian elimination of
M n+ proceeds by eliminating the lower diagonal starting from the left and
then by eliminating the upper diagonal starting from the right. l

Lemma 3.8. Given the linear Gaussian state space model defined in (91)
with Fn = F n+

—1
_ C2
Var 5N‘N* = (ANN* — " )
N|N*

C
X oe+ X

= * *
Gt-‘rllN* GN|N*

Cov(@t‘N*,ﬁN‘N*> Var@N‘N*,tzo,...,N—l

o = D =1
]|N* = B'_l‘N*—G*CQ 1<]§N ’

J J—1|N*
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Proof: The result is proven by using Gaussian elimination to solve
M py- Xy = ey where e; = (1,0,...,0). The Gaussian elimination of M p«
proceeds by eliminating the upper diagonal starting from the right and then
by eliminating the lower diagonal starting from the left. B

Lemma 3.9. Given the linear Gaussian state space model defined in (91)
with Fny = Fn= then fort =1,..., N —1,t; =0,...,t — 1, and t5 =
t+1,...,N

N 2 -
Var ﬁt‘N* = GN—t+1|N* - G*—
t{N*

. . C C .
Cov <ﬁt1|N*aﬁt|N*) = m X e X W Var By

_ C C .
Cov (Byne - ) = T X G Ve By

where G|+ and G;IN* have been previously defined in Lemmas 3.7 and 3.8.

Proof: Given a fixed t € [1,...,N — 1], the result is proven by using
Gaussian elimination to solve M n+X y = ey—;+1 Where ey_s4+1 is a vector
consisting of IV + 1 zeros except for a one in element number N —t+ 1. The
Gaussian elimination of M y~ proceeds by eliminating N —t elements in the
lower diagonal starting from the left and then by eliminating ¢ elements in
the upper diagonal starting from the right. The remainder of the elements
in the upper and lower diagonals are then eliminated. B

As expected, the missing observation precisions are bounded by the two
cases where all observations Y; are available for t = 1,..., N, and where no
observations Y; are available for t =1,...,N.

Proposition 3.5. Given the linear Gaussian state space model defined in
(91) with Fn = F N+

Var @W < Var Bt\N* < Var BﬂNo, t=0,...,N
where Var 5t\N7t =0,...,N are the precision values associated with
Fn ={Y; available fort =1,... ,N}
where Var 5t\N07t =0,...,N are the precision values associated with

F o = {Y; unavailable fort =1,...,N} =0 = N°
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and where

1
Gj|N0:A0:W7»7:17"'7N
. D j=1
INT By — =& 1>

0 ijleO J

C? 1+ ¢?
By =Ag+ — = )

0 0+A0 W

Proof: With regards to the lower bounds, My = M n+ + M ;) where
M N+ > 0 and where

_A - AN‘N* 1
B — By_q|n+

My = >0.
0

Hence M n+ < M y implies M ]_Vi > M X,l proving the result for the lower
bounds.
With regards to the upper bounds, My« > M ) where

[ 4y -C

-C By -C

M(O) = . >0.

-C By —-C
—C D

By direct examination, M ) = M yo associated with F yo. Hence M ]_Vi <
M ;7% proving the result for the upper bounds. l

The asymptotic analysis of the precision values as N — oo is shown for
two cases, where there is a finite number of available observations, or where
there is a finite number of missing observations. The first case includes
Kalman prediction of those states beyond the last available observation.

Proposition 3.6. Given the linear Gaussian state space model defined in
(91) with Fny = Fn+ = Fp for N > n such that Y,, € F,~ denotes the
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last available observation, then as N — oo

_ o2 \ !
VaT ﬁO‘N* = <D — G ‘ >

—1
~ C2
Var Byn+ — (Gn_t+1|n* e ) for fized t € [1,...,n]
tln*
- 1 C2 -1
Var Byn« — | o — == for fized t € (n,...,00)
w Gt\n*
where
- _ B - 1<j<n
Gj\n* = i=1in o2 G yjn ' .
By — == tn < j

j—1|n*

Proof: None of the observations are available for ¢t € [n+1,..., N]. The
definitions of Gy« and G;.‘ N+ are used to show

1

w : <
Grorn =9 net=N

Gn—t+1|n* 1<t<n

ive =Gy 1<ES N,

tln

The previous display proves the result for ¢ € [0, ..., N] since

Var ﬁO‘N* = (D — C >

-1
~ C2
Var Sy« = (Gn—t+1|N* e ) ,1<t<N.
e

Allowing N — oo completes the proof. B

Proposition 3.7. Given the linear Gaussian state space model defined in
(91) with Fn = Fn+ D Fpx where Fp« contains the available observations
fort e [l,...,n] with N > n such that Y,, ¢ F,~ denotes the last missing
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observation, then as N — oo

e\
Var 50‘]\7* — (D — )

-1
_> for fized t € [1,...,n]

2 00
Var ﬁt‘N* — <Gn—t+2|n* -

-1
. 2
Var Byn+ — (Goo - C—) for fized t € (n,...,00)

+
Gt\n*
where
D 1] =
c? -
+ _)Bi qjpx—=— :1<j<n
S R , G
B—- ¢ n<j
L Game
(G cj=1
c? :
o = B o . =2
jln* = 0 Gl ) J
C . :

Proof: All of the observations are available for ¢t € [n+1,...,N]. The
definition of G+ with j € [1,..., N —n] is used to define G'y_¢ 1+ With
t€[n+1,...,N]in order to show as N — oo

GN 1N+ — Gij for t € [n+1,...,00) .

The continuity of Gy_y 41+ as a function of Gy_py+ with ¢t € [1,...,n] is
used to show as N — oo

GN_t+1N* — G;L’O_Han* forte[l,...,n] .

Note that G;‘ N = G;FW for 1 < 5 < N. Hence, the result is proven by

starting with the following equations and allowing N — oo

Var ﬁO‘N* = (D — ¢ >

_ 2
Val“ ﬁt‘N* == GN—t+1|N* — G*
t{N*

-1
) L 1<t<N.m

The following corollary checks the results of Proposition 3.6 against the
Kalman prediction method.
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Corollary 3.6. Given the linear Gaussian state space model defined in (91)
with Fny = Fy+ = Fpx for N > n such that Y, € F,- denotes the last
available observation, then fort € [n,..., N — 1]

Var Bypine = ¢ Var By« + W .

Proof: Applying the equation for Var Bﬂ N+, applying the following iden-
tity for t € [0,..., N — 1],

A *
Var Bqne Gl

Var [y n+ G NN+

and using a little algebra shows that proving the result is equivalent to
proving the following display for ¢t € [n,..., N — 1]

¢2

W .

Proposition 3.6 shows that Gy_yn- = 1/W for t € [n,..., N — 1]. Hence
the previous display and the result are proven. B

<¢2 + WG:—i-llN*) Gy-ine = Giigne =

Remark 3.3. With respect to the linear state space model as defined in
(107) where the Gaussian assumption has been removed and with Fy =
F N+, define a new collection of smoother estimates as B Ne = {Btl Nx, T =
0,...,N} that satisfy the following system of state estimating equations
similar to (108)

A A 1

M N+Bnone =Y N O Bojve = MY v
N ~ /
BN(]‘N* = (ﬁt‘N* . t == N, “e 70) .

Thg distribgtion for the fxssociated collection of smoother residuals defined
as By« = {Byn+ = Bt — Byn+,t =0,..., N} satisfies

MN*BN:0|N* ~ (0, M y+) or BN:O\N* ~ (0, M)
~ ~ /
IBN:0|N* = (/BﬂN* t:N,,O> .

Hence the results of this section are applicable to the smoother residuals
in By« associated with the linear state space model defined in (107) with
Fn =Fn~.
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3.5 Partial State Space Smoother

This section introduces the partial state space smoother that generates a
collection of partial smoother estimates of each state at time ¢ that depends
on only a finite number of past, current, and future observations relative to
time ¢t. The number of operations needed by the partial state space smoother
is fewer than the number of operations needed by the complete state space
smoother, at the price of larger precisions for the partial smoother estimates
relative to the precisions for the complete smoother estimates.

In order to motivate the partial state space smoother, consider the collec-
tion of complete smoother estimates Blf\,zo‘ n under the linear Gaussian state
space model (91) that satisfies the tridiagonal system of state estimating
equations from (92) as follows

MNﬁ?V:O\N = }kV:0|N7 ﬁ?V:OUV = (5N\N7’”760|N)/
"4 _C -
-C B -C
MN: . GRN+1XN+1 )
-C B -C
¢ D|

As noted in Remark 3.1, this system of state estimating equations can be
solved by the likelihood smoother that uses Gaussian elimination to remove
the upper diagonal and then the lower diagonal of M . When new observa-
tions become available then the lower diagonal of M y needs to be removed
again. As N gets large, the number of operations needed by the complete
state space smoother also gets large. The power (i.e. minimum precision)
of the complete smoother estimates comes from the tridiagonal structure of
M 5. The cost of this power is the number of operations needed to diag-
onalize M . One way to decrease the number of operations conceptually
is to decrease the number of backward links in the lower diagonal of M y
such that each of the resulting partial smoother estimates only rely on a
subset of the N observations. The penalty for removing backward links in
M y shows up in the power (by an increase in the precision) of the resulting
partial smoother estimates.

Sections 3.5.1 through 3.5.3 introduce a partial smoother that solves a
system of state estimating equations with all or part of the lower diagonal
removed. Section 3.5.4 describes another partial smoother that solves a
system of state estimating equations different from both the generalized
partial state space smoother of section 3.5.2 and the complete state space
smoother.
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3.5.1 A Simple Partial Smoother

As the first example of a partial state space smoother given the linear
Gaussian state space model (91), consider a collection of new partial smoothers

N N
Bo.n = {[ﬁ‘t :t=0,...,N} that satisfy the following new system of state
estimating equations

_% <B£|t - ¢Bé_1‘t_1> ‘|‘g <Y;t —Uﬁi\t> =0, t=N,...,1
1

5 (ﬁé\o _ b0> =0

that is written in matrix notation as

_ _ Al
A -C . 6N|N LYn
A -C ﬁﬁv_”]\/_l %YN—l
_ 5l 7
A C 11 Vbz/l
i Do | B Wo
1 7? ® 1
A= —+ L 0="2 Dy=—
WV w T W,

that is represented in matrix symbology as

~l «
UiBn.o=Yno (109)

and that is different from the system of state estimating equations associ-
ated with the complete state space smoother (92) since the principle lower
diagonal is 0. It is easy to see that U; is upper diagonal and invertible such
that

~1 _ *
Brno=U; 'Y

and such that each of the partial smoothers can be found recursively using

B(l)|o = bo
/B£|t = A_l (%}/t + Cﬁl{—l‘t—l) 5 t= 1, e ,N .

Hence each partial smoother Bi‘ ,fort € {1,..., N} depends linearly on only
the observations Y7 through Y;.
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N
Substituting the states Bp.q for the partial smoothers 8., in (109) and
applying the linear Gaussian state space model (91) results in

druw - o
UllgN:O - >]k\/:O = 1 : n ~ N (07 Dl)
wwiL— vy
7= (Bo — bo)
D; = Diagonal (A .. A DO)

where D; is a diagonal matrix. Define the collection of partial smoother
residuals as Bi)zN = {Bl{‘t = G — Bilt :t =0,...,N}. Hence the partial
smoother residuals Bg: N satisfy the following relationship
UiBi.o ~ N (0,D) or By~ N (0, M)
Bvo= (Bl t=N.....0)
M;'=U)'D,(U)" .
Using matrix multiplication shows that
M, =U,D;'U,

A -C
—C A+ S -C

-C A+< —C
-C Do—i—%_

~1
The previous display leads directly to a lower bounds on Var By, and to
simple formulas for each Var fy;,t =0,..., N.

Proposition 3.8. Given the linear Gaussian state space model in (91) then

~ l ~
Var Bn.o = Var By.on
where equality exists if and only if n = 0.
Proof: Simple algebra shows that

02 ¢2 02 ¢2
I<Wfor777é0, Z—Wforn—o.
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Hence the result is proven since
~1 ~ _
M; = (Var B,)"" < My = (Var Bn:on) !

~l ~
implies Var By.g > Var By.oy with equality if and only if n =0. W
Lemma 3.10. Given the linear Gaussian state space model in (91) then

Var B(l)m =Wy

1l

-1
o 02
V(l’l"ﬂﬂt: A_G—* ,tzl,...,N.

where
. [Do+ G j=1
i = A+%2—G%” i1
Proof: Given a fixed ¢t € [0,..., N], Gaussian elimination of M ;X y =
en—_t+1 is used to show that
- c2  cr\!
Varﬁl = (Do—l————)
0]0 A GN|l
1
=l C2
Varﬂﬂt: GN_t+1|l—G—* ,tzl,...,N—l

1l
~1
. 2
Var ﬂg\”N = (A— GC*’ >
Nl

where

o A :j=1
j‘l — 02 CZ . .
Noting that G;; = A for j =1,..., N proves the result. B
Bounds for each Var @é‘ ,» t€[1,...,N], are also found using the prop-
erties of G;\l'

Lemma 3.11. The properties of G;“ include the following

If Gl‘l < A then 7 < Gj‘l < Gj+1|l < A, ] = 27. .. (110)
C2

Jl
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Proof: The fact that C%/A < G, is used to show C?/A < G5y Induc-
tion is used to show the general result that for j =2, ...
C? C?

7T < G <A+ i
Simple algebra is used to show for j =2,...,
If G;_lll < G;u then -;kll < G;-ﬁ-l‘l
If G;_Hl > G;‘l then G;“ > G;-{-l‘l
If G;“ < A then G;—l—l“ < A
If G;“ > A then G;—l—l“ > A .
Algebraic analysis also shows that G’{‘l < A is equivalent to G’f“ < Gz‘l.
Induction utilizing the inequalities in the previous display proves the result
for (110). A similar analysis proves the result for (111). Results (110) and
(111) show that G — Gij as j — oo. Hence the identity

C? C?
* — A ~
o = AT Gl

has two solutions: G;o\l = A,C?/A. The first solution, G;o\l = A, is the
only solution that satisfies the previous results (110) and (111). Hence the
result (112) is proven. B

Proposition 3.9. Given the linear Gaussian state space model in (91) then
each Var ﬁi‘t fort=0,...,N is bounded as follows

Var B(l)m =Wy

IfG’{|l<Athenfort:1,...,N

-1
AN 02
(1-5) << (4-5)

Else z'fG’{‘l > A then fort=1,...,N
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Var BﬁVIN converges to a limit as N — oo

VarﬁfV|N—> <A—%> .
[ |

The following corollary verifies that the precisions of the Kalman filter
estimates are smaller than the precisions of the partial smoother estimates.
The next section shows that the precisions of the state space smoother esti-
mates are also smaller than the precisions of the partial smoother estimates
since additional observations are used to calculate the state space smoother
estimate versus the partial smoother estimate of each state.

Corollary 3.7. Given the linear Gaussian state space model in (91) then
the precisions of the Kalman filter estimates Pyy = Var By, are smaller than

the precisions of the partial smoother estimates Ptl‘ , = Var Bi| .

Var ﬁt‘t < Var Bi|t, fortell,..., 00)
lim Var fyy < lim Var By -
ym Var Ay < Jim Var Gy
Proof: With regards to the first result, direct examination shows that
Gl < G’lk”. Hence G35 < G;U by direct calculation and G} < G;” for j~:
3,... by induction. The first result follows by using the equations for Var
and Var Bﬁ\ .-
The second result follows from the equation for Var BN| ~ and from the
convergence of G, — G and G}k\”l — A as N — oo such that Goo > A. B
In order to further compare these precisions, the ratio of the precision
for the Kalman filter estimate Var Sy y versus the precision for the partial

smoother estimate Var ﬁﬁw y 18 examined as N — oo

3 C? c?

m VarBNW_ A_T . A_T
N—ooVar L. A_ C* ¢?
°° var 6N|N e Go— 1w
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The asymptotic precision ratio can be expressed as a function of V/W

i Va2 G ) = ) G )]
v

N—oo Var ﬁé\/’\N B ((1 _ ¢2) % _|_772) + \/((1 - (252) o

If $2/W = n?/V then the asymptotic precision ratio is approximated by

~ ot
o Var By 2 <1 + 1+¢2)
N—oo Var %N 1+ /14 4¢2

If V/W = 0 then the asymptotic precision ratio is 1. Figure 20 graphs a
family of curves for asymptotic precision ratios where |¢| € [0,1], n = 1, and
where the curves correspond to V/W = .5,1,3,10,50 starting from the top
right. It is interesting to note that the asymptotic precision ratio remains
above .9 for |¢| € [0,.8] in all curves. The next section generalizes the simple
partial smoother estimate introduced in this section.

€ (.927,1] .

Asymptotic Precision Ratios
T

0.9

0.8

0.6

0.4

0.2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 20: Asymptotic precision ratios of Kalman filter precisions versus
partial smoother precisions where |¢| € [0,1], n = 1, and where the different
curves represent V/W = .5,1,3,10, 50 starting from the top right.
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3.5.2 A General Partial Smoother

As a general example of a partial smoother given the linear Gaussian state
. . . ~m
space model (91), consider a collection of new partial smoothers B,y =

{BZ"QN :t=0,..., N} that satisfy the following new system of state estimat-
ing equations

o (BB — 08y ) + 1 (Y =B ) =0

O (B — 08) s (B — 0B ) + 12 (Vi — iy ) =0
t=N-—-1,...,1
Co (B{TN - ¢§$N> _WLO (ﬁ(’]’fN — b0> =0

where each C; € {0,¢/W} for t = 0,...,N — 1. This system of state
estimating equations is written in matrix notation as

A —C 1 Aﬁlr\r/L\N %YN
—-Cn-1 Byo1 —C BN_1n vYN-1
-1 By —-C [;{TN %)Yl
— 5 o
L CO D*_ ﬁng Wo
1 n 10} 1
A=—+—=-,C=—, Dy =—
T w0 T W
Bi=A+¢C,, t=N—-1,...,1
D, = Do+ ¢Cy .
is represented in matrix symbology as
KmB?\?;O = Y*N:O (113)

and is different from the system of state estimating equations associated with
the complete state space smoother (92) when Cy; = 0 for any t € {0,..., N —
1}. The matrix K, has the following partition for some r € {1,..., N}
M —CTLy ]
re1 —Cly

m
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where for j =1,...,7

A —-C
-C B -C
M7 = eER™XM, j=1,...,r
-C B -C
! ¢ ;]
[0 . 0
cr= | Hoermem =1, -1
! 0
c 0 ... 0
B :je e, 2
T S G
D, :j=1
Each M ;” is positive definite and invertible. Solving K,,X,.1 = 0 with
X, = (X; € R j = ... 1) results in the following r equations
M"X;=0

M;an—C;-n_lXj_lzo, j:2,...,7‘.

The previous display shows that K, has full column rank since the only
solution of K,,X,1 = 0 is X,.;1 = 0. A similar analysis with respect to
K! X, = 0 starting with M X, = 0 shows that K,, has full row rank.
Hence K, is invertible and the partial smoothers ,B(TN satisfy the following
system of state estimating equations

By =My
’Bj - (M;n)_l (Y_T_‘_C;n—llézn—l) ) j:2,...,7"

where the vector of partial smoothers and the vector of observations are
partitioned as follows

~ N !/
Bryo= (B R = 1)

Yio= (Y eR>™ :j=r....1) .

It is easy to see that each of the partial smoothers [?t € ,[:};n depend on the
observations Y; € {Y1",..., Y}, j=1,...,r.
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Substituting the states Bx.g = (On, ..., 00)" for the partial smoothers
~m
Bn.o in (113) and applying the linear Gaussian state space model (91) shows

1
WWN = {v
—Cn_1wn + %wzv — ¢$uN_1
KnBno—YNo = : ~N(0,T,)
—Chwsy + %wl — %1)1
—Cowi + = (Bo — bo)

where T, is a tridiagonal covariance matrix

A —Cn-1
—Cn-1 By-1 —Cn—o M

1 B -Gy M
~Cy, D, |

Define the associated collection of partial smoother residuals as BO y =
{ﬁt‘ V=B ﬁt v :t=0,...,N}. Hence the partial smoother residuals BO N
satisfy the followmg relatlonshlp

KBy ~N(0,Ty,) or By, ~N(0,M,})
-m - !
Bl = <ﬁt|N = N,...,O)
M;)! = (K,) ' T, (K,) !

The following analysis shows that the precisions associated with the gen-
eral partial smoothers @TLN are lower bounded by the precisions associated

with the state space smoothers Bt‘ ~ and are upper bounded by the precisions
associated with the simple partial smoothers Bg '

Var Bt|N < Var BZLN < Var Bi“, t=0,...,N.

Proposition 3.10. Given the linear Gaussian state space model in (91)
then

Var BN:O < Var B]mv:o

where BN:O = (@t\N :t = N,...,0) is a vector of state space smoother

residuals and where ﬁ%:o = (B;FN :t = N,...,0) is a vector of partial
smoother residuals.
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Proof: The result is proven by showing
My = (Var By,g) " > My, = (Var By) "
Let K,, =T,, + A,, in order to show that
M, =K, T'K,, = (Tp+AL) T, (Tm+ Ap)
= (T + Ay + AL) + ALT A,

=M,, + M,
0 -C7,
A, = a
" 0 —Cm
0
where
[ M -Cy ]
_C:’rb—/l :’n—l _C:“n—2
M} = .
—cy My —-Cn
i —C7" My |
[0
Crly (M) Ty
Mgn: T T T
i cy’ (My)~t ey

It is easy to see that M ,1n has the following tridiagonal structure

A —C
—C By-1 —-C
Ml — ..
-C By -C

¢ D,

In order to analyze the structure of M?,, let (M;-”)_1 = [thh iy, lp =
1,...,nj], j =2,...,r. Hence each of the non-zero diagonal submatrices of

M?2, have the following structure for j = 2,...,r

1 0 ... 0
m/ m\—1 ~m 2. 9 0 nji_1Xn;
Cj—l (M ) j_lzc Z'y . . GR J—1 J—1 .

J ng,nj
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Similar to the result in Lemma 3.2, Gaussian elimination of M7}'Z; = e,

= () = Y
where Z —(zi’nj ci=1,...,n;)" shows
o == forj=2
2l = orj=2,...,r.
ng,n ) )
3T an

Hence the matrix M, has the following structure

* m -
Mr _Cr—l
r—1

m/ * m
_Cr—l _Cr—2

-cy M3 —CY
-’ Mj |

where each of the diagonal submatrices in M, have a tridiagonal structure

4 o2 _ -
+G"j+1
= B -C
M = ERWX™, j=1,...,r—1
-C B -C
_ -C B
M:=Mm.

Equation (101) from Lemma 3.5 showed A < G; < B for j € [1,...,00).
This earlier result implies

C? C?
A+ —<A+—<Bforj=1,...
+Gj_ —I—G1< or J ,

which in turn is used to show M y > M ,,. Hence the result is proven since
My > M,, implies My' <M, ! B

Proposition 3.11. Given the linear Gaussian state space model in (91)
then

Var B, < Var B}, fort=0,....N

where Bg?N = {ﬁtr‘“N :t =20,...,N} is a collection of the general partial

. ~1 > . .
smoother residuals and where By, = {@{'t :t=0,...,N} is a collection of
the simple partial smoother residuals.
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Proof: Partition the general partial smoother residuals into
~m ~m/ ~ ~ . !
B0 = (ﬁj = ( ;»?nj,..., Jm1> 2 :r,...,l)
such that the distribution for K mBZ\?:o satisfies
~m
M7'B8; = W7 ~N(0,M7")
~m ~m .
where the partition of general partial smoother residuals satisfy

By = (M) W

’B) (M;n)_l W;n—i_ (M;%)_l C?—IB;”—M ] = 27"'7T

and where the random vector sequence {W7", j =1,...,r} is independent.
In a similar manner, partition the simple partial smoother residuals into

BlN:O = (Bi’ = (B;-mj,...,[;l-,l) 0 J :7’,...,1)/

and partition the coefficient matrix U; and the covariance matrix D; into

rr 7l
Ur —C;«n—1
U, = B Ul _om L UL e R, j=1,...,r
2 T 1
l
| Ui
Bal
D’f‘
D, = , DY eRYX M =1, r.
l
L Dl

such that the distribution for Ul,[:}lN:O satisfies
U'gl=wi~N (0, Dl1>
Ui, —cr B =w ~N<0,D§.) =2
where the partition of simple partial smoother residuals satisfy
B = () wh

B, (Ug-)‘lwg.+ (U§>_10§“_IB§-_1, j=2.r
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and where the random vector sequence {Wé, j=1,...,r} is independent.
Let (M;”)_1 =z} . tinie=1,...,n] for j=1,...,r such that

11,12

(M) e B =CBy 2, (114)

.]_17nj71

/
Z;= <zg’nj,i = 1,...,nj)
and let (Ué-)_1 = [qzjw-2 ti1,92 = 1,...,n ] for j =1,...,r such that
~1
] Al 7
<Uj> C;'n—lﬂj—l = Cﬁé—lmj,ng’ (115)

. /!
O
Q= <qmj,z— 1,...,nj> .

The two covariance matrices for (114) and (115) follow directly for j =
2,...,r

var [(M7) 7 OB | = OV (B, ) 2,2

Var [<U§.>_1 C;”_lfag_l} = CVar (B11,,,) Q,Q)

Hence the covariance matrices of ,B;n for j=1,...,r are
Var (B') = (M7) (116)
Var <B;n> = (M;-”)_l + C*Var (Bjﬁil,nj,l) ZjZ;» (117)
and the covariance matrices of ,Bé for j=1,...,r are
Var (ﬁﬁ) - <Ul1>_1Dll (U’l’>_1 (118)

Var (3;) = (U§.>_1D§. (U§’>_1 +CVar (-1, ,) Q@ (119)

Proposition 3.10 with BN:O = B;n and BE:O = ,[:}i shows for j =1,...,r

(M)~ < (U§.>_1A§. (u}) o (120)

In view of the three previous displays, equations (116) through (120), the
result is proven if the following diagonal covariance inequality is true for
j=2,...,randi=1,...,n;

C?Var (Nﬁlmjﬂ) (zg’i)z < C*Var <~;'—1,nj71) (qii)2 . (121)
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Similar to the result in Lemma 3.2, Gaussian elimination of M7'Z; =

(0 \ .
; where Z]—(zi’nj ti=1,...,n;) shows for j =2,...,r

z (€ ... C 1 0X11’
7 Gl an—l an Y an—l an ’ an

—i QX”'X ¢ ¢ 1 /
B an G(1 (;nj—l’”.’G(nj—l7 .

The following display gives the structure of the coefficient matrix U é and
its inverse for j = 2,...,r

€n

1 c i

S e e

A -C A m W

-1 .
Ul = (Uh) =
A 1 c
A 2 3
A 1T <
4 F
L A
which shows for j =2,...,r

1 C nj —1 C 0 /
o-5((5)" - (5))
Hence the following diagonal inequality is true since A < Gy fork =1,..., N

N2 N2
(zfl) < (qu) forj=1,...,randi=1,...,n;. (122)

The covariance inequality (120) for j = 1 together with the initial partial

smoothers equations (116) and (118) shows Var 8] < Var ,Bll, which proves
the result that Var ﬁ’f@ < Var ﬁ{l for i = 1,...,ny. This inequality together
with the diagonal inequality (122) shows the diagonal covariance inequality
(121) for j = 2. For j = 2, the combination of inequalities (120) and
(121) together with the partial smoothers equations (117) and (119) proves
the result that Var 35”2 < Var Bél for ¢ = 1,...,no. Induction is used to
show the diagonal covariance inequality (121) for j = 3,...,r. For j =
3,...,r, the combination of inequalities (120) and (121) proves the result

that Var ~jml < Var ﬁ;l for i = 1,...,n;. Hence the complete result has
been proven.
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3.5.3 A Partial Smoother With Constant Partition Size

As a special case of the general partial smoothers, let ,Bgnxf = 36”", ce AK}"}

represent the collection of partial smoothers where each of the r partitions

have the same size n such that ny = ng = --- =n, = n > 1. The general
~Mn .. .

partial smoothers 3.y, for the case where the partition size n = 1, are

A1
equivalent to the simple partial smoothers B,.,. The partial smoothers
~Mn . . . . .
Bo.n satisfy the following system of state estimating equations

AMn "
KmnﬁN:O = YN:O
Ay ATnn/_ ~ ~ . /_ s s /
ﬁN(]:(ﬁj :(ﬁj7n7...7ﬁj71>:j:r,...,l) :(]Vn,...7 0”)
m. m
M —-C™

K,

M7277«n _C$7L
M
M7 =M e RV, j=1,...,r
cim=Cy eER™™ j=1,...,r
Mym =... = M™
Let Bom;{, = {BS””, o ,Bﬁ”} represent the associated collection of partial
smoother residuals that satisfy the following relationship

~Mn

B ~ N (0.(Mn,) )

“>Mn “mnl - s . /_ m m !
IBNOZ(IB] :</Bj7n7...7/8j71>:j:r,...,l) :(Nn,..., 07L
* m T
M / -C™
m. * m
_Cr’—nl r—1 _Cr—n2

n S,
oy My -CP
—C’ln”’ M7 |

M;eR™™, j=1,...,r

M5=-.-=M;.
As a special case of the general partial smoothers, the results of Proposi-
tions 3.10 and Lemma 3.11 are valid with respect to the partial smoother

residuals Bgljr{f Due to the constant partition size n, it is possible to find
the asymptotic precision for the partitioned partial smoothers B:,nn.

147



Theorem 3.2. Given the linear Gaussian state space model (91) with N =
o
rn —1, then the precision of the constant partitioned partial smoothers 3,
converges to a finite covariance matriz as r — oo
Var B," — P = (My™)~' + C*P™ Z,Z),

21,1
Var ﬁm” — P = T 022 C’2 3
- “n

(M5! = [z, 11,42 = 1,... 7]
ZnE(zm:i:l,...,n)’

n—1

C C C !
Z, = . 1
< ><G(n—l Gn—l >

1
Gn

g =1
{ * ci>1 7

-1

where

Proof: Equation (117) within Proposition 3.11 gives the precision for

~Mn

B as
Var (B7") = (Mg™) ™! + C*Var (B, ) Z0Z, (123)
which shows that the precision for B, r > 2, is
Var (B ) = 210 + €228, Var (3.,
=211 (1 +(C222,) + (C*2,) + -+ (0225,1)’“-3)
+(C222,) 77 (1 + (€223,) var (B7))
(M)~ = [, i =1,

The formula for z; ; is found by using Gaussian elimination to solve M 5" Z; =

e; with Z1 = (z1,1,..., 2n,1)". The formula for Z,, is found by using Gaussian
1)

elimination to solve My Z,, = e,. The formula for 211 is found by using

( (1) (1))

Gaussian elimination to solve M{”"Z&l) = ey with Zgl) = (2115121

—1
1 C?
H=(atm)

n—1
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.. ~Mn . .. .
Hence the precision for 3,, converges to a finite limit as » — oo since
k)
| zl n| <1

> 21,1 2
m ) — m. m.
Var (B ) = T = P = 210+ O3, Pl
1,n

The result is proven using (123). B

3.5.4 Another Partial Smoother

In this section another partitioned sequence of partial smoothers [3(8]: N is de-
scribed that satisfies a system of state estimating equations different from the
previous partial smoothers BS?N and different from the complete state space
smoothers ,8'5 N|N- The precisions associated with these partial smoothers

BO . are smaller than the precisions assomated with a comparable partition
of the previous partial smoothers ,80 n and are larger than the precisions
associated with the complete state space smoothers ,80: NIN-

Using a constant partition size of n + 1, divide the sequence of states
Bo.n = {Bo, ..., [~} into r overlapping partitions as follows

Ba=(Bj=r...,1)
B5=(Biizi=n,.0) = (B, By-nn)’

where each state partition {B; : 1 < j < r} contains an initial state (;¢
that corresponds to the last state 3;_1, from the previous partition

Bjo = Bj—1n = ﬁ(j_l)n, j]=2,...,1r.

Also using a constant partition size of n, divide the sequence of observations
Fn ={Y1,...,Yn} into r non-overlapping partitions as follows

YN;1£(Yj’E(Yj,i:i:n,...,l):j:r,...,l),
=(Yn,..., V1)

Denote the partlal smoothers as BO N = {ﬁo, . va} and the partial smoother
residuals as BO N = {ﬁt = 6 — ﬁt t = 0,...,N}. Divide the partial
smoothers and the partial smoother residuals using a constant partition size
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of n + 1 such that each partition has an initial random variable

~ s/

B = (gj E(Bii:i:n,...,()) :j:r,...,l)/

2 5 ~ /
= (( e jn—n+175;,0> 1]=7’,...,1)
B35 = b
P . > /
ﬁin (,8;’5<j7i:i:n,...,0) ijzr,...,l)

~ ~ ~ /
= (( iy e e e jn—n-l—l’ﬁj,O) :j:r,...,l)
55 = Bo — Bs
where the initial state of each smoother partition {Bio cj=1,...,r}, wil
be used to estimate the corresponding initial state of each state partition
{Bjo :j=1,...,r}. Using the linear Gaussian state space model (91) shows

that the first partition of states 3] = (81, ..., B1,0) satisfies the following
system of equations

—% (Bin — dBr1n—1) + g (Y1, — nB1,n)
= —%wn + %Un
L4 (Bri+1 — ¢B1t) — L (Bt — dBri—1) + z (Y1t —nBit)
w w %4
P L
= e th+ VUt
fort=n-1,...,1
0 1 b
W (B11 — dB1o) — Wo (B0 — bo)
_ ¢ 1
= le — W(]wo .

Let the first partition of partial smoothers Bi = (Bfn, .. ,Bio)/ satisfy the
following system of state estimating equations

_% <Bi" B wi"—l) + 3 <Y1n - nﬁin) =0

& (B - 0810) - e (B — 081 s) + 2 (Vi —miL,) =0
fort=n-1,...,1

% (811 - oBt0) - Wio CIEDE:
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Each partial smoother le € Bi depends on the observations Y; € Y. The

first partition of partial smoother residuals Bi = (Bfn, . 75f,0)/ has the
following distribution

181~ N(0,M3) or B ~ N (0, (M5)7")
M5 = M, € R*

where the precision for 7 ,,, as shown in Lemma 3.12, is

Var 37, = <A — L)

G (D)
ot (D) = D k=1
b(D) = B-g%p tk>1"
—1

The linear Gaussian state space model shows that each subsequent par-
tition of states {8 = (Bjn,-.-,Bj0) : j = 2,...,7} satisfies the following
system of equations

1
W (Bjn — OBjn-1) + g (Yin —nBjn)

= _%wjn + %an
2 (Biass — 0830) — — By — BFia-1) + L (Vi — i)
W 41 't W .t i t—1 % gt — NP5t

n
= WG Dntte1 T WGt + 7 VG —Dntt
fort=n—-1,...,1

& (81— 080 — (A= =) (Bro = -1
W 7,1 7,0 Ga_l)n (D) 7,0 i—1n
= Ww(j—l)n-‘rl .

Let each subsequent partition of partial smoothers {B; :j=2,...,r} satisfy
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the following system of state estimating equations

ot (B = 085mm1) + 12 (Yim —nB,) =0

& (B~ 0850) — 1t (B = 085m) + 2% (Vi — )

fort=n—-1,...,1

% (A;,l - ¢B;,0) - (A - 0*072(D)> (A;,O - AJS'—LH) =0.

(G=Dn

0

It is easy to see that each partial smoother AJSZ € ,Bj depends on the ob-
servations Y; € {Y7{,...,Y}}, j = 2,...,7. Each subsequent partition of

partial smoother residuals {B; :j =2,...,r} satisfies the following system
of equations

—% (5]71 - (ijm—l) - %25]71

1
= —ijn + %’l}jn
~ ~ ~ ~ 2 ~
% (ﬁj,tﬂ - ¢ﬁj,t) - % <ﬁj,t - ¢ﬁj,t—1> - %ﬁj,t

= Wi Dntt+1 — 77 W(G-1 t‘FQU' Dn+t
W (J—Dn+t+ W (J—Dn+ % (J—Dn+
fort=n-1,...,1
O (3., — 3, % 5.
= (811 — 0Bj0) (A ) o
¢ c? 5
= —W(i_1)n — | A— - ﬁ'—l,n
[ ( Gy (D))

and has the following distribution

M:B; ~ N (0,M3) or 3 ~N (0, (Mjf)_l)

A —-C
-C¢ B -C

-C B —C

02
i ¢ B m)
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where the precision for ﬂjn, as shown in Lemma 3.12, is

2 \
Var 35, = | A— .

Precision formulas for each of the partial smoothers are easy to find using
the M7 matrices for j =1,...,r

Lemma 3.12. Given the linear Gaussian state space model (91) with N =
rn, then precisions for the partial smoothers in ,BT 1= ( i =1...,r 0=
0,...,n)" are calculated as follows

28 * C2 a .
Var B} = | G{j_1ynsit1 (D) — G ,0=0,...,n—1

-1
~ C?
V(IT ﬁj,n = <A — W) .

Proof: Let X101 = (xy,...,20). Gaussian elimination of MiXp1 =
en+1 shows

~ C?
Var 5;,0 =9 = <G>(kj—1)n+1 (D) - G_>

which proves the result for Var ]S o- Gaussian elimination of MjX ;1 =
€ent1—; where it =1,...,n — 1 shows

-1

- 02 02
Var 8], =z, = | B — ey
G; (G(J D+l (D)) n
(o o)
— B - = _
G(] 1)n—+i (D) G”_i
which is equivalent to the result for Var 5;,2'7 i =1,...,n — 1. Gaussian
elimination of M jX n+1 = €1 shows
-1
02

Var 35, = an = | A - G (Ga Dn+1 (D))

c2 \7'
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which proves the result for Var @;n Hence the complete result is proven. B

Comparison of the formulas from Lemma 3.12 for the partial smoother
precisions, together with the inequality A < Gj for k = 1,...,n, leads to
the following result.

Corollary 3.8. Given the linear Gaussian state space model (91) with N =
rn, then for j =2,...,r the precisions of 3;, are better than the precisions

of B]‘?’_Ln where Bio and Bj_lﬂ are both partial smoother estimates of the
state B(j_1yn
Var Nj’O < Var Nj_lvn .l
Comparison of the formulas, from Lemma 3.3 for the Kalman filter pre-

cisions and from Lemma 3.12 for the partial smoother precisions, shows the
following result.

Corollary 3.9. Given the linear Gaussian state space model (91) with N =
rn, then for j =1,...,r the Kalman filter estimates B3;,;, and the partial
smoother estimates ﬁ;n of the states B;, have the same precision

Var B]nbn = Var Bjn .

The asymptotic limits on the precisions associated with the most recent
A8
partition of partial smoothers estimates 3, are found by using the limit
property of G(D) from Lemma 3.6.

Proposition 3.12. Given the linear Gaussian state space model (91) with
N = rn, then precisions of the partial smoother estimates in the rth partition
~s

B, converge as r — 00

Varﬁ;‘f’i—><GZo— ¢ ) ,1=0,...,n—1

Gn—i
. o2\ !
Var 3y, — <A— o > .l
o
The next result of this section relates the precisions of the partial smoother
oy -
estimates 3., = {; : t = 0,...,rn} to the precisions of the state space
smoother estimates Ialg:rnh“n = {Byrn : t =0,...,rn} and to the precisions
of the other partial smoother estimates Bg?m = {B{’ﬁ,n :t=0,...,rn} where
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the partitions sizes associated with ,[:}g?m are chosen such that the first el-

ement in each partition B;n = (A]’”Z ti =mnj,...,1) and ,Bj = (AJSZ i1=
n,...,0) are estimating the same state ;, for j =1,...,r
n=n+1ng=---=n,=n
M7 e RMVHL ME — .. = M e RV

Theorem 3.3. Given the linear Gaussian state space model (91) with N =
rn, then the precisions of the state space smoothers [y, € B’S:m‘m and of

the partial smoothers 3" € Bg?m and 3 € [33% are related as follows

Var BO|rn < Var Bgrm < Var

Var Bﬂrn < Var Bf < Var Btrﬁnn fOTt: 1, ,Tn .

Proof: With regards to the lower bound, applying the linear Gaussian
state space model (91) to the residual of the partial smoother estimate (3
of the initial state By shows

35 = Bo — B35 = Bo — bo ~ N (0, Wp) .

The combination of the previous display together with the precision formulas
at t = 0 for the complete state space smoother from Lemma 3.10 and for
the partial smoothers from Propositions 3.10 and 3.11 are applied to show
the full result at t =0

Var BO|rn < Var BS[‘M < Var B(IJIO = Wy = Var BS” .

Direct comparison of the precision formulas for the complete state space
smoothers from Lemmas 3.3 and 3.4 for By,,, = B(j—1)n4irn and for the

partial smoothers from Lemma 3.12 for Bf = Bij—1)n+i = B;,; where j =
1,...,rand 7 =1,...,n shows

Var ﬁt‘m < Var Bf fort=1,...,rn.

The combination of the two previous displays proves the result for the lower
bound.

With regards to the upper bound, the result has already been proven for
t = 0. Precision formulas of the partial smoothers from Proposition 3.11 for
~m . . . . S
B, and from the introduction to this section for B, are compared to show

Var 3] = (M7) ™' = M;' = (M})™" = Var 3]
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such that

Var (3 = Var 37, for i =0,....n (124)
Varﬁﬂ,n:\/arﬁf fort=1,...,n.

The system of equations for B; for j =2,...,r is rewritten to show
e B
_C B _C ]S',n—l
L -C B 3?,1

1oy M.
o ) wWin — yYjn
—wWin * wWG-1n+n—1 — %U(j—1)n+n—1

— WG Dm42 + WWG—1nt1 — UG-t + OBl

A~

which leads directly to the precision for the partial smoothers B;,nzl = (B, :
i=mn,...,1)

0 ... 0
) = M7 + C*Var <Bj-70) : :
0 ... 1

)

(M) ™"+ C?Var () 202,

Var (M;”B;nl

Var (Bj‘,n:l
(M7)”

Zn:(zi,n:izl,...,n)/.

1 ..
= [Ziydp s 11,72 =1,...,n]

Proposition 3.11 also provides the precision for the partial smoothers B;ﬂ,
]=2,...,r

Var (]') = (M) "+ C*Var (B,,) ZaZ),

For j = 2, applying (124) and Corollary 3.8 to the previous two displays
shows

Var 5§,i§Var B;”Z fori=1,...,n
Var ff < Var G, fort=n+1,...,2n.
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Induction for j = 3,...,r is used to complete the proof of the result for the
upper bound. Hence the result is proven. B

With the partition size set to n = 1, Lemma 3.12 shows that the pre-
cisions for the partial smoother estimates ,80 N=1{6:t=0,...,N} are

the same as the precisions for the Kalman filter estimates ,Bg‘fN = {By :

t =0,...,N}. The next result in this section shows when n = 1 that in
~ 8

fact the partial smoother estimates 3. are equivalent to the Kalman filter

estimates BéltN and also shows that the initial partial smoother estimates
+1 .

BSN = {Bto t = 1,...,N} are equivalent to the one step state space

smoother estimates Bé:_]\l,lt ={B—i:t=1,...,N}.

Theorem 3.4. Given the linear Gaussian state space model (91) with N =r
and givenn =1, then the partial smoother estimates ,80 N and the Kalman

filter estimates ,80: N are equivalent
/Bf:ﬁtlt fOT’t:O,...,N

. ) ) s+l
and the initial partial smoother estimates ,88: ~ and the one step state space
. t—1[t .
smoother estimates B, are equivalent

Blf,o:ﬁt_l\tfortzl,...,N.

Proof: Proposition 3.3 proved the following results

Bojo = bo
c? \"'/qy C b
Pun = (A - GT(D)> (Vyl * G’I(D)Wo>
B c2 \"'(n c (n C b
Patz = (A - G;(D)) (V“ T &) (VYI * GT(D)W0>>

= (4 Gz*c;jm)_l (7 + gy (4 %) i)

fort=2,...,N .

The system of state estimating equations for the partial smoother esti-
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mates with n = 1 at time indices 0,1, 2,t are
A
-C
/\s EY
|: A -C :| 2,1\ _ \% 22
* As - C s
~C G3(D) (4- 5555) i
A C

o1 (5 1y,
1) 5 .
o ciol ( ) ((A— ﬁ>ﬂ>

Gaussian elimination of each system of state estimating equations in the
previous display to remove the upper diagonal in each (2 x 2) matrix in order
to solve for ﬁ;l for j = 1,2,t shows that the partial smoother estimates with
n = 1 are equivalent to the Kalman filter estimates

Bojo = B3 and By; = 35, = B for j =1,2,¢ .

Hence the first result for the Kalman filter estimates is proven by induction.

The system of equations that the state space smoother estimates satisty,
MNB’szO =Yy, with N =, shows that the Kalman filter 3;; and the one
step smoother f;_1|; are related as follows

Ay — CBi—1e = %Y} fort=1,...,N.

The corresponding system of equations for the tth partition of partial smoother
* O P
estimates 3, = {31, 3; ¢} shows the following relationship

AB;I—(JB;O:%E fort=1,...,N .

The first result of this lemma and the two previous displays prove the second
result

ﬁt—1|t=ﬁAf,0 fort=1,...,N.1

With the partition size set to n > 1, the final result in this section
generalizes the result from the previous lemma to show how the partial
smoother estimates and the state space smoother estimates of each state
are related.
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Theorem 3.5. Given the linear Gaussian state space model (91) with N =
~5
rn, then the partial smoother partitions B; and the state space smoother

estimates B (i—1)nsjnljn 0T€ equivalent for j =1,...,r

/8]87@:5(]—1)11—1—2‘11] fOT’j = 1,...,7‘; Z:O,,TL

Proof: With respect to the first partition, the partial smoother ,Bi and
the corresponding state space smoother 5n oln both satisfy the same system
of equations

/81 nOv nﬁnom_YnO, Mi:Mn

Hence the result is proven for the first partition since M, is invertible and
the two solutions are equivalent

6 BnO\n

Using Gaussian elimination to solve for ﬁfn = By)n by eliminating the upper
diagonal in M ,, shows that the solution is

b= (1) (e iy -

fao P raom) )

With respect to the second partition, the partial smoother [3; satisfies
the following system of equations

[ A —C i ﬁ;,n %an

-C B -C B3 n_1 ¥Yon-1
-C B —C B3, %YZH )

_ ~¢ G\ g, (4~ o%5) Bt

Gaussian elimination of the system of equations in the previous display to
solve for 33, by eliminating the upper diagonal in the square matrix shows
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that the solution is
- c2 \ '/ C 7
5 = A— ——— — Yo, + ——— | =Y5,_
Pin < §n<D>> <v et g oy (e

2\ C
=(A—- — =Y, + ——— ( =Y, —
< G;nw)) <v 2t G (D) (¥ +

“mo (v amm) )

Hence 35 ,, = Banj2n since (3, has the same solution as (a2, where 3,2,

is found by Gaussian elimination of M 2nﬁ§n:0|2n = Y5, The system
of equations associated with the partial smoothers {Bil, . ,Bg’n} and the

state space smoothers BfL +1:2n)2n shows that both sets of smoothers satisfy
the same system of equations

Aﬁin — Cﬁg,n—l = Eyén

\%
Aﬁ2n\2n - C’ﬁ2n—1|2n = %Yén
and fori=n—1,...,1
—CB5i1+ BB —CBs, .y = gYn-H’
—CByivien + BBatijon — Clnyi—12n = EYn-H .

%

Hence the result is proven for the second partition
B3 = Bptijen for i =mn,...,0.
Induction is used to prove the result for the remaining partitions
3 k ; . i
= 5(j—1)n+z‘\jn forj=3,....,r;i=mn,...,0.

Hence the complete result is proven. B
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