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1 Introduction

This chapter introduces the two research areas presented in this dissertation.

1.1 Computational Aspects of Power Efficiency

Fokianos, Kedem, Qin, Short (FKQS) (2001) [9] introduced a semipara-
metric approach to the one-way layout that relies on an exponential dis-
tortion between each of the m distributions associated with the m ran-
dom samples. The classic approach to the one-way layout assumes that
each of the m distributions are Gaussian with a common variance. Un-
der the Gaussian assumption, the density ratios of the m distributions
are exponential distortions of the form gi(x)/gr(x) = exp(αi + βix) for
i = 1, . . . ,m − 1 where one of the m distributions is chosen as the refer-
ence distribution Gr(x) with density gr(x). The semiparametric approach
generalizes the classic approach by generalizing the form of the density ratios
to gi(x)/gr(x) = exp(αi + βih(x)) for i = 1, . . . ,m − 1 where h(x) is cho-
sen based on the application. The semiparametric approach utilizes a profile
likelihood in order to develop maximum likelihood estimators for each of the
distortion parameters {(αi, βi) : i = 1, . . . ,m − 1} and for the reference dis-
tribution Gr(x). The resulting semiparametric test evaluates the maximum
likelihood estimator for βi in order to test whether the unknown distortion
parameter βi equals zero; in other words, whether the two distributions are
the same. The density ratios are examples of weight functions that depend
on an unknown finite-dimensional parameter θ. Gilbert (2000) [12] examines
the large sample theory of maximum likelihood estimates in semiparametric
biased sampling models with respect to a common underlying distribution
G. In that paper, Gilbert characterizes conditions, on the weight functions
and on the random samples and their distributions, in order that (θ̂, Gn)
is uniformly consistent, asymptotically Gaussian, and efficient, where θ̂ and
Gn are the maximum likelihood estimators of θ and G. As an example of
this semiparametric approach, Qin and Zhang (1997) [21] tested the validity
of logistic regression under case-control sampling with m = 2 and h(x) = x.
More recently, [9] applied this semiparametric approach to rain-rate data
from meteorological instruments. Simulation results in [9] have shown that
the semiparametric test compares favorably with the common t-test.

A natural way to compare the semiparametric test and the t-test is to
use the concepts of relative efficiency and Pitman efficiency [2]. Relative
efficiency is the ratio of the sample sizes for each test needed to achieve
a desired power when the m distributions are different. The limit of the
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relative efficiency as each of the m − 1 distorted distributions converge to
the reference distribution in a prescribed manner is called the Pitman ef-
ficiency. This chapter presents as original work an analysis of the relative
and Pitman efficiency of the semiparametric test versus the common t-test
when there are m = 2 distributions. As part of this analysis, the generalized
Glivenko-Cantelli theorem from [30] and the theory of extremum estimators
from [1] are used to find asymptotic Gaussian test distributions of the semi-
parametric test and the t-test under the alternative hypothesis that the two
random sample distributions are different. The asymptotic Gaussian test
distributions are found for four examples of the random sample distribu-
tions: a Gaussian example, two gamma examples, and a log normal exam-
ple. An efficiency analysis is then developed that establishes a theoretical
efficiency based on Gaussian test distributions. The asymptotic Gaussian
test distributions for each of the four examples are then applied to find the
corresponding theoretical efficiency. Simulation results are then reported
that verify the theoretical results for each example of the random sample
distributions. For the Gaussian example, the efficiency of the semiparamet-
ric test versus the t-test is very close to one when the distortion parameter
β is close to zero. For the other three examples, the semiparametric test
is more efficient than the t-test for large parameter ranges of the random
sample distributions.

1.2 Computational Aspects of State Space Models

Linear state space models provide a methodology for studying time series
in discrete time [3], [7], [10], [13], [14], [17], [26], [29]. A large class of linear
state space models provide a way to formalize the relationship between an
unobservable time series (consisting of unknown states) and an observable
time series. R. E. Kalman (1960) [13] introduced the Kalman filter as a
sequential algorithm that provides a predictor (one step ahead) estimate and
a filter estimate of each state based on the available observations at each
time point under a Gaussian assumption, see also [3], [7], [10], [14], [17], [26],
[29]. As part of the Kalman predictor and filter, variances (called precisions)
are provided of the residuals between each state and its predictor and filter
estimates. An important extension to the Kalman filter was the development
of the state space smoother by Rauch (1962) [24] and by Bryson and Frazier
(1963) [5], see also Rauch, Tung, and Striebel (1965) [25]. The state space
smoother provides smoother estimates of all existing or past states as new
or future observations become available [7], [10], [14], [17], [29]. Precisions
of the smoother residuals are also provided. The state space smoother has
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several equivalent forms [7], [10], that include: the fixed interval smoother,
the fixed point smoother, and the fixed lag smoother. Asymptotic analysis
has shown that the precision of the Kalman filter estimate of the state
associated with the most recent observation converges to a steady state
value under certain conditions [7], [10], [29].

Under the Gaussian assumption the Kalman estimates of each state and
precisions are the conditional means of each state and conditional error
covariances given the available observations. These Kalman estimates of
each state are optimal in the sense that the associated precisions are the
minimum possible within the class of state estimators given the available
observations. It turns out that the Kalman equations still hold when the
Gaussian assumption is removed. In this case, the Kalman estimates of
each state are the projection of each state on the subspace spanned by
the available observations and the precisions are the minimum least square
error estimators within the class of linear state estimators, see section 4.2
and problems 4.4 and 4.6 in [29] and section 12.2 in [4]. In this case, these
Kalman estimates of each state are suboptimal in the sense that the resulting
precisions are larger that the precisions associated with the true conditional
mean of each state given the available observations.

This chapter provides as original work an analysis of the smoother pre-
cisions where the observable and unobservable time series are univariate
and where the state space parameters are constant. This analysis starts by
introducing a likelihood smoother form of the state space smoother based
on a general multivariate version of the linear Gaussian state space model.
This analysis then applies the likelihood smoother to a univariate version
of the linear Gaussian state space model with constant parameters in order
to develop a variety of upper and lower bounds on the smoother precisions
and also to develop the asymptotic behavior of the smoother precisions as
the number of observations increases. These asymptotic smoother precision
values provide a way to evaluate the future evolution of the smoother preci-
sion values associated with a finite time series as new observations become
available. This chapter concludes by introducing the partial (suboptimal)
state space smoother that provides a smoother like estimate of each state
that only relies on a limited number of future observations.
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2 Computational Aspects of Power Efficiency

In this chapter the relative efficiency of the semiparametric test versus the
common t-test is investigated. Section 2.1 summarizes some of the pub-
lished mathematical theory behind the semiparametric approach. Section
2.1.1 identifies four examples of random sample distributions that are ana-
lyzed in detail throughout this chapter. Section 2.2 extends the current the-
ory behind the semiparametric approach by developing a relative efficiency
analysis of the semiparametric test versus the t-test. Section 2.2.1 develops
an asymptotic Gaussian distribution for the semiparametric test under the
alternative hypothesis that the two random sample distributions are differ-
ent. An asymptotic distribution for the semiparametric test is found using
each of the random sample examples identified in subsection 2.1.1. Section
2.2.2 also develops an asymptotic Gaussian distribution for the t-test un-
der the alternative hypothesis that the two random sample distributions are
different. An asymptotic distribution for the t-test is found using each of
the random sample examples identified in section 2.1.1. Section 2.2.3 devel-
ops a relative efficiency analysis of the semiparametric test and the t-test
given their asymptotic Gaussian test distributions. This section develops a
relative efficiency using each of the random sample examples identified in
subsection 2.1.1. In order to complement the relative efficiency theory, this
section also contains a simulation study that supports the theoretical results
for each of the random sample examples in subsection 2.1.1.

2.1 Some Preliminary Statistical Formulations

This section briefly presents the formulation of the semiparametric approach
from [9] that is developed further in subsequent sections.

The classical one-way analysis of variance with m = q + 1 independent
random samples is described as follows:

x11, . . . , x1n1 ∼ X1 with pdf g1(x)
...

xq1, . . . , xqnq ∼ Xq with pdf gq(x)
xm1, . . . , xmnm ∼ Xm with pdf gm(x)

where gm(x) is arbitrarily labeled as the reference probability density, and
where gj(x) is a probability density with finite mean and variance:
(µj , σ

2
j ), j = 1, . . . ,m. Assuming that each of the m probability densities
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is Gaussian with common variance (σ2
1 = · · · = σ2

m = σ2) implies an expo-
nential distortion for each of the first q distributions, relative to the mth
distribution, of the form

gj(x)
gm(x)

= exp(αj + βjx), j = 1, . . . , q (1)

αj =
µ2

m − µ2
j

2σ2
, βj =

µj − µm

σ2
, j = 1, . . . , q.

The semiparametric approach generalizes the analysis of the one-way
layout by dropping the Gaussian probability density assumption and by
generalizing the form of the exponential distortion:

wj(x|αj , βj) ≡
gj(x)
gm(x)

= exp(αj + βjh(x)), j = 1, . . . , q (2)

wm(x|αm, βm) ≡ 1, (αm, βm) ≡ 0

where h(x) may assume various forms as shown in several examples below.
Various generalizations of (2) have been suggested by Gilbert, Lele, and
Vardi (1999) [11], and by Qin (1998) [20]. Observe that (2) is a special case
of a weighted distribution as defined by Patil and Rao (1977) [19].

Let xj = (x11, . . . , x1n1)
′ identify the random sample from the jth prob-

ability density, for j = 1, . . . ,m; let t ≡ (t1, . . . , tn)′ = (x′
1, . . . ,x

′
m)′ iden-

tify the combined data from each of the m probability densities where
n = n1 + · · · + nm identifies the combined sample size; let ρj = nj/nm, j =
1, . . . ,m denote the sample proportions; and let g(x) = gm(x) identify the
reference density. Then the semiparametric approach finds a maximum like-
lihood estimator for G(x) (the cdf of g(x)) over the class of step cdf’s with
jumps at the observed values ti ∈ t.

With p(ti) = dG(ti), i = 1, . . . , n and (α,β) ≡ ((α1, . . . , αq), (β1, . . . , βq))′ ∈
R2q, the likelihood becomes,

L(α,β, G) =
n∏

i=1

p(ti)
n1∏

j=1

exp(α1 + β1h(x1j)) · · ·
nq∏

j=1

exp(αq + βqh(xqj)) (3)

Fixing (α,β) and then maximizing (3) with respect to p(ti), subject to m
constraints that the p(ti) and each of the distortions sum to 1,

n∑

i=1

p(ti) = 1,
n∑

i=1

p(ti) [wj (ti|αj , βj) − 1] = 0, j = 1, . . . , q
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results in the following formulas for p(t) and g(t)

p̃(t|α,β) = 1/ [n + λ1(w1(t|α1, β1) − 1) + · · · + λq(wq(t|αq, βq) − 1)]

G̃(t|α,β) =
n∑

i=1

I(ti ≤ t)p̃(ti|α,β)

where the Lagrange multipliers λ ≡ {λ1, . . . , λq} ≡ λ(α,β) depend on
(α,β) since the m constraints must be satisfied and where I(B) is the indi-
cator of the event B. The resulting profile likelihood is L(α,β, G̃).

The estimates (α̂, β̂) = ((α̂1, . . . , α̂q)′, (β̂1, . . . , β̂q)′), for the true distor-
tion parameters (α0,β0), are solutions of the following score equations in
terms of the profile likelihood L(α,β, G̃) (see [9]) for j = 1, ..., q,

0 =
∂

∂αj
logL

∣∣∣∣
(α̂,β̂)

= nj − λj

n∑

i=1

p̃(ti|α̂, β̂)wj(ti|α̂j , β̂j)

0 =
∂

∂βj
logL

∣∣∣∣
(α̂,β̂)

=
nj∑

i=1

h(xji) − λj

n∑

i=1

h(ti)p̃(ti|α̂, β̂)wj(ti|α̂j , β̂j) .

Hence the Lagrange multipliers take the form λ(α̂, β̂) = {n1, . . . , nq} in
order to meet the m constraints. The resulting formulas for p(t) and g(t)
with the Lagrange multipliers fixed at λ = {n1, . . . , nq} are

p̂(t|α,β) = 1/ (nmDq(t|α,β))

Ĝ(t|α,β) =
n∑

i=1

I(ti ≤ t)p̂(ti|α,β)

Dq(t|α,β) = 1 + ρ1w1(t|α1, β1) + · · · + ρqwq(t|αq, βq) .

Define the semiparametric log-likelihood as l(α,β) ≡ logL(α,β, Ĝ). The
estimates (α̂, β̂) are also solutions of the score equations in terms of the
semiparametric log-likelihood l(α,β). Under regularity conditions, the so-
lutions (α̂, β̂) are consistent and asymptotically normal with mean (α0,β0),
and a 2q × 2q covariance matrix Ω/n (see [9])

√
n

(
α̂ − α0

β̂ − β0

)
d→
(

Zα0

Zβ0

)
∼ N(0,Ω) , Ω = S−1VS−1 (4)

V ≡ Var
[

1√
n

∇l (α0,β0)
]

, − 1
n

∇∇′l (α0,β0)
P→ S as n → ∞

∇ ≡
(

∂

∂α1
, . . . ,

∂

∂αq
,

∂

∂β1
, . . . ,

∂

∂βq
,

)′
.
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For the general case (q > 1,m = q + 1), definitions for the matrices S and
V that compose Ω are found in [9]. For the case (q = 1,m = 2), Qin and
Zhang (1997) [21] showed

Ω =
1 + ρ1

ρ1

[
A0 A1

A1 A2

]−1

− (1 + ρ1)
2

ρ1

[
1 0
0 0

]
(5)

Ak = E
(

Xk
1

D1 (X1|α0, β0)

)
, k = 0, 1, 2 .

Under the null hypothesis that the m probability densities are the same,
H0 : β0 = 0, the asymptotic distribution of β̂ reduces as shown in [9]

√
nβ̂

d→ N
(
0,

1
Var(h(Xm))

A−1
11

)

Var(h(Xm)) =
∫

h2(x)dG(x) −
(∫

h(x)dG(x)
)2

.

For the case (q = 1,m = 2), A11 = ρ1/(1 + ρ1)2 is a scalar as shown in [9],
such that under H0:

Zn ≡
√

n

√
ρ1

(1 + ρ1)

√
Var(h(Xm))β̂ d→ Z ∼ N(0, 1) (6)

or X1 ≡ n
ρ1

(1 + ρ1)2
Var(h(Xm))β̂2 d→ χ2

(1)

and H0 is rejected for extreme values of Zn or X1. Since Var(h(Xm)) is
generally unknown, Var(h(Xm)) is estimated using:

V̂ar(h(Xm)) ≡
n∑

i=1

h2(ti)p̂(ti|α̂, β̂) −
(

n∑

i=1

h(ti)p̂(ti|α̂, β̂)

)2

so the actual semiparametric statistic is:

Z̃n ≡
√

n

√
ρ1

(1 + ρ1)

√
V̂ar(h(Xm))β̂ .
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2.1.1 Some Distortion Examples

The previous section has already identified one weighted distribution exam-
ple, namely a Gaussian example in (1). This section identifies other weighted
distribution examples that are used throughout this chapter.

2.1.1.1 Gaussian Example The first example restates the Gaussian
distribution example, where each of the m random variables Xj has a dif-
ferent mean parameter µj and has a common variance parameter σ2.

Xj ∼ gj(x) = N
(
µj, σ

2
)
, j = 1 . . . m

E (Xj) = µj, Var (Xj) = σ2

E
(
X2

j

)
= σ2 + µ2

j ,

E
(
X3

j

)
= 2σ2µj,

E
(
X4

j

)
= 2σ2

(
σ2 + 2µ2

j

)

wj (x|αj , βj) =
gj(x)
gm(x)

= exp (αj + βjx) , j = 1 . . . q

(αj , βj) =

(
µ2

m − µ2
j

2σ2
,

µj − µm

σ2

)
, j = 1 . . . q

h (Xj) = Xj ∼ N
(
µj, σ

2
)
, j = 1 . . . m

2.1.1.2 Gamma Example I The second example identifies a gamma
distribution example, where each of the m random variables Xj has a com-
mon shape parameter αγ and has a different scale parameter βγj .

Xj ∼ gj(x) = Gamma (αγ , βγj) , j = 1 . . . m

E (Xj) = αγβγj , Var (Xj) = αγβ2
γj

E
(
Xk

j

)
=

Γ (αγ + k)
Γ (αγ)

βk
γj , for k = 1, 2, . . .

wj (x|αj , βj) =
gj(x)
gm(x)

= exp (αj + βjx) , j = 1 . . . q

(αj , βj) =
(

αγ log
(

βγm

βγj

)
,

1
βγm

− 1
βγj

)
, j = 1 . . . q

h (Xj) = Xj ∼ Gamma (αγ , βγj) , j = 1 . . . m
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2.1.1.3 Gamma Example II The third example is again a gamma dis-
tribution example, where each of the m random variables Xj has a different
shape parameter αγj and has a common scale parameter βγ .

Xj ∼ gj(x) = Gamma (αγj , βγ) , j = 1 . . . m

E (Xj) = αγjβγ , Var (Xj) = αγjβ
2
γ

E
(
Xk

j

)
=

Γ (αγj + k)
Γ (αγj)

βk
γ , k = 1, 2, . . .

wj (x|αj , βj) =
gj(x)
gm(x)

= exp (αj + βj log(x)) , j = 1 . . . q

(
αj

βj

)
=

(
log Γ(αγm)

Γ(αγj ) + (αγm − αγj) log βγ

(αγj − αγm)

)
, j = 1 . . . q

h (Xj) = log (Xj) , j = 1 . . . m

Mlog(Xj) (t) =
Γ (αγj + t)

Γ (αγj)
βt

γ , t > −αγj

2.1.1.4 Log Normal Example The fourth example identifies a log nor-
mal distribution example, where each of the m random variables Xj has a
different µlj parameter and a common σ2

l parameter.

Xj ∼ gj(x) = LN
(
µlj, σ

2
l

)
, j = 1 . . . m

E (Xj) = eµlj+σ2
l /2, Var (Xj) = e2µlj+σ2

l

(
eσ2

l − 1
)

E
(
Xk

j

)
= ekµlj+k2σ2

l /2, k = 1, 2, . . .

wj (x|αj , βj) =
gj(x)
gm(x)

= exp (αj + βj log(x)) , j = 1 . . . q

(αj, βj) =

(
µ2

lm − µ2
lj

2σ2
l

,
µlj − µlm

σ2
l

)
, j = 1 . . . q

h (Xj) = log (Xj) ∼ N
(
µlj, σ

2
l

)
, j = 1 . . . m
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2.2 Efficiency Development

Throughout this section, usage of the term ”T test” refers to the t-test.
Experimental power comparisons between the Z̃n and T tests have provided
empirical evidence that the Z̃n test compares favorably with the T test when
the underlying probability densities are Gaussian, i.e. the two tests appear
to have practically the same power over specific parameter ranges. When
the underlying probability densities are not Gaussian, the power of the Z̃n

test appears in some cases to be greater than the power of the T test. This
section quantifies the theoretical power relationship between the Z̃n and T
tests by examining the efficiency of the T test in relation to the Z̃n test. To
develop this efficiency, the asymptotic distributions for the Z̃n and T test
statistics are identified.

2.2.1 Asymptotic Distribution of the Z̃n Statistic

In this section the asymptotic distribution of the Z̃n statistic is examined
for the case (q = 1,m = 2), under the alternative hypothesis, H1 : β0 6= 0,
where (α, β) renames the distortion parameters (α1, β1) and where the true
distortion parameters of (α, β) are denoted as (α0, β0). This examination
proceeds by expanding Z̃n, minus a suitable offset, into a linear combination
of four random variables. The law of large numbers, the abstract Glivenko-
Cantelli theorem, and the asymptotic properties of extremum estimators
are applied to find the asymptotic limit for the coefficients of the random
variables. The multivariate central limit theorem is applied to find the as-
ymptotic joint distribution of the random variables. The asymptotic results,
for the coefficients and for the random variables, are combined to find the
asymptotic distribution for the modified Z̃n statistic. The modified Z̃n sta-
tistic is:

Z̃
∗
n ≡ Z̃n −

√
n

√
ρ1

(1 + ρ1)
σhβ0 =

√
n1n2

n

(
σ̂h(α̂, β̂)β̂ − σhβ0

)

σ̂2
h(α̂, β̂) ≡ V̂ar(h(X2)) ≡ µ̂h2(α̂, β̂) −

(
µ̂h(α̂, β̂)

)2

σ2
h ≡ Var (h(X2)) ≡ µh2 − (µh)2

µ̂hk(α, β) =
n∑

i=1

hk (ti) p̂ (ti|α, β) , µhk = E
(
hk(X2)

)
, k = 1, 2, . . .

10



The Z̃
∗
n random variable expansion proceeds by deriving an alternate

expression for Z̃
∗
n based on a Taylor series expansion for σ̂2

h(α̂, β̂) around
(α0, β0)
√

n1n2

n

(
σ̂h(α̂, β̂)β̂ − σhβ0

)

=
√

n1n2

n

(
0, 1

)(α̂ − α0

β̂ − β0

)
σ̂h(α̂, β̂)

+
√

n1n2

n

(
σ̂2

h(α0, β0) − σ2
h + ∇′σ̂2

h(α, β)
∣∣
(ά,β́)

(
α̂ − α0

β̂ − β0

))
β0(

σ̂h(α̂, β̂) + σh

)

=
√

n1n2

n

(
σ̂2

h(α0, β0) − σ2
h

σ̂h(α̂, β̂) + σh

)
β0 +

√
n1n2

n

Qn

σ̂h(α̂, β̂) + σh

(
α̂ − α0

β̂ − β0

)

where the gradient ∇σ̂2
h(α, β) ∈ R2 is a column vector, where Qn ∈ R2 is a

row vector defined as follows

Qn ≡ Qn

(
(α̂, β̂), (ά, β́)

)

≡
(
0, σ̂h(α̂, β̂)

(
σ̂h(α̂, β̂) + σh

))
+ β0 ∇′σ̂2

h(α, β)
∣∣
(ά,β́)

(7)

and where the mean value theorem shows that (ά, β́) satisfies

(αλ, βλ) = λ
(
α̂, β̂

)
+ (1 − λ) (α0, β0) , λ ∈ [0, 1]

(
ά, β́

)
=
(
αλ́, βλ́

)
for some λ́ ∈ [0, 1] . (8)

A Taylor series expansion of the score equation around (α0, β0) and the
mean value Theorem 6.7 from Kress (1998) [16] provides an expression for
(α̂ − α0, β̂ − β0):

0 = ∇l (α, β)|(α̂,β̂) = ∇l (α, β)|(α0,β0)
+
∫ 1

0
∇∇′l (αλ, βλ)

(
α̂ − α0

β̂ − β0

)
dλ

where the gradient ∇l(α, β) ∈ R2 is a column vector and the hessian
∇∇′l(α, β) ∈ R2×2 is a matrix that satisfies

∇∇′l (α, β)
∣∣
(ὰ,β̀)

(
α̂ − α0

β̂ − β0

)
=
∫ 1

0
∇∇′l (αλ, βλ)

(
α̂ − α0

β̂ − β0

)
dλ

(
ὰ, β̀

)
=
(
αλ̀, βλ̀

)
for some λ̀ ∈ [0, 1] . (9)
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The resulting Z̃
∗
n random variable expansion is:

√
n1n2

n

(
σ̂h(α̂, β̂)β̂ − σhβ0

)

=
√

n1n2

n
(µ̂h2(α0, β0) − µh2)

β0

σ̂h(α̂, β̂) + σh

−
√

n1n2

n
(µ̂h(α0, β0) − µh)

(
µ̂h(α0, β0) + µh

σ̂h(α̂, β̂) + σh

)
β0

−
√

n1n2

n

Qn(
σ̂h(α̂, β̂) + σh

)
[

1
n

∇∇′l (α, β)
∣∣
(ὰ,β̀)

]−1 1
n

∇l (α, β)|(α0,β0)

which is written in vector notation as: Z̃
∗
n = D′

nY n

Dn ≡ 1

σ̂h

(
α̂, β̂

)
+ σh




− (µ̂h(α0, β0) + µh) β0

β0

−
[

1
n ∇∇′l (α, β)|(ὰ,β̀)

]−1
Q′

n


 (10)

Y n =




Y1n

Y2n

Y3n

Y4n


 ≡

√
n1n2

n




µ̂h (α0, β0) − µh

µ̂h2 (α0, β0) − µh2

1
n ∇l (α, β)|(α0,β0)


 (11)

where the gradient ∇l(α, β) ∈ R2 is a column vector, the hessian ∇∇′l(α, β) ∈
R2×2 is a matrix, and Qn ∈ R2 is a row vector.

Assumption 2.1. The following list defines convergence conditions that
allow Z̃

∗
n to converge to a Gaussian random variable Z̃

∗
:

• h(x) is continuous and non-constant with respect to g(x),
i.e. Pg(x : h(x) = m) = 0 for all m ∈ R.

• hk(x) is integrable with respect to gj(x) for j = 1, . . . ,m and for
k = 1, 2, 3, 4.

The convergence conditions defined under Assumption 2.1 are used to
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show the following convergence results:
(
α̂, β̂

)
P→ (α0, β0) (12)

µ̂h (α0, β0)
as→ µh (13)

σ̂2
h

(
α̂, β̂

)
P→ σ2

h (14)

∇σ̂2
h (α, β)

∣∣
(ά,β́)

P→ ∇σ2
h (α0, β0) (15)

− 1
n

∇∇′l (α, β)
∣∣
(ὰ,β̀)

P→ S (α0, β0) (16)

Y n
d→ Y ∼ N (0,Σ) . (17)

The law of large numbers is applied in Lemma 2.1 and Corollary 2.1 to
show the convergence result (13). The subsequent convergence results (14)
through (16) are shown in Lemma 2.3 and Corollaries 2.4, 2.6, and 2.8
under the hypothesis that (α̂, β̂), (ά, β́), (ὰ, β̀) P→ (α0, β0). The convergence
in probability result (12) is shown in Lemmas 2.4 though 2.6. The uniform
convergence results of the abstract Glivenko-Cantelli theorem are applied
in Lemmas 2.3 and 2.4 to show (12), (14), (15), and (16). The asymptotic
properties of extremum estimators are applied in Lemma 2.4 to show (12).
With regard to (15) and (16), the convergence in probability of (ά, β́) and
(ὰ, β̀) to (α0, β0) are shown in Corollary 2.9 as a consequence of (α̂, β̂)
converging in probability to (α0, β0) from (12). The multivariate central
limit theorem is applied in Lemma 2.8 to show (17). The convergence results,
(12) through (16), are used together in Lemma 2.7 to show the limit in
probability of Dn. The convergence results for Dn and Y n are used together
in Theorem 2.2 to show the asymptotic distribution for Z̃

∗
n.

As described at the beginning of this section, the asymptotic distribu-
tion for Z̃

∗
n is found for the case (q = 1,m = 2). Note that some of the

intermediate results, Lemmas 2.1 through 2.3, are shown for the general
case m = q + 1 ≥ 2 since the extension is trivial. In Lemma 2.1, the law of
large numbers is applied to show a generalization of (13).

Lemma 2.1. For general m > 1, if a function f(x) is integrable with respect
to gj(x) for j = 1, . . . ,m, and if (α0,β0) = ((α01, . . . , α0q)′), (β01, . . . , β0q)′)
represents the true distortion parameters, then for k = 1, . . . ,m

n∑

i=1

f(ti)wk(ti|α0k, β0k)p̂(ti|α0,β0)
as→ Ef(Xk) . (18)
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Proof: The following weighted function of f(x) for k = 1, . . . ,m is in-
tegrable with respect to gj(x) for j = 1 . . . m since f(x) is integrable by
assumption

∣∣∣∣ρjf(x)
wk(x|α0k, β0k)
Dq(x|α0,β0)

∣∣∣∣ ≤
ρj

ρk
|f(x)|

Applying the law of large numbers, see van der Vaart (1998) [30] Example
2.1 and Proposition 2.16, shows that:

n∑

i=1

f(ti)wk(ti|α0k, β0k)p̂(ti|α0,β0)

=
m∑

j=1

1
nj

nj∑

i=1

f(xji)wk(xji|α0k, β0k)
ρj

Dq(xji|α0,β0)

as→
m∑

j=1

E
(

f(Xj)wk(Xj |α0k, β0k)
ρj

Dq(Xj |α0,β0)

)

= E(f(Xm)wk(Xm|α0k, β0k))
= Ef(Xk) . �

Corollary 2.1. For m = 2 with k = m, if h(x) is integrable with respect to
gj(x) for j = 1, 2, and if (α0, β0) represents the true distortion parameters,
then µ̂h(α0, β0)

as→ µh, proving (13). �

The abstract Glivenko-Cantelli theorem is applied to establish uniform
convergence results for a class of parametric functions. The following Defi-
nitions 2.1 and 2.2, Theorem 2.1, and Example 2.1, are taken from van der
Vaart (1998) [30] section 19.2.

Definition 2.1. A class F of measurable integrable functions f is called
P -Glivenko-Cantelli if

‖Pnf − Pf‖F ≡ sup
f∈F

∣∣∣∣∣
1
n

n∑

i=1

f(xi) −
∫

fdP

∣∣∣∣∣
as∗→ 0

or equivalently, if there exists a sequence of random variables 4n such that

‖Pnf − Pf‖F ≤ 4n and 4n
as→ 0

where x1, . . . , xn is a random sample from the probability distribution P .
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Definition 2.2. Given two functions l and u, the bracket[l, u] is the set of
all functions f with l ≤ f ≤ u. An ε-bracket in Lr(P ) is a bracket[l, u] with
P (u − l)r < εr. The bracketing number N[ ](ε,F , Lr(P )) is the minimum
number of ε-brackets needed to cover F . The bracketing functions l and u
must have finite Lr(P )-norms but need not belong to F .

Theorem 2.1 (Abstract Glivenko-Cantelli). Every class F of measur-
able [integrable] functions such that N[ ](ε,F , L1(P )) < ∞ for every ε > 0
is P -Glivenko-Cantelli. �

Example 2.1 (Parametric Class). Let F = {fθ ∈ L1(P ) : θ ∈ Θ} be a
collection of measurable [integrable] functions indexed by a bounded subset
Θ ⊂ Rd. Suppose that there exists a measurable function m such that

|fθ1 (x) − fθ2 (x)| ≤ m (x) ‖θ1 − θ2‖, every θ1,θ2 ∈ Θ .

If ‖m‖r
P,r ≡ P |m|r < ∞, then there exists a constant K, depending on Θ

and d only, such that the bracketing numbers satisfy

N[ ] (ε‖m‖P,r,F , Lr(P )) ≤ K

(
diam Θ

ε

)d

, every 0 < ε < diam Θ .

The Lipschitz condition shows that fθ1−εm ≤ fθ2 ≤ fθ1 +εm if ‖θ1−θ2‖ ≤
ε. Hence a 2ε‖m‖P,r-bracket in Lr(P ) for the parametric class of functions
F takes the form [fθ − εm, fθ + εm]. �

Thus the bracketing number N[ ](ε,F , L1(P )) in Example 2.1 is finite for
every ε > 0 and the class of integrable functions F is P -Glivenko-Cantelli.

The abstract Glivenko-Cantelli Theorem 2.1 for a parametric class from
Example 2.1, is applied to establish uniform convergence results as defined
by (20) below, for a class of integrable functions parameterized by (α,β),
when an integrable Lipschitz condition is met as defined by (19) below.

Lemma 2.2. For general m > 1, let Fj ≡ {f(·|α,β) ∈ L1(Gj) : (α,β) ∈
Θ} for j = 1, . . . ,m denote m parametric classes of functions where each
class denotes a collection of functions indexed by a bounded subset Θ ⊂ R2q

that are integrable with respect to the probability distributions Gj associated
with the densities gj. If f(·|α,β) ∈ Fj has an integrable Lipschitz bound
mj(·) with respect to Gj as defined by

∣∣f(x|α1,β1) − f(x|α2,β2)
∣∣ ≤ mj(x)

∥∥(α1,β1)′ − (α2,β2)′
∥∥ (19)

for every (α1,β1),(α2,β2) ∈ Θ

E(mj(Xj)) < ∞ for j ∈ {1 . . . m}
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then each class Fj is Gj-Glivenko-Cantelli, by the abstract Glivenko-Cantelli
Theorem 2.1 as applied in Example 2.1 to a parametric class of functions,
resulting in uniform convergence almost surely for all functions f ∈ Fj

‖Pnj f − Pf‖Fj ≡ sup
f∈Fj

∣∣∣∣∣
1
nj

nj∑

i=1

f(xji|α,β) − E (f(Xj|α,β))

∣∣∣∣∣
as∗→ 0. � (20)

Definition 2.3. For general m > 1, let Fj(f1, f2) for j = 1, . . . ,m denote
m parametric classes of functions as defined below that are indexed by a
bounded subset Θ ⊂ R2q which contains the true distortion parameters
(α0,β0) and that are integrable with respect to the probability distributions
Gj associated with the densities gj

Fj(f1, f2) ≡ {f(·|α,β) = f1(·)f2(·|α,β)
ρj

Dq(·|α,β)
: (α,β) ∈ Θ} (21)

where f1 ∈ L1(Gj), f2 ∈ L∞(Gj), and f ∈ Fj ⊂ L1(Gj).

Definition 2.3 associates m abstract parametric classes of integrable func-
tions with each of the m densities {g1, . . . , gm}. This structure allows the
abstract Glivenko-Cantelli theorem to be applied to a random sample from
each of the densities in order to show a uniform law of large numbers con-
vergence result over the functions in each class. At this time the function
parameters of each class, f1 and f2, have only been defined in the abstract.
Each of these function parameters are specialized in Definitions 2.4 and 2.5
to well defined functions in order to show specific uniform law of large num-
bers convergence results. The parametric index Θ describes any bounded
subset of R2q such that each resulting class of indexed functions Fj(f1, f2)
for j = 1, . . . ,m meets the integrable conditions imposed on f1, f2, and f .
In the subsequent analysis, the parametric index Θ will be specialized as
needed to show each of the convergence results (12), (14), (15), and (16).

Corollary 2.2. Under the conditions of Lemma 2.2 with Fj specialized to
Fj(f1, f2) with parametric index Θ from Definition 2.3, applying (20) or
applying the law of large numbers, for any fixed (α,β) ∈ Θ, shows

n∑

i=1

f1(ti)f2(ti|α,β)p̂(ti|α,β)

=
m∑

j=1

1
nj

nj∑

i=1

f1(xji)f2(xji|α,β)
ρj

Dq(xji|α,β)

as→
m∑

j=1

E
(

f1(Xj)f2(Xj |α,β)
ρj

Dq(Xj |α,β)

)
. � (22)
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Lemma 2.3. Under the conditions of Lemma 2.2 with Fj specialized to

Fj(f1, f2) with parametric index Θ from Definition 2.3, if (α∗,β∗)
P→ (α0,β0) ∈

Θ then
n∑

i=1

f1 (ti) f2 (ti|α∗,β∗) p̂ (ti|α∗,β∗)
P→ E (f1 (Xm) f2 (Xm|α0,β0)) .

Proof: For any random sequence (α∗,β∗)
P→ (α1,β1) ∈ Θ as n → ∞,

applying (20) from Lemma 2.2 or the law of large numbers for (α1,β1), and
applying Slutsky’s theorem shows

∣∣∣∣∣
1
nj

nj∑

i=1

f (xji|α∗,β∗) − E (f (Xj |α1,β1))

∣∣∣∣∣

≤

∣∣∣∣∣
1
nj

nj∑

i=1

f (xji|α1,β1) − E (f (Xj |α1,β1))

∣∣∣∣∣ (23)

+
1
nj

nj∑

i=1

mj (xji)
∥∥(α∗,β∗)

′ − (α1,β1)
′∥∥

P→ 0 .

Consequently, as (α∗,β∗)
P→ (α0,β0), the general convergence in probability

result follows, that
n∑

i=1

f1 (ti) f2 (ti|α∗,β∗) p̂ (ti|α∗,β∗)

=
m∑

j=1

1
nj

nj∑

i=1

f1 (xji) f2 (xji|α∗,β∗)
ρj

Dq (xji|α∗,β∗)
(24)

P→
m∑

j=1

E
(

f1(Xj)f2(Xj |α0,β0)
ρj

Dq(Xj |α0,β0)

)

= E(f1(Xm)f2(Xm|α0,β0)) . �

Definition 2.4. For m = 2, let F (1)
j|k (Θ) ≡ Fj(hk(x), 1) with parametric

index Θ ⊂ R2 for k = 0, 1, 2 and j = 1, 2 define 6 classes of integrable
functions that are specialized versions of Fj(f1, f2) from Definition 2.3.

Remark 2.1. The function f(x|α, β) ∈ F (1)
j|k (Θ) has partial derivatives of

all orders with respect to (α, β). A Taylor series expansion for f(x|α, β) ∈
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F (1)
j|k (Θ) around (α, β) ∈ Θ given the gradient ∇ ≡ ( ∂

∂α , ∂
∂β )′, and the mean

value theorem 6.7 [16], are used to find a Lipschitz bound that depends on
(α, β) and on the maximum vector norm ‖v‖∞ ≡ maxi |vi|

f
(
x|α1, β1

)
− f

(
x|α2, β2

)
= ∇′f (x|α∗, β∗)

[(
α1, β1

)′ −
(
α2, β2

)′]

∣∣f
(
x|α1, β1

)
− f

(
x|α2, β2

)∣∣ ≤ max
1≤λ≤1

∥∥∇′f (x|αλ, βλ)
∥∥
∞

∥∥∥
(
α1, β1

)′ −
(
α2, β2

)′∥∥∥
∞

(αλ, βλ) = λ
(
α1, β1

)
+ (1 − λ)

(
α2, β2

)
, λ ∈ [0, 1]

(α∗, β∗) = (αλ∗ , βλ∗) for some λ∗ ∈ (0, 1) .

The previous display leads to an integrable Lipschitz bound m
(1)
j|k(x) that

does not depend on (α, β)

∀ (α, β) ∈ Θ :
∥∥∇′f (x|α, β)

∥∥
∞ =

∥∥∥∥−ρjh
k (x)

ρ1w1 (x|α, β)
D2

1 (x|α, β)
(1, h (x))

∥∥∥∥
∞

≤ ρj

∣∣∣hk (x)
∣∣∣ ‖(1, h (x))‖∞

≤ ρj

(∣∣∣hk (x)
∣∣∣+
∣∣∣hk+1 (x)

∣∣∣
)

≡ m
(1)
j|k(x) . (25)

Given any bounded subset Θ ⊂ R2, it is easy to show that the integrable
conditions of Definition 2.3 are met since for any f(x|α, β) ∈ F (1)

j|k (Θ) with
(α, β) ∈ Θ and with j = 1, 2 and k = 0, 1, 2

|f (x|α, β)| ≤ |f (x|0, 0)| + m
(1)
j|k (x) ‖(α, β)‖∞ .

Hence f1(x) ≡ hk(x) ∈ L1(Gj), f(x|α, β) ∈ L1(Gj), and m
(1)
j|k(x) ∈ L1(Gj)

for j = 1, 2 and k = 0, 1, 2 under the convergence conditions of Assumption
2.1. Also f2(x|α, β) ≡ 1 ∈ L∞(Gj) for j = 1, 2.

Corollary 2.3. Under the conditions of Lemma 2.3 with Fj(f1, f2) special-
ized to F (1)

j|k (Θ) ≡ Fj(hk(x), 1) with parametric index Θ from Definition 2.4
with j = 1, 2 and k = 0, 1, 2, if hl(x) is integrable with respect to gj(x) for
j = 1, 2 and l = 0, 1, 2, 3, then for any fixed (α, β) ∈ Θ and for any sequence
(α∗, β∗)

P→ (α0, β0) ∈ Θ

µ̂hk (α, β) =
n∑

i=1

hk(ti)p̂(ti|α, β) as→
2∑

j=1

E
(

ρjh
k (Xj)

D1 (Xj |α, β)

)
(26)

µ̂hk (α∗, β∗)
P→ µhk . (27)
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Proof: Under the assumptions, f(x|α, β) ∈ F (1)
j|k (Θ) is integrable with

respect to gj(x) for j = 1, 2 and k = 0, 1, 2, and m
(1)
j|k(x) is integrable with

respect to gj(x) for j = 1, 2 and k = 0, 1, 2 so that the integrable Lipschitz
condition (19) is met. Hence the results of Corollary 2.2 are valid for any
fixed (α, β) ∈ Θ and the results of Lemma 2.3 are valid for any sequence
(α∗, β∗)

P→ (α0, β0) ∈ Θ. �

Corollary 2.4. Under the conditions of Corollary 2.3, if (α̂, β̂) P→ (α0, β0) ∈
Θ, then µ̂hk(α̂, β̂) P→ µhk for k = 1, 2. Hence σ̂2

h(α̂, β̂) P→ σ2
h, proving (14).

�

To analyze Qn((α̂, β̂), (ά, β́)), previously defined in (7), as (α̂, β̂), (ά, β́) P→
(α0, β0), the convergence in probability of ∇σ̂2

h(α, β)
∣∣
(ά,β́)

is shown. Note

that the convergence in probability of σ̂2
h(α̂, β̂), has already been proven in

the previous Corollary 2.4.
With regard to convergence in probability of ∇σ̂2

h(α, β)
∣∣
(ά,β́)

, the defin-
ition of σ̂2

h(α, β) is used to find ∇σ̂2
h(α, β) as follows

σ̂2
h (α, β) =

n∑

i=1

h2(ti)p̂(ti|α, β) −
(

n∑

i=1

h(ti)p̂(ti|α, β)

)2

(28)

∂

∂α
σ̂2

h (α, β) = −
n∑

i=1

h2(ti)p̂2(ti|α, β)w1(ti|α, β)n1 (29)

+ 2µ̂h (α, β)

(
n∑

i=1

h(ti)p̂2(ti|α, β)w1(ti|α, β)n1

)

∂

∂β
σ̂2

h (α, β) = −
n∑

i=1

h3(ti)p̂2(ti|α, β)w1(ti|α, β)n1 (30)

+ 2µ̂h (α, β)

(
n∑

i=1

h2(ti)p̂2(ti|α, β)w1(ti|α, β)n1

)
.

Definition 2.5. For m = 2, let F (2)
j|k (Θ) ≡ Fj(hk(x), ρ1w1(x|α, β)/D1(x|α, β))

with parametric index Θ ⊂ R2 for k = 0, 1, 2, 3 and j = 1, 2 define 8 classes
of integrable functions that are specialized versions of Fj(f1, f2) from Defi-
nition 2.3.

Remark 2.2. The function f(x|α, β) ∈ F (2)
j|k (Θ) has partial derivatives of

all orders with respect to (α, β). A Lipschitz bound m
(2)
j|k(x) is found, by
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using a Taylor series expansion for f(x|α, β) ∈ F (2)
j|k (Θ) around (α, β) ∈ Θ

given the gradient ∇ ≡ ( ∂
∂α , ∂

∂β )′, by using the mean value theorem 6.7 [16],
and by using the maximum vector norm ‖ · ‖∞

∀ (α, β) ∈ Θ :
∥∥∇′f (x|α, β)

∥∥
∞

=
∥∥∥∥ρjh

k (x)
ρ1w1 (x|α, β)
D2

1 (x|α, β)

(
1 − 2

ρ1w1 (x|α, β)
D1 (x|α, β)

)
(1, h (x))

∥∥∥∥
∞

≤ ρj

∣∣∣hk (x)
∣∣∣ (1) (3) ‖(1, h (x))‖∞

≤ 3ρj

(∣∣∣hk (x)
∣∣∣+
∣∣∣hk+1 (x)

∣∣∣
)

≡ m
(2)
j|k (x) . (31)

Given any bounded subset Θ ⊂ R2, it is easy to show that the integrable
conditions of Definition 2.3 are met since for any f(x|α, β) ∈ F (2)

j|k (Θ) with
(α, β) ∈ Θ and with j = 1, 2 and k = 0, 1, 2

|f (x|α, β)| ≤ |f (x|0, 0)| + m
(2)
j|k (x) ‖(α, β)‖∞ .

Hence f1(x) ≡ hk(x) ∈ L1(Gj), f(x|α, β) ∈ L1(Gj), and m
(2)
j|k(x) ∈ L1(Gj)

for j = 1, 2 and k = 0, 1, 2 under the convergence conditions of Assumption
2.1. Also f2(x|α, β) ≡ ρ1w1(x|α, β)/D1(x|α, β) ∈ L∞(Gj) for j = 1, 2.

Corollary 2.5. Under the conditions of Lemma 2.3 with Fj(f1, f2) spe-
cialized to F (2)

j|k (Θ) ≡ Fj(hk(x), ρ1w1(x|α, β)/D1(x|α, β)) with parametric
index Θ from Definition 2.5 with j = 1, 2 and k = 0, 1, 2, 3, if hl(x) is inte-
grable with respect to gj(x) for j = 1, 2 and l = 0, 1, 2, 3, 4, and (α∗, β∗)

P→
(α0, β0) ∈ Θ then

n∑

i=1

hk(ti)p̂2(ti|α∗, β∗)w1(ti|α∗, β∗)n1
P→ ρ1E

(
hk(X2)w1 (X2|α0, β0)

D1 (X2|α0, β0)

)

= ρ1E
(

hk(X1)
D1(X1|α0, β0)

)
.

Proof: Under the assumptions, f(x|α, β) ∈ F (2)
j|k (Θ) is integrable with

respect to gj(x) for j = 1, 2 and k = 0, 1, 2, 3, and m
(2)
j|k(x) is integrable

with respect to gj(x) for j = 1, 2 and k = 0, 1, 2, 3 so that the integrable
Lipschitz condition (19) is met. Hence the results of Lemma 2.3 are valid
for (α∗, β∗)

P→ (α0, β0) ∈ Θ. �
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Corollary 2.6. Under the conditions of Corollary 2.5, if (ά, β́) P→ (α0, β0) ∈
Θ, then

∇σ̂2
h (α, β)

∣∣
(ά,β́)

P→ ρ1


2µhE

(
h(X1)

D1(X1|α0,β0)

)
− E

(
h2(X1)

D1(X1|α0,β0)

)

2µhE
(

h2(X1)
D1(X1|α0,β0)

)
− E

(
h3(X1)

D1(X1|α0,β0)

)



≡ ∇σ2
h (α0, β0)

proving (15). �

Corollary 2.7. Under the conditions of Corollaries 2.4 and 2.6, applying
(14) and (15) shows that Qn((α̂, β̂), (ά, β́)) from (7) converges in probability
to Q(α0, β0) defined as

Q (α0, β0) =


 ρ1β0

[
2µhE

(
h(X1)

D1(X1|α0,β0)

)
− E

(
h2(X1)

D1(X1|α0,β0)

)]

2σ2
h + ρ1β0

[
2µhE

(
h2(X1)

D1(X1|α0,β0)

)
− E

(
h3(X1)

D1(X1|α0,β0)

)]



′

. �

The convergence in probability of −n−1∇∇′l(α, β)|(ὰ,β̀) to S(α0, β0) is
shown by using the almost sure convergence of functions in the previously de-
fined classes of functions f ∈ F (2)

j|k (Θ) ≡ Fj(hk(x), ρ1w1(x|α, β)/D1(x|α, β))
with parametric index Θ from Definition 2.5 where j = 1, 2 and k = 1, 2.

1
n

∇l(α, β) =
ρ1

1 + ρ1

(
1 −

∑n
i=1 p̂(ti|α, β)w1(ti|α, β)

1
n1

∑n1
i=1 h(x1i) −

∑n
i=1 h(ti)p̂(ti|α, β)w1(ti|α, β)

)

(32)

=
1

1 + ρ1

( ∑n
i=1 p̂(ti|α, β) − 1∑n

i=1 h(ti)p̂(ti|α, β) − 1
n2

∑n2
i=1 h(x2i)

)

The components of ∇∇′l(α, β)/n are

∂2

∂α2

l(α, β)
n

= − 1
1 + ρ1

(
n∑

i=1

p̂2(ti|α, β)w1(ti|α, β)n1

)
(33)

∂2

∂α∂β

l(α, β)
n

= − 1
1 + ρ1

(
n∑

i=1

h(ti)p̂2(ti|α, β)w1(ti|α, β)n1

)

∂2

∂β2

l(α, β)
n

= − 1
1 + ρ1

(
n∑

i=1

h2(ti)p̂2(ti|α, β)w1(ti|α, β)n1

)
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Corollary 2.8. Under the conditions of Corollary 2.5, if (ὰ, β̀) P→ (α0, β0) ∈
Θ, then

− 1
n

∇∇′l (α, β)
∣∣
(α∗,β∗)

P→ ρ1

1 + ρ1


E
(

1
D1(X1|α0,β0)

)
E
(

h(X1)
D1(X1|α0,β0)

)

E
(

h(X1)
D1(X1|α0,β0)

)
E
(

h2(X1)
D1(X1|α0,β0)

)



(34)

= S (α0, β0)

− 1
n

∇∇′l (α, β)
∣∣
(ὰ,β̀)

P→ S (α0, β0) (35)

The previous display (35) proves (16). �

To complete the convergence in probability analysis of Dn, the con-
vergence in probability of (α̂, β̂) to (α0, β0) is shown using the asymptotic
properties of extremum estimators as developed by Amemiya (1985) [1]. De-
finition 4.1.1, in Amemiya [1], defines three modes of uniform convergence
to 0 for a non-negative sequence of random variables gT (θ) that depend on
a parameter vector θ.

(i) P (limT→∞ supθ∈Θ gT (θ) = 0) = 1 is described as convergence almost
surely uniformly in θ ∈ Θ.

(ii) limT→∞ P (supθ∈Θ gT (θ) < ε) = 1 for any ε > 0 is described as conver-
gence in probability uniformly in θ ∈ Θ.

(iii) limT→∞ infθ∈Θ P (gT (θ) < ε) = 1 for any ε > 0 is described as conver-
gence in probability semiuniformly in θ ∈ Θ.

As reported in Amemiya [1], the first mode of uniform convergence (i) implies
the second mode (ii) and the second mode (ii) implies the third mode (iii).
The first mode of uniform convergence (i), is equivalent to the almost sure
convergence of the functions, f ∈ Fj for j = 1 . . . m, as shown in (20). The
second mode of uniform convergence (ii), is one condition of Theorem 4.1.6
(out of six conditions), in Amemiya [1], to show that an extremum estimator
converges in probability to the actual parameter.

In order to apply the theory of extremum estimators, the stochastic func-
tion ln(α, β) = l(α, β)+n log(n2) is identified with gT (θ), where maximizing
ln(α, β) with respect to (α, β) is equivalent to maximizing l(α, β) with re-
spect to (α, β), since the difference between ln(α, β) and l(α, β), n log(n2),
is a constant relative to (α, β). Let Θn = {(α∗, β∗) : ∇ln(α∗, β∗) = 0} so
that (α̂, β̂) ∈ Θn.
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Lemma 2.4. If hk(x) is integrable with respect to gj(x) for j = 1, 2 and
k = 1, 2 and if h(x) is non-constant with respect to g2(x) then one of the
roots (α∗, β∗) ∈ Θn converges in probability to (α0, β0).

Proof: Let Θ denote an open bounded convex subset of R2 containing
(α0, β0). Application of Theorem 4.1.6, from Amemiya [1], shows that the
result is true under the following conditions:

(A) ∇∇′ln(α, β) exists and is continuous for (α, β) ∈ Θ an open convex
neighborhood of (α0, β0),

(B) n−1∇∇′ln(α, β)|(α∗ ,β∗) converges in probability to a finite nonsingular
matrix −S(α0, β0) = lim n−1E∇∇′ln(α, β)|(α0 ,β0) for any sequence
(α∗, β∗) converging in probability to (α0, β0),

(C) n−1/2∇ln(α, β)|(α0 ,β0) → N(0,B(α0, β0))
where B(α0, β0) = lim n−1E(∇ln(α, β)|(α0 ,β0)) × (∇′ln(α, β)|(α0 ,β0)),

(D) n−1ln(α, β) converges to a nonstochastic function in probability uni-
formly in (α, β) ∈ Θ an open neighborhood of (α0, β0),

(E) −S(α0, β0) defined in condition (B) is a negative definite matrix,

(F) The limit in probability of n−1∇∇′ln(α, β) exists and is continuous for
(α, β) ∈ Θ a neighborhood of (α0, β0).

Condition (A) is immediate after examining (33). Condition (B) is
proven by starting with a consequence (34) from Corollary 2.8 of the abstract
Glivenko-Cantelli Theorem 2.1 for a parametric class with a parametric in-
dex Θ and by applying a result of the law of large numbers (18) from Lemma
2.1, in order to show

1
n

∇∇′ln (α, β)
∣∣
(α∗,β∗)

P→ −S (α0, β0) as (α∗, β∗)
P→ (α0, β0)

1
n

∇∇′ln (α, β)
∣∣
(α0,β0)

as→ −S(α0, β0)

and by direct calculation to show

1
n

E ∇∇′ln (α, β)
∣∣
(α0,β0)

= −S(α0, β0) for n = 1, . . . .
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S(α0, β0) is shown to be nonsingular by evaluating the determinant of S(α0, β0)
when |h(x)| is non-constant with respect to g2(x).

let M ≡ 1 + ρ1

ρ1
S(α0, β0)

det M = E
(

h2 (X1)
D1 (X1|α0, β0)

)
E
(

1
D1 (X1|α0, β0)

)
− E2

(
h (X1)

D1 (X1|α0, β0)

)

=
(
E
(
h2 (X∗)

)
− E2 (h (X∗))

)
E2

(
1

D1 (X1|α0, β0)

)

X∗ ∼ g∗ (x) = E−1

(
1

D1 (X1|α0, β0)

)
w1 (x|α0, β0)
D1 (x|α0, β0)

g2 (x)

Hence det M = 0 when h(X∗) is a degenerate (variance 0) random variable,
and detM 6= 0 when |h(X∗)| is non-constant almost everywhere or equiva-
lently when |h(X2)| is non-constant almost everywhere since g∗(x) and g2(x)
have the same support, see [6] equation 4.7.4 and Lemma 4.7.1,

With regard to condition (C), Lemma 2.8 will show (17). Equations
(40), (41), and (43) show that

Var
(
n− 1

2 ∇ln (α, β)|(α0,β0)

)
=

(1 + ρ1)
2

ρ1
V0, n = 1, 2, . . .

= B (α0, β0) .

With regard to condition (D), starting with (32) for (α, β) ∈ Θ, applying
a result (26) from Lemma 2.3 with parametric index Θ, and applying the
law of large numbers, shows

1
n

∇ln (α, β) as→ ρ1

1 + ρ1


 1 −

∑2
j=1 E

(
ρjw1(Xj |α,β)
D1(Xj |α,β)

)

E (h (X1)) −
∑2

j=1 E
(
h (Xj)

ρjw1(Xj |α,β)
D1(Xj |α,β)

)



= E
1
n

∇ln (α, β) ≡ ∇g (α, β) . (36)

The following anti-derivative of ∇g(α, β) with respect to (α, β) is suggested,
assuming the usual regularity conditions so that integration and differenti-
ation may be interchanged

g (α, β) =
1

1 + ρ1


ρ1 (α + βE (h (X1))) −

2∑

j=1

ρjE (log (D1 (Xj |α, β)))




= E
1
n

ln (α, β) . (37)
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It will be shown that n−1ln(α, β) converges to g(α, β) almost surely uni-
formly in (α, β) ∈ Θ an open neighborhood of (α0, β0).

Definition 2.6. Let F1(Θ) and F2(Θ) denote two classes of functions, that
are indexed by a bounded subset Θ ⊂ R2 containing (α0, β0), and that are
integrable with respect to the probability distributions G1 and G2 associated
with the densities g1 and g2, as defined by:

F1 (Θ) ≡ {f1(x|α, β) = log(D1(x|α, β)) − (α + βh(x)) : (α, β) ∈ Θ}
F2 (Θ) ≡ {f2(x|α, β) = log(D1(x|α, β)) : (α, β) ∈ Θ}

where f1 ∈ L1(G1) and f2 ∈ L1(G2).

The functions f1(x|α, β) ∈ F1(Θ) and f2(x|α, β) ∈ F2(Θ) have partial
derivatives of all orders with respect to (α, β). A Taylor series expansion,
for f1(x|α, β) and for f2(x|α, β) around (α, β) ∈ Θ, and the mean value
theorem 6.7 [16], identifies the following Lipschitz bound m(x)

f1

(
x|α1, β1

)
− f1

(
x|α2, β2

)
= ∇′f1 (x|αλ1 , βλ1)

(
α1 − α2

β1 − β2

)

f2

(
x|α1, β1

)
− f2

(
x|α2, β2

)
= ∇′f2 (x|αλ2 , βλ2)

(
α1 − α2

β1 − β2

)

(αλi , βλi) = λi
(
α1, β1

)
+
(
1 − λi

) (
α2, β2

)
, λi ∈ (0, 1) , i = 1, 2

∀ (α, β) ∈ Θ :
∥∥∇′f1 (x|α, β)

∥∥
∞ =

∥∥∥∥−
1

D1 (x|α, β)
(
1, h (x)

)∥∥∥∥
∞

≤ (1 + |h (x)|) ≡ m (x) ,

∀ (α, β) ∈ Θ :
∥∥∇′f2 (x|α, β)

∥∥
∞ =

∥∥∥∥
ρ1w1 (x|α, β)
D1 (x|α, β)

(
1, h (x)

)∥∥∥∥
∞

≤ m (x) .

Given any bounded subset Θ ⊂ R2, it is easy to show that any fj(x|α, β) ∈
Fj(Θ) is integrable with respect Gj with (α, β) ∈ Θ and with j = 1, 2

|fj (x|α, β)| ≤ |fj (x|0, 0)| + m (x) ‖(α, β)‖∞ .

Hence fj(x) ∈ L1(Gj) and m(x) ∈ L1(Gj) for j = 1, 2 under the assumptions
of this lemma. Applying Lemma 2.2 to fj(x|α, β) ∈ Fj(Θ) for j = 1, 2 shows

sup
(α,β)∈Θ

∣∣∣∣∣
1
nj

nj∑

i=1

fj (xji|α, β) − E (fj (Xj |α, β))

∣∣∣∣∣
as∗→ 0 .
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Given the following identities for ln(α, β) and g(α, β)

1
n

ln (α, β) =
(

ρ1

1 + ρ1

)[
1
n1

n1∑

i=1

α + βh (x1i) − log (D1 (x1i|α, β))

]

−
(

1
1 + ρ1

)
1
n2

n2∑

i=1

log (D1 (x2i|α, β))

g (α, β) =
(

ρ1

1 + ρ1

)
[α + βE (h (X1)) − E (log (D1 (X1|α, β)))]

−
(

1
1 + ρ1

)
E (log (D1 (X2|α, β)))

then the combined result from the previous display shows that n−1ln(α, β)
converges to g(α, β) almost surely uniformly in (α, β) ∈ Θ.

sup
(α,β)∈Θ

∣∣∣∣
1
n

ln (α, β) − g (α, β)
∣∣∣∣

≤ sup
(α,β)∈Θ

ρ1

1 + ρ1

∣∣∣∣∣
1
n1

n1∑

i=1

f1 (x1i|α, β) − E (f1 (X1|α, β))

∣∣∣∣∣

+ sup
(α,β)∈Θ

1
1 + ρ1

∣∣∣∣∣
1
n2

n2∑

i=1

f2 (x2i|α, β) − E (f2 (X2|α, β))

∣∣∣∣∣
as∗→ 0 .

Condition (D) is proven by specializing Θ to an open bounded subset of R2

containing (α0, β0).
Condition (E) is proven by showing that the matrix M defined above is

positive definite. Let X = (x1, x2)′ 6= 0.

X ′MX =
(
x1 x2

) [A0 A1

A1 A2

](
x1

x2

)

= A0x
2
1 + 2A1x1x2 + A2x

2
2

=
(√

A0x1 +
A1√
A0

x2

)2

+
(

A2 −
A2

1

A0

)
x2

2

=
(√

A0x1 +
A1√
A0

x2

)2

+
1

A0
det (M )x2

2

Hence M is positive definite if and only if det(M ) > 0. So the result
is proven when |h(x)| is non-constant with respect to g2(x) resulting in
det(M) > 0 as shown for condition (B) above.
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For condition (F), the law of large numbers is applied to find the limit of
n−1∇∇′ln(α, β) for (α, β) ∈ Θ. As a stronger result, the abstract Glivenko-
Cantelli theorem is applied to find the limit of n−1∇∇′ln(α, β) uniformly
in (α, β) ∈ Θ. For either application

n∑

i=1

hk (ti)p̂2 (ti|α, β) w1 (ti|α, β) n1

as→ ρ1

2∑

j=1

E
(

hk (Xj)
ρjw1 (Xj |α, β)
D2

1 (Xj|α, β)

)

= ρ1E
(

hk (X2)
w1 (X2|α, β)
D1 (X2|α, β)

(
1 + ρ1w1 (X2|α0, β0)

D1 (X2|α, β)

))

≡ ρ1Ak (α, β) , k = 0, 1, 2

1
n

∇∇′ln (α, β) as→ − ρ1

1 + ρ1

[
A0 (α, β) A1 (α, β)
A1 (α, β) A2 (α, β)

]

= E
1
n

∇∇′ln (α, β) . (38)

In summary, the six conditions (A) through (F) have been proven. Hence,
one of the roots (α∗, β∗) ∈ Θn converges in probability to (α0, β0). �

The previous extremum estimator analysis shows that one of the roots
(α∗, β∗) ∈ Θn converges in probability to (α0, β0). If there are multiple local
maximums of g(α, β) that satisfy the six conditions (A) through (F), then
this analysis does not determine which one of the local maximums of g(α, β)
is the limit in probability of (α̂, β̂) ∈ Θn. To complete this analysis, it is
shown that g(α, β) has a unique global maximum at (α0, β0) and that (α̂, β̂)
converges in probability to (α0, β0).

Lemma 2.5. Under the conditions of Lemma 2.4, if h(x) is continuous then
g(α, β) has a unique global maximum at (α0, β0).

Proof: Let Θ denote a bounded subset of R2 that contains two local max-
imums (α0, β0) and (α1, β1) of g(α, β), i.e. (α0, β0), (α1, β1) ∈ Θ. Starting
with (32) with (α, β) = (α∗, β∗) ∈ Θn and applying the convergence prop-
erty (23) of Lemma 2.3 to the classes of functions F (1)

j|k (Θ) ≡ Fj(hk(x), 1)

with parametric index Θ for j = 1, 2 and k = 0, 1 where (α∗, β∗) ∈ Θn
P→

(α1, β1) ∈ Θ, and where (α̂, β̂) ∈ Θn
P→ (α0, β0) ∈ Θ, shows that (α∗, β∗)
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and (α̂, β̂) are zeros of the function ∇g(α, β)

0 =
1
n

∇ln (α∗, β∗)
P→ ∇g (α1, β1)

0 =
1
n

∇ln

(
α̂, β̂

)
P→ ∇g (α0, β0) .

After a little algebra, the previous display is rewritten as

κ ≡ E
(

w1 (X2|α0, β0)
D1 (X2|α1, β1)

)
= E

(
w1 (X2|α1, β1)
D1 (X2|α1, β1)

)

µ∗
h ≡ E

(
h (X2)

κ

w1 (X2|α0, β0)
D1 (X2|α1, β1)

)
= E

(
h (X2)

κ

w1 (X2|α1, β1)
D1 (X2|α1, β1)

)

0 = E
(

(h (X2) − µ∗
h)

κ

w1 (X2|α0, β0)
D1 (X2|α1, β1)

)

= E
(

(h (X2) − µ∗
h)

κ

w1 (X2|α1, β1)
D1 (X2|α1, β1)

)

0 = E

(
(h (X2) − µ∗

h)
eβ0(h(X2)−µ∗

h)

D1 (X2|α1, β1)

)

= E

(
(h (X2) − µ∗

h)
eβ1(h(X2)−µ∗

h)

D1 (X2|α1, β1)

)
.

It is easy to show for x ∈ {x : h(x) − µ∗
h 6= 0} and β0 < β1 that

(h (x) − µ∗
h) eβ0(h(x)−µ∗

h) < (h (x) − µ∗
h) eβ1(h(x)−µ∗

h) .

Using the previous display and assuming h(x) is continuous and non-constant
with respect to g(x) results in

E

(
(h (X2) − µ∗

h)
eβ0(h(X2)−µ∗

h)

D1 (X2|α1, β1)

)
< E

(
(h (X2) − µ∗

h)
eβ1(h(X2)−µ∗

h)

D1 (X2|α1, β1)

)

implying that β1 ≤ β0. A similar analysis for β1 < β0 implies that β0 ≤ β1.
Hence there exist a single zero (α0, β0) of the function ∇g(α, β) implying a
unique global maximum (α0, β0) of the function g(α, β).

As an alternate proof of g(α, β) having a global maximum at (α0, β0),
∇g(α, β) is shown to equal zero at (α0, β0) and ∇∇′g(α, β) is shown to be
negative definite for all (α, β) ∈ R2. Using the following bounds on the first
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and second partial derivatives of n−1ln(α, β),
∣∣∣∣

∂

∂α

l(α, β)
n

∣∣∣∣ ≤ 1,
∣∣∣∣

∂

∂β

l(α, β)
n

∣∣∣∣ ≤
1
n

n∑

t=1

|h (xt)|

∣∣∣∣
∂2

∂α2

l(α, β)
n

∣∣∣∣ ≤ 1,
∣∣∣∣

∂2

∂α∂β

l(α, β)
n

∣∣∣∣ ≤
1
n

n∑

t=1

|h (xt)| ,

∣∣∣∣
∂2

∂β2

l(α, β)
n

∣∣∣∣ ≤
1
n

n∑

t=1

h2 (xt)

and using Corollary 2.4.1 of Theorem 2.4.2 from [6], shows

∇g (α, β) = E
1
n

∇ln (α, β) , ∇∇′g (α, β) = E
1
n

∇∇′ln (α, β)

where hk(x) for k = 1, 2 is assumed to be integrable with respect to gj(x) for
j = 1, 2. The structure of ∇g(α, β) from (36) implies that ∇g(α0, β0) = 0.
The structure of ∇∇′g(α, β) from (38) implies that −∇∇′g(α, β) is positive
definite for all (α, β) ∈ R2 if and only if the determinant of −∇∇′g(α, β) is
positive for all (α, β) ∈ R2. The Cauchy-Schwarz inequality shows

det
(
−1 + ρ1

ρ1
∇∇′g(α, β)

)
= A2 (α, β) A0 (α, β) − A2

1 (α, β) ≥ 0 .

The determinant equals 0 if and only if |h(x)| is constant almost every-
where with respect to g2(x). Hence under the assumptions of this lemma,
∇∇′g(α, β) is negative definite for all (α, β) ∈ R2. Thus with ∇g(α0, β0) =
0, a second order Taylor series expansion of g(α, β) around (α0, β0) shows
that g(α, β) has a global maximum at (α0, β0). �

Lemma 2.6. Let Θ denote a bounded subset of R2 that contains (α0, β0) as
an interior point. If n−1ln(α, β) converges uniformly in probability to g(α, β)
for (α, β) ∈ Θ where g(α, β) has a global maximum at (α0, β0) and if h(x)
is non-constant with respect to g2(x) then (α̂, β̂) converges in probability to
(α0, β0).

Proof: Let Θ0 denote a closed bounded subset of Θ that contains (α0, β0)
as an interior point and that contains the boundary of Θ0 denoted as ∂(Θ0).
Using the assumption that n−1ln(α, β) converges uniformly in probability to
g(α, β) for (α, β) ∈ Θ, and using the assumption that g(α, β) has a unique
global maximum at (α0, β0), shows that

P

(
1
n

ln (α0, β0) > sup
(α,β)∈∂(Θ0)

1
n

ln (α, β)

)
→ 1 .
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The set in the previous display implies the existence of a local maximum for
n−1ln(α, β) at (α∗, β∗) in the interior of Θ0 .

The determinant of n−1∇∇′ln(α, β) is shown to be greater than or equal
to 0 by applying the Cauchy-Schwarz inequality for vectors (identified as
inequality 1e.1) from [23]. The singular condition occurs if and only if h(ti)
is constant for all i = 1, . . . , n. Hence n−1∇∇′ln(α, β) is negative definite
almost surely under the assumptions of this lemma. A second order Taylor
series expansion of n−1∇∇′ln(α, β) about (α∗, β∗) shows that there exists
a single global maximum of n−1ln(α, β) at (α̂, β̂) almost surely.

Hence the result is proven since the existence of a single local maximum
almost surely such that (α∗, β∗) = (α̂, β̂) shows

P

(
1
n

ln (α0, β0) > sup
(α,β)∈∂(Θ0)

1
n

ln (α, β)

)
≤ P

((
α̂, β̂

)
∈ Θ0

)
→ 1. �

Corollary 2.9. Under the conditions of Lemma 2.6, if (α̂, β̂) P→ (α0, β0)
and (α∗, β∗) = λ(α̂, β̂) + (1 − λ)(α0, β0) for some λ ∈ (0, 1) then (α∗, β∗)

P→
(α0, β0).

Proof : The result is proven by letting Θ denote any open bounded
convex subset of R2 containing (α0, β0) and applying Lemma 2.6 to show

P
((

α̂, β̂
)
∈ Θ

)
≤ P ((α∗, β∗) ∈ Θ) → 1. �

Corollary 2.10. Under the conditions of Lemma 2.6, if (α̂, β̂) P→ (α0, β0)
then applying Corollary 2.9 to (8) and (9) shows the convergence in proba-
bility of (ά, β́) and (ὰ, β̀) to (α0, β0). �

The following display summarizes the convergence results proved above
(
α̂, β̂

)
P→ (α0, β0) from (12)

µ̂h (α0, β0)
as→ µh from (13)

σ̂2
h

(
α̂, β̂

)
P→ σ2

h from (14)

∇σ̂2
h (α, β)

∣∣
(ά,β́)

P→ ∇σ2
h (α0, β0) from (15)

− 1
n

∇∇′l (α, β)
∣∣
(ὰ,β̀)

P→ S (α0, β0) from (16)
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Lemma 2.7. Under the convergence conditions defined in Assumption 2.1,
Dn from (10) converges in probability to D = D(α0, β0) as follows

Dn
P→ D (α0, β0) =

1
2σh

(
−2µhβ0, β0, Q (α0, β0)S−1 (α0, β0)

)′
. (39)

Proof: The continuous mapping theorem, Slutsky’s theorem, and Corol-
laries 2.1, 2.7, and 2.8 are applied to prove the result that Dn

P→ D. �

Remark 2.3. Next the asymptotic distribution is shown for Y n, as previ-
ously defined in (11), using the following decomposition

Y n =




Y1n

Y2n

Y3n

Y4n


 ≡

√
n1n2

n




µ̂h (α0, β0) − µh

µ̂h2 (α0, β0) − µh2

1
n ∇l (α, β)|(α0,β0)


 (40)

≡ 1
√

n1

n1∑

i=1

(Y 1i −E (Y 1)) +
1

√
n2

n2∑

i=1

(Y 2i −E (Y 2))

Y 1i = M 1




h(x1i)
D1(x1i|α0,β0)

h2(x1i)
D1(x1i|α0,β0)

1
D1(x1i|α0,β0)

h(x1i)
D1(x1i|α0,β0)




, M1 =
√

1
1 + ρ1




ρ1

ρ1
ρ1

1+ρ1
ρ1

1+ρ1




Y 2i = M 2




h(x2i)
D1(x2i|α0,β0)

h2(x2i)
D1(x2i|α0,β0)

1
D1(x2i|α0,β0)

h(x2i)w1(x2i|α0,β0)
D1(x2i|α0,β0)




, M2 =
√

ρ1

1 + ρ1




1
1

1
1+ρ1

− ρ1

1+ρ1




Y 1i ∼ (E (Y 1) ,Var (Y 1)) , i = 1, . . . , n1

Y 2i ∼ (E (Y 2) ,Var (Y 2)) , i = 1, . . . , n2 .

Notice that E(µ̂hk(α0, β0)) = µhk ≡ E(h(X2)) for k = 1, 2 where µ̂hk(α0, β0)
depends on (α0, β0) but µhk does not depend on (α0, β0). This is true
because µ̂hk(α0, β0) consists of two random samples from X1 and X2 with
means that satisfy

µ̂hk (α0, β0) =
1
n1

n1∑

i=1

ρ1h
k (x1i)

D1 (x1i|α0, β0)
+

1
n2

n2∑

i=1

hk (x2i)
D1 (x2i|α0, β0)

E (µ̂hk (α0, β0)) = E
(

ρ1h
k (X1)

D1 (X1|α0, β0)

)
+ E

(
hk (X2)

D1 (X2|α0, β0)

)
= E

(
hk (X2)

)
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where the individual means depend on (α0, β0) but the sum of the means
does not depend on (α0, β0).

Lemma 2.8. Assuming hk(x) is square integrable for k = 0, 1, 2 with re-
spect to g1(x) and g2(x), then Y n converges in distribution to a multivariate
Gaussian distribution Y :

Y n = (Y1n, Y2n, Y3n, Y4n)′ d→ Y = (Y1, Y2, Y3, Y4)′ ∼ N (0,Σ) (41)
Σn ≡ Var (Y n) = Var (Y 1) + Var (Y 2) = Σ .

Proof: The multivariate central limit theorem ([23], 2c.5) is applied to
show the convergence in joint distribution of Y n by showing every linear
combination of Y n converges in distribution to a univariate Gaussian dis-
tribution

zn = λ′Y n
d→ z = λ′Y ∼ N

(
0,λ′Σλ

)
(42)

λ = (λ1, λ2, λ3, λ4)
′ .

The Lindeberg-Feller form of the central limit theorem ([23], 2c.5) is applied
to show (42).

Let zji ≡
1

√
ρj

λ′ (Y ji − E (Y j)) ∼ Gzji = GZj , j = 1, 2, i = 1, . . . , nj

Zj ∼ (E (Zj) ,Var (Zj)) =
(

0,
1
ρj

λ′Var (Y j) λ

)
, j = 1, 2

Let C2
n ≡

n1∑

i=1

Var (z1i) +
n2∑

i=1

Var (z2i)

=
n1

ρ1
λ′Var (Y 1) λ + n2λ

′Var (Y 2)λ

= n2λ
′Σnλ

The Lindeberg-Feller convergence condition, as specialized to (42), is satis-
fied for any ε > 0

1
C2

n

(
n1∑

i=1

∫

|z|>εCn

z2dGz1i(z) +
n2∑

i=1

∫

|z|>εCn

z2dGz2i(z)

)

=
ρ1

λ′Σnλ

∫
I (|z| > εCn) z2dGZ1(z) +

1
λ′Σnλ

∫
I (|z| > εCn) z2dGZ2(z)

→ 0 as n ↑ ∞
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since Var(zn) = λ′Σnλ = λ′Σλ is constant and finite for all n and since the
convergence of the two integrals to zero follows by applying the dominated
convergence theorem, hence

∑n1
i=1 z1i +

∑n2
i=1 z2i√

n2λ
′Σnλ

d→ N (0, 1)

which proves the result that

λ′Y n =
√

ρ1√
n1

n1∑

i=1

z1i +
1

√
n2

n2∑

i=1

z2i =
1

√
n2

(
n1∑

i=1

z1i +
n2∑

i=1

z2i

)

d→ N
(
0,λ′Σλ

)
. �

In order to calculate Var(Y 1) and Var(Y 2), the following definitions
are useful for k = 0, . . . , 4, for i = 0, 1, 2, and for j = 0, 1, 2

Ak ≡ E
(

hk(X1)
D1(X1|α0, β0)

)
, Bk ≡ E

(
hk(X2)

D1(X2|α0, β0)

)
,

Aij ≡ E
(

hi(X1)
D1(X1|α0, β0)

− Ai

)(
hj(X1)

D1(X1|α0, β0)
− Aj

)
,

Bij ≡ E
(

hi(X2)
D1(X2|α0, β0)

− Bi

)(
hj(X2)

D1(X2|α0, β0)
− Bj

)
,

Cij ≡ E
(

hi(X2)
D1(X2|α0, β0)

− Bi

)(
hj(X2)

w1(X2|α0, β0)
D1(X2|α0, β0)

− Aj

)
,

D2 ≡ E
(

h(X2)
w1(X2|α0, β0)
D1(X2|α0, β0)

− B1

)2

.

The resulting expressions for Var(Y 1) and Var(Y 2) are

Var (Y 1) = M1




A11 A12 A10 A11

A21 A22 A20 A21

A01 A02 A00 A01

A11 A12 A10 A11


M1

Var (Y 2) = M2




B11 B12 B10 C11

B21 B22 B20 C21

B01 B02 B00 C01

C11 C21 C01 D2


M2 .
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A little algebra is used to simplify Σn = Var(Y 1) + Var(Y 2)

Let Σn ≡
[
Σ1 Σ2

Σ′
2 V0

]
=




Var
(

Y1n

Y2n

)
Cov

(
Y1n

Y2n

)(
Y3n

Y4n

)

Cov
(

Y3n

Y4n

)(
Y1n

Y2n

)
Var

(
Y3n

Y4n

)




Σ1 =
ρ1

1 + ρ1

[ (
B2 − B2

1 − ρ1A
2
1

)
(B3 − B1B2 − ρ1A1A2)

(B3 − B1B2 − ρ1A1A2)
(
B4 − B2

2 − ρ1A
2
2

)
]

V0 =
ρ2
1

(1 + ρ1)2



(

1
1+ρ1

A0 − A2
0

) (
1

1+ρ1
A1 − A0A1

)
(

1
1+ρ1

A1 − A0A1

) (
1

1+ρ1
A2 − A2

1

)

 (43)

Σ2 =
ρ2
1

(1 + ρ1)2

[
(B1 − A1)A0 (B1 − A1) A1

(B2 − A2)A0 (B2 − A2) A1

]
.

Theorem 2.2. Under the convergence conditions identified in Assumption
2.1, Z̃

∗
n converges to a Gaussian random variable Z̃

∗
.

Proof: The convergence in distribution of Z̃
∗
n as n → ∞ is established

using Slutsky’s theorem, Lemma 2.7, and Lemma 2.8

Z̃
∗
n = D′

nY n
d→ Z̃

∗
= D′Y ∼ N

(
0,D′ΣD

)
. � (44)

The matrix algebra of D′ΣD is simplified by taking advantage of the
structure of S(α0, β0) in order to define

S ≡ S (α0, β0) =
ρ1

1 + ρ1

[
A0 A1

A1 A2

]

M ≡
[
I2

S−1

]
so that MY ∼ E (0,MΣM )

[
Σ1 Σ3

Σ′
3 V1

]
≡ MΣM =

[
Σ1 Σ2S−1

S−1Σ′
2 S−1V0S−1

]

V1 =
1

1 + ρ1

[
A0 A1

A1 A2

]−1

−
[
1 0
0 0

]

Σ3 =
ρ1

1 + ρ1

[
(B1 − A1) 0
(B2 − A2) 0

]
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and then rewritting the distribution of the random variable Z̃
∗

as

Z̃
∗

= D′
1MY ∼ N

(
0,D′

1MΣMD1

)

D1 ≡ 1
2σh

(
−2µhβ0, β0, Q (α0, β0)

)′

MY =
(
Y1, Y2, Yα0 , Yβ0

)′
(

Yα0

Yβ0

)
∼

√
ρ1

(1 + ρ1)

(
Zα0

Zβ0

)
; see (4) and (5).

Under the alternative hypothesis, H1 : β0 6= 0 with β0 fixed, Theorem
2.2 shows an asymptotic Gaussian distribution result

Z̃
∗
n =

√
n1n2

n

(
σ̂h(α̂, β̂)β̂ − σhβ0

)
= D′

nY n
d→ Z̃

∗
= D′Y ∼ N

(
0,D′ΣD

)
.

This asymptotic Gaussian distribution will be used in section 2.2.3 in order
to approximate the relative efficiency of the t-test to the semiparametric
test. Section 2.2.3 also describes another type of efficiency called Pitman
efficiency. To justify using this asymptotic Gaussian distribution in order to
approximate the Pitman efficiency the following convergence in distribution
result, a generalization of Theorem 2.2, is also needed

Z̃
∗
n =

√
n1n2

n

(
σ̂h(α̂, β̂)β̂ − σhβn

)
d(βn)→ Z̃

∗ ∼ N(0, 1)

where the true distortion parameter βn at time index n represents a sequence
of alternative hypotheses, H1 : βn 6= 0, such that βn → β0 = 0. In general
the results of Theorem 2.2 for any fixed β0 6= 0 do not imply the previous
display.

Assumption 2.2. The following list defines convergence conditions that
allow Z̃

∗
n to converge to a Gaussian random variable Z̃

∗
as the true distortion

parameter βn converges to β0:

• The random variable X1 is distributed according to a sequence of
density functions {pn(x) : n = 1, 2, . . . } where X1 ∼ g1 = pn at time
index n such that pn → p0 almost everywhere where p0(x) defines
another density function.

• The random variable X2 is distributed according to the density func-
tion g2 at all time indexes n: X2 ∼ g2.
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• The sequence of distortion parameters (αn, βn) converges to the limit-
ing distortion parameters (α0, β0) where the density ratios pn(x)/g2(x) =
exp(αn+βnh(x)) identify (αn, βn) and where the limiting density ratio
p0(x)/g2(x) = exp(α0 + β0h(x)) identifies (α0, β0).

• h(x) is continuous and non-constant with respect to the density g2

such that Pg2(x : h(x) = m) = 0 for all m ∈ R.

• hk(x) is integrable with respect to the sequence of densities {g2, pn :
n = 0, 1, 2, . . . } for k = 1, 2, 3, 4 such that En|hk(X1)| → E0|hk(X1)|
where the En notation denotes expectation according to the pn density.

For the last convergence condition, |hk(x)| is bounded by 1 + h4(x) for
k ∈ {1, 2, 3}. If Enh4(X1) → E0h

4(X1) then En|hk(X1)| → E0|hk(X1)| for
k ∈ {1, 2, 3} by applying Pratt’s extended dominated convergence theorem
from Appendix 2B [23].

In the sequel, let the operators En(·) and Varn(·) denote expectation and
variance with respect to a density that varies with (αn, βn).

Lemma 2.9. Under the convergence conditions listed in Assumption 2.2,
Y n converges in distribution to a multivariate Gaussian distribution Y :

Y n = (Y1n, Y2n, Y3n, Y4n)′
d(βn)→ Y = (Y1, Y2, Y3, Y4)

′ ∼ N (0,Σ0)

Σn ≡ Varn (Y n) = Varn (Y 1) + Varn (Y 2)
βn→ Σ0 .

where Y n,Y 1,Y 2 are defined in (40) with (α0, β0) replaced by (αn, βn) such
that at time index n

Y 1 ∼ (En (Y 1) ,Varn (Y 1))
Y 2 ∼ (En (Y 2) ,Varn (Y 2)) .

Proof: As shown in Lemma 2.8, the multivariate central limit theorem
([23], 2c.5) is applied to show the convergence in joint distribution of Y n

zn = λ′Y n
d(βn)→ z = λ′Y ∼ N

(
0,λ′Σ0λ

)

λ = (λ1, λ2, λ3, λ4)′ .

The Lindeberg-Feller form of the central limit theorem ([30], Proposition
2.27) is applied to show the previous display. Let zji, Cn, and µhk remain
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defined as in Lemma 2.8 such that for i = 1, . . . , nj, j = 1, 2, and k = 1, 2

zji ∼ Gn,zji = Gn,Zj

Zj ∼ (En (Zj) ,Varn (Zj)) =
(

0,
1
ρj

λ′Varn(Y j)λ
)

C2
n ≡

n1∑

i=1

Varn (z1i) +
n2∑

i=1

Varn (z2i)

= n2λ
′Σnλ

µhk ≡ E
(
hk (X2)

)
.

As described in Remark 2.3, µhk for k = 1, 2 do not depend on (αn, βn)
so that the centering constants in the definition of Y n in (40) do not vary
with (αn, βn). The Lindeberg-Feller convergence condition, as specialized to
zji/Cn, is satisfied for any ε > 0
(

n1∑

i=1

∫
∣∣∣ z
Cn

∣∣∣>ε

(
z

Cn

)2

dGn,z1i(z) +
n2∑

i=1

∫
∣∣∣ z

Cn

∣∣∣>ε

(
z

Cn

)2

dGn,z2i(z)

)

=
ρ1

λ′Σnλ

∫
I (|z| > εCn) z2dGn,Z1(z) +

1
λ′Σnλ

∫
I (|z| > εCn) z2dGn,Z2(z)

≤
√

ρ1 + 1
λ′Σnλ

∫
I (q(x|λ) > εCn) q2(x|λ)g2(x)dx

→ 0 as n ↑ ∞

where

q(x|λ) ≡ |λ3| + (|λ1| + |λ4|) |h(x)| + |λ2|h2(x)
n1∑

i=1

Var
z1i

Cn
+

n2∑

i=1

Var
z2i

Cn
= 1

since Varn(zn) = λ′Σnλ → λ′Σ0λ = Var0(z) and the integral converges
to zero by applying Pratt’s extended dominated convergence theorem from
Appendix 2B [23], hence

∑n1
i=1 z1i +

∑n2
i=1 z2i√

n2λ
′Σnλ

d(βn)→ N(0, 1)

which proves the result that

λ′Y n
d(βn)→ N

(
0,λ′Σ0λ

)
. �
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In order to show that Dn
P (βn)→ D(α0, β0) as βn → β0, it suffices to prove

the convergence results of (12), (13), (14), (15), and (16) as βn → β0. These
convergence results will be shown by proving uniform convergence results
for the appropriate classes of functions using a specialized weak version of
the abstract Glivenko-Cantelli Theorem.

Lemma 2.10. Let X denote a random variable with a density function
p(x) and let f(x) denote an integrable function with respect to p(x) such
that µf ≡ E(f(X)) < ∞, then the characteristic function φ(t) of f(X) is
differentiable everywhere such that

φ (t + h) − φ (t)
h

= E
(
if (x) eitf(x)fh (x)

)
≡ φh (t) , |fh (x)| ≤

√
2

φ′ (t) ≡ lim
h→0

φh (t) = E
(
if (x) eitf(x)

)

φ′ (0) = iµf .

Proof: Direct calculation shows that the characteristic function φ(t) sat-
isfies the following

φ (t + h) − φ (t)
h

= E
(

eitf(x) (cos (hf (x)) − 1) + i sin (hf (x))
h

)
≡ φh (t) .

First order Taylor series expansions of cos(hf(x)) and sin(hf(x)) around
h = 0 shows

cos (hf (x)) = 1 − f (x) sin (hcf (x)) h, hc ∈ (0, h)
sin (hf (x)) = f (x) cos (hsf (x))h, hs ∈ (0, h) .

Hence the approximate derivative φh(t) of the characteristic function φ(t)
can be rewritten as

φh (t) = E
(
if (x) eitf(x)fh (x)

)

fh (x) = cos (hsf (x)) + i sin (hcf (x)) , hc, hs ∈ (0, h) .

It is easy to see that for any fixed x

f0 (x) = 1, |fh (x)|2 = cos2 (hsf (x)) + sin2 (hcf (x)) ≤ 2 .

Application of the dominated convergence theorem to φh(t) as h → 0 under
the assumption that the random variable f(X) is integrable proves the final
two results since

∣∣∣φh (t)
∣∣∣ ≤ E

∣∣∣if (x) eitf(x)fh (x)
∣∣∣ ≤ E |f (x)|

√
2 < ∞ . �
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Lemma 2.11. Let {Xn : n = 1, 2, . . . }, denote a sequence of random vari-
ables with densities pn(x), and let X0 denote another random variable with
density p0(x) such that pn → p0 almost everywhere. Let f(x) denote a func-
tion that is integrable with respect to the sequence of densities {p0, p1, . . . }.
If E|f(Xn)| → E|f(X0)| < ∞ then the sequence of characteristic functions
φn(t) for f(Xn) and the sequence of approximate derivatives φh

n(t) for the
characteristic functions φn(t) converge uniformly to the characteristic func-
tion φ0(t) for f(X0) and its approximate derivative φh

0(t)

sup
t

|φn (t) − φ0 (t)| → 0

sup
t

∣∣∣φh
n (t) − φh

0 (t)
∣∣∣→ 0

sup
t

∣∣φt
n (0) − φt

0 (0)
∣∣→ 0 .

Proof: For the first result, applying Scheffe’s convergence theorem in-
volving densities (theorem XV) from [23] or applying Pratt’s extended dom-
inated convergence theorem from Appendix 2B [23], as n → ∞ shows

∫
|pn (x) − p0 (x)| dx → 0

since the integrand is dominated by pn(x)+p0(x) such that as pn(x) → p0(x)
almost everywhere and

∫
(pn (x) + p0 (x)) dx = 2 → 2 = 2

∫
p0 (x) dx < ∞ .

For any t, the absolute difference between the characteristic functions is
bounded by

|φn(t) − φ0(t)| =
∣∣∣∣
∫

eitf(x) (pn (x) − p0 (x)) dx

∣∣∣∣ ≤
∫

|pn (x) − p0 (x)| dx .

The three previous displays prove the first result that the the sequence of
characteristic functions φn(t) of f(Xn) converges uniformly to the charac-
teristic function φ0(t) of f(X0).

For the remaining results, assume without loss of generality that E|f(Xn)| <
∞ for all n. Lemma 2.10 is applied to find a bound for the absolute difference
between the approximate derivatives of the characteristic functions

∣∣∣φh
n (t) − φh

0 (t)
∣∣∣ =

∣∣∣∣
∫

if (x) eitf(x)fh (x) (pn (x) − p0 (x)) dx

∣∣∣∣

≤
∫

|f (x)|
√

2 |pn(x) − p0(x)| dx .
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The integrand in the bound of the previous display is bounded by |f(x)|
√

2(pn(x)+
p0(x)) such that as pn(x) → p0(x) almost everywhere and

∫
|f (x)|

√
2 (pn (x) + p0 (x)) dx → 2

√
2E |f (X0)| < ∞ .

Hence the remaining uniform convergence results for the sequence of approx-
imate derivatives of the characteristic functions φh

n(t) and φt
n(0) for Xn is

proven by applying Pratt’s extended dominated convergence theorem from
Appendix 2B [23]. �

The following version of the weak law of large numbers is an extension of
Proposition 2.16 in [30] to cover the case where the random sample densities
pn converge to a density p0 almost everywhere.

Proposition 2.1. Let {Xn : n = 1, 2, . . . } denote a sequence of random
variables with density functions pn(x) and let X0 denote a random vari-
able with density function p0(x) such that pn → p0 almost everywhere. Let
f(x) denote an integrable function with respect to the sequence of densities
{p0, p1, . . . }. Let ρ > 0 define a sample proportion and let nρ ≡ nρ/(1 + ρ)
define a sample size proportional to n. Let xn,ρ ≡ {xni : i = 1, . . . , nρ}
denote a random sample of size nρ from Xn, n ∈ {1, 2, . . . }. If E|f(Xn)| →
E|f(X0)| then

Pn,ρf ≡ 1
nρ

nρ∑

i=1

f(xni)
Pn→ P0f ≡ Ef(X0) .

Proof: Let φn(t) denote the characteristic functions of f(Xn) and let
φ0(t) denote the characteristic function of f(X0). By Lemma 2.10 the char-
acteristic functions φn(t) for f(Xn), n ∈ {0, 1, 2, . . . } are differentiable for
all t such that

φn (t) = 1 + tφt
n (0) .

Let tnρ ≡ t/nρ. Applying Fubini’s theorem shows for each fixed t that

EeitPn,ρf =
(
φn

(
tnρ

))nρ =

(
φn

(
tnρ

)

φ0

(
tnρ

)
)nρ (

φ0

(
tnρ

))nρ

=

(
1 +

t

nρ

φ
tnρ
n (0) − φ

tnρ

0 (0)
φ0

(
tnρ

)
)nρ (

1 +
t

nρ
φ

tnρ

0 (0)
)nρ

.
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By Lemma 2.11, the sequence of approximate derivatives φt
n(0) of the char-

acteristic functions of f(Xn) converges uniformly to the approximate deriv-
ative φt

0(0) of the characteristic function of f(X0), which shows as n → ∞

∣∣∣∣∣
φ

tnρ
n (0) − φ

tnρ

0 (0)
φ0

(
tnρ

)
∣∣∣∣∣ =

∣∣∣φtnρ
n (0) − φ

tnρ

0 (0)
∣∣∣

∣∣φ0

(
tnρ

)∣∣ ≤
supt∗

∣∣φt∗
n (0) − φt∗

0 (0)
∣∣

∣∣φ0

(
tnρ

)∣∣

→ 0
1

= 0 .

Lemma 2.10 also shows that φt
0(0) is continuous at t = 0 such that

φ
tnρ

0 (0) → φ′
0 (0) = iEf (X0) as nρ → ∞ .

Combining the three previous displays shows the characteristic function for
Pn,ρf converges as n → ∞

EeitPn,ρf → e0etφ′
0(0) = eitEf(X0) .

The previous display demonstrates pointwise convergence of the character-
istic function for Pn,ρf to the characteristic function of the constant random
variable Ef(X0). By Levy’s continuity theorem (Theorem 2.13 [30]), Pn,ρf
converges in distribution to Ef(X0). The result is proven since convergence
in distribution to a constant implies convergence in probability. �

Petrov (1995) [22] develops a weak law of large numbers result for tri-
angular arrays of random variables. Under the assumptions of Proposition
2.1 the weak law of large numbers result of Theorem 4.11 [22] is valid if the
following condition is met as n → ∞ where mn denotes the median of pn(x)

n1

∫
((x − mn)/n1)

2

1 + ((x − mn)/n1)
2 pn (x) dx → 0 .

Pratt’s extended dominated convergence theorem from Appendix 2B [23] is
applied to show the previous convergence condition as n → ∞ since

n1

∫
((x − mn)/n1)

2

1 + ((x − mn)/n1)
2 pn (x) dx =

∫
(x − mn)2 /n1

1 + ((x − mn)/n1)
2 pn (x) dx

|x − mn| ≤ |x| + |mn| ,
∣∣∣∣

((x − mn)/n1)
1 + ((x − mn)/n1)

2

∣∣∣∣ ≤ 1

since the integrand on the right hand side of the previous display converges
pointwise to zero and since En(|X1| + |mn|) → E0(|X1| + |m∞|) under the
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assumption that each density in the sequence of densities {p0, p1, p2, . . . }
has a unique median so that m∞ = m0 or under the assumption that the
sequence of medians converges to a finite limit.

Theorem 2.3. Let {Xn : n = 1, 2, . . . } define a sequence of random vari-
ables with density functions pn(x) and let X0 define a random variable
with density function p0(x) such that pn → p0 almost everywhere. Let
F = {fθ(x) : θ ∈ Θ} denote a parametric class of measurable functions and
let m(x) denote a measurable function as defined by Example 2.1 that are
integrable with respect to the probability distributions {P0, P1, P2, . . . }. Let
ρ > 0 define a sample proportion and let nρ ≡ nρ/(1+ρ) define a sample size
proportional to n. At time index n let xn,ρ ≡ {xni : i = 1, . . . , nρ} denote
a random sample from Pn. If Pn|fθ| ≡ E|fθ(Xn)| → P0|fθ| ≡ E|fθ(X0)| for
all fθ ∈ F and Pnm ≡ Em(Xn) → P0m ≡ Em(X0) as n → ∞ then

‖Pn,ρfθ − P0fθ‖F ≡ sup
fθ∈F

∣∣∣∣∣
1
nρ

nρ∑

i=1

fθ (xni) − Efθ (X0)

∣∣∣∣∣
Pn→ 0 .

Proof: Given a bracket size of ε, Example 2.1 implies that in order to
cover F with a finite number of ε-brackets in L1(P0) it is sufficient to cover
Θ with a finite number of balls of diameter ε/(2P0m). Example 2.1 bounds
the minimum number of ε-brackets in L1(P0) needed to cover F by

N[](ε,F , L1(P0)) ≤ K

(
diam Θ× P0m

ε

)d

.

Let NF ,ε ≡ N[](ε,F , L1(P0)) and let Fε,j ≡ {fθ ∈ F : fθ ∈ jth ε-bracket},
for j = 1, . . . , NF ,ε. Choose a single function in each parametric subclass
fθ ∈ Fε,j and denote it as fθ(j)

for j = 1, . . . , NF ,ε and let Fε ≡ {fθ(j)
: j =

1, . . . , NF ,ε}. The j-th ε-bracket of the form [lj , uj ] is constructed using fθ(j)

such that for fθ(j)
, fθ ∈ Fε,j where ‖θ(j) − θ‖ ≤ ε/(2P0m)

lj ≡ fθ(j)
− ε

2P0m
m ≤ fθ ≤ fθ(j)

+
ε

2P0m
m ≡ uj, P0 (uj − lj) = ε .

For any fθ ∈ F and a bracket size ε there exist an Fε,j with fθ, fθ(j)
∈ Fε,j.

Applying the ε-bracket inequalities from the previous display shows that

|Pn,ρfθ − P0fθ| ≤
∣∣∣Pn,ρfθ(j)

− P0fθ(j)

∣∣∣+ ε

2P0m
|Pn,ρm − P0m| + ε .

The previous display, true for any fθ ∈ Fε,j given an ε-bracket, implies the
following supremum over all fθ ∈ F given an ε-bracket

sup
fθ∈F

|Pn,ρfθ − P0fθ| ≤ sup
fθ(j)

∈Fε

∣∣∣Pn,ρfθ(j)
− P0fθ(j)

∣∣∣+ ε

2P0m
|Pn,ρm − P0m| + ε .

42



Given η, ε > 0 choose a bracket size ε ≤ η/3 and choose Nη,ε by applying
the weak law of large numbers from Proposition 2.1 such that for n > Nη,ε

P
(∣∣∣Pn,ρfθ(j)

− P0fθ(j)

∣∣∣ <
η

3

)
> 1 − ε

2NF ,ε
for all fθ(j)

∈ Fε

P

(
ε

2P0m
|Pn,ρm − P0m| <

η

3

)
≥ P (|Pn,ρm − P0m| < 2P0m) > 1 − ε

2
.

Hence for n > Nη,ε the previous two displays show that

P


 sup

fθ(j)
∈Fε

∣∣∣Pn,ρfθ(j)
− P0fθ(j)

∣∣∣ <
η

3


 > 1 − ε

2

P

(
sup
fθ∈F

|Pn,ρfθ − P0fθ| < η

)
> 1 − ε .

The result is proven since η, ε > 0 are arbitrary. �
The asymptotic properties of extremum estimators from Amemiya [1] is

applied to show the convergence in probability property of the estimators
(α̂, β̂) → (α0, β0) as n → ∞. As defined previously prior to Lemma 2.4, let
ln(α, β) = l(α, β) + n log(n2).

Lemma 2.12. Under the first four convergence conditions of Assumption
2.2, if h(x) is integrable with respect to the sequence of densities {g2, p0, p1, . . . }
such that En|h(X1)| → E0|h(X1)| and if h2(x) is integrable with respect to
the densities {g2, p0}, then (α̂, β̂) converges in probability to (α0, β0).

Proof: Let Θ define a bounded compact subspace of R2 that includes the
sequence of distortion parameters (αn, βn) for n ∈ {1, 2, . . . } and includes
the limiting distortion parameters (α0, β0) such that (αn, βn) → (α0, β0).
Let Θ∗

n = {(α∗, β∗) : ln(α∗, β∗) = max(α,β)∈Θ ln(α, β)}. Application of
Theorem 4.1.1 from Amemiya [1], shows that (α∗, β∗) ∈ Θ∗

n converges in
probability to (α0, β0) under the following conditions

(A) The parameter subspace Θ is a compact subset of R2 that includes
(α0, β0),

(B) ln(α, β) is continuous in (α, β) ∈ Θ for all t = (x′
1,x

′
2)

′ and is a mea-
surable function of t for all (α, β) ∈ Θ,

(C) ln(α, β) converges to a nonstochastic function g(α, β) in probability
uniformly in (α, β) ∈ Θ as n → ∞, and g(α, β) attains a unique
global maximum at (α0, β0).
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Condition (A) is satisfied by construction. Condition (B) is also satisfied
since the profile log-likelihood equation l(α, β) is continuous in (α, β) ∈ Θ
and since h(x) is integrable with respect to the densities g1(x) and g2(x).

With regard to condition (C), Definition 2.6 defines two classes of func-
tions F1(Θ) and F2(Θ) with parametric index Θ that are used to prove
the uniform convergence in probability condition (D) for Lemma 2.4. The
proof of condition (D) for Lemma 2.4 shows that F1(Θ) and F2(Θ) are
parametric classes with a common Lipschitz bound m(x) ≡ 2(1 + |h(x)|).
By assumption h(x) is integrable with respect to the sequence of densities
{g2, p0, p1, . . . } such that En|h(X1)| → E0|h(X1)|. Hence m(x) and the func-
tions f1(x|α, β) ∈ F1(Θ) are also integrable to the same sequence of densities
such that En|m(X1)| → E0|m(X1)| and En|f1(X1|α, β)| → E0|f1(X1|α, β)|
by applying Pratt’s extended dominated convergence theorem from Appen-
dix 2B [23]. The specialized weak Glivenko-Cantelli Theorem 2.3 is applied
to show for f1(x|α, β) ∈ F1(Θ)

sup
(α,β)∈Θ

∣∣∣∣∣
1
n1

n1∑

i=1

f1 (x1i|α, β) − E (f1 (X1|α, β))

∣∣∣∣∣
Pn→ 0 .

Lemma 2.2 was previously applied to f2(x|α, β) ∈ F2(Θ) to show

sup
(α,β)∈Θ

∣∣∣∣∣
1
n2

n2∑

i=1

f2 (x2i|α, β) − E (f2 (X2|α, β))

∣∣∣∣∣
as∗→ 0 .

The combination of the two previous displays proves the uniform conver-
gence in probability condition

sup
(α,β)∈Θ

∣∣∣∣
1
n

ln (α, β) − g (α, β)
∣∣∣∣

≤ sup
(α,β)∈Θ

ρ1

1 + ρ1

∣∣∣∣∣
1
n1

n1∑

i=1

f1 (x1i|α, β) − E (f1 (X1|α, β))

∣∣∣∣∣

+ sup
(α,β)∈Θ

1
1 + ρ1

∣∣∣∣∣
1
n2

n2∑

i=1

f2 (x2i|α, β) − E (f2 (X2|α, β))

∣∣∣∣∣
Pn→ 0 .

The function g(α, β) and its gradient and hessian have the following forms,
as shown in the proof of Lemma 2.4 for condition (D), and as shown in the

44



alternate proof of Lemma 2.5, under the limit condition that X1 ∼ g1 = p0

g (α, β) = E
1
n

ln (α, β)

∇g (α, β) = E
1
n

∇ln (α, β)

∇∇′g (α, β) = E
1
n

∇∇′ln (α, β) .

The actual form of g(α, β), its gradient ∇g(α, β), and its hessian ∇∇′g(α, β),
are identified in (37), (36), and (38) within Lemma 2.4. The proof of
Lemma 2.5 shows that g(α, β) has a global maximum at (α0, β0) where
∇g(α0, β0) = 0 and where the hessian ∇∇′g(α, β) is positive definite for all
(α, β) ∈ R2 under the assumption that h(x) is non-constant with respect to
g2. Hence the proof that (α∗, β∗) ∈ Θ∗

n converges in probability to (α0, β0)
is complete.

Lemma 2.6 is applied to complete the proof that (α̂, β̂) converges in
probability to (α0, β0), since n−1ln(α, β) converges uniformly in probability
to g(α, β) for (α, β) ∈ Θ where g(α, β) has a global maximum at (α0, β0),
and since h(x) is non-constant with respect to g2 by assumption. Hence the
result is proven. �

The proofs of Corollaries 2.9 and 2.10 remain valid as follows.

Corollary 2.11. Under the convergence conditions of Lemma 2.12,

if (α̂, β̂)
P (βn)→ (α0, β0) then (ά, β́) and (ὰ, β̀)

P (βn)→ (α0, β0). �

The following Lemma 2.13 provides a counterpart to Lemma 2.3 as
(αn, βn) → (α0, β0). This lemma utilizes the abstract parametric classes
Fj(f1, f2) with parametric index Θ for j = 1, 2 from Definition 2.3. This
lemma, with Fj(f1, f2) for j = 1, 2 specialized to F (1)

j|k (Θ) for k = 1, 2 from

Definition 2.4 and specialized to F (2)
j|k (Θ) for k = 0, 1, 2, 3 from Definition

2.4, is applied in Lemma 2.14 to show specific random sample convergence
results as (αn, βn) → (α0, β0).

Lemma 2.13. Under the first three convergence conditions of Assumption
2.2 with m = 2 and with the parametric classes of functions Fj(f1, f2)
with parametric index Θ for j = 1, 2 from Definition 2.3 with Lipschitz
bounds mj(x), if the functions f(x|α, β) ∈ F1(f1, f2) and m1(x) are in-
tegrable with respect to the sequence of densities {p0, p1, p2, . . . } such that
En|f(X1|α, β)| → E0|f(X1|α, β)| and Enm1(X1) → E0m1(X1), if the func-
tions f ∈ F2(f1, f2) and m2(x) are integrable with respect to the density g2,

45



and if (α∗, β∗)
P (βn)→ (α0, β0) ∈ Θ, then

n∑

i=1

f1 (ti) f2 (ti|αn, βn) p̂ (αn, βn)
P (βn)→ E (f1 (X2) f2 (X2|α0, β0))

n∑

i=1

f1 (ti) f2 (ti|α∗, β∗) p̂ (α∗, β∗)
P (βn)→ E (f1 (X2) f2 (X2|α0, β0)) .

Proof: The proof of this lemma makes use of expressions (23) and (24)
from Lemma 2.3. Expression (23) for j = 1 converges in probability to
0 for any nonrandom sequence (α∗, β∗) = (αn, βn) → (α0, β0) by applying
Theorem 2.3 with F specialized to F1(f1, f2) with parametric index Θ and
by applying Proposition 2.1 with f(x) specialized to m1(x). Expression
(23) for j = 2 converges almost surely to 0 for any nonrandom sequence
(α∗, β∗) = (αn, βn) → (α0, β0) by applying Lemma 2.2 and by applying the
strong law of large numbers. Combining in (24) the convergence results from
the two previous statements for j ∈ {1, 2} proves the first result.

Expression (23) for j ∈ {1, 2} converges in probability to 0 for (α∗, β∗)
P (βn)→

(α0, β0) by applying Theorem 2.3, Proposition 2.1, Lemma 2.2, the weak law
of large numbers, and by applying Slutsky’s theorem. Combining in (24) the
two convergence results from the previous statement for j ∈ {1, 2} proves
the second result. �

Lemma 2.14. Under the convergence conditions defined in Assumption 2.2

µ̂ (αn, βn)
P (βn)→ µh

σ̂2
h

(
α̂, β̂

)
P (βn)→ σ2

h

∇σ̂2
h (α, β)

∣∣
(ά,β́)

P (βn)→ ∇σ2
h (α0, β0)

− 1
n

∇∇′l (α, β)
∣∣
(ὰ,β̀)

P (βn)→ S (α0, β0) .

Proof: Let Θ denote a bounded subset of R2 that contains {(αn, βn) :
n = 0, 1, 2, . . . }. As previously shown, the functions f ∈ F (1)

j|k (Θ) ≡ Fj(hk(x), 1),
j ∈ {1, 2} with parametric index Θ, k ∈ {1, 2}, have Lipschitz bounds
m

(1)
j|k(x) ≡ ρj(|hk(x)| + |kk+1(x)|). Also the functions f ∈ F (2)

j|k (Θ) ≡
Fj(hk(x), ρ1w1(x|α, β)/D1(x|α, β)) with parametric index Θ, j ∈ {1, 2},
k ∈ {0, 1, 2, 3}, have Lipschitz bounds m

(2)
j|k(x) ≡ 3ρj(|hk(x)| + |kk+1(x)|).

Under the assumptions of this lemma, the functions f ∈ F (1)
1|k (Θ) and
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m
(1)
1|k(x) are integrable with respect to the sequence of densities {p0, p1, . . . }

for k ∈ {1, 2}. The functions f ∈ F (1)
1|k (Θ) are bounded by |hk(x)| such

that Pn|f | → P0|f | by applying Pratt’s extended dominated convergence
theorem from Appendix 2B [23]. The Lipschitz bounds m

(1)
1|k(x) converge

under the X1 densities such that Pnm
(1)
1|k → P0m

(1)
1|k. Also the functions

f ∈ F (1)
2|k (Θ) and m

(1)
2|k(x) are integrable with respect to the density g2. Sim-

ilarly, the functions f ∈ F (2)
1|k (Θ) and m

(2)
1|k(x) are integrable with respect

to the sequence of densities {p0, p1, . . . } for k ∈ {0, 1, 2, 3}. The functions
f ∈ F (2)

1|k (Θ) are bounded by |hk(x)| such that Pn|f | → P0|f | by apply-
ing Pratt’s extended dominated convergence theorem from Appendix 2B
[23]. The Lipschitz bounds m

(2)
1|k(x) converge under the X1 densities such

that Pnm
(2)
1|k → P0m

(2)
1|k. Also the functions f ∈ F (2)

2|k (Θ) and m
(2)
2|k(x) are

integrable with respect to the density g2.

Lemma 2.12 shows that (α̂, β̂)
P (βn)→ (α0, β0) under the assumptions of

this lemma.
The first result is proven, under the assumptions of this lemma, by start-

ing with the definition of µ̂hk from (26), and applying Lemma 2.13 to the
functions f ∈ F (1)

j|k (Θ) for j ∈ {1, 2} and k = 1 as (αn, βn) → (α0, β0).
The second result is proven, under the assumptions of this lemma, by

starting with the definition of σ̂2
h from (28), and applying Lemma 2.13 to the

functions f ∈ F (1)
j|k (Θ) for j ∈ {1, 2} and k ∈ {1, 2} as (α̂, β̂)

P (βn)→ (α0, β0).
The third result is proven, under the assumptions of this lemma, by

starting with (29) and (30), applying Corollary 2.11 to (ά, β́), applying
Lemma 2.13 to the functions f ∈ F (1)

j|k (Θ) for j ∈ {1, 2} and k = 1 as

(ά, β́)
P (βn)→ (α0, β0), applying Lemma 2.13 to the functions f ∈ F (2)

j|k (Θ) for

j ∈ {1, 2} and k ∈ {1, 2, 3} as (ά, β́)
P (βn)→ (α0, β0), and by applying Slutsky’s

theorem.
The fourth result is proven, under the assumptions of this lemma, by

starting with (33), applying Corollary 2.11 to (ὰ, β̀), applying Lemma 2.13

to the functions f ∈ F (2)
j|k (Θ) for j ∈ {1, 2} and k ∈ {0, 1, 2} as (ὰ, β̀)

P (βn)→
(α0, β0), and applying Slutsky’s theorem. �

Lemma 2.15. Under the convergence conditions defined in Assumption 2.2,
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Dn converges in probability to D(α0, β0) as defined in (39)

Dn
P (βn)→ D (α0, β0) =

1
2σh

(
−2µhβ0, β0, Q (α0, β0)S−1 (α0, β0)

)′
.

Proof: Lemma 2.14, the continuous mapping theorem, and Slutsky’s
theorem are applied to prove the result. �

Theorem 2.4. Under the convergence conditions of Assumption 2.2, Z̃
∗
n

converges to a Gaussian random variable Z̃
∗
.

Proof: The convergence in distribution of Z̃
∗
n as βn → β0 is established

using Slutsky’s theorem, Lemma 2.15, and Lemma 2.9

Z̃
∗
n = D′

nY n
d(βn)→ Z̃

∗
= D′Y ∼ N

(
0,D′ΣD

)

where D = D(α0, β0) as defined in (39). �

Corollary 2.12. If the limiting distortion parameters (α0, β0) identify a null
distortion (0, 0) then the limiting distribution of Z̃

∗
is a standard Gaussian

distribution: Z̃
∗ ∼ N(0, 1).

Proof: Direct calculations are used to show the following

Q (0, 0) =
(
0, 2σ2

h

)
, S (0, 0) =

ρ1

(1 + ρ1)
2

[
1 µh

µh µh2

]
, V0 =

ρ2
1σ

2
h

(1 + ρ1)
4

[
0 0
0 1

]
.

The result is proven by first calculating D(0, 0)

D (0, 0) =
(1 + ρ1)

2

ρ1σh

(
0, 0, −µh, 1

)′ =
(
D1, D2, D3, D4

)′

D′ΣD =
(
D3 D4

)
V0

(
D3

D4

)
= 1 . �
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2.2.1.1 Gaussian Example In this section, an example of the asymp-
totic Z̃

∗
distribution is calculated where X1 and X2 have Gaussian distrib-

utions with different means µ1 and µ2 and with a common variance σ2 = 1,
as described in section 2.1.1.1.

Concerning the convergence conditions of Assumption 2.1, h(x) is contin-
uous and non-constant with respect to the Gaussian density, and hk(x) = xk

is integrable with respect to the Gaussian density for k = 1, 2, 3, 4 as iden-
tified in section 2.1.1.1. Hence the convergence conditions are met that
allow (α̂, β̂) to converge in probability to their true value (α0, β0). Also the
convergence results of (13), (14), (15), (16), (17) are valid. In conclusion,
Z̃
∗
n converges in distribution to Z̃

∗
identified in (44). Figure 1 graphs the

variance of Z̃
∗

versus the difference in means of X1 and X2.
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Variance of Semiparametric Statistic versus difference in M
eans

Figure 1: Variance of Z̃
∗

versus µ1 −µ2 when X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1).

Concerning the convergence conditions of Assumption 2.2, the Gaussian
density p(x|µ, σ2) is a continuous function of its parameters (µ, σ2) such than
g1(x) = p(x|µ1, σ

2) → g2(x) = p(x|µ2, σ
2) for all x ∈ R as µ1 → µ2. The

distortion parameters (αn, βn) are also continuous functions of the Gaussian
parameters (µ, σ2) as identified in section 2.1.1.1 such that (αn, βn) → (0, 0)
as µ1 → µ2. The function h(x) = x is continuous and non-constant with
respect to the Gaussian density, hk(x) = xk is integrable with respect to
the sequence of Gaussian densities for k ∈ {1, 2, 3, 4} as identified in section
2.1.1.1, and EnX4

1 → E0X
4
1 as µ1 → µ2. Hence the convergence conditions

have been met that allow Z̃
∗
n to converge in distribution to Z̃

∗ ∼ N(0, 1) as
βn → 0.
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2.2.1.2 Gamma Examples I and II In this section, two examples of
the asymptotic Z̃

∗
distribution are calculated using gamma distributions.

For Example I, X1 and X2 have gamma distributions with a common shape
parameter αγ = 1 and with different scale parameters βγ1 and βγ2 as de-
scribed in section 2.1.1.2. For Example II, X1 and X2 have gamma distri-
butions with different shape parameters αγ1 and αγ2 and with a common
scale parameter βγ = 1 as described in section 2.1.1.3.

Concerning the convergence conditions of Assumption 2.1 for the Gamma
I example, h(x) is continuous and non-constant with respect to the gamma
density, and hk(x) = xk is continuous, non-constant, and integrable with re-
spect to the gamma density, for k = 1, 2, 3, 4 as identified in section 2.1.1.2.
For the Gamma II example, h(x) is continuous and non-constant with re-
spect to the gamma density, and hk(x) = logk(x) is integrable with respect
to the gamma density, for k = 1, 2, 3, 4, since the moment generating func-
tion, Mlog(Xj)(t) j = 1, 2, exists for t in a neighborhood of 0 as identified
in section 2.1.1.3, see Cassela and Berger (1990) [6] Definition 2.3.3 and
Theorem 2.3.2. Hence the conditions are met that allow (α̂, β̂) to converge
in probability to their true value (α0, β0). Also for both examples, the con-
vergence results of (13), (14), (15), (16), (17) are valid. In conclusion, Z̃

∗
n

converges in distribution to Z̃
∗

identified in (44).
Concerning the convergence conditions of Assumption 2.2 for the Gamma

I and II examples, the gamma density p(x|αγ , βγ) is a continuous func-
tion of its parameters (αγ , βγ) such that g1(x) = p(x|αγ , βγ1) → g2(x) =
p(x|αγ , βγ2) for all x ∈ R+ as βγ1 → βγ2 and g1(x) = p(x|αγ1, βγ) →
g2(x) = p(x|αγ2, βγ) for all x ∈ R+ as αγ1 → αγ2. The distortion parame-
ters (αn, βn) are also continuous functions of the gamma parameters (αγ , βγ)
as identified in sections 2.1.1.2 and 2.1.1.3 such that (αn, βn) → (0, 0) for
both Gamma I and II examples as βγ1 → βγ2 or αγ1 → αγ2. The func-
tions h(x) = x for the Gamma I example, and h(x) = log(x) for the
Gamma II example, are continuous and non-constant with respect to the
gamma density; hk(x) is integrable with respect to the sequence of gamma
densities for k ∈ {1, 2, 3, 4} as identified in sections 2.1.1.2, 2.1.1.3, and
above; EnX4

1 → E0X
4
1 as βγ1 → βγ2; and En log4(X1) → E0 log4(X1) as

αγ1 → αγ2 since the moment generating functions converge. Hence the con-
vergence conditions have been met that allow Z̃

∗
n to converge in distribution

to Z̃
∗ ∼ N(0, 1) as βn → 0.
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Figure 2 graphs the variance of Z̃
∗

versus a range of βγ1 parameter values
for X1 with βγ2 = 3 for X2. Figure 3 graphs the variance of Z̃

∗
versus a

range of αγ1 parameter values for X1 with αγ2 = 3 for X2.
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Variance of Semiparametric Statistic versus Gbeta1

Figure 2: Variance of Z̃
∗

versus βγ1 when X1 ∼ Gamma(1, βγ1), X2 ∼
Gamma(1, 3).
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Figure 3: Variance of Z̃
∗

versus αγ1 when X1 ∼ Gamma(αγ1, 1), X2 ∼
Gamma(3, 1).
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2.2.1.3 Log Normal Example In this section, another example of the
asymptotic Z̃

∗
distribution is calculated where X1 and X2 have log normal

distributions with different µl1 and µl2 parameters and with a common σ2
l =

1 parameter as described in section 2.1.1.4.
Concerning the convergence conditions of Assumption 2.1, h(x) is contin-

uous and non-constant with respect to the log normal density, and hk(x) =
logk(x) integrable with respect to the log normal density for k = 1, 2, 3, 4,
given

E
(
hk (Xj)

)
= E

(
Y k

j

)
where Xj ∼ LN

(
µlj, σ

2
l

)
, Yj ∼ N

(
µlj, σ

2
l

)

and using the moments identified in section 2.1.1.1. Hence the conditions are
met that allow (α̂, β̂) to converge in probability to their true value (α0, β0).
Also the convergence results of (13), (14), (15), (16), (17) are valid. In
conclusion, Z̃

∗
n converges in distribution to Z̃

∗
identified in (44). Figure 4

graphs the variance of Z̃
∗

versus a range of µl1 parameter values for X1 with
µl2 = 0 for X2.

Concerning the convergence conditions of Assumption 2.2, the log normal
density p(x|µl, σ

2
l ) is a continuous function of its parameters (µl, σ

2
l ) such

that g1(x) = p(x|µl1, σ
2
l ) → g2(x) = p(x|µl2, σ

2
l ) for all x ∈ R+ as µl1 →

µl2. The distortion parameters (αn, βn) are also continuous functions of
the log normal parameters (µl, σ

2
l ) as identified in section 2.1.1.4 such that

(αn, βn) → (0, 0) as µl1 → µl2. The function h(x) = log(x) is continuous
and non-constant with respect to the log normal density, hk(x) = logk(x)
is integrable with respect to the sequence of log normal densities for k ∈
{1, 2, 3, 4} as identified above, and En log4(X1) → E0 log4(X1) as µl1 → µl2.
Hence the convergence conditions have been met that allow Z̃

∗
n to converge

in distribution to Z̃
∗ ∼ N(0, 1) as βn → 0.
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Figure 4: Variance of Z̃
∗

versus µl1 when X1 ∼ LN(µl1, 1), X2 ∼ LN(0, 1).

2.2.1.4 Limiting Example as (α0, β0) approaches 0 In this section,
the limiting distribution for a sequence of Z̃

∗
random variables is calculated

as (α0, β0) approaches 0.

D1 →




0
0
0
σh


 , Σ3 →

(
0 0
0 0

)
, V1 → 1

σ2
h

(
µ2

h −µh

−µh 1

)

Σ1 → ρ1

(1 + ρ1)
2

(
σ2

h µh3 − µhµh2

µh3 − µhµh2 µh4 − µ2
h2

)

D′
1MΣMD1 →

(
0 0

)
Σ1

(
0
0

)
+
(
0 σh

)
V1

(
0
σh

)
= 1 (45)

The previous display shows the distribution of Z̃
∗

approaching a N(0, 1) dis-
tribution as (α0, β0) approaches 0. This result is expected since the original
Z̃n statistic converges to a N(0, 1) random variable when (α0, β0) equals 0,
see section 2.1 (6).
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2.2.2 Asymptotic Distribution of the T Statistic

In this section the asymptotic distribution is found for the common T sta-
tistic. In the first subsection, the independent random samples are as-
sumed to be distributed according to two Gaussian densities with differ-
ent means and with a common variance. In subsequent subsections, this
Gaussian assumption is relaxed. Let T2

n rename the T2 random variable
defined by Cassela and Berger (1990) [6] in Theorem 11.2.2 for the case
k = 2. Let x1 = (x11, . . . , x1n1)

′ represent a random sample from X1. Let
x2 = (x21, . . . , x2n2)

′ represent a random sample from X2 independent of
x1.

x11, . . . , x1n1 ∼ X1 with g1(x) =
(
µ1, σ

2
1

)
pdf

x21, . . . , x2n2 ∼ X2 with g2(x) =
(
µ2, σ

2
2

)
pdf

T2
n =

n1 ((x̄1· − x̄··) − (µ1 − µ̄·))2 + n2 ((x̄2· − x̄··) − (µ2 − µ̄·))2

S2
p

S2
p =

1
n − 2

(
(n1 − 1)S2

1 + (n2 − 1)S2
2

)

S2
j =

1
nj − 1

nj∑

i=1

(xji − x̄j·)2 for j = 1, 2

x̄j· =
1
nj

nj∑

i=1

xji for j = 1, 2 and x̄·· =
1
n

2∑

j=1

nj∑

i=1

xji

For the case where X1 and X2 have Gaussian distributions with a common
variance, then T2

n follows an F distribution with (1, n−2) degrees of freedom,
and Tn follows a student t distribution with (n − 2) degrees of freedom

X1 ∼ N(µ1, σ
2) and X1 ∼ N(µ1, σ

2)

T2
n ∼ F1,n−2 and Tn ∼ tn−2 .

After a little algebra, the Tn random variable is rewritten as

Tn =

√
1

1+ρ1

√
n1 (x̄1· − µ1) −

√
ρ1

1+ρ1

√
n2 (x̄2· − µ2)

Sp
.

Under the null hypothesis H0 : µ1 = µ2, the Tn random variable becomes

T0n ≡
√

n1n2

n

(
x̄1· − x̄2·

Sp

)
.
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2.2.2.1 Asymptotics of T Statistic Assuming Normality In this
section, the independent random samples are assumed to come from two
Gaussian densities with different means µ1 6= µ2 and with a common vari-
ance σ2.

X1 ∼ N
(
µ1, σ

2
)
, X2 ∼ N

(
µ2, σ

2
)

Lemma 2.16. If x1, a random sample from X1 ∼ N(µ1, σ
2), is indepen-

dent of x2, a random sample from X2 ∼ N(µ2, σ
2), then Tn converges in

distribution to a standard Gaussian random variable N(0, 1).

Proof: The asymptotic distribution of Tn is found by using the inde-
pendence property of X1 and X2, by applying the law of large numbers,
by applying the continuous mapping theorem, and by applying Slutsky’s
theorem

(√
n1 (x̄1· − µ1)√
n2 (x̄2· − µ2)

)
∼ N

(
0, σ2I2

) d→
(

Z1

Z2

)
∼ N

(
0, σ2I2

)

S2
p

P→ σ2 and Tn
d→ T∗ =

√
1

1+ρ1
Z1 −

√
ρ1

1+ρ1
Z2

σ
∼ N (0, 1) . � (46)

Under the null hypothesis H0 : µ1 = µ2, the T0n statistic also converges
to a standard Gaussian random variable

T0n ≡
√

n1n2

n

(
x̄1· − x̄2·

Sp

)
d→ T0 ∼ N(0, 1) . (47)

As shown in sections 2.2.2.2 and 2.2.2.2.1, the multivariate central limit
theorem is applied to find the asymptotic distribution of T0n minus a suitable
offset under the conditions of the alternative hypothesis H1 : µ1 6= µ2 when
X1 and X2 are not necessarily Gaussian. In this section a direct approach,
that does not rely on the multivariate central limit theorem, is used to find
the asymptotic distribution of T0n minus a suitable offset when X1 and X2

are Gaussian. Also in this section, the mean and variance for the offset T0n

statistic is shown to converge to the mean and variance of the asymptotic
distribution for the offset T0n statistic under the Gaussian assumption.

In the following display, the T0n statistic minus a suitable offset, is
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rewritten as the linear combination of three random variables

Let T∗
0n ≡

√
n1n2

n

(
x̄1· − x̄2·

Sp
− µ1 − µ2

σ

)

=
1
Sp

√
1

1 + ρ1

√
n1 (x̄1· − µ1) −

1
Sp

√
ρ1

1 + ρ1

√
n2 (x̄2· − µ2)

−

(
µ1 − µ2

S2
pσ + Spσ2

)√
ρ1

(1 + ρ1)2
√

n
(
S2

p − σ2
)

which is rewritten in vector notation as T∗
0n = D′

nY n

Dn ≡




1
Sp

√
1

1+ρ1

− 1
Sp

√
ρ1

1+ρ1

−
(

µ1−µ2

S2
pσ+Spσ2

)√
ρ1

(1+ρ1)2




, Y n =




y1n

y2n

y3n


 ≡



√

n1 (x̄1· − µ1)√
n2 (x̄2· − µ2)√
n
(
S2

p − σ2
)


 .

For convenience of notation, the components in the decomposition of T∗
0n

are denoted as (Dn,Y n). The components of (Dn,Y n) represent stochastic
quantities that are different from the identically labeled components in the
decomposition of Z̃

∗
n, see (10) and (11). In other words, the symbols Dn

and Y n are overloaded.

Lemma 2.17. If x1, a random sample from X1 ∼ N(µ1, σ
2), is indepen-

dent of x2, a random sample from X2 ∼ N(µ2, σ
2), then T∗

0n converges in
distribution to a Gaussian random variable T∗

0.

Proof: Section 2.1.1.1 identifies the first four moments for Xj . The law of
large numbers and the continuous mapping theorem are applied to find the
asymptotic limit for S2

p and Sp, since Xk
j is integrable for j = 1, 2 and k =

1, 2. Hence, Dn converges to D. Since y1n and y2n are independent, the joint
distribution for (y1n, y2n)′ is the product of the marginal distributions for
y1n and for y2n. The bivariate Gaussian distribution for (y1n, y2n)′ remains
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the same for all n, while the marginal distribution for y3n evolves with n

S2
p → σ2 and Sp → σ

Dn → D =
(

1
σ

√
1

1+ρ1
− 1

σ

√
ρ1

1+ρ1
−µ1−µ2

2σ3

√
ρ1

(1+ρ1)2

)′

(
y1n

y2n

)
≡
(√

n1 (x̄1· − µ1)√
n2 (x̄2· − µ2)

)
∼ N

(
0, σ2I2

) d→
(

y1

y2

)
∼ N

(
0, σ2I2

)

(nj − 1)
S2

j

σ2
∼ Gamma

(
nj − 1

2
, 2
)

, j = 1, 2

√
nS2

p ∼ Gamma
(

n − 2
2

,

√
n

n − 2
2σ2

)

y3n ≡
√

n
(
S2

p − σ2
)
∼
(

0,
n

n − 2
2σ4

)
→
(
0, 2σ4

)
.

The asymptotic distribution for y3n is found by using the moment generating
function for y3n

My3n (t) =
(

1 −
√

n

n − 2
2σ2t

)−n−2
2

e−
√

nσ2t, t <

(
n − 2√

n

)
1

2σ2

log My3n (t) = −
√

nσ2t − n − 2
2

log
(

1 −
√

n

n − 2
2σ2t

)

= −
√

nσ2t +
n − 2

2

∞∑

k=1

1
k

( √
n

n − 2
2σ2t

)k

,

∣∣∣∣
√

n

n − 2
2σ2t

∣∣∣∣ < 1

=
n

n − 2
σ4t2 + Rn (t)

Rn (t) ≡ n − 2
2

∞∑

k=3

1
k

( √
n

n − 2
2σ2t

)k

,

∣∣∣∣
√

n

n − 2
2σ2t

∣∣∣∣ < 1

=
n − 2

2

( √
n

n − 2
2σ2t

)3 ∞∑

k=3

1
k

( √
n

n − 2
2σ2t

)k−3

.

The remainder term Rn(t) converges to zero, so that the mgf for y3n con-
verges to the mgf for a Gaussian random variable for all t in a neighborhood
of zero. Hence, by the convergence of mgfs theorem 2.3.4 [6], y3n converges
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in distribution to a Gaussian random variable

|Rn (t)| ≤ n
3
2

(n − 2)2
4σ6t3

∞∑

k=0

∣∣∣∣
√

n

n − 2
2σ2t

∣∣∣∣
k

, |t| <
n − 2√

n

1
2σ2

=
n

3
2

(n − 2)2
4σ6t3

(
1 −

∣∣∣∣
√

n

n − 2
2σ2t

∣∣∣∣
)−1

→ 0
1

= 0

My3n → eσ4t2 , t ∈ (−∞,∞)

y3n
d→ y3 ∼ N

(
0, 2σ4

)
.

Each of the components of Y n are independent, since x̄1· and S2
1 are inde-

pendent and x̄2· and S2
2 are independent. So that the distribution of Y n is

the product of the joint distribution for (y1n, y2n)′ and the marginal distri-
bution for y3n. Hence, the distribution of Y n converges to a multivariate
Gaussian distribution. The asymptotic distribution for T∗

0n follows by ap-
plying Slutsky’s theorem

Dn → D =
(

1
σ

√
1

1+ρ1
− 1

σ

√
ρ1

1+ρ1
−µ1−µ2

2σ3

√
ρ1

(1+ρ1)2

)′

Y n
d→ Y =




y1

y2

y3


 ∼ N






0
0
0


 ,




σ2

σ2

2σ4






T∗
0n

d→ T∗
0 = D′Y ∼ N

(
0, 1 +

1
2

ρ1

(1 + ρ1)2
(µ1 − µ2)2

σ2

)
. � (48)

For convenience of notation, the components in the decomposition of the
asymptotic random variable T∗

0 are denoted as (D,Y ). The components
of (D,Y ) represent random variables that are different from the identically
labeled components in the decomposition of the asymptotic random variable
Z̃
∗
, see (44).
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As a check of (48), it is possible to show directly that (E(T∗
0n),Var(T∗

0n))
converges to (0, 1 + 1

2
ρ1

(1+ρ1)2
(µ1−µ2)2

σ2 ).

Proposition 2.2. If X1 ∼ N(µ1, σ
2) and X2 ∼ N(µ2, σ

2) are independent
then E (T∗

0n) converges to zero.

Proof: First, the mean of (x̄1· − x̄2·)/Sp is found, using the independence
of the elements of (x̄1·, x̄2·,S2

p)

E
(

x̄1· − x̄2·
Sp

)
=

µ1 − µ2

σ

(
n − 2

2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) (49)

and then the limit is found as n → ∞ using Stirling’s gamma approximation.

Let p ≡ n

2
− 2 and p∗ ≡

n − 1
2

− 2
(

n − 2
2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) = (p + 1)
1
2

Γ (p∗ + 1)
Γ (p + 1)

(50)

= e
1
2 (p + 1)

1
2
p

p∗+
1
2

∗

pp+ 1
2

Γ (p∗ + 1)
√

2πe−p∗p
p∗+ 1

2
∗

√
2πe−ppp+ 1

2

Γ (p + 1)

= e
1
2

(
n − 2
n − 4

) 1
2

(
1 −

1
2

n
2 − 2

)n
2
−2

Γ (p∗ + 1)
√

2πe−p∗p
p∗+

1
2

∗

√
2πe−ppp+ 1

2

Γ (p + 1)

n→ e
1
2 × 1×e−

1
2 × 1 × 1 = 1

and E
(

x̄1· − x̄2·
Sp

)
n→ µ1 − µ2

σ
where n→ is shorthand for

n↑∞−→ .

It will be shown in Lemma 2.18 that

n

((
n − 2

2

)
Γ2
(

n−3
2

)

Γ2
(

n−2
2

) − 1

)
n→ 3

2

= n

((
n − 2

2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) − 1

)((
n − 2

2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) + 1

)
.

The previous display and equation (50) are used to show
((

n − 2
2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) + 1

)
n→ 2

n

((
n − 2

2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) − 1

)
n→ 3

4
.
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Hence, the result is proven that

E (T∗
0n) =

1√
n

(
µ1 − µ2

σ

)(
ρ1

(1 + ρ1)2

) 1
2

n

((
n − 2

2

) 1
2 Γ
(

n−3
2

)

Γ
(

n−2
2

) − 1

)

n→ 0. �

Lemma 2.18.

n

((
n − 2

2

)
Γ2
(

n−3
2

)

Γ2
(

n−2
2

) − 1

)
n→ 3

2
. (51)

Proof: A change of variable and Stirling’s gamma function approxima-
tion are used to analyze (51)

Let p ≡ n

2
− 2, p∗ ≡

n − 1
2

− 2, and q ≡ 1
p

n

((
n − 2

2

)
Γ2
(

n−3
2

)

Γ2
(

n−2
2

) − 1

)
(52)

≈ 2 (p + 2)


(p + 1)

√
2πe−2p∗p

2(p∗+ 1
2)

∗
√

2πe−2pp2(p+ 1
2)

− 1


 (53)

= 2 (1 + 2q)



(
1 − q

2

) 2
q e1 − 1
q


+ 2 (1 + 2q)

(
1 − q

2

) 2
q e1 (54)

= n

(
e1

(
n − 2
n − 4

)(
n − 5
n − 4

)n−4

− 1

)
. (55)

It will be shown in Lemma 2.19 that

lim
n→∞

n

((
n−2

2

) Γ2(n−3
2 )

Γ2(n−2
2 ) − 1

)

n

(
e1
(

n−2
n−4

)(
n−5
n−4

)n−4
− 1
) = 1

so that equation (55) is a large number approximation for (52).
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With (1 − q/2)2/q = exp((2/q) ln(1 − q/2)), L’hospital’s rule shows

lim
q↓0

(
1 − q

2

) 2
q e1 − 1
q

= lim
q↓0

−e1
(
1 − q

2

) 2
q 2
(
1 − q

2

)
ln
(
1 − q

2

)
+ q

q2 − 1
2q3

= −e1e−1 lim
q↓0

2
(
1 − q

2

)
ln
(
1 − q

2

)
+ q

q2 − 1
2q3

= − lim
q↓0

− ln
(
1 − q

2

)

2q − 3
2q2

= − lim
q↓0

1
2

(
1 − q

2

)−1

2 − 3q

= −1
4

.

Hence, the previous display converges to the desired result as q ↓ 0

(54) → 2 × 1 ×
(
−1

4

)
+ 2 × 1 × e−1e1 = −1

2
+ 2 =

3
2
. � (56)

Use of Stirling’s gamma function approximation in (53) is appropriate
due to the following result.

Lemma 2.19. Equation (55) is a large number approximation for (52).

Proof: The following bounds on Stirling’s gamma function approxima-
tion are taken from Rao (1973) [23] 1e.7

e
1

12(n−4
2 ) <

Γ
(

n−5
2 + 1

)
√

2π
(

n−5
2

)n−4
2 e−

n−5
2

< e
1

12(n−5
2 )

e
1

12(n−3
2 ) <

Γ
(

n−4
2 + 1

)
√

2π
(

n−4
2

)n−3
2 e−

n−4
2

< e
1

12(n−4
2 ) .

After some algebra, the previous display leads to

1 <

n

((
n−2

2

) Γ2(n−3
2 )

Γ2(n−2
2 ) − 1

)

n

(
e1
(

n−2
n−4

)(
n−5
n−4

)n−4
− 1
) < 1 +

Rn

Sn

Rn ≡ n
(
e

1
3(n−5)

− 1
3(n−3) − 1

)

Sn ≡ n

(
e1

(
n − 2
n − 4

)(
n − 5
n − 4

)n−4

− 1

)
.
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The limit for Rn is found by using L’hospital’s rule. The limit for Sn was
previously found, see (55) and (56).

Let q ≡ 1
n

lim
n→∞

Rn = lim
q↓0

e
1
3

(
1
5

(
1

1−5q

)
− 1

5
− 1

3

(
1

1−3q

)
+ 1

3

)
− 1

q

= lim
q↓0

e
1
3

(
1
5

(
1

1−5q

)
− 1

5
− 1

3

(
1

1−3q

)
+ 1

3

)
1
3

((
1

1 − 5q

)2

−
(

1
1 − 3q

)2
)

= 1 × 1
3
× (1 − 1) = 0

lim
n→∞

Sn =
3
2

Hence (53) is a large number approximation for (52) since

lim
n→∞

n

((
n−2

2

) Γ2(n−3
2 )

Γ2(n−2
2 ) − 1

)

n

(
e1
(

n−2
n−4

)(
n−5
n−4

)n−4
− 1
) = 1. �

Proposition 2.3. If X1 ∼ N(µ1, σ
2) and X2 ∼ N(µ2, σ

2) are independent
then the variance of T∗

0n converges to the variance of T∗
0.

Proof: The result is proven using the previous results of (49) from Propo-
sition 2.2 and of (51) from Lemma 2.18.

E
(

x̄1· − x̄2·
Sp

)2

= E(x̄1· − x̄2·)2 E

(
1
S2

p

)

=

(
1
n1

+ 1
n2

)
σ2 + (µ1 − µ2)

2

σ2

(
n − 2
n − 4

)
→ (µ1 − µ2)

2

σ2

Var (T∗
0n) =

(n1n2

n

)
Var

(
x̄1· − x̄2·

Sp

)

=
(

1 +
2

n − 4

)
+ 2

ρ1

(1 + ρ1)
2

(µ1 − µ2)
2

σ2

n

n − 4

+
ρ1

(1 + ρ1)
2

(µ1 − µ2)
2

σ2
n

(
1 −

(
n − 2

2

)
Γ2
(

n−3
2

)

Γ2
(

n−2
2

)
)

→ 1 +
1
2

ρ1

(1 + ρ1)
2

(µ1 − µ2)
2

σ2
. �
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2.2.2.1.1 Gaussian Example
In this section, an example of the asymptotic T∗

0 variance is calculated where
X1 and X2 have Gaussian distributions with different means µ1 and µ2, and
with a common variance σ2 = 1 as described in section 2.1.1.1. Figure 5
graphs the variance of T∗

0 versus the difference in means of X1 and X2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
Variance of T Statistic versus difference in Means

Figure 5: Variance of T∗
0 versus µ1−µ2 when X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1).

2.2.2.2 Asymptotics of T Statistic Without Assuming Normality
In this section, the independent random samples are assumed to come from
two distributions, not necessarily Gaussian, with finite mean and variance

x11, . . . , x1n1 ∼ X1 with g1 (x) =
(
µ1, σ

2
1

)
pdf

x21, . . . , x2n2 ∼ X2 with g2 (x) =
(
µ2, σ

2
2

)
pdf .

With these assumptions, the asymptotic distribution of T0n, minus a suit-
able constant, is found under the conditions of the alternative hypothesis
H1 : µ1 6= µ2.

Let T∗
0n ≡

√
n1n2

n

(
x̄1· − x̄2·

Sp
− µ1 − µ2

σp

)

σ2
p ≡ ρ1

1 + ρ1
σ2

1 +
1

1 + ρ1
σ2

2
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By direct linear expansion, T∗
0n is expressed as the linear combination of

four random variables and a bias term

T∗
0n =

√
n1n2

n

(
x̄1· − µ1

Sp
− x̄2· − µ2

Sp
+

µ1 − µ2

σpSp
(σp − Sp)

)

=
√

n1n2

n

(
x̄1· − µ1

Sp
− x̄2· − µ2

Sp

)

+
√

n1n2

n

(
n1

n
σ2

1 −
n1 − 1
n − 2

S2
1 +

n2

n
σ2

2 − n2 − 1
n − 2

S2
2

)
(µ1 − µ2)

σpSp (σp + Sp)

=
√

n1 (x̄1· − µ1) D1n +
√

n1

(
x̄2

1· − E
(
X2

1

))
D2n

+
√

n2 (x̄2· − µ2) D3n +
√

n2

(
x̄2

2· − E
(
X2

2

))
D4n + Bn

where the coefficients are defined as

D1n ≡
√

1
1 + ρ1

1
Sp

+

√
ρ2
1

(1 + ρ1)
3

(x̄1· + µ1) (µ1 − µ2)
σpSp (σp + Sp)

(
n

n − 2

)

D2n ≡ −

√
ρ2
1

(1 + ρ1)3
(µ1 − µ2)

σpSp (σp + Sp)

(
n

n − 2

)

D3n ≡ −
√

ρ1

1 + ρ1

1
Sp

+
√

ρ1

(1 + ρ1)
3

(x̄2· + µ2) (µ1 − µ2)
σpSp (σp + Sp)

(
n

n − 2

)

D4n ≡ −
√

ρ1

(1 + ρ1)
3

(µ1 − µ2)
σpSp (σp + Sp)

(
n

n − 2

)

and where the bias term is defined as

Bn ≡ −2
√

ρ1

(1 + ρ1)
2

σp (µ1 − µ2)
Sp (σp + Sp)

√
n

(n − 2)
.

T∗
0n is then written in vector notation.

T∗
0n = D′

nY n + Bn

Dn ≡




D1n

D2n

D3n

D4n


 ,Y n ≡




y1n

y2n

y3n

y4n


 =




√
n1 (x̄1· − µ1)√

n1

(
x̄2

1· − E
(
X2

1

))
√

n2 (x̄2· − µ2)√
n2

(
x̄2

2· − E
(
X2

2

))


 (57)

It follows immediately that Y n has a mean of 0. Assuming that the first
four moments are finite for X1 and X2, then Y n has a constant variance

64



matrix for all n

Y n ∼ (0,Σ) , Σ =
[
Σ1 0
0 Σ2

]
, Σj = Var

(
Xj − E (Xj)
X2

j − E
(
X2

j

)
)

(58)

Σj =


 σ2

j E
(
X3

j

)
− µjE

(
X2

j

)

E
(
X3

j

)
− µjE

(
X2

j

)
E
(
X4

j

)
− E2

(
X2

j

)

 , j = 1, 2 .

Lemma 2.20. If the first two moments of X1 and X2 are finite, then Dn

converges in probability to D and Bn converges in probability to zero.

Proof: The law of large numbers and the continuous mapping theorem
are applied to show

1
nj

nj∑

i=1

xk
ji

P→ EXk
j for j ∈ {1, 2}, k ∈ {1, 2}

Sp
P→ σp .

The previous display is used to find the convergence in probability limit for
the four coefficients in Dn and the bias term Bn/D∗

n, assuming the first two
moments of X1 and X2 are finite

Dn
P→ D =




D1

D2

D3

D4


 =




√
1

1+ρ1

1
σp

+
√

ρ2
1

(1+ρ1)
3 µ1

(µ1−µ2)
σ3

p

−
√

ρ2
1

(1+ρ1)3
(µ1−µ2)

2σ3
p

−
√

ρ1

1+ρ1

1
σp

+
√

ρ1

(1+ρ1)3
µ2

(µ1−µ2)
σ3

p

−
√

ρ1

(1+ρ1)3
(µ1−µ2)

2σ3
p




Bn
P→ −

√
ρ1

(1 + ρ1)
2

(µ1 − µ2)
σp

× 0 = 0. �

Lemma 2.21. If the first four moments of X1 and X2 are finite, then
the random vector Y n converges in distribution to a multivariate Gaussian
random vector Y .

Proof: The multivariate central limit theorem ([23], 2c.5) is applied to
find the asymptotic distribution for the random vector Y n, assuming the
first four moments of X1 and X2 are finite

Y n
d→ Y ∼ N (0,Σ) , Var (Y n) = Σ = Var (Y )
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by showing every linear combination of Y n converges in distribution to a
univariate Gaussian distribution

zn = λ′Y n
d→ z = λ′Y ∼ N

(
0,λ′Σλ

)
(59)

λ =
(
λ′

1,λ
′
2

)′
, λ1 = (λ11, λ12, )

′ , λ2 = (λ21, λ22)
′ .

The Lindeberg-Feller form of the central limit theorem ([23], 2c.5) is applied
to show (59).

Let zji =
1

√
ρj

λ′
j

(
xji − E (Xj)
x2

ji − E
(
X2

j

)
)

∼ Gzji = GZj , j = 1, 2, i = 1 . . . nj

Zj ∼ (E (Zj) ,Var (Zj)) =
(

0,
1
ρj

λ′
jΣjλj

)
, j = 1, 2

Let C2
n =

n1∑

i=1

Var (z1i) +
n2∑

i=1

Var (z2i)

=
n1

ρ1
λ′

1Σ1λ1 + n2λ
′
2Σ2λ2

= n2λ
′Σλ

The Lindeberg-Feller convergence condition, as specialized to (59), is satis-
fied for any ε > 0

1
C2

n

(
n1∑

i=1

∫

|z|>εCn

z2dGz1i(z) +
n2∑

i=1

∫

|z|>εCn

z2dGz2i(z)

)

=
ρ1

λ′Σλ

∫
I (|z| > εCn) z2dGZ1(z) +

1
λ′Σλ

∫
I (|z| > εCn) z2dGZ2(z)

→ 0 as n ↑ ∞

since Var(zn) = λ′Σλ is constant and finite for all n and since the con-
vergence of the two integrals to zero follows by applying the dominated
convergence theorem. Hence

∑n1
i=1 z1i +

∑n2
i=1 z2i√

n2λ
′Σλ

d→ N (0, 1)

which proves the result that

λ′Y n =
√

ρ1√
n1

n1∑

i=1

z1i +
1

√
n2

n2∑

i=1

z2i =
1

√
n2

(
n1∑

i=1

z1i +
n2∑

i=1

z2i

)

d→ N
(
0,λ′Σλ

)
. �
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In conclusion, Lemmas 2.20 and 2.21 are combined to find the asymptotic
distribution for T∗

0n.

Theorem 2.5. If the first four moments of X1 and X2 are finite, then T∗
0n

converges in distribution to a Gaussian random variable T∗
0.

Proof: The asymptotic distribution for T∗
0n is found, by applying the

results of Lemmas 2.20 and 2.21, and by applying Slutsky’s theorem

T∗
0n = D′

nY n + Bn/D∗
n

d→ T∗
0 = D′Y ∼ N

(
0,D′ΣD

)
. �

In order to derive the Pitman efficiencies, the following results show
that T∗

0n converges to a standard Gaussian distribution T∗
0 ∼ N(0, 1) if

g1(x) = pn(x) → g2(x) almost everywhere as n → ∞. In the sequel, let the
operators En(·) and Varn(·) denote expectation and variance with respect
to a density that varies with n.

Lemma 2.22. Let {pn(x) : n = 0, 1, 2, . . . } define a sequence of density
functions where X1 ∼ pn at time index n such that pn(x) → p0(x) almost
everywhere. Let X2 ∼ g2. If En|Xk

1 | → E0|Xk
1 | for k ∈ {1, 2} and Xk

2 is
integrable for k ∈ {1, 2}, then Dn converges in probability to D and Bn

converges in probability to zero.

Proof: At time index n, let {xni : i = 1, . . . , n1} denote a random
sample from the probability distribution Pn associated with the density pn.
Proposition 2.1 with f(x) = x and f(x) = x2 and with ρ = ρ1 shows that

1
n1

n1∑

i=1

xk
ni

Pn→ E0X
k
1 , for k ∈ {1, 2} .

Let x2i ∼ g2 for i = 1, . . . , n2. The independent identically distributed
version of the weak law of large numbers is applied to show

1
n2

n2∑

i=1

xk
2i

P→ EXk
2 , for k ∈ {1, 2}, .

The two previous displays together with the continuous mapping theorem
are used to show Sp

Pn→ σp. The previous statement in combination with the
two previous displays proves the result. �

Lemma 2.23. Let {pn(x) : n = 0, 1, 2, . . . } define a sequence of density
functions where X1 ∼ pn at time index n such that pn(x) → p0(x) almost
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everywhere. Let X2 ∼ g2. If En|Xk
1 | → E0|Xk

1 | for k ∈ {1, 2, 3, 4} and Xk
2

is integrable for k ∈ {1, 2, 3, 4}, then the random vector Y n converges in
distribution to a multivariate Gaussian random vector Y

Y n
d(Pn)→ Y ∼ N (0,Σ0)

Varn (Y n) = Σn ≡
[
Σ1n

Σ2

]
→ Σ0 ≡

[
Σ10

Σ2

]
= Var0 (Y )

where Y n remains as defined in (58) with EXk
1 replaced by EnXk

1 for k ∈
{1, 2}, where Σ1n and Σ10 have the same structure as Σ1 defined in (58) with
EXk

1 replaced by EnXk
1 in Σ1n for k ∈ {1, 2, 3, 4} and with EXk

1 replaced by
E0X

k
1 in Σ10 for k ∈ {1, 2, 3, 4}, and where Σ2 remains the same as defined

in (58).

Proof: As shown in Lemma 2.21, the multivariate central limit theorem
([23], 2c.5) is applied to show the convergence in joint distribution of Y n

zn = λ′Y n
d(Pn)→ z = λ′Y ∼ N

(
0,λ′Σ0λ

)

λ =
(
λ′

1,λ
′
2

)′
, λ1 = (λ11, λ12, )

′ , λ2 = (λ21, λ22)
′ .

The Lindeberg-Feller form of the central limit theorem ([30] , Proposition
2.27) is applied to show the previous display. Let zji and Cn remain defined
as in Lemma 2.21 such that for i = 1, . . . , nj and j = 1, 2

z1i ∼ Gn,z1i = Gn,Z1 , z2i ∼ Gz2i = GZ2

Z1 ∼ (En (Z1) ,Varn (Z1)) =
(

0,
1
ρ1

λ′
1Σ1nλ1

)

Z2 ∼ (E (Z2) ,Var (Z2)) =
(

0,
1
ρ2

λ′
2Σ2λ2

)

C2
n ≡

n1∑

i=1

Varn (z1i) +
n2∑

i=1

Var (z2i) = n2λ
′Σnλ .

The Lindeberg-Feller convergence condition, as specialized to zji/Cn is sat-
isfied for any ε > 0
(

n1∑

i=1

∫
∣∣∣ z

Cn

∣∣∣>ε

(
z

Cn

)2

dGn,z1i(z) +
n2∑

i=1

∫
∣∣∣ z
Cn

∣∣∣>ε

(
z

Cn

)2

dGz2i(z)

)

=
ρ1

λ′Σnλ

∫
I (|z| > εCn) z2dGn,Z1(z) +

1
λ′Σnλ

∫
I (|z| > εCn) z2dGZ2(z)

→ 0 as n ↑ ∞
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where
n1∑

i=1

Var
z1i

Cn
+

n2∑

i=1

Var
z2i

Cn
= 1

since both integrals converge to zero by applying Pratt’s extended dominated
convergence theorem from Appendix 2B [23] with VarnZ1 → Var0Z1 < ∞
and with Var Z2 < ∞ and since λ′Σnλ → λ′Σ0λ < ∞, hence

∑n1
i=1 z1i +

∑n2
i=1 z2i√

n2λ
′Σnλ

d(Pn)→ N (0, 1)

which proves the result that

λ′Y n
d(Pn)→ N

(
0,λ′Σ0λ

)
. �

Theorem 2.6. Let {pn(x) : n = 0, 1, 2, . . . } define a sequence of density
functions where X1 ∼ pn at time index n such that pn(x) → p0(x) almost
everywhere. Let X2 ∼ g2. If En|Xk

1 | → E0|Xk
1 | for k ∈ {1, 2, 3, 4} and

Xk
2 is integrable for k ∈ {1, 2, 3, 4}, then T∗

0n converges in distribution to a
Gaussian random variable T∗

0.

Proof: The asymptotic distribution for T∗
0n is found, by applying the

results of Lemmas 2.22 and 2.23, and by applying Slutsky’s theorem

T∗
0n = D′

nY n + Bn
d(Pn)→ T∗

0 = D′Y ∼ N
(
0,D′Σ0D

)
. �

In order to satisfy the convergence conditions that En|Xk
1 | → E0|Xk

1 | for
k ∈ {1, 2, 3, 4}, it suffices to show that EnX4

1 → E0X
4
1 . The remaining mo-

ment convergence conditions are satisfied by applying Pratt’s extended dom-
inated convergence theorem from Appendix 2B [23] since |xk| for k ∈ {1, 2, 3}
is bounded by 1 + x4. In order to satisfy the integrable moment conditions
on Xk

2 for k ∈ {1, 2, 3, 4}, it suffices to show that X4
2 is integrable. The re-

maining integrable moment conditions are satisfied since EX4
2 < ∞ implies

that E|Xk
2 | < ∞ for k ∈ {1, 2, 3} by applying the Lyapunov inequality.

Corollary 2.13. If the limiting density p0(x) is the same as the reference
density g2(x) then the limiting distribution of T∗

0 is a standard Gaussian
distribution: T∗

0 ∼ N(0, 1).

Proof: Under the assumptions where µ1 = µ2 and σ2
1 = σ2

2 = σ2
p, direct

calculation shows that

D =
(√

1
1+ρ1

1
σp

, 0, −
√

ρ1

1+ρ1

1
σp

, 0
)′

, Σ10 = Σ2 =
[
σ2

p ∗
∗ ∗

]
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Hence the result is proven since D′Σ0D = 1. �
For convenience of notation, the components in the decomposition of the

random variable T∗
0n are denoted as (Dn,Y n), and the components in the

decomposition of the asymptotic random variable T∗
0 are denoted as (D,Y ).

The components of (Dn,Y n) and of (D,Y ) are different from the identically
labeled components in the decompositions of the random variable Z̃

∗
n and

of the asymptotic random variable Z̃
∗
, see (44). In a similar manner, the

covariance structure Σ of the random variable Y from the decomposition of
the asymptotic random variable T∗

0 is different from the identically labeled
covariance structure of the random variable Y from the decomposition of
the asymptotic random variable Z̃

∗
.

The next subsection shows that the variance of T∗
0 reduces to (48) under

the Gaussian assumption.
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2.2.2.2.1 Gaussian Example
In this section, an example of the asymptotic T∗

0 distribution is examined
where X1 and X2 have differing Gaussian distributions. The integrable mo-
ment condtions of Theorem 2.5 are satisfied since the Gaussian distribution
has finite moments of all orders

Xj ∼ N
(
µj, σ

2
j

)
, for j = 1, 2

E
(
X3

j

)
= 2σ2

j µj

E
(
X4

j

)
= 2σ2

j

(
σ2

j + 2µ2
j

)
.

The additional convergence conditions of Theorem 2.6 are also satisfied since
the Gaussian density is a continuous function of its parameters such that the
X1 density g1(x) = N(µ1, σ

2
1) converges to the X2 density g2(x) = N(µ2, σ

2
2)

as (µ1, σ
2
1) → (µ2, σ

2
2) for all x ∈ R and since the fourth moment is a

continuous function of the Gaussian parameters. The resulting variance for
Y and distribution for T∗

0 follow

Var (Y ) = Σ ≡
[
Σ1 0
0 Σ2

]

Σj = σ2
j

[
1 2µj

2µj 2
(
σ2

j + 2µj

)
]

, for j = 1, 2

T∗
0 = D′Y ∼ N

(
0,D′ΣD

)

D′ΣD =
(
D1 D2

)
Σ1

(
D1

D2

)
+
(
D3 D4

)
Σ2

(
D3

D4

)

=
1

1 + ρ1

σ2
1

σ2
p

(
1 +

1
2

ρ2
1

(1 + ρ1)
2

σ2
1

σ4
p

(µ1 − µ2)
2

)

+
ρ1

1 + ρ1

σ2
2

σ2
p

(
1 +

1
2

1
(1 + ρ1)

2

σ2
2

σ4
p

(µ1 − µ2)
2

)

=

(
σ2

1 + ρ1σ
2
2

)
(
ρ1σ

2
1 + σ2

2

) +
1
2
ρ1

(
ρ1σ

4
1 + σ4

2

)
(
ρ1σ2

1 + σ2
2

)3 (µ1 − µ2)
2 .

If X1 and X2 have common variances σ2
1 = σ2

2 = σ2 as described in section
2.1.1.1, then the resulting variance for T∗

0 is consistent with previous results
from (48)

D′ΣD = 1 +
1
2

ρ1

(1 + ρ1)
2

(µ1 − µ2)
2

σ2
.

71



2.2.2.2.2 Gamma Examples I and II
In this section, two examples of the asymptotic T∗

0 distribution are exam-
ined where X1 and X2 have differing gamma distributions. The integrable
moment condtions of Theorem 2.5 are satisfied since the gamma distribution
has finite moments of all orders

Xj ∼ Gamma (αγj , βγj) , for j = 1, 2
E (Xj) = αγjβγj

E
(
X2

j

)
= αγj(αγj + 1)β2

γj

E
(
X3

j

)
= αγj(αγj + 1)(αγj + 2)β3

γj

E
(
X4

j

)
= αγj(αγj + 1)(αγj + 2)(αγj + 3)β4

γj .

The additional convergence conditions of Theorem 2.6 are also satisfied since
the gamma density is a continuous function of its parameters such that the
X1 density g1(x) = Gamma(αγ1, βγ1) converges to the X2 density g2(x) =
Gamma(αγ2, βγ2) as (αγ1, βγ1) → (αγ2, βγ2) for all x ∈ R+ and since the
fourth moment is a continuous function of the gamma parameters. The
resulting variance for Y and distribution for T∗

0 follow:

Var (Y ) = Σ ≡
[
Σ1 0
0 Σ2

]

Σj = αγjβ
2
γj

[
1 2(αγj + 1)βγj

2(αγj + 1)βγj 2(αγj + 1)(2αγj + 3)β2
γj

]
, j = 1, 2

T∗
0 = D′Y ∼ N

(
0,D′ΣD

)

D′ΣD =
(
D1 D2

)
Σ1

(
D1

D2

)
+
(
D3 D4

)
Σ2

(
D3

D4

)

=
1

1 + ρ1

σ2
1

σ2
p

(
1 − 2βγ1

(µ1 − µ2)
σ2

p

ρ1

1 + ρ1
+ β2

γ1 (α1 + 3)
(µ1 − µ2)

2

2σ4
p

ρ2
1

(1 + ρ1)
2

)

+
ρ1

1 + ρ1

σ2
2

σ2
p

(
1 + 2βγ2

(µ1 − µ2)
σ2

p

1
1 + ρ1

+ β2
γ2 (α2 + 3)

(µ1 − µ2)
2

2σ4
p

1
(1 + ρ1)

2

)

=

(
σ2

1 + ρ1σ
2
2

)
(
ρ1σ2

1 + σ2
2

) − 2ρ1

(
σ2

1βγ1 − σ2
2βγ2

) (µ1 − µ2)(
ρ1σ

2
1 + σ2

2

)2

+ ρ1

(
(αγ1 + 3) ρ1σ

2
1β

2
γ1 + (αγ2 + 3) σ2

2β
2
γ2

) (µ1 − µ2)
2

2
(
ρ1σ

2
1 + σ2

2

)3 .
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For the Gamma I example, where the gamma distributions for X1 and
X2 have a common shape parameter αγ1 = αγ2 = αγ , as described in section
2.1.1.2, the resulting variance for T∗

0 is

D′ΣD =

(
β2

γ1 + ρ1β
2
γ2

)
(
ρ1β2

γ1 + β2
γ2

) − 2ρ1

(
β3

γ1 − β3
γ2

) (βγ1 − βγ2)(
ρ1β2

γ1 + β2
γ2

)2 (60)

+ ρ1 (αγ + 3)
(
ρ1β

4
γ1 + β4

γ2

) (βγ1 − βγ2)
2

2
(
ρ1β2

γ1 + β2
γ2

)3 .

Figure 6 graphs the variance of T∗
0 versus a range of βγ1 parameter values

for X1, with βγ2 = 3 for X2, and with αγ = 1 for both X1 and X2.
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1
Variance of T Statistic versus Gbeta1

Figure 6: Variance of T∗
0 versus βγ1 when X1 ∼ Gamma(1, βγ1), X2 ∼

Gamma(1, 3).
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For the Gamma II example, where the gamma distributions for X1 and
X2 have a common scale parameter βγ1 = βγ2 = βγ , as described in section
2.1.1.3, the resulting variance for T∗

0 is

D′ΣD =
(αγ1 + ρ1αγ2)
(ρ1αγ1 + αγ2)

(61)

+ ρ1 (ρ1αγ1 (αγ1 − 1) + αγ2 (αγ2 − 1))
(αγ1 − αγ2)

2

2 (ρ1αγ1 + αγ2)3
.

Figure 7 graphs the variance of T∗
0 versus a range of αγ1 parameter values

for X1, with αγ2 = 3 for X2, and with βγ = 1 for both X1 and X2.
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Variance of T Statistic versus Galpha1

Figure 7: Variance of T∗
0 versus αγ1 when X1 ∼ Gamma(αγ1, 1), X2 ∼

Gamma(3, 1).
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2.2.2.2.3 Log Normal Example
In this section, another example of the asymptotic T∗

0 distribution is exam-
ined where X1 and X2 have log normal distributions with different µl1 and
µl2 parameters and with a common σ2

l parameter as described in section
2.1.1.4. The integrable moment condtions of Theorem 2.5 are satisfied since
the log normal distribution has finite moments of all orders

Xj ∼ LN
(
µlj, σ

2
l

)
, for j = 1, 2

E
(
Xk

j

)
= ekµlj+k2σ2

l /2, for k = 1, . . . , 4 .

The additional convergence conditions of Theorem 2.6 are also satisfied since
the log normal density is a continuous function of its parameters such that
the X1 density g1(x) = LN(µl1, σ

2
l ) converges to the X2 density g2(x) =

LN(µl2, σ
2
l ) as µl1 → µl2 for all x ∈ R+ and since the fourth moment is a

continuous function of the log normal parameters. The resulting variance
for Y and distribution for T∗

0 follow:

Var (Y ) = Σ ≡
[
Σ1 0
0 Σ2

]

Σj = e2µlj+σ2
l




(
eσ2

l − 1
)

eµlj+3σ2
l /2
(
e2σ2

l − 1
)

eµlj+3σ2
l /2
(
e2σ2

l − 1
)

e2µlj+3σ2
l

(
e4σ2

l − 1
)

 , j = 1, 2

T∗
0 = D′Y ∼ N

(
0,D′ΣD

)

D′ΣD =
(
D1 D2

)
Σ1

(
D1

D2

)
+
(
D3 D4

)
Σ2

(
D3

D4

)
.
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Figure 8 graphs the variance of T∗
0 versus a range of µl1 parameter values

for X1, with µl2 = 0 for X2, and with σ2
l = 1 for both X1 and X2.
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Variance of T Statistic versus difference in Means

Figure 8: Variance of T∗
0 versus µl1 when X1 ∼ LN(µl1, 1), X2 ∼ LN(0, 1).

2.2.2.2.4 Limiting Example as (µ1, σ
2
1) Approaches (µ2, σ

2
2)

In this section, the limiting distribution for a sequence of T∗
0 random vari-

ables is found as (µ1, σ
2
1) approaches (µ2, σ

2
2). For this case, the variance of

T∗
0 approaches the limit in the following display.

lim
(µ1,σ2

1)→(µ2,σ2
2)

D′ΣD =
(

1
1 + ρ1

)(
1
σ2

2

)[(
1 0

)
Σ2

(
1
0

)]
(62)

+
(

ρ1

1 + ρ1

)(
1
σ2

2

)[(
1 0

)
Σ2

(
1
0

)]

= 1

So that the distribution of T∗
0 approaches a N(0, 1) distribution as (µ1, σ

2
1)

approaches (µ2, σ
2
2). This result is expected, since the original T0n statistic

converges to a N(0, 1) random variable under the null hypothesis when X1 ∼
N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) and when (µ1, σ

2
1) = (µ2, σ

2
2), see (47). This

result may be explicitly verified using the previous examples.

76



2.2.3 Relative Efficiency of T to Z̃n Statistics

The Z̃n statistic is used in testing the null hypothesis H0 : β0 = 0. The
T0n statistic is used in testing the null hypothesis H0 : µ1 = µ2. Under the
assumption that X1 and X2 are normally distributed with common variance

β0 = (µ1 − µ2)/σ2,

both of the statistics Z̃n and T0n are testing the null hypothesis that both
of the normal distributions are the same.

This section uses relative efficiency and then Pitman efficiency, as de-
scribed by Bickel and Doksum (1977) [2] 9.1.A, in order to compare the
performance of the Z̃n and T0n tests. Relative efficiency compares the sam-
ple sizes needed to achieve a desired power when the alternative hypothesis
is true H1 : β0 6= 0 or equivalently µ1 6= µ2. Since the Z̃

∗
n random variable is

asymptotically normal, a sample size Nz � 0 is found to achieve a specified
power for the Z̃n test in terms of Φ. Also since the T∗

0n random variable is
asymptotically normal, another sample size Nt � 0 is also found to achieve
a specified power for the T0n test in terms of Φ. Let P0 represent the prob-
ability distribution of the statistics when the null hypothesis is true. Let P1

represent the probability distribution of the statistics when the alternative
hypothesis is true. Then for the Z̃n statistic

P0

(∣∣∣Z̃Nz

∣∣∣ > z(1 − αH0/2))

≈ 1 − Φ(z(1 − αH0/2)) + Φ (z(αH0/2)) = αH0

P1

(∣∣∣Z̃Nz

∣∣∣ > z(1 − αH0/2))

= P1

(
Z̃
∗
Nz

> z(1 − αH0/2) −
√

Nz

√
ρ1

(1 + ρ1)
σhβ0

)

+ P1

(
Z̃
∗
Nz

< −z(1 − αH0/2) −
√

Nz

√
ρ1

(1 + ρ1)
σhβ0

)

≈ Φ
((√

Nz

√
ρ1

(1 + ρ1)
σhβ0 − z(1 − αH0/2)

)
/σ
(
Z̃
∗)
)

(63)

+ Φ
((

−
√

Nz

√
ρ1

(1 + ρ1)
σhβ0 − z(1 − αH0/2)

)
/σ
(
Z̃
∗)
)

(64)

where σ2
(
Z̃
∗)

= Var
(
Z̃
∗)
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and similarly for the T0n statistic

P0 (|T0Nt | > z(1 − αH0/2))
≈ 1 − Φ(z(1 − αH0/2)) + Φ (z(αH0/2)) = αH0

P1 (|T0Nt | > z(1 − αH0/2))

= P1

(
T∗

0Nt
> z(1 − αH0/2) −

√
Nt

√
ρ1

(1 + ρ1)
(µ1 − µ2)

σp

)

+ P1

(
T∗

0Nt
< −z(1 − αH0/2) −

√
Nt

√
ρ1

(1 + ρ1)
(µ1 − µ2)

σp

)

≈ Φ
((√

Nt

√
ρ1

(1 + ρ1)
(µ1 − µ2)

σp
− z(1 − αH0/2)

)
/σ (T∗

0)
)

(65)

+ Φ
((

−
√

Nt

√
ρ1

(1 + ρ1)
(µ1 − µ2)

σp
− z(1 − αH0/2)

)
/σ (T∗

0)
)

(66)

where σ2 (T∗
0) = Var (T∗

0) .

In order to compare the power of the Z̃n and T0n tests, when the alternative
hypothesis is true, it is natural to evaluate the ratio Nt/Nz, of the sample
sizes needed to achieve a specific power value γ. As Nz and Nt grow, one of
the power probabilities, from (63 or 64) and (65 or 66), increases to one; the
other, to zero. Without loss of generality, assume that β0 > 0 and µ1 > µ2

so that the first probability in each power, (63) and (65), increases to one
as the sample size grows. Equating the power of the Z̃n test to the power
of the T0n test, approximating the power of the Z̃n test using (63), and
approximating the power of the T0n test using (65), leads to the following

P1

(∣∣∣Z̃Nz

∣∣∣ > z(1 − αH0/2)
)

= P1 (|T0Nt | > z(1 − αH0/2)) = γ

Φ−1 (γ) = z (γ) =

√
Nz

√
ρ1

(1+ρ1)σhβ0 − z(1 − αH0/2)

σ
(
Z̃
∗) (67)

=

√
Nt

√
ρ1

(1+ρ1)
(µ1−µ2)

σp
− z(1 − αH0/2)

σ (T∗
0)

. (68)

For the case 0 < γ < 1 where Nz and Nt are finite, equations (67) and
(68) are used to calculate initial sample size approximations for Nz and Nt

that give initial power values from (63)+(64) and (65)+(66) that are greater
than or equal to the desired power value of γ due to (64) and (66). The
correct sample sizes Nz and Nt are then found by decrementing the initial
sample size approximations until (63) + (64) ≈ γ and (65) + (66) ≈ γ. The
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ratio Nt/Nz, of the sample sizes needed to achieve a specific power, is called
the relative efficiency of T0n to Z̃n.

For the case γ ≈ 1 where Nz � 0 and Nt � 0, equating (67) and (68)
leads to the following relative efficiency equations
√

Nt

Nz
= σhβ0

σp

(µ1 − µ2)
(σ (T∗

0) + z(1 − αH0/2)/z (γ))(
σ
(
Z̃
∗)

+ z(1 − αH0/2)/z (γ)
) (69)

= σhβ0
σp

(µ1 − µ2)
+

z (γ)
√

Nz

√
ρ1

(1+ρ1)

σp

(µ1 − µ2)

(
σ (T∗

0) − σ
(
Z̃
∗))

(70)

= σhβ0
σp

(µ1 − µ2)
σ (T∗

0)

σ
(
Z̃
∗) +

z(1 − αH0/2)
√

Nz

√
ρ1

(1+ρ1)

σp

(µ1 − µ2)


1 − σ (T∗

0)

σ
(
Z̃
∗)


 .

(71)

Either of the two relative efficiency equations, (69) or (71), is used to find
the limit (if it exists) of the relative efficiency as γ increases to one while the
other parameters are held constant. The limit of the relative efficiency as γ
increases to one is called the asymptotic relative efficiency of T0n to Z̃n or
A.R.E. Van der Vaart (1998), in [30] section 8.2, provides an alternative limit
definition for relative efficiency that is equivalent to the ratio σ2(T∗

0)/σ
2(Z̃

∗
).

Pitman efficiency, denoted as e(T0n, Z̃n), provides a way to compare the
two test statistics, T0n and Z̃n. Pitman efficiency is found by evaluating
the ratio of sample sizes Nt/Nz over a sequence of alternative hypotheses
H1 : β0 6= 0 or equivalently µ1 6= µ2 as n → ∞ such that β0 → 0 and µ1 → µ2

and such that the level value and power value of (67) and (68) remain fixed
at αHO and γ for each n. Requiring the power γ to remain constant im-
plies that

√
Nzβ0 → cz 6= 0 as Nz → ∞ and

√
Nt(µ1 − µ2)/σp → ct 6= 0 as

Nt → ∞, i.e. that the sequences β0 = O(1/
√

n) and (µ1−µ2)/σp = O(1/
√

n)
as n → ∞. In the Pitman efficiency analysis of the examples that follow,
the moment functions (µ1, σ

2
1) ≡ (µ1, σ

2
1)(Θ1n), (µ2, σ

2
2) ≡ (µ2, σ

2
2)(Θ2), and

the distortion parameters (α0, β0) ≡ (α0, β0)(Θ1n,Θ2) ≡ (αn, βn), are func-
tions of the distorted and reference densities parameters g1(x|Θ1n) ≡ pn(x)
and g2(x|Θ2), such that Θ2 remains fixed and g1(x|Θ1n) → g2(x|Θ2) for
every x ∈ R as Θ1n → Θ2. Theorems 2.6 and 2.4 show that the conver-
gence in distribution of T0n to T∗

0 and of Z̃n to Z̃
∗

are valid as n → ∞
when pn → g2, (µ1, σ

2
1)(Θ1n) → (µ2, σ

2
2)(Θ2), (αn, βn) → 0 and under ad-

ditional convergence conditions. In the examples that follow, only one of
the distorted densities parameters θ1n ∈ Θ1n will vary such that Θ1n → Θ2

as θ1n → θ2 ∈ Θ2. Let θ1n ≡ θ2 + θn, (µ1, σ
2
1)(θn) ≡ (µ1, σ

2
1)(Θ1n), and
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(α0, β0)(θn) ≡ (α0, β0)(Θ1n,Θ2). Note that the convergence in distribution
properties of Theorems 2.6 and 2.4 are valid over any sequence θn → 0 as
n → ∞ which is a stronger result than just requiring the convergence in
distribution properties to be valid over sequences θn = O(1/

√
n). Theorem

14.19 from [30] provides a slope formula for the Pitman efficiency under
conditions that are satisfied by the conditions and results of Theorems 2.6
and 2.4 with positive slopes µ′

T (0), µ′
Z(0) > 0 (see below). This theorem

examines the Pitman efficiency over sequences θn = O(1/
√

n). The Pitman
efficiency slope formula is

µT (θn) ≡ µ1(θn) − µ2

σp(θn)
, µZ (θn) ≡ σhβ0 (θn)

e(T0n, Z̃n) =
(

µ′
Z(0)

µ′
T (0)

)2

. (72)

In equations (70) and (71), allowing
√

Nz(µ1(θn) − µ2) to converge to a
finite limit c 6= 0 as n → ∞, such that both µ1(θn)−µ2 and β0(θn) converge
to zero while σp(θn) converges to a finite positive constant and while αH0

and γ are held constant, results in the sample size ratio converging to a
limit. It is easy to show that the Pitman efficiency slope formula (72) is
equivalent to the limit from the previous statement as θn → 0 such that√

Nzθn → c∗ 6= 0 with c∗ finite and with αH0 and γ fixed

µ′
Z(0)

µ′
T (0)

= lim
θn→0

µZ(θn)/θn

µT (θn)/θn
= lim

θn→0

µZ(θn)
µT (θn)

= lim√
Nz(µ1(θn)−µ2)→c

√
Nt

Nz

since as θn → 0 such that
√

Nzθn → c∗ 6= 0
(
µ1, σ

2
1

)
(θn) →

(
µ2, σ

2
2

)
, σ2 (T∗

0) → 1

(α0, β0) (θn) → (0, 0) , σ2(Z̃
∗
) → 1

√
Nz (µ1(θn) − µ2) =

√
Nzθnσp(θn)

µT (θn)
θn

→ c∗σ2µ
′
T (0) = c .

Equation (67) is used to show as θn → 0

√
Nzθn =

σ
(
Z̃
∗)

z(γ) + z(1 − αH0/2)
√

ρ1

(1+ρ1)
σhβ0(θn)

θn =
σ
(
Z̃
∗)

z(γ) + z(1 − αH0/2)
√

ρ1

(1+ρ1)µZ(θn)/θn

→ z(γ) + z(1 − αH0/2)√
ρ1

(1+ρ1)µ
′
Z(0)

= c∗ .
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2.2.3.1 Gaussian Example As an example, assume X1 and X2 have
Gaussian distributions with different means µ1 6= µ2 and with a common
variance σ2 as described in section 2.1.1.1. Note that h(x) = x. For this
Gaussian example, the relative efficiency equation (71) is specialized to equa-
tion (73) below

x11, . . . , x1n1 ∼ X1 with N
(
µ1, σ

2
)

pdf

x21, . . . , x2n1 ∼ X2 with N
(
µ2, σ

2
)

pdf

(α0, β0) =
(

µ2
2 − µ2

1

2σ2
,

µ1 − µ2

σ2

)
, σ2

h = σ2
p = σ2

σp

(µ1 − µ2)
=

σ

(µ1 − µ2)
, σhβ0

σp

(µ1 − µ2)
= 1

√
Nt

Nz
=

σ (T∗
0)

σ
(
Z̃
∗) +

z(1 − αH0)
√

Nz

√
ρ1

(1+ρ1)

σ

(µ1 − µ2)


1 − σ (T∗

0)

σ
(
Z̃
∗)


 (73)

Holding the distribution parameters (µ1, µ2, σ
2) constant, while increasing

the power γ of the Z̃n and T0n tests to one, results in the sample size ratio
converging to the asymptotic relative efficiency of Z̃n to T0n.

A.R.E. ≡ lim
γ→1

Nt

Nz
=

σ2 (T∗
0)

σ2
(
Z̃
∗)

Allowing
√

Nz(µ1 − µ2) to converge to a finite limit c 6= 0, so that µ1 −
µ2 and β0 converge to zero with σ2 constant, results in the sample size
ratio converging to the Pitman efficiency of T0n to Z̃n. The variance of
T∗

0 converges to one as µ1 approaches µ2 in (48). In general, as previously
shown in (45), the variance of Z̃

∗
converges to one as β0 approaches zero.

lim
β0→0

σ2
(
Z̃
∗)

= 1, lim
(µ1−µ2)→0

σ2 (T∗
0) = 1

e
(
T0n, Z̃n

)
≡ lim√

Nz(µ1−µ2)→c

Nt

Nz
= 1

Figures 1 and 5 graph the variances of Z̃
∗

and T∗
0 separately when σ2 = 1.

Figure 9 graphs the variances of Z̃
∗

and T∗
0 together when σ2 = 1.
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Figure 10 graphs the relative efficiency of T0n to Z̃n when σ2 = 1, and
when αH0 = .05. In Figure 10, the relative efficiency is nearly one, in a
neighborhood of µ1 = µ2. In other words, the sample sizes are approximately
the same, for the T0n and Z̃n tests, in order to achieve the same power value,
when the difference in means is small. Outside of this neighborhood of µ1 =
µ2, the relative efficiency of T0n to Z̃n decreases with larger power values.
In other words, the T0n test requires smaller random samples, relative to
the semiparametric test, in order to achieve the same power value, as the
power value increases.
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Figure 9: Given X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1), the solid line is the variance
of Z̃

∗
versus µ1 − µ2, the dashed line is the variance of T∗

0 versus µ1 − µ2.
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Figure 10: Relative Efficiency Nt/Nz curves of T0n to Z̃n, versus µ1 − µ2,
when X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1), and when αH0 = .05. The curves,
starting from the top, correspond to different power values of γ = .7, .8, .9,
.99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let µ1n ≡ µ2 + θn ≡ µ1(θn).

µT (θn) =
µ1 (θn) − µ2

σp(θn)
=

θn

σ
, µ′

T (0) =
1
σ

µZ (θn) = σhβ0 (θn) =
θn

σ
, µ′

Z (0) =
1
σ

e
(
T0n, Z̃n

)
=
(
µ′

Z (0) /µ′
T (0)

)2 = 1

Power simulation results for the Z̃n and T0n tests in Table 1 show how
well the asymptotic power approximates finite sample behavior where X1 ∼
N(µ1, 1), X2 ∼ N(µ2, 1), and where µ1 − µ2 = 0.2, 0.5. Power simulation
results for the T0n and Z̃n tests are also provided in Table 2 where X1 ∼
N(µ1, 1), X2 ∼ N(µ2, 1), and where µ1 − µ2 = 1.0. The combined Sample
Sizes values Nz = n1 + n2 were calculated with ρ1 = 1 via (67) and (63)
+ (64) to provide the specified αH0 = 0.05, 0.01 error and to provide the
specified Asymptotic Power values for Z̃n that approximate a power of γ =
0.80, 0.90. The Asymptotic Power values for T0n were calculated for the
combined Sample Sizes values Nt = n1 + n2 with ρ1 = 1 from (65) +
(66). Relative Efficiency values were approximated using (69). A Relative
Efficiency value less than one implies a larger Asymptotic Power value for
the T0n test versus the Asymptotic Power value for the Z̃n test.

Table 1: Power simulation results for the Z̃n and T0n tests, using 500
independent runs, where X1 ∼ N(µ1, 1) and X2 ∼ N(µ2, 1), and where
∆µ ≡ µ1 − µ2 = 0.2, 0.5.

∆µ αH0 Sample Sample Sample Asymptotic Rel.
Sizes Levels Powers Powers Eff.
n1, n2 Z̃n, T0n Z̃n, T0n Z̃n(γ), T0n (69)

0.2 .05 394, 394 .046, .046 .800, .800 .8009, .8010 1.0000
0.2 .05 527, 527 .042, .042 .902, .902 .9003, .9003 0.9999
0.2 .01 585, 585 .010, .010 .808, .808 .8003, .8003 1.0000
0.2 .01 746, 746 .008, .008 .890, .888 .9003, .9004 1.0000
0.5 .05 64, 64 .048, .048 .824, .820 .8032, .8038 0.9984
0.5 .05 86, 86 .054, .052 .902, .900 .9024, .9030 0.9979
0.5 .01 95, 95 .010, .012 .804, .798 .8036, .8042 0.9987
0.5 .01 121, 121 .004, .004 .906, .904 .9014, .9020 0.9982
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Table 2: Power simulation results for the Z̃n and T0n tests, using 500
independent runs, where X1 ∼ N(µ1, 1) and X2 ∼ N(µ2, 1), and where
∆µ ≡ µ1 − µ2 = 1.0.

∆µ αH0 Sample Sample Sample Asymptotic Rel.
Sizes Levels Power Power Eff.
n1, n2 Z̃n, T0n Z̃n, T0n Z̃n(γ), T0n (69)

1.0 .05 17, 17 .070, .070 .852, .850 .8081, .8162 0.9789
1.0 .05 23, 23 .058, .056 .934, .934 .9040, .9114 0.9726
1.0 .01 25, 25 .008, .006 .838, .826 .8092, .8172 0.9826
1.0 .01 32, 32 .012, .012 .908, .914 .9029, .9103 0.9768

In Tables 1 and 2, the important columns to compare are the Sample
and Asymptotic Powers columns. The Sample Powers values for the Z̃n

and T0n tests identify the proportion of simulation runs that failed the H0

test at the αH0 level. The Sample Levels values for the Z̃n and T0n tests
identify the proportion of simulation runs that failed the H0 test at the αH0

level when the null hypothesis was true. For the simulations in Table 1,
the Sample Sizes values are large enough so that the Sample Powers values
are in agreement with the corresponding Asymptotic Powers values. For
the simulations in Table 2, the Sample Sizes values are relatively small, so
that some of the Sample Powers values are not quite in agreement with
the corresponding Asymptotic Powers values. In both Tables 1 and 2, the
Sample Powers values for the Z̃n and T0n tests are nearly equal and are
compatible with the Relative Efficiency values near 1.

The actual distribution of T0n, when X1 ∼ N(µ1, σ
2) and X2 ∼ N(µ2, σ

2),
and when µ1 6= µ2, is known to follow a non-central t distribution, with n−2
degrees of freedom, and with a non-centrality parameter δ

δ =
√

n

√
ρ1

1 + ρ1

∣∣∣∣
µ1 − µ2

σ

∣∣∣∣ .

For this example, it is interesting to compare the asymptotic power of T0n

against the true power of T0n. Figures 11 and 12 graph the asymptotic
power of T0n versus φ = δ/

√
2 with αH0 = 0.05, 0.01.
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Figure 11: Asymptotic power of T0n versus φ with αH0 = 0.05. The curves,
from the top, correspond to different degrees of freedom of ν = ∞, 60, 30, 20.
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Figure 12: Asymptotic power of T0n versus φ with αH0 = 0.01. The curves,
from the top, correspond to different degrees of freedom of ν = ∞, 60, 30, 20.

Examination, of the (∞, 60) degrees of freedom curves in Figures 11 and
12, reveals that these curves are in close agreement with the correspond-
ing curves in the Pearson and Hartley chart for the Power of the F tests
found in Scheffe (1959) [27], where the numerator degrees of freedom is one.
As expected, the other curves in Figures 11 and 12 with fewer degrees of
freedom are in less agreement with the corresponding curves in the Pearson
and Hartley chart, since the sample sizes are too small for the asymptotic
distribution of T∗

0n to closely approximate the true distribution of T∗
0n.
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2.2.3.2 Gamma Example I As another example, assume X1 and X2

have gamma distributions with a common shape parameter αγ and with
different scale parameters βγ1 6= βγ2 as described in section 2.1.1.2. Note
that h(x) = x. For this Gamma Example I, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (74) and (75)
below

x11, . . . , x1n1 ∼ X1 with Gamma (αγ , βγ1) pdf
x21, . . . , x2n2 ∼ X2 with Gamma (αγ , βγ2) pdf

(
µj, σ

2
j

)
=
(
αγβγj , αγβ2

γj

)
, j = 1, 2

(α0, β0) =
(

αγ ln
(

βγ2

βγ1

)
,

(
1

βγ2
− 1

βγ1

))
, σ2

h = σ2
2

σp

(µ1 − µ2)
=

1
(βγ1 − βγ2)

√√√√ 1
αγ

(
ρ1β

2
γ1 + β2

γ2

ρ1 + 1

)
(74)

σhβ0
σp

(µ1 − µ2)
=

√
(βγ2/βγ1)

2 + ρ1

1 + ρ1
. (75)

The asymptotic relative efficiency of T0n to Z̃n follows directly. With regard
to the Pitman efficiency of T0n to Z̃n, the variance of T∗

0 converges to one
as βγ1 approaches βγ2 in (60). In general, as previously shown in (45), the
variance of Z̃

∗
converges to one as β0 approaches zero.

A.R.E. ≡ lim
γ→1

Nt

Nz
=

(
(βγ2/βγ1)

2 + ρ1

1 + ρ1

)
σ2 (T∗

0)

σ2
(
Z̃
∗)

lim
β0→0

σ2
(
Z̃
∗)

= 1, lim
(βγ1−βγ2)→0

σ2 (T∗
0) = 1

e
(
T0n, Z̃n

)
≡ lim√

Nz(βγ1−βγ2)→c

Nt

Nz
= 1

Figures 2 and 6 graph the variances of Z̃
∗

and T∗
0 separately when αγ = 1.

Figure 13 graphs the variances of Z̃
∗

and T∗
0 together when αγ = 1. Figure

14 graphs the relative efficiency of T0n to Z̃n when αγ = 1, and when
αH0 = .05.
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In Figure 14, the relative efficiency is nearly one, in a neighborhood of
βγ1 = βγ2 = 3. Figure 14, also identifies some interesting relative efficiencies
of T0n to Z̃n, outside a neighborhood of βγ1 = βγ2 = 3. For smaller power
values γ = .7, .8, .9, the relative efficiency of T0n to Z̃n is greater than one,
when βγ1 < βγ2 = 3. As the power value increases, the relative efficiency
of T0n to Z̃n decreases, so that at a power value of γ = .99, the relative
efficiency of T0n to Z̃n is less than one. In contrast, the relative efficiency of
T0n to Z̃n increases for βγ1 > βγ2 = 3 as the power values increase.
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Figure 13: Given X1 ∼ Gamma(1, βγ1), X2 ∼ Gamma(1, 3), solid line is the
variance of Z̃

∗
versus βγ1, dashed line is the variance of T∗

0 versus βγ1.
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Figure 14: Relative Efficiency Nt/Nz curves of T0n to Z̃n, versus βγ1, when
X1 ∼ Gamma(1, βγ1), X2 ∼ Gamma(1, 3), and when αH0 = .05. The
curves, starting from the top left, correspond to different power values of γ
= .7, .8, .9, .99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let βγ1n ≡ βγ2 + θn.

µT (θn) =
µ1 (θn) − µ2

σp(θn)
=

√
αγθn

(
ρ1

1+ρ1
β2

γ2 + 1
1+ρ1

(βγ2 + θn)2
) 1

2

µZ (θn) = σhβ0 (θn) =
√

αγβγ2

(
1

βγ2
− 1

βγ2 + θn

)

µ′
T (0) = µ′

Z (0) =
√

αγ

βγ2

e
(
T0n, Z̃n

)
=
(

µ′
Z (0)

µ′
T (0)

)2

= 1

Power simulation results for the Z̃n and T0n tests in Table 3 show how
well the asymptotic power approximates finite sample behavior where X1 ∼
Gamma(1, βγ1), X2 ∼ Gamma(1, 3), and where βγ1 = 2, 2.5, 3.5, 4. The
combined Sample Sizes values Nz = n1 + n2 were calculated with ρ1 = 1
via (67) and (63) + (64) to provide the specified αH0 = 0.05, 0.01 error and
to provide the specified Asymptotic Power values for Z̃n that approximate
a power of γ = 0.80, 0.90. The Asymptotic Power values for T0n were
calculated for the combined Sample Sizes values Nt = n1 + n2 with ρ1 = 1
from (65) + (66). Relative Efficiency values were approximated using (69).
A Relative Efficiency value less (or greater) than one implies a larger (or
smaller) Asymptotic Power value for the T0n test versus the Asymptotic
Power value for the Z̃n test.
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Table 3: Power simulation results for the Z̃n and T0n tests, using 500 inde-
pendent runs, where X1 ∼ Gamma(1, βγ1), X2 ∼ Gamma(1, 3).

βγ1 αH0 Sample Sample Sample Asymptotic Rel.
Sizes Levels Powers Powers Eff.
n1, n2 Z̃n, T0n Z̃n, T0n Z̃n(γ), T0n (69)

2 .05 84, 84 .050, .056 .776, .696 .8010, .7344 1.1662
2 .05 122, 122 .058, .050 .926, .904 .9002, .8825 1.0584
2 .01 119, 119 .018, .012 .822, .698 .8008, .6858 1.2345
2 .01 164, 164 .016, .006 .892, .838 .9009, .8532 1.1285

2.5 .05 442, 442 .044, .042 .786, .748 .8002, .7715 1.0733
2.5 .05 614, 614 .056, .052 .908, .878 .9004, .8911 1.0321
2.5 .01 644, 644 .014, .010 .798, .754 .8001, .7531 1.0978
2.5 .01 848, 848 .010, .012 .908, .880 .9001, .8793 1.0592
3.5 .05 707, 707 .048, .046 .792, .830 .8005, .8251 0.9381
3.5 .05 920, 920 .054, .052 .894, .910 .9001, .9180 0.9623
3.5 .01 1068, 1068 .014, .010 .790, .836 .8003, .8365 0.9247
3.5 .01 1327, 1327 .010, .006 .882, .908 .9001, .9180 0.9461
4 .05 217, 217 .042, .030 .802, .858 .8004, .8475 0.8843
4 .05 277, 277 .058, .054 .874, .906 .9007, .9227 0.9217
4 .01 332, 332 .010, .010 .802, .890 .8008, .8667 0.8641
4 .01 405, 405 .012, .010 .896, .936 .9006, .9341 0.8965

In Table 3, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Z̃n and T0n

tests identify the proportion of simulation runs that failed the H0 test at
the αH0 level. The Sample Levels values for the Z̃n and T0n tests identify
the proportion of simulation runs that failed the H0 test at the αH0 level
when the null hypothesis was true. For these simulations in Table 3, the
Sample Sizes values are large enough so that the Sample Powers values are in
agreement with the corresponding Asymptotic Powers values. Also for these
simulations, the Sample Powers values for the Z̃n and T0n tests support the
Relative Efficiency values. A larger (or smaller) Sample Power value for the
T0n test versus the Sample Power value for the Z̃n test is compatible with
the smaller (or larger) than one Relative Efficiency value.
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2.2.3.3 Gamma Example II As another example, assume X1 and X2

have Gamma distributions with different shape parameters αγ1 6= αγ2 and
with a common scale parameter βγ as described in section 2.1.1.3. Note that
h(x) = log(x). For this Gamma Example II, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (76) and (77)
below

x11, . . . , x1n1 ∼ X1 with Gamma (αγ1, βγ) pdf
x21, . . . , x2n2 ∼ X2 with Gamma (αγ2, βγ) pdf

(
µj , σ

2
j

)
=
(
αγjβγ , αγjβ

2
γ

)
, j = 1, 2

(α0, β0) =
(

log
Γ(αγ2)
Γ(αγ2)

+ (αγ2 − αγ1) log βγ , (αγ1 − αγ2)
)

σ2
h =

Γ′′ (αγ2)
Γ (αγ2)

−
(

Γ′ (αγ2)
Γ (αγ2)

)2

σp

(µ1 − µ2)
=
√

ρ1αγ1 + αγ2

ρ1 + 1
/ (αγ1 − αγ2) (76)

σhβ0
σp

(µ1 − µ2)
= σh

√
ρ1αγ1 + αγ2

ρ1 + 1
. (77)

The asymptotic relative efficiency of T0n to Z̃n follows directly. With regard
to the Pitman efficiency of T0n to Z̃n, the variance of T∗

0 converges to one
as αγ1 approaches αγ2 in (61). In general, as previously shown in (45), the
variance of Z̃

∗
converges to one as β0 approaches zero.

A.R.E ≡ lim
γ→1

Nt

Nz
= σ2

h

(
ρ1αγ1 + αγ2

ρ1 + 1

)
σ2 (T∗

0)

σ2
(
Z̃
∗)

lim
β0→0

σ2
(
Z̃
∗)

= 1, lim
(αγ1−αγ2)→0

σ2 (T∗
0) = 1

e
(
T0n, Z̃n

)
≡ lim√

Nz(αγ1−αγ2)→c

Nt

Nz
= σ2

hαγ2

By inspection, σ2
h depends only on αγ2, not on βγ2. Figures 3 and 7 graph

the variances of Z̃
∗

and T∗
0 separately when βγ = 1. Figure 15 graphs the

variances of Z̃
∗

and T∗
0 together when βγ = 1. Figure 16 graphs the relative

efficiency of T0n to Z̃n when βγ = 1, and when αH0 = .05.
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In Figure 16, the relative efficiency is greater than one, in a large neigh-
borhood of αγ1 = αγ2 = 3. For smaller power values γ = .7, .8, .9, the
relative efficiency of T0n to Z̃n is greater than one when αγ1 < αγ2 = 3,
except when αγ1 is close to 1. As the power value increases, the relative
efficiency of T0n to Z̃n increases, so that at a power value of γ = .9999, the
relative efficiency of T0n to Z̃n is greater than one for αγ1 = 1. In contrast,
the relative efficiency of T0n to Z̃n decreases for αγ1 > αγ2 = 3 as the power
value increases.
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Figure 15: Given X1 ∼ Gamma(αγ1, 1), X2 ∼ Gamma(3, 1), solid line is the
variance of Z̃

∗
versus αγ1, dashed line is the variance of T∗

0 versus αγ1.
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Figure 16: Relative Efficiency Nt/Nz curves of T0n to Z̃n, versus αγ1, when
X1 ∼ Gamma(αγ1, 1), X2 ∼ Gamma(3, 1), and when αH0 = .05. The
curves, starting from the bottom left, correspond to different power values
of γ = .7, .8, .9, .99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let αγ1n ≡ αγ2 + θn.

µT (θn) =
µ1 (θn) − µ2

σp(θn)
=

θn

αγ2 + 1
1+ρ1

θn
, µ′

T (0) = α
− 1

2
γ2

µZ (θn) = σhβ0 (θn) = σhθn, µ′
Z (0) = σh

e
(
T0n, Z̃n

)
=
(

µ′
Z (0)

µ′
T (0)

)2

= σ2
hαγ2

Figure 17 graphs the Pitman efficiency of T0n to Z̃n over a range of
αγ2. This figure shows that the Pitman efficiency decreases towards one as
a function of αγ2.
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Figure 17: Pitman Efficiency of T0n to Z̃n, versus αγ2, when X2 ∼
Gamma(αγ2, 1).

Power simulation results for the Z̃n and T0n tests in Table 4 show how
well the asymptotic power approximates finite sample behavior where X1 ∼
Gamma(αγ1, 1), X2 ∼ Gamma(3, 1), and where αγ1 = 2, 2.5, 3.5, 4. The
combined Sample Sizes values Nz = n1 + n2 were calculated with ρ1 = 1
via (67) and (63) + (64) to provide the specified αH0 = 0.05, 0.01 error and
to provide the specified Asymptotic Power values for Z̃n that approximate
a power of γ = 0.80, 0.90. The Asymptotic Power values for T0n were
calculated for the combined Sample Sizes values Nt = n1 + n2 with ρ1 = 1
from (65) + (66). Relative Efficiency values were approximated using (69).
A Relative Efficiency value greater than one implies a smaller Asymptotic
Power value for the T0n test versus the Asymptotic Power value for the Z̃n

test.
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Table 4: Power simulation results for the Z̃n and T0n tests, using 500 inde-
pendent runs, where X1 ∼ Gamma(αγ1, 1), X2 ∼ Gamma(3, 1).

αγ1 αH0 Sample Sample Sample Asymptotic Rel.
Sizes Levels Powers Powers Eff.
n1, n2 Z̃n, T0n Z̃n, T0n Z̃n(γ), T0n (69)

2 .05 37, 37 .056, .050 .812, .770 .8095, .7729 1.0944
2 .05 48, 48 .056, .054 .906, .878 .9064, .8688 1.1316
2 .01 55, 55 .010, .008 .814, .772 .8020, .7671 1.0739
2 .01 68, 68 .012, .014 .882, .848 .9003, .8632 1.1066

2.5 .05 151, 151 .054, .056 .776, .740 .8013, .7446 1.1496
2.5 .05 199, 199 .044, .042 .886, .848 .9015, .8517 1.1708
2.5 .01 227, 227 .006, .010 .816, .746 .8017, .7370 1.1377
2.5 .01 284, 284 .008, .012 .876, .830 .9004, .8446 1.1566
3.5 .05 169, 169 .050, .048 .814, .706 .8004, .7216 1.2111
3.5 .05 231, 231 .040, .046 .916, .856 .9009, .8455 1.1896
3.5 .01 249, 249 .012, .008 .814, .704 .8008, .6975 1.2237
3.5 .01 323, 323 .010, .010 .890, .824 .9009, .8278 1.2038
4 .05 46, 46 .046, .042 .806, .722 .8075, .7243 1.2302
4 .05 63, 63 .058, .054 .890, .836 .9017, .8477 1.1876
4 .01 66, 66 .014, .012 .816, .712 .8030, .6874 1.2556
4 .01 87, 87 .008, .012 .914, .838 .9020, .8257 1.2157

In Table 4, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Z̃n and T0n

tests identify the proportion of simulation runs that failed the H0 test at
the αH0 level. The Sample Levels values for the Z̃n and T0n tests identify
the proportion of simulation runs that failed the H0 test at the αH0 level
when the null hypothesis was true. For these simulations in Table 4, the
Sample Sizes values are large enough so that the Sample Power values are in
agreement with the corresponding Asymptotic Power values. Also for these
simulations, the Sample Powers values for the Z̃n and T0n tests support the
Relative Efficiency values. A smaller Sample Power value for the T0n test
versus the Sample Power value for the Z̃n test is compatible with the larger
than one Relative Efficiency value.
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2.2.3.4 Log Normal Example As another example, assume X1 and
X2 have log normal distributions with different µl1 6= µl2 parameters and
with a common σ2

l parameter as described in section 2.1.1.4. Note that
h(x) = log(x). For this log normal example, the coefficients in the relative
efficiency equation (71) are specialized to the coefficients in (78) and (79)
below

x11, . . . , x1n1 ∼ X1 with LN
(
µl1, σ

2
l

)
pdf

x21, . . . , x2n2 ∼ X2 with LN
(
µl2, σ

2
l

)
pdf

(
µj, σ

2
j

)
=
(
eµlj+σ2

l /2, e2µlj+σ2
l

(
eσ2

l − 1
))

, j = 1, 2

(α0, β0) =
(

µ2
l2 − µ2

l1

2σ2
l

,
µl1 − µl2

σ2
l

)
, σ2

h = σ2
l

σp

(µ1 − µ2)
=

√√√√
(
ρ1e2(µl1−µl2) + 1

) (
eσ2

l − 1
)

ρ1 + 1

(
1

eµl1−µl2 − 1

)
(78)

σhβ0
σp

(µ1 − µ2)
=

1
σl

√√√√
(
ρ1e2(µl1−µl2) + 1

) (
eσ2

l − 1
)

ρ1 + 1

(
µl1 − µl2

eµl1−µl2 − 1

)
. (79)

The asymptotic relative efficiency of T0n to Z̃n follows directly. With re-
gard to the Pitman efficiency of T0n to Z̃n, as previously shown in (62), the
variance of T∗

0 converges to one, since (µ1, σ
2
1) approaches (µ2, σ

2
2) as µl1 ap-

proaches µl2. Also as previously shown in (45), the variance of Z̃
∗

converges
to one as β0 approaches zero.

A.R.E. ≡ lim
γ→1

Nt

Nz
=
(

σhβ0
σp

(µ1 − µ2)

)2 σ2 (T∗
0)

σ2
(
Z̃
∗)

lim
β0→0

σ2
(
Z̃
∗)

= 1, lim
(µl1−µl2)→0

σ2 (T∗
0) = 1

e
(
T0n, Z̃n

)
≡ lim√

Nz(µl1−µl2)→c

Nt

Nz
=

1
σ2

l

(
eσ2

l − 1
)

Figures 4 and 8 graph the variances of Z̃
∗

and T∗
0 separately when σ2

l = 1.
Figure 18 graphs the variances of Z̃

∗
and T∗

0 together when σ2
l = 1. Figure 19

graphs the relative efficiency of T0n to Z̃n when σ2
l = 1, and when αH0 = .05.
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In Figure 19, the relative efficiency is greater than one, for µl1 ∈ (−2, 2).
In fact, the relative efficiency increases as the power value increases, or as
the difference |µl1 − µl2| increases.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9
Variances of Semiparametric and T Statistics versus differe
nce in Means

Figure 18: Given X1 ∼ LN(µl1, 1), X2 ∼ LN(0, 1), the solid line is the
variance of Z̃

∗
versus µl1, the dashed line is the variance of T∗

0 versus µl1.
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Relative Efficiency of T Statistic to Semiparametric Statis
tic

Figure 19: Relative Efficiency Nt/Nz curves of T0n to Z̃n, versus µl1, when
X1 ∼ LN(µl1, 1), X2 ∼ LN(0, 1), and when αH0 = .05. The curves, starting
from the bottom left, correspond to different power values of γ = .7, .8, .9,
.99, .9999, .9999999999999999, 1.
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The Pitman efficiency calculated using the slope formula (72) is consis-
tent with the previous calculation. Let µl1n ≡ µl2 + θn.

µT (θn) =
µ1 (θn) − µ2

σp(θn)
=

eθn − 1
(
eσ2

l − 1
) 1

2
(

ρ1

1+ρ1
e2θn + 1

1+ρ1

) 1
2

µ′
T (0) =

(
eσ2

l − 1
)− 1

2

µZ (θn) = σhβ0 (θn) =
θn

σl
, µ′

Z (0) =
1
σl

e
(
T0n, Z̃n

)
=
(

µ′
Z (0)

µ′
T (0)

)2

=
eσ2

l − 1
σ2

l

Power simulation results for the Z̃n and T0n tests in Table 5 show how
well the asymptotic power approximates finite sample behavior where X1 ∼
LN(µl1, 1), X2 ∼ LN(0, 1), and where µl1 = .2, .3, .4, .5. The combined
Sample Sizes values Nt = n1 + n2 were calculated with ρ1 = 1 via (68) and
(65) + (66) to provide the specified αH0 = 0.05, 0.01 error and to provide
the specified Asymptotic Power values for T0n that approximates a power of
γ = 0.80, 0.90. The Asymptotic Power values for Z̃n were calculated for the
combined sample size Nz = n1 + n2 with ρ1 = 1 from (63) + (64). Relative
Efficiency values were approximated using (69). A Relative Efficiency value
greater than one implies a smaller Asymptotic Power value for the T0n test
versus the Asymptotic Power value for the Z̃n test.
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Table 5: Power simulation results for the Z̃n and T0n tests, using 500 inde-
pendent runs, where X1 ∼ LN(µl1, 1), X2 ∼ LN(0, 1).

µl1 αH0 Sample Sample Sample Asymptotic Rel.
Sizes Levels Powers Powers Eff.
n1, n2 Z̃n, T0n Z̃n, T0n Z̃n, T0n(γ) (69)

.2 .05 692, 692 .046, .050 .950, .820 .9604, .8002 1.7597

.2 .05 929, 929 .048, .044 .989, .926 .9905, .9002 1.7637

.2 .01 1028, 1028 .008, .012 .972, .806 .9746, .8002 1.7574

.2 .01 1313, 1313 .008, .010 .996, .916 .9945, .9002 1.7610

.3 .05 319, 319 .050, .050 .974, .836 .9655, .8004 1.8206

.3 .05 430, 430 .046, .044 .990, .912 .9923, .9000 1.8326

.3 .01 473, 473 .010, .010 .966, .836 .9786, .8009 1.8138

.3 .01 606, 606 .006, .010 .996, .926 .9957, .9002 1.8246

.4 .05 190, 190 .048, .056 .970, .858 .9724, .8006 1.9204

.4 .05 259, 259 .054, .052 .998, .932 .9948, .9009 1.9483

.4 .01 280, 280 .008, .014 .976, .856 .9836, .8007 1.9045

.4 .01 362, 362 .010, .010 .998, .938 .9972, .9004 1.9297

.5 .05 132, 132 .056, .046 .970, .868 .9805, .8019 2.0680

.5 .05 182, 182 .048, .054 .994, .944 .9971, .9014 2.1230

.5 .01 193, 193 .010, .008 .992, .868 .9891, .8022 2.0369

.5 .01 252, 252 .012, .012 .996, .960 .9986, .9008 2.0864

In Table 5, the important columns to compare are the Sample and As-
ymptotic Powers columns. The Sample Powers values for the Z̃n and T0n

tests identify the proportion of simulation runs that failed the H0 test at
the αH0 level. The Sample Levels values for the Z̃n and T0n tests iden-
tify the proportion of simulation runs that failed the H0 test at the αH0

level when the null hypothesis is true. For these simulations, the Sample
Sizes values are large enough so that the Sample Power values for the Z̃n

test are in agreement with the corresponding Asymptotic Power values. For
these simulations, the Sample Sizes values are not large enough in general
so that the Sample Power values for the T0n test are not in agreement in
general with the corresponding Asymptotic Power values. Also for these
simulations, the Sample Powers values for the Z̃n and T0n tests support the
Relative Efficiency values. A smaller Sample Power value for the T0n test
versus the Sample Power value for the Z̃n test is compatible with the larger
than one Relative Efficiency value.
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3 Computational Aspects of State Space Models

This section develops an asymptotic theory for state space smoother preci-
sions and introduces a partial state space smoother. Subsection 3.1 defines
a general multivariate linear Gaussian state space model and provides sev-
eral examples of an ARMA time series that is recast in terms of a linear
Gaussian state space model. Subsection 3.2 identifies and shows the formu-
las for the Kalman Predictor, Filter, and Smoother. Subsection 3.3 develops
a likelihood smoother form of the state space smoother based on the general
multivariate version of the linear Gaussian state space model introduced in
subsection 3.1. Subsection 3.4 applies the likelihood smoother to a univariate
version of the linear Gaussian state space model with constant parameters
in order to develop various bounds on the smoother precisions, to develop
simple formulas for the smoother estimates and precisions, and to develop
limits for the smoother precisions. Subsection 3.4.1 generalizes this theory
to account for missing observations. Subsection 3.5 introduces the concept
of a partial state space smoother and provides several examples.

3.1 Linear Gaussian State Space Models

This section on linear Gaussian state space models is adopted from Kedem
and Fokianos (2002) [14]. Let β0:N = {β0, . . . ,βN} represent a sequence
of N + 1 (unknown) states, FN = {Y 1, . . . ,Y N} a sequence of N observa-
tions, and X N = {X1, . . . ,XN} the corresponding covariate sequence. Let
F t represent the information available to the observer at time t using the
following convention:

F0 = ∅, F t = {Y 1, . . . ,Y t−1, Y t} = {F t−1,Y t} .

The linear Gaussian state space model is defined by the following linear
system of equations:

Initial Information: β0 ∼ Np(b0,W 0)
System Equation: βt = F tβt−1 + wt, wt ∼ Np(0,W t) (80)
Observation Equation: Y t = z′

tβt + vt, vt ∼ Nq(0,V t)

where {β0}, {wt : t = 1, . . . , N}, and {vt : t = 1, . . . , N} are mutually
independent collections of independent random vectors; where the system
equation is true for t = 1, . . . , N and the observation equation is true for
all Y t ∈ FN , i.e. for t = 1, . . . , N ; where all distribution parameters
{b0,W 0,W t,V t for t = 1, . . . , N} are known; where F t for t = 1, . . . , N
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are known matrices; and where zt for t = 1, . . . , N are known matrices that
may contain covariates from X t such as past observations or may contain
parameters that are known at time t. Each state βt for t = 0, . . . , N can be
thought of as an unknown covariate or as an unknown random parameter
at time t. Thus the concept of ”state” in the linear Gaussian state space
model can be interpreted in several ways.

3.1.1 Examples of Linear State Space Models

An ARMA(p, q) process defined by φ(B)Yt = θ(B)wt where:

BYt = Yt−1,

φ(B) = 1 − φ1B − · · · − φpB
p,

θ(B) = 1 + θ1B + · · · + θqB
q,

has many state space representations (80). Kedem and Fokianos (2002) [14]
developed one such representation for the ARMA(p, q) process by using:

φ(B)Xt = wt or Xt = φ−1(B)wt,

Yt = θ(B)Xt = θ(B)φ−1(B)wt,

φ(B)Yt = θ(B)wt .

The corresponding state space model can be written as:

βt =




φ1 · · · φr−2 φr−1 φr

1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0




βt−1 +




1
0
...
0
0




wt

βt = (Xt, . . . ,Xt−r+1)
′

Yt =
(
1 θ1 θ2 · · · θr−1

)
βt

where r = max(p, q+1), where φj = 0 for j > p, and where θj = 0 for j > q.
Durbin and Koopman (2001) [7] provide an alternate state space repre-
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sentation for the ARMA(p, q) process as follows

βt =




φ1 1 0
...

. . .
φr−1 0 1
φr 0 · · · 0


βt−1 +




1
θ1
...

θr−1


wt

βt =




Yt

φ2Yt−1 + · · · + φrYt−r+1 + θ1wt + · · · + θr−1wt−r+2

φ3Yt−1 + · · · + φrYt−r+2 + θ2wt + · · · + θr−1wt−r+3
...

θrYt−1 + θr−1wt




Yt =
(
1 0 0 . . . 0

)
βt .

Durbin and Koopman [7] also provide a state space representation for the
ARIMA(p, d, q) process as defined by φ(B)(1 − B)dYt = θ(B)wt.

3.2 Kalman Predictor/Filter and State Space Smoother

Given a sequence of observations FN = {Y 1, . . . ,Y N}, the linear state space
model is used to estimate the (unknown) state sequence β0:t = {β0, . . . ,βt}.
The estimation of βt given Fs, or the estimation of its conditional distri-
bution f(βt|F s), s ≤ N , is called prediction if t > s; filtering if t = s; or
smoothing if t < s.

In the Gaussian case of the linear state space model, the Kalman Pre-
diction and Filtering methods and the Space Space Smoothing method cal-
culate the conditional mean vector and the precision matrix of βt|F s. For
t = 1, . . . , N let

βt|s = E[βt|F s], P t|s = E[(βt − βt|s)(βt − βt|s)
′] .

The covariance matrix, between the residuals βt −βt|s and the observations
Y 1, . . . ,Y s, being zero for all t and s implies that P t|s is also the conditional
variance of βt|Fs, i.e.

P t|s = E[(βt − βt|s)(βt − βt|s)
′] = E[(βt − βt|s)(βt − βt|s)

′|Fs] = Var(βt|F s).

Letting β0|0 = b0,P 0|0 = W 0, and using the initial condition β0|F0 ∼
Np(β0|0,P 0|0), leads to the following Kalman methods, see [14].

The Kalman Prediction method, for t = 1 . . . N , calculates:

βt|t−1 = F tβt−1|t−1,

P t|t−1 = F tP t−1|t−1F
′
t + W t.
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The Kalman Filtering method, for t = 1 . . . N , where Kt is the Kalman
Gain, calculates:

βt|t = βt|t−1 + Kt(Y t − z′
tβt|t−1),

P t|t = [I − Ktz
′
t]P t|t−1,

Kt ≡ P t|t−1zt[z′
tP t|t−1zt + V t]−1.

The State Space Smoothing method, for t = N . . . 1, calculates:

βt−1|N = βt−1|t−1 + Bt(βt|N − βt|t−1),

P t−1|N = P t−1|t−1 + Bt(P t|N − P t|t−1)B
′
t,

Bt ≡ P t−1|t−1F
′
tP

−1
t|t−1.

The Kalman Prediction result follows immediately from using the State
Space equations (80) given βt−1|F t−1 ∼ Np(βt−1|t−1,P t−1|t−1).

The Kalman Filtering result follows from using the State Space equations
(80) and the Kalman Prediction result to show:

(
βt

Y t

)∣∣∣∣F t−1 ∼ Np+q

[(
βt|t−1

z′
tβt|t−1

)
,

(
P t|t−1 P t|t−1zt

z′
tP t|t−1 z′

tP t|t−1zt + Vt

)]

and by applying the Normal distribution to Conditional Normal distribution
transformation:

(
β
Y

)
∼ Np+q

[(
µβ
µY

)
,

(
Σββ ΣβY

ΣY β ΣY Y

)]

β|Y ∼ Np(µβ|Y ,Σβ|Y )

µβ|Y = E[β|Y ] = µβ + ΣβY Σ−1
Y Y (Y − µY )

Σβ|Y = Var[β|Y ] = Σββ −ΣβY Σ−1
Y Y ΣY β .

Derivation of the State Space Smoothing result is lengthly using a clas-
sical statistical approach. A Bayesian approach, due to Künsch (2001) [17],
follows. For t ≤ N − 1, consider

f
(
βt|βt+1,FN

)
= f

(
βt|βt+1,F t

)
=

f
(
βt+1|βt

)
f (βt|F t)

f
(
βt+1|F t

)

∝ exp

[
−(βt − F−1

t+1βt+1)
′F

′
t+1W

−1
t+1F t+1

2
(βt − F−1

t+1βt+1)

−(βt − βt|t)
′
P−1

t|t

2
(βt − βt|t)

]
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where the proportionality constant does not depend on βt. Completing the
square in the previous display where (βt|βt+1,FN ) ∼ N(mt,Rt) and where

R−1
t = F ′

t+1W
−1
t+1F t+1 + P−1

t|t

mt = Rt

[
F ′

t+1W
−1
t+1βt+1 + P−1

t|t βt|t

]

= Rt

[
F ′

t+1W
−1
t+1βt+1 + R−1

t βt|t − F ′
t+1W

−1
t+1F t+1βt|t

]

= βt|t + RtF
′
t+1W

−1
t+1(βt+1 − βt+1|t).

and then manipulating the following identify
(
F ′

t+1W
−1
t+1F t+1 + P−1

t|t

)
P t|tF

′
t+1 = F ′

t+1W
−1
t+1

(
W t+1 + F t+1P t|tF

′
t+1

)

R−1
t P t|tF

′
t+1 = F ′

t+1W
−1
t+1P t+1|t

RtF
′
t+1W

−1
t+1 = P t|tF

′
t+1P

−1
t+1|t

Rt = P t|tF
′
t+1P

−1
t+1|tW t+1F

′−1
t+1

= P t|tF
′
t+1P

−1
t+1|t

(
P t+1|t − F t+1P t|tF

′
t+1

)
F ′−1

t+1

gives the following conditional mean and conditional variance

mt = βt|t + P t|tF
′
t+1P

−1
t+1|t(βt+1 − βt+1|t)

Rt = P t|t − P t|tF
′
t+1P

−1
t+1|tF t+1P t|t .

Using conditional expectation leads to

βt|N = E(βt|FN ) = E
(
E
(
βt|βt+1,FN

)
|FN

)
= E(mt|FN )

= βt|t + Bt+1(βt+1|N − βt+1|t)

Bt+1 ≡ P t|tF
′
t+1P

−1
t+1|t .

Similarly for the Precision matrix

P t|N = E
[
(βt − βt|N )(βt − βt|N )′|FN

]

= E
[
(βt − mt)(βt − mt)′|FN

]

+ E
[
(mt − βt|N )(mt − βt|N )′|FN

]

= E
[
E
[
(βt − mt)(βt − mt)′|βt+1,FN

]
|FN

]

+ E
[
(mt − βt|N )(mt − βt|N )′|FN

]

= E(Rt|FN ) + Var (mt|FN )
= P t|t − Bt+1P t+1|tB

′
t+1 + Bt+1P t+1|NB′

t+1

= P t|t − Bt+1

(
P t+1|t − P t+1|N

)
B′

t+1 .
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3.3 Likelihood Smoother

Finding the mode of the posterior distribution for β0:N |FN provides an
alternative method of deriving the state space smoother. The posterior
distribution for β0:N |FN is given by:

f (β0:N |FN ) =

[
N∏

t=1

f (Y t|βt)

] [
N∏

t=1

f
(
βt|βt−1

)
]

f (β0) /f (FN ) . (81)

The posterior log-likelihood function, ignoring a constant that depends only
on FN , is given by:

log f (β0:N |FN ) =
N∑

t=1

log f (Y t|βt) +
N∑

t=1

log f
(
βt|βt−1

)
+ log f (β0) .

(82)

When each of the conditional distributions has a Gaussian distribution:

Y t|βt ∼ fvt

(
Y t − z′

tβt

)
= Nq (0,V t)

βt|βt−1 ∼ fwt

(
βt − F tβt−1

)
= Np (0,W t) (83)

β0 ∼ fw0 (β0 − b0) = Np (0,W 0)

then the posterior log-likelihood, ignoring a constant that does not depend
on β0:N , is given by:

log f (β0:N |FN ) = − 1
2

N∑

t=1

(
Y t − z′

tβt

)′
V −1

t

(
Y t − z′

tβt

)

− 1
2

N∑

t=1

(
βt − F tβt−1

)′
W−1

t

(
βt − F tβt−1

)

− 1
2

(β0 − b0)
′ W−1

0 (β0 − b0) .

Finding the mode β̂0:N = {β̂0|N , . . . , β̂N |N} of the posterior log-likelihood
by maximizing the posterior log-likelihood using

0(N+1×p) = ∇ log f (β0:N |FN )|β̂0:N

∇ ≡
(

∂

∂β0

, . . . ,
∂

∂βN

)′
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leads to the following system of state estimating equations:

0′ =
∂

∂β0

log f (β0:N |FN )
∣∣∣∣
β̂0:N

=
(
β̂1|N − F 1β̂0|N

)′
W−1

1 F 1 −
(
β̂0|N − b0

)′
W−1

0

0′ =
∂

∂βt

log f (β0:N |FN )
∣∣∣∣
β̂0:N

for t = 1, . . . , N − 1 (84)

=
(
β̂t+1|N − F t+1β̂t|N

)′
W−1

t+1F t+1 −
(
β̂t|N − F tβ̂t−1|N

)′
W−1

t

+
(
Y t − z′

tβ̂t|N

)′
V −1

t z′
t

0′ =
∂

∂βN

log f (β0:N |FN )
∣∣∣∣
β̂0:N

=
(
Y N − z′

N β̂N |N

)′
V −1

N z′
N −

(
β̂N |N − F N β̂N−1|N

)′
W−1

N .

Under the Gaussian assumption (83), the posterior mode and the condi-
tional mean are the same so that the posterior distribution mode estimates
β̂0:N = {β̂t|N : t = 0, . . . , N} are the same as the state space smoothing
estimates βk

0:N = {βt|N : t = 0, . . . , N}. The following result provides a
direct algebraic proof that the state space smoother estimates maximize the
posterior log-likelihood.

Lemma 3.1. If the Gaussian assumption in (83) is true, then the state
space smoothing estimates maximize the posterior log-likelihood

0(N+1×p) = ∇ ln f (β0:N |FN )|βk
0:N

. (85)

Proof: Starting with the Kalman filtering equations, applying the iden-
tity zNV −1

N = P−1
N |NKN and using a little algebra shows

KN

(
Y N − z′

NβN |N

)
=
(
I − KNz′

N

) (
βN |N − βN |N−1

)

= P N |NP−1
N |N−1

(
βN |N − βN |N−1

)

zNV −1
N

(
Y N − z′

NβN |N

)
= P−1

N |N−1

(
βN |N − βN |N−1

)
.
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Next, starting with the state space smoothing equations shows

βN |N − F NβN−1|N = (I − F NβN )
(
βN |N − βN |N−1

)

= W NP−1
N |N−1

(
βN |N − βN |N−1

)

W−1
N

(
βN |N − F NβN−1|N

)
= P−1

N |N−1

(
βN |N − βN |N−1

)

= zNV −1
N

(
Y N − z′

NβN |N

)
.

Hence:

0 =
∂

∂β′
N

log f (β0:N |FN )
∣∣∣∣
βk

0:N

. (86)

Further analysis of the state space smoothing equations shows

βt|N − F tβt−1|N = (I − F tBt)
(
βt|N − βt|t−1

)

= W tP
−1
t|t−1

(
βt|N − βt|t−1

)

or

W−1
t

(
βt|N − F tβt−1|N

)
= P−1

t|t−1

(
βt|N − βt|t−1

)

F ′
t+1W

−1
t+1

(
βt+1|N − F t+1βt|N

)
= F ′

t+1P
−1
t+1|t

(
βt+1|N − βt+1|t

)

= P−1
t|t Bt+1

(
βt+1|N − βt+1|t

)

= P−1
t|t

(
βt|N − βt|t

)

so that

F ′
t+1W

−1
t+1

(
βt+1|N − F t+1βt|N

)
− W−1

t

(
βt|N − F tβt−1|N

)

=
(
P−1

t|t − P−1
t|t−1

)
βt|N − P−1

t|t βt|t + P−1
t|t−1βt|t−1 .

Additional analysis of the Kalman Filtering equations shows

0 = Kt

(
Y t − z′

tβt|N

)
+ Ktz

′
tβt|N − βt|t +

(
I − Ktz

′
t

)
βt|t−1

and applying the identities

P−1
t|t Kt = ztV

−1
t

∣∣∣ P−1
t|t Ktz

′
t = P−1

t|t − P−1
t|t−1

∣∣∣ P−1
t|t
(
I − Ktz

′
t

)
= P−1

t|t−1
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shows

0 = ztV
−1
t

(
Y t − z′

tβt|N

)

+
(
P−1

t|t − P−1
t|t−1

)
βt|N − P−1

t|t βt|t + P−1
t|t−1βt|t−1

= ztV
−1
t

(
Y t − z′

tβt|N

)

+ F ′
t+1W

−1
t+1

(
βt+1|t − F t+1βt|N

)
− W−1

t

(
βt|N − F tβt−1|N

)
.

Hence for t = 1, . . . , N − 1

0 =
∂

∂β′
t

log f (β0:N |FN )
∣∣∣∣
βk

0:N

. (87)

As shown previously by starting with the state space smoothing equa-
tions, with initial conditions β0|0 = b0 and P 0|0 = W 0:

F ′
1W

−1
1

(
β1|N − F 1β0|N

)
= P−1

0|0

(
β0|N − β0|0

)
= W−1

0

(
β0|N − b0

)

Hence:

0 =
∂

∂β′
0

log f (β0:N |FN )
∣∣∣∣
βk

0:N

. (88)

Intermediate results (86), (87), and (88) prove the desired result (85). �
The system of state estimating equations associated with the mode of

the posterior log-likelihood (84) has the following tridiagonal block matrix
representation



AN −CN

−C ′
N BN−1 −CN−1

. . .
−C ′

2 B1 −C1

−C ′
1 D







βN |N
βN−1|N

...
β1|N
β0|N




=




zNV −1
N Y N

zN−1V
−1
N−1Y N−1
...

z1V
−1
1 Y 1

W−1
0 b0




where for t = 1, . . . , N

AN = W−1
N + zNV −1

N z′
N

Bt = F ′
t+1W

−1
t+1F t+1 + W−1

t + ztV
−1
t z′

t

Ct = W−1
t F t

D = F ′
1W

−1
1 F 1 + W−1

0
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which is given the following symbolic tridiagonal block representation

MNβk
N :0 = Y ∗

N :0 (89)

where MN has a tridiagonal block structure with 0s in the off tridiagonal
block entries. Substituting the actual states βN :0 ≡ (βN , . . . , β0)′ for the
state space smoothers βk

N :0 in the system of state estimating equations (89)
and applying the linear Gaussian state space model (80) shows

MNβN :0 − Y ∗
N :0 =




W−1
N wN − zNV −1

N vN

−F ′
NW−1

N wN + W−1
N−1wN−1 − zN−1V

−1
N−1vN−1

...
−F ′

2W
−1
2 w2 + W−1

1 w1 − z1V
−1
1 v1

−F ′
1W

−1
1 w1 + W−1

0 β0




which implies the following distribution for the smoother residuals assuming
Mn is invertible

MN β̃N :0|N ∼ N(0,ΨN ) or β̃N :0|N ∼ N
(
0,M−1

N ΨnM−1
N

)

β̃N :0|N ≡ βN :0 − βk
N :0

=
(
βt − βt|N : t = N, . . . , 0

)′
.

Applying the state space model, where {β0}, {wt : t = 1, . . . , N}, and
{vt : t = 1, . . . , N} are mutually independent collections of independent
random vectors, leads to Ψn = Mn. Hence

MN β̃N :0|N ∼ N(0,MN ) or β̃N :0|N ∼ N
(
0,M−1

N

)
. (90)

It is easy to see that ΨN also has a tridiagonal block structure if the mutual
independence of {wt : t = 1, . . . , N}, and {vt : t = 1, . . . , N} is relaxed
such that wt1 and vt2 are mutually dependent for t1 = t2 and are mutually
independent for t1 6= t2 where t1, t2 = 1, . . . , N .

One way to solve (89) for the state space smoothers βk
N :0 is to use the

inverse of MN if the inverse exists

βk
N :0 = M−1

N Y ∗
N :0 .

Another way to solve (89) for the state space smoothers βk
N :0 is to use

Gaussian elimination to take advantage of the tridiagonal block structure of
MN .
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Definition 3.1. The likelihood smoother form of the state space smoother
is a two pass method for calculating the state space smoother estimates plus
a method for calculating the corresponding precision matrices. The first
pass consists of using Gaussian elimination to calculate the Kalman filter
estimates by removing the upper diagonal of MN in (89). The second pass
consists of using Gaussian elimination to calculate the state space smoother
estimates by removing the lower diagonal of MN in (89). The state space
smoother precision matrices are found by using Gaussian elimination to find
the diagonal components of M−1

N .

Formulas are developed in the next section, for the likelihood smoother
estimates and precisions, given a univariate linear Gaussian state space
model with constant parameters.

3.4 Asymptotic Precision Analysis

In this section the limiting precision, limN→∞ Pt|N for fixed t ∈ [1, . . . , N ],
is investigated for a special case of the Linear Gaussian State Space model:

Initial Information: β0 ∼ N (b0,W0)
System Equation: βt = φβt−1 + wt, wt ∼ N(0,W ) (91)
Observation Equation: Yt = ηβt + vt, vt ∼ N(0, V )

where {β0}, {wt : t = 1, . . . , N}, and {vt : t = 1, . . . , N} are mutually
independent collections of independent random variables; where the system
equation is true for t = 1, . . . , N and the observation equation is true for all
Yt ∈ FN , i.e. for t = 1, . . . , N ; where βt for t = 0, . . . , N are scalars and
Yt ∈ FN are scalars; and where |φ| < 1 and |η| < 1.

The system of state estimating equations (89) associated with the above
linear Gaussian state space model (91) has the following tridiagonal form




A −C
−C B −C

. . .
−C B −C

−C D







βN |N
βN−1|N

...
β1|N
β0|N




=




η
V YN

η
V YN−1

...
η
V Y1
b0
W0




where

A ≡ 1
W

+
η2

V
B ≡ 1

W
+

φ2

W
+

η2

V

C ≡ φ

W
D ≡ 1

W0
+

φ2

W
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which is given the following matrix notation

MNβk
N :0|N = Y ∗

N :0|N (92)

where MN is a tridiagonal matrix with 0s in the off tridiagonal entries, and
where βk

N :0|N ≡ (βN |N , . . . , β0|N )′ is a vector of the state space smoother es-
timates for the state vector βN :0 ≡ (βN , . . . , β0)′ given all of the observations
in FN .

The distribution of the smoother residuals β̃N :0|N ≡ (β̃N |N , . . . , β̃0|N )′

from (90) is used to evaluate each precision Pt|N ≡ Var β̃t|N for t = 0, . . . , N

MN β̃N :0|N ∼ N (0,MN ) or β̃N :0|N ∼ N
(
0,M−1

N

)
.

Using the structure of the matrix MN , it is possible to bound each Var β̃t|N .

Proposition 3.1. Given the linear Gaussian state space model defined in
(91), then

(
1

W0
+

φ2 + |φ|
W

)−1

≤ Var β̃0|N ≤ W0

(
1 + 2|φ| + φ2

W
+

η2

V

)−1

≤ Var β̃t|N ≤ V

η2
, t = 1, . . . , N − 1 (93)

(
1 + |φ|

W
+

η2

V

)−1

≤ Var β̃N |N ≤ V

η2

.

Proof: The properties of positive definite matrices are used to establish
the lower and upper bounds on Var β̃t|N for t = 1, . . . , N . It is easy to show
that MN is positive definite. Let XN = (xN , . . . , x0)′. Then

X ′
NMNXN = Ax2

N +
1∑

t=N−1

Bx2
t + Dx2

0 −
1∑

t=N

2Cxtxt−1

=
1∑

t=N

x2
t − 2φxtxt−1 + φ2x2

t−1

W
+

η2

V
x2

t +
1

W0
x2

0

> 0 for XN 6= 0 .

In order to establish the lower bounds in (93) choose (ρN , ρ, ε) as follows

1
W

− ρN
η2

V
>

|φ|
W

,
1 + φ2

W
− ρ

η2

V
> 2

|φ|
W

,
φ2

W
+

ε

W0
>

|φ|
W

. (94)
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and define the following positive definite matrix M(1) as

M (1) ≡




1
W − ρN

η2

V C

C 1+φ2

W − ρη2

V C
. . .

C 1+φ2

W − ρη2

V C

C φ2

W + ε
W0




.

The positive definite property M (2) ≡ MN + M (1) > MN > 0 implies
M−1

N > M−1
(2), see Amemiya (1985) [1] Appendix 1 Theorem 17, where

M (2) =




2 1
W + (1 − ρN ) η2

V

21+φ2

W + (1 − ρ) η2

V
. . .

2φ2

W + (1 + ε) 1
W0




Note that the positive definite property M (2) > MN is equivalent to M (2)−
MN > 0 where the matrix combination M (2) −MN is positive definite and
where both M (2) and MN are each positive definite. Hence lower bounds
for each Var β̃t|N , t = 0, . . . , N , are identified in terms of (ρN , ρ, ε)

Var β̃0|N >

(
2
φ2

W
+ (1 + ε)

1
W0

)−1

Var β̃t|N >

(
2
1 + φ2

W
+ (1 − ρ)

η2

V

)−1

, t = 1, . . . , N − 1

Var β̃N |N >

(
2

1
W

+ (1 − ρN )
η2

V

)−1

.

The desired lower bounds in (93) are found by allowing (ρN , ρ, ε) to change
so that the inequalities in (94) converge to equalities.

With regards to the upper bounds in (93), it is convenient to define

A(ρ) ≡ 1
W

+ ρ
η2

V
(95)
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The analysis proceeds by decomposing X ′
NMNXN in terms of A(ρ)

X ′
NMNXN = A(ρ)x2

N − 2CxNxN−1 +
C2

A(ρ)
x2

N−1 + (A − A(ρ)) x2
N

+
1∑

t=N−1

A(ρ)x2
t − 2Cxtxt−1 +

C2

A(ρ)
xt−1

+
1∑

t=N−1

(
B − A(ρ) − C2

A(ρ)

)
x2

t

+
(

D − C2

A(ρ)

)
x2

0

= X ′
NM (3)XN + X ′

NM (4)XN

where

M (3) ≡




A(ρ) −C

−C A(ρ) + C2

A(ρ) −C

. . .
−C A(ρ) + C2

A(ρ) −C

−C C2

A(ρ)




M (4) ≡




A − A(ρ)
B − A(ρ) − C2

A(ρ)

. . .
B − A(ρ) − C2

A(ρ)

D − C2

A(ρ)




.

M (3) is positive semi-definite for all values of ρ ∈ R. M (4) is positive definite
for selected values of ρ as follows

D − C2

A(ρ)
=

1
W0

+
φ2

W
− C2

A(ρ)
> 0 for ρ ∈ [0, 1)

B − A(ρ) − C2

A(ρ)
= A − A(ρ) +

φ2

W
− C2

A(ρ)
> 0 for ρ ∈ [0, 1)

A − A(ρ) = (1 − ρ)
η2

V
> 0 for ρ ∈ [0, 1) .

Consequently MN = M (3) + M (4) > 0, MN ≥ M (4) > 0 implies M−1
N ≤
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M−1
(4). Upper bounds are established in terms of ρ for Var β̃t|N , t = 0, . . . , N

Var β̃0|N ≤
(

D − C2

A(ρ)

)−1

Var β̃t|N ≤
(

B − A(ρ) − C2

A(ρ)

)−1

, t = 1, . . . , N − 1 (96)

Var β̃N |N ≤ (A − A(ρ))−1 .

It is easy to show that (B−A(ρ)− C2

A(ρ) )
−1 and (A−A(ρ))−1 are minimized

for ρ ∈ [0, 1) when ρ = 0. The upper bounds in (93) are found by choosing
ρ = 0. �

It is possible to tighten the upper bounds in (93) by considering two
special cases and by continuing to analyze the behavior of the function A(ρ)
introduced in Proposition 3.1, see (95).

Proposition 3.2. Given the linear Gaussian state space model defined in
(91)

Var β̃0|N ≤
(

1
W0

+
φ2

W

η2

V

(
1
W

+
η2

V

)−1
)−1

(97)

and if φ2/W + 1/W0 > |φ|/W then

Var β̃t|N ≤
(

1 − 2|φ| + φ2

W
+

η2

V

)−1

, t = 1, . . . , N − 1 (98)

Var β̃N |N ≤
(

1 − |φ|
W

+
η2

V

)−1

else if φ2/W + 1/W0 < |φ|/W then

Var β̃t|N ≤
(

η2

V
− 1

W0
+

1
W

1
W0

(
1

W0
+

φ2

W

)−1
)−1

, t = 1, . . . , N − 1

(99)

Var β̃N |N ≤
(

η2

V
+

1
W

1
W0

(
1

W0
+

φ2

W

)−1
)−1

.

Proof: With regards to the upper bounds in (98), assume that φ2/W +
1/W0 > |φ|/W , and choose (ρN , ρ, ε) so that the inequalities in (94) are
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satisfied and 1 − ε > 0. Define the following positive definite matrices

M (5) ≡




1
W − ρN

η2

V −C

−C 1+φ2

W − ρη2

V −C
. . .

−C 1+φ2

W − ρη2

V −C

−C φ2

W + ε
W0




M (6) ≡




(1 + ρN ) η2

V

(1 + ρ) η2

V
. . .

(1 + ρ) η2

V
1−ε
W0




such that MN = M (5) + M (6) > 0, MN > M (6) > 0, and M−1
N < M−1

(6).

Hence upper bounds for Var β̃t|N are identified in terms of (ρN , ρ, ε) for
t = 0, . . . , N

Var β̃0|N <
W0

1 − ε

Var β̃t|N < (1 + ρ)−1 V

η2
, t = 1, . . . , N − 1

Var β̃N |N < (1 + ρN )−1 V

η2
.

The desired upper bounds in (98) for each Var β̃t|N , t = 1, . . . , N , are found
by allowing (ρN , ρ, ε) to change such that the inequalities in (94) converge
to equalities. The corresponding upper bound for Var β̃0|N is (1/W0 +(φ2−
|φ|)/W )−1.

With regard to the upper bounds in (99), the upper bounds in (96) as
a function of A(ρ) are analyzed for ρ ∈ (−∞, 1). The function A(ρ) has a
local maximum, a local minimum, and a singularity point between the local
maximum and the local minimum. Let ρ1 denote the local maximum, let ρ2

denote the local minimum, and let ρs denote the singularity point

ρ1 = − (1 + |φ|) V

η2

1
W

< ρs = − V

η2

1
W

< ρ2 = − (1 − |φ|) V

η2

1
W

.

If (D − C2/A(ρ2)) > 0 then the upper bounds in (98) are valid; otherwise,
different upper bounds are found by decreasing ρ from 0 such that (D −
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C2/A(ρ)) → 0. Let ρ3 denote the value of ρ such that (D − C2/A(ρ3)) = 0

ρs < ρ3 = − 1
W0

1
W

V

η2

(
1

W0
+

φ2

W

)−1

.

It is easy to show that ρ3 < ρ2 is equivalent to φ2/W + 1/W0 > |φ|/W . For
ρ2 < ρ3, the upper bounds in (99) for each Var β̃t|N , t = 1, . . . , N , are found
by allowing ρ → ρ3. As ρ → ρ3 the corresponding upper bound on Var β̃0|N
is +∞.

The bound (D−C2/A(ρ))−1 on Var β̃0|N for ρ ∈ (−∞, 1) is minimized as
ρ approaches 1. The upper bound in (97) for Var β̃0|N is found by allowing
ρ → 1. �

Note that the bounds for each Var β̃t|N , t ∈ [0, . . . , N ] identified in
Proposition 3.2 can be shown by direct computation to be tighter or equal
to the bounds provided in Proposition 3.1.

Corollary 3.1. If {βt : t = 0, . . . , N} is stationary, i.e. b0 = 0 and W0 =
W/(1−φ2), then direct calculation shows that φ2/W+1/W0 = 1/W > |φ|/W
for |φ| < 1. Hence the first set of bounds (98) in Proposition 3.2 apply. �

Next, the tri-diagonal property of the MN matrix is exploited to provide
simple formulas for the state space smoothers in βk

N :0|N and for the elements
of M−1

N that correspond to the covariances of (β̃t1 |N , β̃t2 |N ), t1, t2 = 0, . . . , N .

Proposition 3.3. Given the linear Gaussian state space model defined in
(91) then the Kalman filter and smoother estimates are calculated as follows

β0|0 ≡ b0

β1|1 =
(

A − C2

G∗
1

)−1(
η

V
Y1 +

C

G∗
1

1
W0

β0|0

)

βt|t =
(

A − C2

G∗
t

)−1(
η

V
Yt +

C

G∗
t

(
A − C2

G∗
t−1

)
βt−1|t−1

)
, t = 2, . . . , N

βt|N =
1

G∗
t+1

(
A − C2

G∗
t

)
βt|t +

C

G∗
t+1

βt+1|N , t = N − 1, . . . , 1

β0|N =
1

G∗
1

1
W0

β0|0 +
C

G∗
1

β1|N

where

G∗
j ≡

{
D : j = 1
B − C2

G∗
j−1

: j > 1
.
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Proof: Gaussian elimination of MNβk
N :0|N = Y ∗

N :0|N for N = 1, 2 to
remove the upper diagonal in MN shows that the Kalman filter estimates
are

β0|0 ≡ b0

β1|1 =
(

A − C2

G∗
1

)−1(
η

V
Y1 +

C

G∗
1

b0

W0

)

β2|2 =
(

A − C2

G∗
2

)−1(
η

V
Y2 +

C

G∗
2

(
η

V
Y1 +

C

G∗
1

b0

W0

))
.

Induction shows the following formulas for the Kalman filter estimates at
time indices t − 1 and t for t > 1

βt−1|t−1 =
(

A − C2

G∗
t−1

)−1(
η

V
Yt−1 +

C

G∗
t−1

( η

V
Yt−2 + . . .

+
C

G∗
2

(
η

V
Y1 +

C

G∗
1

b0

W0

)
. . .

))

βt|t =
(

A − C2

G∗
t

)−1(
η

V
Yt +

C

G∗
t

( η

V
Yt−1 + . . .

+
C

G∗
2

(
η

V
Y1 +

C

G∗
1

b0

W0

)
. . .

))
.

The previous display is used to prove the recursive formula result for the
Kalman filter estimate βt|t given βt−1|t−1 with t > 1.

Gaussian elimination of MNβk
N :0|N = Y ∗

N :0|N for N = 1, 2 to remove
the upper diagonal in MN results in the following system of equations




1
− C

G∗
N

1
. . .
− C

G∗
2

1
− C

G∗
1

1







βN |N
βN−1|N

...
β1|N
β0|N




=




βN |N
1

G∗
N

(
A − C

G∗
N−1

)
βN−1|N−1

...
1

G∗
2

(
A − C

G∗
1

)
β1|1

1
G∗

1

1
W0

β0|0




The previous display is used to prove the recursive formula result for the
state space smoother estimate βt|N given βt+1|N and given the Kalman filter
estimate βt|t with t > 1. Hence the complete result is proven. �
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Lemma 3.2. Given the linear Gaussian state space model defined in (91)

Var β̃0|N =
(

D − C2

GN

)−1

Cov
(
β̃0|N , β̃t|N

)
=

C

GN−t+1
× · · · × C

GN
Var β̃0|N , t = 1, . . . , N

Gj ≡
{

A : j = 1
B − C2

Gj−1
: j > 1

.

Proof: Gaussian elimination is used to solve MNXN = eN+1 where
eN+1 = (0, . . . , 0, 1)′. The Gaussian elimination of MN proceeds by elimi-
nating the lower diagonal starting from the left and then by eliminating the
upper diagonal starting from the right. For N = 3 the resulting solution for
X3 is

X3 =




x3

x2

x1

x0


 =




Cov
(
β̃0|N , β̃3|N

)

Cov
(
β̃0|N , β̃2|N

)

Cov
(
β̃0|N , β̃1|N

)

Var β̃0|N




=




C
G1

x2
C
G2

x1
C
G3

x0(
D − C2

G3

)−1




.

Generalizing the result in the previous display for N > 3 proves the result.
�

Corollary 3.2. If {βt : t = 0, . . . , N} is stationary, i.e. b0 = 0 and W0 =
W/(1 − φ2), then direct calculation shows D = 1/W and G∗

2 = A. Hence
G∗

j = Gj−1 for j ∈ {2, 3, . . . }. �

Lemma 3.3. Given the linear Gaussian state space model defined in (91)

Var β̃N |N =
(

A − C2

G∗
N

)−1

Cov
(
β̃t|N , β̃N |N

)
=

C

G∗
t+1

× · · · × C

G∗
N

Var β̃N |N , t = 0, . . . , N − 1 .

Proof: Gaussian elimination is used to solve MNXN = e1 where e1 =
(1, 0, . . . , 0)′. The Gaussian elimination of MN proceeds by eliminating the
upper diagonal starting from the right and then by eliminating the lower
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diagonal starting from the left. For N = 3 the resulting solution for XN is

X3 =




x3

x2

x1

x0


 =




Var β̃3|N

Cov
(
β̃2|N , β̃3|N

)

Cov
(
β̃1|N , β̃3|N

)

Cov
(
β̃0|N , β̃3|N

)




=




(
A − C2

G∗
3

)−1

C
G∗

3
x3

C
G∗

2
x2

C
G∗

1
x1




.

Generalizing the result in the previous display for N > 3 proves the result.
�

Lemma 3.4. Given the linear Gaussian state space model defined in (91)

Var β̃t|N =
(

GN−t+1 −
C2

G∗
t

)−1

, t = 1, . . . , N − 1

Cov
(
β̃t1|N , β̃t|N

)
=

C

G∗
t1+1

× · · · × C

G∗
t

Var β̃t|N , t1 = 0, . . . , t − 1

Cov
(
β̃t|N , β̃t1 |N

)
=

C

GN−t1+1
× · · · × C

GN−t
Var β̃t|N , t1 = t + 1, . . . , N .

Proof: Given a fixed t ∈ [1, . . . , N − 1], Gaussian elimination is used to
solve MNXN = eN−t+1 where eN−t+1 is a vector consisting of N + 1 zeros
except for a one in element number N − t + 1. The Gaussian elimination of
MN proceeds by eliminating N − t elements in the lower diagonal starting
from the left and then by eliminating t elements in the upper diagonal
starting from the right. The remainder of the elements in the upper and
lower diagonals are then eliminated. For N = 3 and t = 2 the resulting
solution for X3 is

X3 =




x3

x2

x1

x0


 =




Cov
(
β̃2|N , β̃3|N

)

Var β̃2|N

Cov
(
β̃1|N , β̃2|N

)

Cov
(
β̃0|N , β̃2|N

)




=




C
G1

x2(
B − C2

G1
− C2

G∗
2

)−1

C
G∗

2
x2

C
G∗

1
x1




.

Generalizing the result in the previous display for N > 3 proves the result.
�

Corollary 3.3. Given the linear Gaussian state space model defined in (91)

Var β̃t|N =
G∗

t

GN−t+1
× · · · × G∗

1

GN
Var β̃0|N , t = 1, . . . , N .
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Proof: The following variance ratio equation is shown by simple algebra
for t = 2, . . . , N − 1

Var β̃t|N

Var β̃t−1|N
=

G∗
t − C2

GN−t+1

GN−t+1 − C2

G∗
t

=
G∗

t

GN−t+1
.

Generalizing the previous display for t = 1 and t = N proves the result. �

Remark 3.1. The vector of state space smoother estimates can be calcu-
lated using βk

N :0|N = M−1
N Y ∗

N :0|N since MN is positive definite as shown in
Proposition 3.1 and is invertible. As shown in Proposition 3.3 and Lemmas
3.2 through 3.4, Gaussian elimination can be used to solve MNβk

N :0|N =
Y ∗

N :0|N for βk
N :0|N and to invert MN for the smoother precisions in Var βk

N :0|N =
M−1

N . The likelihood smoother form of the state space smoother consists
of a two pass method to calculate the state space smoother estimates and a
method to calculate the state space smoother precisions. The first pass of
the likelihood smoother estimate method calculates

G∗
j ≡

{
D : j = 1
B − C2

G∗
j−1

: j > 1
for j = 1, . . . , N

β∗
0|0 =

1
W0

β0|0 =
1

W0
b0

β∗
t|t =

(
A − C2

G∗
t

)
βt|t =

η

V
Yt +

C

G∗
t

β∗
t−1|t−1 for t = 1, . . . , N .

The second pass of the likelihood smoother estimate method calculates

βN |N =
(

A − C2

G∗
N

)−1

β∗
N |N

βt|N =
1

G∗
t+1

(
β∗

t|t + Cβt+1|N

)
for t = N − 1, . . . , 0 .
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The likelihood smoother precision method calculates

Gj ≡

{
A : j = 1
B − C2

Gj−1
: j > 1

. for j = 1, . . . , N

PN |N = Var β̃N |N =
(

A − C2

G∗
N

)−1

Pt|N = Var β̃t|N =
(

GN−t+1 −
C2

G∗
t

)−1

for t = N − 1, . . . , 1

P0|N = Var β̃0|N =
(

D − C2

GN

)−1

.

The first pass is equivalent to performing Kalman prediction and filtering
to obtain βN |N and the second pass calculates the state space smoother
estimates βt|N for t = N, . . . , 0 based on the first pass. When new observa-
tions become available, then only the end of the first pass and the complete
second pass of the likelihood smoother estimate method as well as the likeli-
hood smoother precision method need to be redone. Note that an alternative
Gaussian elimination procedure can be used to solve MNβk

N :0|N = Y ∗
N :0 for

βk
N :0|N by first removing the lower diagonal of MN and then removing the

upper diagonal of MN . This alternative Gaussian elimination procedure is
less efficient than the likelihood smoother estimate method introduced above
in the sense that the alternative Gaussian elimination procedure would have
to be redone in total when new observations become available.

Before establishing the limit as N → ∞ for Var β̃t|N , t ∈ [0, . . . , N ], the
behavior of Gj and G∗

j is established as l → ∞

Lemma 3.5. The properties of Gj defined in Lemma 3.2 include

Gj → G∞ =
B +

√
B2 − 4C2

2
as j → ∞ (100)

A ≤ Gj < Gj+1 < G∞, j = 1, 2, . . . . (101)

Proof: The following bounds is used to prove (101)

A ≤ Gj < Gj+1 < B, j = 1, 2, . . . . (102)

By direct calculation A + C2/A < B proves (102) for j = 1. The general
result (102) for j > 1 is proven by induction. Hence Gj → G∞ as j → ∞.
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At convergence G∞ has two possible solutions

G∞ = B − C2

G∞
⇔ G2

∞ − BG∞ + C2 = 0

G∞ =
B ±

√
B2 − 4C2

2
.

Direct calculation shows that the larger solution for G∞ identified in (100)
is the only solution that satisfies (102) such that A < G∞. Induction is used
to prove (101). �

Lemma 3.6. The properties of G∗
j defined in Proposition 3.3 include

G∗
j → G∗

∞ =
B +

√
B2 − 4C2

2
= G∞ as j → ∞ (103)

If D < G∗
∞ then D ≤ G∗

j < G∗
j+1 < G∗

∞, j = 1, 2, . . . (104)

If G∗
∞ < D then G∗

∞ < G∗
j+1 < G∗

j ≤ D, j = 1, 2, . . . . (105)

Proof: By direct calculation C2/A < D and C2/A < G∗
2 < B. Induction

for j > 2 is used to show the general result that

C2

A
< G∗

j < B, j = 2, 3, . . . (106)

If G∗
1 < G∗

2 then induction shows C2/A < G∗
j < G∗

j+1 < B for j = 1, 2, . . . .
If G∗

2 < G∗
1 then induction shows C2/A < G∗

j+1 < G∗
j < B for j = 2, 3, . . . .

Hence G∗
j → G∗

∞ as j → ∞. At convergence G∗
∞ has two possible solutions

G∗
∞ = B − C2

G∗
∞

⇔ (G∗
∞)2 − BG∗

∞ + C2 = 0

G∗
∞ =

B ±
√

B2 − 4C2

2
.

Direct calculation shows that the larger solution for G∗
∞ identified in (103)

is the only solution that satisfies (106) such that C2/A < G∗
∞. Induction is

used to prove (104) and (105). �
Limits and bounds on each Var β̃t|N , t ∈ [0, . . . , N ] are now established

using Lemmas 3.2 through 3.6.
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Theorem 3.1. Limits for each Var β̃t|N , t ∈ [0, . . . , N ] as N → ∞ are

Var β̃0|N →
(

D − C2

G∞

)−1

Var β̃t|N →
(

G∞ − C2

G∗
t

)−1

, for fixed t ∈ [1, . . . ,∞)

Var β̃N |N →
(

A − C2

G∗
∞

)−1

.

Var β̃0|N is bounded as follows
(

D − C2

G∞

)−1

< Var β̃0|N <

(
D − C2

A

)−1

.

If D < G∞ then bounds on each Var β̃t|N , t ∈ [1, . . . , N ] are as follows
(

G∞ − C2

G∗
∞

)−1

< Var β̃t|N <

(
G2 −

C2

D

)−1

, t ∈ [1, . . . , N − 1]

(
A − C2

G∗
∞

)−1

< Var β̃N |N <

(
A − C2

D

)−1

else if D > G∞ then bounds on each Var β̃t|N , t ∈ [1, . . . , N ] are as follows
(

G∞ − C2

D

)−1

< Var β̃t|N <

(
G2 −

C2

G∗
∞

)−1

, t ∈ [1, . . . , N − 1]

(
A − C2

D

)−1

< Var β̃N |N <

(
A − C2

G∗
∞

)−1

. �

Note that the bounds for each Var β̃t|N , t ∈ [0, . . . , N ] identified in The-
orem 3.1 can be shown by direct computation to be tighter or equal to the
bounds provided in Propositions 3.1 and 3.2.

The following corollary provides the asymptotic precision for Pt|N where
t no longer remains fixed as a function of N , for example t ≡ t(N) = kN
where k ∈ (0, 1).

Corollary 3.4. If t ≡ t(N) such that t(N) → ∞ and N − t(N) → ∞ as
N → ∞ then Pt(N)|N → (G∞ − C2/G∗

∞)−1 = (2G∞ − B)−1 as N → ∞.

As a check on the precision PN |N = Var β̃N |N , the following corollary
shows that the equation for PN |N satisfies the Kalman predictor and filter
methods.
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Corollary 3.5. The equation for PN |N = Var β̃N |N from Lemma 3.3 satis-
fies the Kalman predictor and filter methods such that

PN |N =
V PN |N−1

η2PN |N−1 + V
, PN |N−1 = φ2PN−1|N−1 + W .

Proof: Inverting the equation for PN |N in the previous display with
respect to PN−1|N−1 shows

PN−1|N−1 =
1
φ2

(
V PN |N

V − η2PN |N
− W

)

=
W

φ2




1
W

P−1
N |N − η2

V

− 1


 .

Inserting the equations for PN−1|N−1 = Var β̃N−1|N−1 and PN |N = Var β̃N |N
from Lemma 3.3 into the left and right hand sides of the previous display
and reducing shows

l.h.s. =
(

A − C2

G∗
N−1

)−1

r.h.s. =
(

G∗
N − φ2

W

)−1

.

Hence the result is proven since G∗
N = B −C2/G∗

N−1 from Proposition 3.3.
�

The following proposition shows how the asymptotic filter precision sat-
isfies the steady state Riccati equation, see [29] section 4.3.

Proposition 3.4. The asymptotic one step ahead predictor precision P+1 =
φ2P+W satisfies the steady state Riccati equation where P = limN→∞ PN |N =
(G∞ − φ2/W )−1 identifies the asymptotic filter precision

P+1 = φ2
(
1 − η2P+1

(
η2P+1 + V

)−1
)

P+1 + W .

Proof: Algebraic manipulation of the steady state Riccati equation shows
that P+1 is a zero of the following quadratic equation

1
W

η2

V
P 2

+1 +
(

1
W

− φ2

W
− η2

V

)
P+1 − 1 = 0 .
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Hence P+1 has two possible roots

P+1 =
−
(

1
W − φ2

W − η2

V

)
±
√(

1
W − φ2

W − η2

V

)2
+ 4 1

W
η2

V

2 1
W

η2

V

.

It will be shown that the larger of the two possible roots is the correct value.
The asymptotic filter precision P satisfies

P−1 = A − C2

G∞
= G∞ − φ2

W

=

(
1
W − φ2

W + η2

V

)
+

√(
1
W − φ2

W + η2

V

)2
+ 4φ2

W
η2

V

2
.

Hence P−1 is a zero of the following quadratic equation

P−2 −
(

1
W

− φ2

W
+

η2

V

)
P−1 − φ2

W

η2

V
= 0 .

The above quadratic equation can also be derived by starting with the steady
state equation for the asymptotic filter precision, see [7] section 4.2.3.

P =
φ2P + W

η2

V (φ2P + W ) + 1

and deriving the following quadratic equation in P

φ2

W

η2

V
P 2 +

(
1
W

− φ2

W
+

η2

V

)
P − 1 = 0 .

The larger of the two possible roots of the previous quadratic equation in P
satisfies P × P−1 = 1 where P−1 = G∞ − φ2/W from above and where

P =
−
(

1
W − φ2

W + η2

V

)
+

√(
1
W − φ2

W + η2

V

)2
+ 4φ2

W
η2

V

2φ2

W
η2

V

= −
(

φ2

W

η2

V

)−1
(

B −
√

B2 − 4C2

2
− φ2

W

)
.

Hence the asymptotic one step ahead predictor precision satisfies

P+1 = φ2P + W

=
−
(

1
W − φ2

W − η2

V

)
+

√(
1
W − φ2

W − η2

V

)2
+ 4 1

W
η2

V

2 1
W

η2

V

. �
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Remark 3.2. The results of this section can be generalized to the following
linear state space model where the Gaussian assumption has been removed

Initial Information: β0 ∼ (b0,W0)
System Equation: βt = φβt−1 + wt, wt ∼ (0,W ) (107)
Observation Equation: Yt = ηβt + vt, vt ∼ (0, V )

where {β0}, {wt : t = 1, . . . , N}, and {vt : t = 1, . . . , N} are mutually
independent collections of independent random variables; where the system
equation is true for t = 1, . . . , N and the observation equation is true for
all Yt ∈ FN , i.e. for t = 1, . . . , N ; where βt for t = 0, . . . , N are scalars
and Yt ∈ FN are scalars; and where |φ| < 1 and |η| < 1. Defining a new
sequence of smoother estimates as β̂0:N ≡ {β̂t|N : t = 0, . . . , N} that satisfy
the following system of state estimating equations similar to (92)

MN β̂N :0|N = Y ∗
N :0|N or β̂N :0|N = M−1

N Y ∗
N :0

β̂N :0|N ≡
(
β̂t|N : t = N, . . . , 0

)′

such that the distribution for the associated collection of smoother residuals
defined as β̃0:N ≡ {β̃t|N ≡ βt − β̂t|N : t = 0, . . . N} satisfies

MN β̃N :0|N ∼ (0,MN ) or β̃N :0|N ∼
(
0,M−1

N

)

β̃N :0|N ≡ (β̃t|N : t = N, . . . , 0)′ .

Hence the results of this section are applicable to the smoother residuals in
β̃0:N associated with the linear state space model defined in (107).

3.4.1 Missing Observations

In this section, the results of the previous section are generalized for the
case where some observations are unavailable, both in the past and in the
future given a reference time point. When there are no missing observations,
then the results of this section reduce to the results of the previous section
where all observations are available. Initially the Linear Gaussian State
Space model, as defined in (91), is assumed true. Denote the available
observations as FN∗ and denote the available observation index as N∗

N∗ ≡ {t ∈ [1, . . . , N ] : Yt is available }
FN∗ ≡ {Yt : t ∈ N∗} .
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The conditional distribution of β0:N |FN∗ is a multivariate Gaussian dis-
tribution since the distribution of (β0:N ,FN∗) is a multivariate Gaussian
distribution. Consequently, finding the mode of the posterior distribution
for β0:N |FN∗ is equivalent to finding the mean of the posterior distribution
for β0:N |FN∗ . The posterior distribution for β0:N |FN∗ is given by

f (β0:N |FN∗) =

[ ∏

t∈N∗

f (Yt|βt)

][
N∏

t=1

f (βt|βt−1)

]
f (β0) /f (FN∗) .

The mode (and mean) βk
N∗ = {β0|N∗ , . . . , βN |N∗} of the posterior distribu-

tion can be found by maximizing the log likelihood using

0(N+1) = ∇ log f (β0:N |FN∗)|βk
N∗

∇ ≡
(

∂

∂β0
, . . . ,

∂

∂βN

)′
.

The resulting system of state estimating equations can be written as



AN |N∗ −C

−C BN−1|N∗ −C
. . .
−C B1|N∗ −C

−C D







βN |N∗

βN−1|N∗

...
β1|N∗

β0|N∗




=




η
V YN |N∗

η
V YN−1|N∗

...
η
V Y1|N∗

b0
W0




where

AN |N∗ =

{
1
W + η2

V : N ∈ N∗

1
W : N /∈ N∗

Bt|N∗ =

{
1+φ2

W + η2

V : t ∈ N∗

1+φ2

W : t /∈ N∗ t = 1, . . . , N − 1

C =
φ

W

D =
1

W0
+

φ2

W

Yt|N∗ =

{
Yt : t ∈ N∗

0 : t /∈ N∗

or in matrix notation as

MN∗βk
N :0|N∗ = Y ∗

N :0|N∗ (108)
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where βk
N :0|N∗ ≡ (βN |N∗ , . . . , β0|N∗)′ is a vector of the state space smoother

estimates for the state vector βN :0 ≡ (βN , . . . , β0)′ given the available ob-
servations in FN∗ .

It is easy to show that MN∗ is positive definite and invertible. Analyzing
the system of equations associated with ∇ log f(β0:N |FN∗), when the Linear
Gaussian State Space model (91) is true with FN = FN∗ , and defining the
vector of smoother residuals as β̃N :0|N∗ ≡ (β̃t|N∗ ≡ βt−βt|N∗ : t = N, . . . , 0)′,
shows

MN∗ β̃N :0|N∗ ∼ N(0,MN∗) or β̃N :0|N∗ ∼ N
(
0,M−1

N∗
)

.

Similar to previous results in the previous section, entries in M−1
N∗ are

calculated to find the precision values Pt|N∗ = Var β̃t|N∗ , for t = 0, . . . , N .

Lemma 3.7. Given the linear Gaussian state space model defined in (91)
with FN = FN∗

Var β̃0|N∗ =
(

D − C2

GN |N∗

)−1

Cov
(
β̃0|N∗ , β̃t|N∗

)
=

C

GN−t+1|N∗
× · · · × C

GN |N∗
Var β̃0|N∗ , t = 1, . . . , N

Gj|N∗ ≡

{
AN |N∗ : j = 1
BN−j+1|N∗ − C2

Gj−1|N∗ : 1 < j ≤ N
.

Proof: The result is proven by using Gaussian elimination to solve
MN∗XN = eN+1 where eN+1 = (0, . . . , 0, 1)′. The Gaussian elimination of
MN∗ proceeds by eliminating the lower diagonal starting from the left and
then by eliminating the upper diagonal starting from the right. �

Lemma 3.8. Given the linear Gaussian state space model defined in (91)
with FN = FN∗

Var β̃N |N∗ =

(
AN |N∗ − C2

G∗
N |N∗

)−1

Cov
(
β̃t|N∗ , β̃N |N∗

)
=

C

G∗
t+1|N∗

× · · · × C

G∗
N |N∗

Var β̃N |N∗ , t = 0, . . . , N − 1

G∗
j|N∗ ≡

{
D : j = 1
Bj−1|N∗ − C2

G∗
j−1|N∗

: 1 < j ≤ N
.
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Proof: The result is proven by using Gaussian elimination to solve
MN∗XN = e1 where e1 = (1, 0, . . . , 0)′. The Gaussian elimination of MN∗

proceeds by eliminating the upper diagonal starting from the right and then
by eliminating the lower diagonal starting from the left. �

Lemma 3.9. Given the linear Gaussian state space model defined in (91)
with FN = FN∗ then for t = 1, . . . , N − 1, t1 = 0, . . . , t − 1, and t2 =
t + 1, . . . , N

Var β̃t|N∗ =

(
GN−t+1|N∗ − C2

G∗
t|N∗

)−1

Cov
(
β̃t1 |N∗, β̃t|N∗

)
=

C

G∗
t1+1|N∗

× · · · × C

G∗
t|N∗

Var β̃t|N∗

Cov
(
β̃t|N∗ , β̃t2 |N∗

)
=

C

GN−t2+1|N∗
× · · · × C

GN−t|N∗
Var β̃t|N∗

where Gj|N∗ and G∗
j|N∗ have been previously defined in Lemmas 3.7 and 3.8.

Proof: Given a fixed t ∈ [1, . . . , N − 1], the result is proven by using
Gaussian elimination to solve MN∗XN = eN−t+1 where eN−t+1 is a vector
consisting of N +1 zeros except for a one in element number N − t+1. The
Gaussian elimination of MN∗ proceeds by eliminating N − t elements in the
lower diagonal starting from the left and then by eliminating t elements in
the upper diagonal starting from the right. The remainder of the elements
in the upper and lower diagonals are then eliminated. �

As expected, the missing observation precisions are bounded by the two
cases where all observations Yt are available for t = 1, . . . , N , and where no
observations Yt are available for t = 1, . . . , N .

Proposition 3.5. Given the linear Gaussian state space model defined in
(91) with FN = FN∗

Var β̃t|N ≤ Var β̃t|N∗ ≤ Var β̃t|N0 , t = 0, . . . , N

where Var β̃t|N , t = 0, . . . , N are the precision values associated with

FN = {Yt available for t = 1, . . . , N}

where Var β̃t|N0 , t = 0, . . . , N are the precision values associated with

FN0 = {Yt unavailable for t = 1, . . . , N} = ∅ = N0
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and where

Gj|N0 = A0 =
1
W

, j = 1, . . . , N

G∗
j|N0 =





D : j = 1
B0 − C2

G∗
j−1|N0

: j > 1

B0 = A0 +
C2

A0
=

1 + φ2

W
.

Proof: With regards to the lower bounds, MN = MN∗ + M (1) where
MN∗ > 0 and where

M (1) =




A − AN |N∗

B − BN−1|N∗

. . .
B − B1|N∗

0



≥ 0 .

Hence MN∗ ≤ MN implies M−1
N∗ ≥ M−1

N proving the result for the lower
bounds.

With regards to the upper bounds, MN∗ ≥ M (0) where

M (0) =




A0 −C
−C B0 −C

. . .
−C B0 −C

−C D




> 0 .

By direct examination, M (0) = MN0 associated with FN0 . Hence M−1
N∗ ≤

M−1
N0 proving the result for the upper bounds. �
The asymptotic analysis of the precision values as N → ∞ is shown for

two cases, where there is a finite number of available observations, or where
there is a finite number of missing observations. The first case includes
Kalman prediction of those states beyond the last available observation.

Proposition 3.6. Given the linear Gaussian state space model defined in
(91) with FN = FN∗ = Fn∗ for N > n such that Yn ∈ Fn∗ denotes the
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last available observation, then as N → ∞

Var β̃0|N∗ =
(

D − C2

Gn|n∗

)−1

Var β̃t|N∗ →
(

Gn−t+1|n∗ − C2

G−
t|n∗

)−1

for fixed t ∈ [1, . . . , n]

Var β̃t|N∗ →
(

1
W

− C2

G−
t|n∗

)−1

for fixed t ∈ (n, . . . ,∞)

where

G−
j|n∗ ≡





D : j = 1
Bj−1|n∗ − C2

G−
j−1|n∗

: 1 < j ≤ n

B0 − C2

G−
j−1|n∗

: n < j

.

Proof: None of the observations are available for t ∈ [n+1, . . . , N ]. The
definitions of Gj|N∗ and G∗

j|N∗ are used to show

GN−t+1|N∗ =

{
1
W : n < t ≤ N

Gn−t+1|n∗ : 1 ≤ t ≤ n

G∗
t|N∗ = G−

t|n∗ , 1 ≤ t ≤ N .

The previous display proves the result for t ∈ [0, . . . , N ] since

Var β̃0|N∗ =
(

D − C2

GN |N∗

)−1

Var β̃t|N∗ =

(
Gn−t+1|N∗ − C2

G∗
t|N∗

)−1

, 1 ≤ t < N .

Allowing N → ∞ completes the proof. �

Proposition 3.7. Given the linear Gaussian state space model defined in
(91) with FN = FN∗ ⊃ Fn∗ where Fn∗ contains the available observations
for t ∈ [1, . . . , n] with N > n such that Yn /∈ Fn∗ denotes the last missing
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observation, then as N → ∞

Var β̃0|N∗ →

(
D − C2

G∞
n+1|n∗

)−1

Var β̃t|N∗ →
(

G∞
n−t+2|n∗ −

C2

G+
t|n∗

)−1

for fixed t ∈ [1, . . . , n]

Var β̃t|N∗ →
(

G∞ − C2

G+
t|n∗

)−1

for fixed t ∈ (n, . . . ,∞)

where

G+
j|n∗ ≡





D : j = 1
Bj−1|n∗ − C2

G+
j−1|n∗

: 1 < j ≤ n

B − C2

G+
j−1|n∗

: n < j

G∞
j|n∗ ≡





G∞ : j = 1
B0 − C2

G∞
1|n∗

: j = 2

Bn−j+2|n∗ − C2

G∞
j−1|n∗

: 2 < j ≤ n + 1

.

Proof: All of the observations are available for t ∈ [n + 1, . . . , N ]. The
definition of Gj|N∗ with j ∈ [1, . . . , N − n] is used to define GN−t+1|N∗ with
t ∈ [n + 1, . . . , N ] in order to show as N → ∞

GN−t+1|N∗ → G∞
1|n∗ for t ∈ [n + 1, . . . ,∞) .

The continuity of GN−t+1|N∗ as a function of GN−n|N∗ with t ∈ [1, . . . , n] is
used to show as N → ∞

GN−t+1|N∗ → G∞
n−t+2|n∗ for t ∈ [1, . . . , n] .

Note that G∗
j|N∗ = G+

j|n∗ for 1 ≤ j ≤ N . Hence, the result is proven by
starting with the following equations and allowing N → ∞

Var β̃0|N∗ =
(

D − C2

GN |N∗

)−1

Var β̃t|N∗ =

(
GN−t+1|N∗ − C2

G∗
t|N∗

)−1

, 1 ≤ t ≤ N . �

The following corollary checks the results of Proposition 3.6 against the
Kalman prediction method.
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Corollary 3.6. Given the linear Gaussian state space model defined in (91)
with FN = FN∗ = Fn∗ for N > n such that Yn ∈ Fn∗ denotes the last
available observation, then for t ∈ [n, . . . , N − 1]

Var β̃t+1|N∗ = φ2Var β̃t|N∗ + W .

Proof: Applying the equation for Var β̃t|N∗ , applying the following iden-
tity for t ∈ [0, . . . , N − 1],

Var β̃t+1|N∗

Var β̃t|N∗
=

G∗
t+1|N∗

GN−t|N∗

and using a little algebra shows that proving the result is equivalent to
proving the following display for t ∈ [n, . . . , N − 1]

(
φ2 + WG∗

t+1|N∗

)
GN−t|N∗ − G∗

t+1|N∗ =
φ2

W
.

Proposition 3.6 shows that GN−t|N∗ = 1/W for t ∈ [n, . . . , N − 1]. Hence
the previous display and the result are proven. �

Remark 3.3. With respect to the linear state space model as defined in
(107) where the Gaussian assumption has been removed and with FN =
FN∗ , define a new collection of smoother estimates as β̂N∗ ≡ {β̂t|N∗ , t =
0, . . . , N} that satisfy the following system of state estimating equations
similar to (108)

MN∗ β̂N :0|N∗ = Y ∗
N :0|N∗ or β̂N :0|N∗ = M−1

N∗Y
∗
N :0|N∗

β̂N :0|N∗ ≡
(
β̂t|N∗ : t = N, . . . , 0

)′
.

The distribution for the associated collection of smoother residuals defined
as β̃N∗ ≡ {β̃t|N∗ ≡ βt − β̂t|N∗ , t = 0, . . . , N} satisfies

MN∗β̃N :0|N∗ ∼ (0,MN∗) or β̃N :0|N∗ ∼
(
0,M−1

N∗
)

β̃N :0|N∗ ≡
(
β̃t|N∗ : t = N, . . . , 0

)′
.

Hence the results of this section are applicable to the smoother residuals
in β̃N∗ associated with the linear state space model defined in (107) with
FN = FN∗ .
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3.5 Partial State Space Smoother

This section introduces the partial state space smoother that generates a
collection of partial smoother estimates of each state at time t that depends
on only a finite number of past, current, and future observations relative to
time t. The number of operations needed by the partial state space smoother
is fewer than the number of operations needed by the complete state space
smoother, at the price of larger precisions for the partial smoother estimates
relative to the precisions for the complete smoother estimates.

In order to motivate the partial state space smoother, consider the collec-
tion of complete smoother estimates βk

N :0|N under the linear Gaussian state
space model (91) that satisfies the tridiagonal system of state estimating
equations from (92) as follows

MNβk
N :0|N = Y ∗

N :0|N , βk
N :0|N =

(
βN |N , . . . , β0|N

)′

MN =




A −C
−C B −C

. . .
−C B −C

−C D



∈ RN+1×N+1 .

As noted in Remark 3.1, this system of state estimating equations can be
solved by the likelihood smoother that uses Gaussian elimination to remove
the upper diagonal and then the lower diagonal of MN . When new observa-
tions become available then the lower diagonal of MN needs to be removed
again. As N gets large, the number of operations needed by the complete
state space smoother also gets large. The power (i.e. minimum precision)
of the complete smoother estimates comes from the tridiagonal structure of
MN . The cost of this power is the number of operations needed to diag-
onalize MN . One way to decrease the number of operations conceptually
is to decrease the number of backward links in the lower diagonal of MN

such that each of the resulting partial smoother estimates only rely on a
subset of the N observations. The penalty for removing backward links in
MN shows up in the power (by an increase in the precision) of the resulting
partial smoother estimates.

Sections 3.5.1 through 3.5.3 introduce a partial smoother that solves a
system of state estimating equations with all or part of the lower diagonal
removed. Section 3.5.4 describes another partial smoother that solves a
system of state estimating equations different from both the generalized
partial state space smoother of section 3.5.2 and the complete state space
smoother.
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3.5.1 A Simple Partial Smoother

As the first example of a partial state space smoother given the linear
Gaussian state space model (91), consider a collection of new partial smoothers
β̂

l
0:N ≡ {β̂l

t|t : t = 0, . . . , N} that satisfy the following new system of state
estimating equations

− 1
W

(
β̂l

t|t − φβ̂l
t−1|t−1

)
+

η

V

(
Yt − ηβ̂l

t|t

)
= 0, t = N, . . . , 1

− 1
W0

(
β̂l

0|0 − b0

)
= 0

that is written in matrix notation as




A −C
A −C

. . .
A −C

D0







β̂l
N |N

β̂l
N−1|N−1

...
β̂l

1|1
β̂l

0|0




=




η
V YN

η
V YN−1

...
η
V Y1
b0
W0




A =
1
W

+
η2

V
, C =

φ

W
, D0 =

1
W0

that is represented in matrix symbology as

U lβ̂
l

N :0 = Y ∗
N :0 (109)

and that is different from the system of state estimating equations associ-
ated with the complete state space smoother (92) since the principle lower
diagonal is 0. It is easy to see that U l is upper diagonal and invertible such
that

β̂
l
N :0 = U−1

l Y ∗
N :0

and such that each of the partial smoothers can be found recursively using

β̂l
0|0 = b0

β̂l
t|t = A−1

( η

V
Yt + Cβ̂l

t−1|t−1

)
, t = 1, . . . , N .

Hence each partial smoother β̂l
t|t for t ∈ {1, . . . , N} depends linearly on only

the observations Y1 through Yt.
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Substituting the states βN :0 for the partial smoothers β̂
l
N :0 in (109) and

applying the linear Gaussian state space model (91) results in

U lβN :0 − Y ∗
N :0 =




1
W wN − η

V vN
...

1
W w1 − η

V v1
1

W0
(β0 − b0)


 ∼ N(0,Dl)

Dl ≡ Diagonal
(
A . . . A D0

)

where Dl is a diagonal matrix. Define the collection of partial smoother
residuals as β̃

l
0:N ≡ {β̃l

t|t ≡ βt − β̂l
t|t : t = 0, . . . , N}. Hence the partial

smoother residuals β̃
l
0:N satisfy the following relationship

U lβ̃
l
N :0 ∼ N (0,Dl) or β̃

l
N :0 ∼ N

(
0,M−1

l

)

β̃
l
N :0 ≡

(
β̃l

t|t : t = N, . . . , 0
)′

M−1
l ≡ (U l)

−1 Dl

(
U ′

l

)−1
.

Using matrix multiplication shows that

M l = U ′
lD

−1
l U l

=




A −C

−C A + C2

A −C
. . .
−C A + C2

A −C

−C D0 + C2

A




.

The previous display leads directly to a lower bounds on Var β̃
l
N :0 and to

simple formulas for each Var β̃t|t, t = 0, . . . , N .

Proposition 3.8. Given the linear Gaussian state space model in (91) then

Var β̃
l
N :0 ≥ Var β̃N :0|N

where equality exists if and only if η = 0.

Proof: Simple algebra shows that

C2

A
<

φ2

W
for η 6= 0,

C2

A
=

φ2

W
for η = 0 .
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Hence the result is proven since

M l = (Var β̃
l
N :0)

−1 ≤ MN = (Var β̃N :0|N )−1

implies Var β̃
l
N :0 ≥ Var β̃N :0|N with equality if and only if η = 0. �

Lemma 3.10. Given the linear Gaussian state space model in (91) then

Var β̃l
0|0 = W0

Var β̃l
t|t =

(
A − C2

G∗
t|l

)−1

, t = 1, . . . , N .

where

G∗
j|l =

{
D0 + C2

A : j = 1
A + C2

A − C2

G∗
j−1|l

: j > 1
.

Proof: Given a fixed t ∈ [0, . . . , N ], Gaussian elimination of M lXN =
eN−t+1 is used to show that

Var β̃l
0|0 =

(
D0 +

C2

A
− C2

GN |l

)−1

Var β̃l
t|t =

(
GN−t+1|l −

C2

G∗
t|l

)−1

, t = 1, . . . , N − 1

Var β̃l
N |N =

(
A − C2

G∗
N |l

)−1

where

Gj|l =

{
A : j = 1
A + C2

A − C2

Gj−1|l
: j > 1

.

Noting that Gj|l = A for j = 1, . . . , N proves the result. �
Bounds for each Var β̃l

t|t, t ∈ [1, . . . , N ], are also found using the prop-
erties of G∗

j|l.

Lemma 3.11. The properties of G∗
j|l include the following

If G∗
1|l < A then

C2

A
< G∗

j|l < G∗
j+1|l < A, j = 2, . . . (110)

If G∗
1|l > A then A < G∗

j+1|l < G∗
j|l < A +

C2

A
, j = 2, . . . (111)

G∗
j|l → A as j → ∞ . (112)
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Proof: The fact that C2/A < G∗
1|l is used to show C2/A < G∗

2|l. Induc-
tion is used to show the general result that for j = 2, . . .

C2

A
< G∗

j|l < A +
C2

A
.

Simple algebra is used to show for j = 2, . . . ,

If G∗
j−1|l < G∗

j|l then G∗
j|l < G∗

j+1|l

If G∗
j−1|l > G∗

j|l then G∗
j|l > G∗

j+1|l

If G∗
j|l < A then G∗

j+1|l < A

If G∗
j|l > A then G∗

j+1|l > A .

Algebraic analysis also shows that G∗
1|l ≤ A is equivalent to G∗

1|l ≤ G∗
2|l.

Induction utilizing the inequalities in the previous display proves the result
for (110). A similar analysis proves the result for (111). Results (110) and
(111) show that G∗

j|l → G∗
∞|l as j → ∞. Hence the identity

G∗
∞|l = A +

C2

A
− C2

G∗
∞|l

has two solutions: G∗
∞|l = A,C2/A. The first solution, G∗

∞|l = A, is the
only solution that satisfies the previous results (110) and (111). Hence the
result (112) is proven. �

Proposition 3.9. Given the linear Gaussian state space model in (91) then
each Var β̃l

t|t for t = 0, . . . , N is bounded as follows

Var β̃l
0|0 = W0

If G∗
1|l < A then for t = 1, . . . , N

(
A − C2

A

)−1

< β̃l
t|t <

(
A − C2

G∗
1|l

)−1

Else if G∗
1|l > A then for t = 1, . . . , N

(
A − C2

G∗
1|l

)−1

< β̃l
t|t <

(
A − C2

A

)−1

.
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Var β̃l
N |N converges to a limit as N → ∞

Var β̃l
N |N →

(
A − C2

A

)−1

.

�

The following corollary verifies that the precisions of the Kalman filter
estimates are smaller than the precisions of the partial smoother estimates.
The next section shows that the precisions of the state space smoother esti-
mates are also smaller than the precisions of the partial smoother estimates
since additional observations are used to calculate the state space smoother
estimate versus the partial smoother estimate of each state.

Corollary 3.7. Given the linear Gaussian state space model in (91) then
the precisions of the Kalman filter estimates Pt|t = Var β̃t|t are smaller than
the precisions of the partial smoother estimates P l

t|t = Var β̃l
t|t

Var β̃t|t < Var β̃l
t|t, for t ∈ [1, . . . ,∞)

lim
N→∞

Var β̃N |N < lim
N→∞

Var β̃l
N |N .

Proof: With regards to the first result, direct examination shows that
G∗

1 < G∗
1|l. Hence G∗

2 < G∗
2|l by direct calculation and G∗

j < G∗
j|l for j =

3, . . . by induction. The first result follows by using the equations for Var β̃t|t
and Var β̃l

t|t.

The second result follows from the equation for Var β̃N |N and from the
convergence of G∗

N → G∞ and G∗
N |l → A as N → ∞ such that G∞ > A. �

In order to further compare these precisions, the ratio of the precision
for the Kalman filter estimate Var β̃N |N versus the precision for the partial
smoother estimate Var β̃l

N |N is examined as N → ∞

lim
N→∞

Var β̃N |N

Var β̃l
N |N

=
A − C2

A

A − C2

G∞

=
A − C2

A

G∞ − φ2

W

=
2
[(

1
W + η2

V

)
− φ2

W 2

(
1
W + η2

V

)−1
]

(
1−φ2

W + η2

V

)
+

√(
1−φ2

W + η2

V

)2
+ 4φ2η2

V W

.
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The asymptotic precision ratio can be expressed as a function of V/W

lim
N→∞

Var β̃N |N

Var β̃l
N |N

=
2
[(

V
W + η2

)
− φ2

(
V
W

)2 ( V
W + η2

)−1
]

(
(1 − φ2) V

W + η2
)

+
√(

(1 − φ2) V
W + η2

)2 + 4φ2η2 V
W

.

If φ2/W ≈ η2/V then the asymptotic precision ratio is approximated by

lim
N→∞

Var β̃N |N

Var β̃l
N |N

≈
2
(
1 + φ4

1+φ2

)

1 +
√

1 + 4φ4
∈ (.927, 1] .

If V/W = 0 then the asymptotic precision ratio is 1. Figure 20 graphs a
family of curves for asymptotic precision ratios where |φ| ∈ [0, 1], η = 1, and
where the curves correspond to V/W = .5, 1, 3, 10, 50 starting from the top
right. It is interesting to note that the asymptotic precision ratio remains
above .9 for |φ| ∈ [0, .8] in all curves. The next section generalizes the simple
partial smoother estimate introduced in this section.
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1
Asymptotic Precision Ratios

Figure 20: Asymptotic precision ratios of Kalman filter precisions versus
partial smoother precisions where |φ| ∈ [0, 1], η = 1, and where the different
curves represent V/W = .5, 1, 3, 10, 50 starting from the top right.
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3.5.2 A General Partial Smoother

As a general example of a partial smoother given the linear Gaussian state
space model (91), consider a collection of new partial smoothers β̂

m
0:N ≡

{β̂m
t|N : t = 0, . . . , N} that satisfy the following new system of state estimat-

ing equations

− 1
W

(
β̂m

N |N − φβ̂m
N−1|N

)
+

η

V

(
YN − ηβ̂m

N |N

)
= 0

Ct

(
β̂m

t+1|N − φβ̂m
t|N

)
− 1

W

(
β̂m

t|N − φβ̂m
t−1|N

)
+

η

V

(
Yt − ηβ̂m

t|N

)
= 0

t = N − 1, . . . , 1

C0

(
β̂m

1|N − φβ̂m
0|N

)
− 1

W0

(
β̂m

0|N − b0

)
= 0

where each Ct ∈ {0, φ/W} for t = 0, . . . , N − 1. This system of state
estimating equations is written in matrix notation as




A −C
−CN−1 BN−1 −C

. . .
−C1 B1 −C

−C0 D∗







β̂m
N |N

β̂m
N−1|N

...
β̂m

1|N
β̂m

0|N




=




η
V YN

η
V YN−1

...
η
V Y1
b0
W0




A =
1
W

+
η

V
, C =

φ

W
, D0 =

1
W0

Bt = A + φCt, t = N − 1, . . . , 1
D∗ = D0 + φC0 .

is represented in matrix symbology as

Kmβ̂
m
N :0 = Y ∗

N :0 (113)

and is different from the system of state estimating equations associated with
the complete state space smoother (92) when Ct = 0 for any t ∈ {0, . . . , N −
1}. The matrix Km has the following partition for some r ∈ {1, . . . , N}

Km =




Mm
r −Cm

r−1

Mm
r−1 −Cm

r−2
. . .

Mm
2 −Cm

1

Mm
1



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where for j = 1, . . . , r

Mm
j =




A −C
−C B −C

. . .
−C B −C

−C B∗
j



∈ Rnj×nj , j = 1, . . . , r

Cm
j =




0 . . . 0
...

...
0
C 0 . . . 0


 ∈ Rnj+1×nj , j = 1, . . . , r − 1

B∗
j =

{
B : j ∈ {r, . . . , 2}
D∗ : j = 1

.

Each Mm
j is positive definite and invertible. Solving KmXr:1 = 0 with

Xr:1 = (X ′
j ∈ R1×nj , j = r, . . . , 1)′ results in the following r equations

Mm
1 X1 = 0

Mm
j Xj − Cm

j−1Xj−1 = 0, j = 2, . . . , r .

The previous display shows that Km has full column rank since the only
solution of KmXr:1 = 0 is Xr:1 = 0. A similar analysis with respect to
K ′

mXr:1 = 0 starting with Mm
r Xr = 0 shows that Km has full row rank.

Hence Km is invertible and the partial smoothers β̂
m
0:N satisfy the following

system of state estimating equations

β̂
m
1 = (Mm

1 )−1 Y m
1

β̂
m
j =

(
Mm

j

)−1
(
Y m

j + Cm
j−1β̂

m
j−1

)
, j = 2, . . . , r

where the vector of partial smoothers and the vector of observations are
partitioned as follows

β̂
m
N :0 =

(
β̂

m′
j ∈ R1×nj : j = r, . . . , 1

)′

Y ∗
N :0 =

(
Y m′

j ∈ R1×nj : j = r, . . . , 1
)′

.

It is easy to see that each of the partial smoothers β̂t ∈ β̂
m

j depend on the
observations Yt ∈ {Y m

1 , . . . ,Y m
j }, j = 1, . . . , r.
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Substituting the states βN :0 ≡ (βN , . . . , β0)′ for the partial smoothers
β̂

m
N :0 in (113) and applying the linear Gaussian state space model (91) shows

KmβN :0 − Y ∗
N :0 =




1
W wN − η

V vN

−CN−1wN + 1
W wN−1 − η

V vN−1
...

−C1w2 + 1
W w1 − η

V v1

−C0w1 + 1
W0

(β0 − b0)




∼ N(0,T m)

where T m is a tridiagonal covariance matrix

T m =




A −CN−1

−CN−1 BN−1 −CN−2

. . .
−C1 B1 −C0

−C0 D∗




=



Mm

r
. . .

Mm
1


 .

Define the associated collection of partial smoother residuals as β̃
m
0:N ≡

{β̃m
t|N ≡ βt− β̂m

t|N : t = 0, . . . , N}. Hence the partial smoother residuals β̃
m
0:N

satisfy the following relationship

Kmβ̃
m
N :0 ∼ N(0,T m) or β̃

m
N :0 ∼ N

(
0,M−1

m

)

β̃
m
N :0 ≡

(
β̃m

t|N : t = N, . . . , 0
)′

M−1
m = (Km)−1 T m

(
K ′

m

)−1
.

The following analysis shows that the precisions associated with the gen-
eral partial smoothers β̃m

t|N are lower bounded by the precisions associated

with the state space smoothers β̃t|N and are upper bounded by the precisions
associated with the simple partial smoothers β̃l

t|t

Var β̃t|N ≤ Var β̃m
t|N ≤ Var β̃l

t|t, t = 0, . . . , N .

Proposition 3.10. Given the linear Gaussian state space model in (91)
then

Var β̃N :0 ≤ Var β̃
m
N :0

where β̃N :0 = (β̃t|N : t = N, . . . , 0)′ is a vector of state space smoother
residuals and where β̃

m
N :0 = (β̃m

t|N : t = N, . . . , 0)′ is a vector of partial
smoother residuals.
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Proof: The result is proven by showing

MN = (Var β̃N :0)
−1 ≥ Mm = (Var β̃

m
N :0)

−1 .

Let Km = T m + ∆m in order to show that

Mm = K ′
mT−1

m Km =
(
T m + ∆′

m

)
T−1

m (T m + ∆m)

=
(
T m + ∆m + ∆′

m

)
+ ∆′

mT−1
m ∆m

≡ M1
m + M2

m

∆m ≡




0 −Cm
r−1

. . . . . .
0 −Cm

1

0




where

M1
m =




Mm
r −Cm

r−1

−Cm′
r−1 Mm

r−1 −Cm
r−2

. . .
−Cm′

2 Mm
2 −Cm

1

−Cm′
1 Mm

1




M2
m =




0
Cm′

r−1 (Mm
r )−1 Cm

r−1
. . .

Cm′
1 (Mm

2 )−1 Cm
1


 .

It is easy to see that M1
m has the following tridiagonal structure

M1
m =




A −C
−C BN−1 −C

. . .
−C B1 −C

−C D∗




.

In order to analyze the structure of M2
m, let (Mm

j )−1 = [zj
i1,i2

: i1, i2 =
1, . . . , nj ], j = 2, . . . , r. Hence each of the non-zero diagonal submatrices of
M 2

m have the following structure for j = 2, . . . , r

Cm′
j−1

(
Mm

j

)−1
Cm

j−1 = C2zj
nj ,nj




1 0 . . . 0
0
...

...
0 . . . 0


 ∈ Rnj−1×nj−1 .
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Similar to the result in Lemma 3.2, Gaussian elimination of Mm
j Zj = enj

where Zj = (zj
i,nj

: i = 1, . . . , nj)′ shows

zj
nj ,nj

=
1

Gnj

for j = 2, . . . , r .

Hence the matrix Mm has the following structure

Mm =




M∗
r −Cm

r−1

−Cm′
r−1 M∗

r−1 −Cm
r−2

. . .
−Cm′

2 M∗
2 −Cm

1

−Cm′
1 M∗

1




where each of the diagonal submatrices in Mm have a tridiagonal structure

M ∗
j =




A + C2

Gnj+1
−C

−C B −C
. . .
−C B −C

−C B∗
j



∈ Rnj×nj , j = 1, . . . , r − 1

M ∗
r = Mm

r .

Equation (101) from Lemma 3.5 showed A ≤ Gj < B for j ∈ [1, . . . ,∞).
This earlier result implies

A +
C2

Gj
≤ A +

C2

G1
< B for j = 1, . . .

which in turn is used to show MN ≥ Mm. Hence the result is proven since
MN ≥ Mm implies M−1

N ≤ M−1
m . �

Proposition 3.11. Given the linear Gaussian state space model in (91)
then

Var β̃m
t|N ≤ Var β̃l

t|t for t = 0, . . . , N

where β̃
m
0:N ≡ {β̃m

t|N : t = 0, . . . , N} is a collection of the general partial

smoother residuals and where β̃
l
0:N ≡ {β̃l

t|t : t = 0, . . . , N} is a collection of
the simple partial smoother residuals.
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Proof: Partition the general partial smoother residuals into

β̃
m
N :0 =

(
β̃

m′
j ≡

(
β̃m

j,nj
, . . . , β̃m

j,1

)
: j = r, . . . , 1

)′

such that the distribution for Kmβ̃
m
N :0 satisfies

Mm
1 β̃

m
1 ≡ W m

1 ∼ N(0,Mm
1 )

Mm
j β̃

m
j − Cm

j−1β̃
m
j−1 ≡ W m

j ∼ N
(
0,Mm

j

)
, j = 2, . . . , r

where the partition of general partial smoother residuals satisfy

β̃
m
1 = (Mm

1 )−1 W m
1

β̃
m
j =

(
Mm

j

)−1
W m

j +
(
Mm

j

)−1
Cm

j−1β̃
m
j−1, j = 2, . . . , r

and where the random vector sequence {W m
j , j = 1, . . . , r} is independent.

In a similar manner, partition the simple partial smoother residuals into

β̃
l
N :0 =

(
β̃

l′
j ≡

(
β̃l

j,nj
, . . . , β̃l

j,1

)
: j = r, . . . , 1

)′

and partition the coefficient matrix U l and the covariance matrix Dl into

U l =




U l
r −Cm

r−1
. . .

U l
2 −Cm

1

U l
1


 , U l

j ∈ Rnj×nj , j = 1, . . . , r

Dl =




Dl
r

. . .
Dl

1


 , Dl

j ∈ Rnj×nj , j = 1, . . . , r .

such that the distribution for U lβ̃
l
N :0 satisfies

U l
1β̃

l
1 ≡ W l

1 ∼ N
(
0,Dl

1

)

U l
jβ̃

l
j − Cm

j−1β̃
l
j−1 ≡ W l

j ∼ N
(
0,Dl

j

)
, j = 2, . . . , r

where the partition of simple partial smoother residuals satisfy

β̃
l
1 =

(
U l

1

)−1
W l

1

β̃
l
j =

(
U l

j

)−1
W l

j +
(
U l

j

)−1
Cm

j−1β̃
l
j−1, j = 2, . . . , r
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and where the random vector sequence {W l
j , j = 1, . . . , r} is independent.

Let (Mm
j )−1 = [zj

i1 ,i2
: i1, i2 = 1, . . . , nj] for j = 1, . . . , r such that

(
Mm

j

)−1
Cm

j−1β̃
m
j−1 = Cβ̃m

j−1,nj−1
Zj (114)

Zj =
(
zj
i,nj

, i = 1, . . . , nj

)′

and let (U l
j)

−1 = [qj
i1,i2

: i1, i2 = 1, . . . , nj ] for j = 1, . . . , r such that
(
U l

j

)−1
Cm

j−1β̃
l
j−1 = Cβ̃l

j−1,nj−1
Qj (115)

Qj =
(
qj
i,nj

, i = 1, . . . , nj

)′
.

The two covariance matrices for (114) and (115) follow directly for j =
2, . . . , r

Var
[(

Mm
j

)−1
Cm

j−1β̃
m
j−1

]
= C2Var

(
β̃m

j−1,nj−1

)
ZjZ

′
j

Var
[(

U l
j

)−1
Cm

j−1β̃
l
j−1

]
= C2Var

(
β̃l

j−1,nj−1

)
QjQ

′
j .

Hence the covariance matrices of β̃
m
j for j = 1, . . . , r are

Var
(
β̃

m
1

)
= (Mm

1 )−1 (116)

Var
(
β̃

m
j

)
=
(
Mm

j

)−1 + C2Var
(
β̃m

j−1,nj−1

)
ZjZ

′
j (117)

and the covariance matrices of β̃
l
j for j = 1, . . . , r are

Var
(
β̃

l
1

)
=
(
U l

1

)−1
Dl

1

(
U l′

1

)−1
(118)

Var
(
β̃

l
j

)
=
(
U l

j

)−1
Dl

j

(
U l′

j

)−1
+ C2Var

(
β̃l

j−1,nj−1

)
QjQ

′
j . (119)

Proposition 3.10 with β̃N :0 = β̃
m
j and β̃

m
N :0 = β̃

l
j shows for j = 1, . . . , r

(
Mm

j

)−1 ≤
(
U l

j

)−1
Al

j

(
U l′

j

)−1
. (120)

In view of the three previous displays, equations (116) through (120), the
result is proven if the following diagonal covariance inequality is true for
j = 2, . . . , r and i = 1, . . . , nj

C2Var
(
β̃m

j−1,nj−1

)(
zj
i,i

)2
≤ C2Var

(
β̃l

j−1,nj−1

)(
qj
i,i

)2
. (121)
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Similar to the result in Lemma 3.2, Gaussian elimination of Mm
j Zj =

enj where Zj = (zj
i,nj

: i = 1, . . . , nj)′ shows for j = 2, . . . , r

Zj =
(

C

G1
× · · · × C

Gnj−1
× 1

Gnj

, . . . ,
C

Gnj−1
× 1

Gnj

,
1

Gnj

)′

=
1

Gnj

(
C

G1
× · · · × C

Gnj−1
, . . . ,

C

Gnj−1
, 1
)′

.

The following display gives the structure of the coefficient matrix U l
j and

its inverse for j = 2, . . . , r

U l
j =




A −C
. . .

A −C
A


 ,
(
U l

j

)−1
=




1
A

C
A2

C2

A3 . . .
1
A

C
A2

C2

A3 . . .
. . .

1
A

C
A2

C2

A3

1
A

C
A2

1
A




which shows for j = 2, . . . , r

Qj =
1
A

((
C

A

)nj−1

, . . . ,

(
C

A

)0
)′

.

Hence the following diagonal inequality is true since A ≤ Gk for k = 1, . . . , N
(
zj
i,i

)2
≤
(
qj
i,i

)2
for j = 1, . . . , r and i = 1, . . . , nj . (122)

The covariance inequality (120) for j = 1 together with the initial partial
smoothers equations (116) and (118) shows Var β̃

m
1 ≤ Var β̃

l
1, which proves

the result that Var β̃m
1,i ≤ Var β̃l

1,i for i = 1, . . . , n1. This inequality together
with the diagonal inequality (122) shows the diagonal covariance inequality
(121) for j = 2. For j = 2, the combination of inequalities (120) and
(121) together with the partial smoothers equations (117) and (119) proves
the result that Var β̃m

2,i ≤ Var β̃l
2,i for i = 1, . . . , n2. Induction is used to

show the diagonal covariance inequality (121) for j = 3, . . . , r. For j =
3, . . . , r, the combination of inequalities (120) and (121) proves the result
that Var β̃m

j,i ≤ Var β̃l
j,i for i = 1, . . . , nj . Hence the complete result has

been proven. �
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3.5.3 A Partial Smoother With Constant Partition Size

As a special case of the general partial smoothers, let β̂
mn

0:N ≡ {β̂mn
0 , . . . , β̂mn

N }
represent the collection of partial smoothers where each of the r partitions
have the same size n such that n1 = n2 = · · · = nr ≡ n > 1. The general
partial smoothers β̂

mn

0:N , for the case where the partition size n = 1, are
equivalent to the simple partial smoothers β̂

l
0:N . The partial smoothers

β̂
mn

0:N satisfy the following system of state estimating equations

Kmnβ̂
mn

N :0 = Y ∗
N :0

β̂
mn

N :0 ≡
(
β̂

mn′
j ≡

(
β̂j,n, . . . , β̂j,1

)
: j = r, . . . , 1

)′
≡
(
β̂mn

N , . . . , β̂mn
0

)′

Kmn ≡




Mmn
r −Cmn

r−1
. . .

Mmn
2 −Cmn

1

Mmn
1




Mmn
j ≡ Mm

j ∈ Rn×n, j = 1, . . . , r

Cmn
j ≡ Cm

j ∈ Rn×n, j = 1, . . . , r

Mmn
2 = · · · = Mmn

r .

Let β̃
mn

0:N ≡ {β̃mn
0 , . . . , β̃mn

N } represent the associated collection of partial
smoother residuals that satisfy the following relationship

β̃
mn

N :0 ∼ N
(
0, (Mmn)−1

)

β̃
mn

N :0 ≡
(
β̃

mn′
j ≡

(
β̃j,n, . . . , β̃j,1

)
: j = r, . . . , 1

)′
≡
(
β̃mn

N , . . . , β̃mn
0

)′

Mmn ≡




M∗
r −Cmn

r−1

−Cmn′
r−1 M∗

r−1 −Cmn
r−2

. . .
−Cmn′

2 M∗
2 −Cmn

1

−Cmn′
1 M∗

1




M ∗
j ∈ Rn×n, j = 1, . . . , r

M ∗
2 = · · · = M ∗

r .

As a special case of the general partial smoothers, the results of Proposi-
tions 3.10 and Lemma 3.11 are valid with respect to the partial smoother
residuals β̃

mn

0:N . Due to the constant partition size n, it is possible to find
the asymptotic precision for the partitioned partial smoothers β̃

mn

r .
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Theorem 3.2. Given the linear Gaussian state space model (91) with N =
rn− 1, then the precision of the constant partitioned partial smoothers β̂

mn

r

converges to a finite covariance matrix as r → ∞

Var β̃
mn

r → P mn
∗ = (Mmn

2 )−1 + C2Pmn
n,n ZnZ ′

n

Var β̃mn
r,n → Pmn

n,n ≡ z1,1

1 − C2z2
1,n

(Mmn
2 )−1 ≡ [zi1,i2 : i1, i2 = 1, . . . n]

Zn ≡ (zi,n : i = 1, . . . , n)′

where

z1,1 =
(

A − C2

G∗
n−1 (B)

)−1

Zn =
1

Gn

(
C

G1
× · · · × C

Gn−1
, . . . ,

C

Gn−1
, 1
)′

G∗
j (D) =

{
D : j = 1
B − C2

G∗
j−1

: j > 1
.

Proof: Equation (117) within Proposition 3.11 gives the precision for
β̂

mn

r as

Var
(
β̃

mn

r

)
= (Mmn

2 )−1 + C2Var
(
β̃mn

r−1,n

)
ZnZ ′

n (123)

which shows that the precision for β̂
mn

r,n , r > 2, is

Var
(
β̃mn

r,n

)
= z1,1 + C2z2

1,nVar
(
β̃mn

r−1,n

)

= z1,1

(
1 +

(
C2z2

1,n

)
+
(
C2z2

1,n

)2 + · · · +
(
C2z2

1,n

)r−3
)

+
(
C2z2

1,n

)r−2
(
z
(1)
1,1 +

(
C2z2

1,n

)
Var

(
β̃mn

1,n

))

(Mmn
1 )−1 ≡

[
z
(1)
i1,i2

: i1, i2 = 1, . . . n
]

.

The formula for z1,1 is found by using Gaussian elimination to solve Mmn
2 Z1 =

e1 with Z1 = (z1,1, . . . , zn,1)′. The formula for Zn is found by using Gaussian
elimination to solve Mmn

2 Zn = en. The formula for z
(1)
1,1 is found by using

Gaussian elimination to solve Mmn
1 Z

(1)
1 = e1 with Z

(1)
1 = (z(1)

1,1 , . . . , z
(1)
n,1)

′

z
(1)
1,1 =

(
A − C2

G∗
n−1 (D)

)−1

.
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Hence the precision for β̂
mn

r,n converges to a finite limit as r → ∞ since
|C2z2

1,n| < 1

Var
(
β̃mn

r,n

)
→ z1,1

1 − C2z2
1,n

≡ Pmn
n,n = z1,1 + C2z2

1,nPmn
n,n .

The result is proven using (123). �

3.5.4 Another Partial Smoother

In this section another partitioned sequence of partial smoothers β̂
s
0:N is de-

scribed that satisfies a system of state estimating equations different from the
previous partial smoothers β̂

m
0:N and different from the complete state space

smoothers βk
0:N |N . The precisions associated with these partial smoothers

β̂
s
0:N are smaller than the precisions associated with a comparable partition

of the previous partial smoothers β̂
m

0:N and are larger than the precisions
associated with the complete state space smoothers βk

0:N |N .
Using a constant partition size of n + 1, divide the sequence of states

β0:N ≡ {β0, . . . , βN} into r overlapping partitions as follows

βs
r:1 ≡

(
βs′

j : j = r, . . . , 1
)′

βs
j ≡ (βj,i : i = n, . . . , 0)′ ≡

(
βjn, . . . , β(j−1)n

)′
.

where each state partition {βs
j : 1 < j ≤ r} contains an initial state βj,0

that corresponds to the last state βj−1,n from the previous partition

βj,0 ≡ βj−1,n ≡ β(j−1)n, j = 2, . . . , r .

Also using a constant partition size of n, divide the sequence of observations
FN ≡ {Y1, . . . , YN} into r non-overlapping partitions as follows

Y N :1 ≡
(
Y s′

j ≡ (Yj,i : i = n, . . . , 1) : j = r, . . . , 1
)′

≡ (YN , . . . , Y1)
′ .

Denote the partial smoothers as β̂
s

0:N ≡ {β̂s
0, . . . , β̂

s
N} and the partial smoother

residuals as β̃
s
0:N ≡ {β̃s

t ≡ βt − β̂s
t : t = 0, . . . , N}. Divide the partial

smoothers and the partial smoother residuals using a constant partition size
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of n + 1 such that each partition has an initial random variable

β̂
s
r:1 ≡

(
β̂

s′
j ≡

(
β̂s

j,i : i = n, . . . , 0
)

: j = r, . . . , 1
)′

≡
((

β̂s
jn, . . . , β̂s

jn−n+1, β̂
s
j,0

)
: j = r, . . . , 1

)′

β̂s
0 ≡ b0

β̃
s
r:1 ≡

(
β̃

s′
j ≡

(
β̃s

j,i : i = n, . . . , 0
)

: j = r, . . . , 1
)′

≡
((

β̃s
jn, . . . , β̃s

jn−n+1, β̃
s
j,0

)
: j = r, . . . , 1

)′

β̃s
0 ≡ β0 − β̂s

0

where the initial state of each smoother partition {β̂s
j,0 : j = 1, . . . , r}, will

be used to estimate the corresponding initial state of each state partition
{βj,0 : j = 1, . . . , r}. Using the linear Gaussian state space model (91) shows
that the first partition of states βs

1 = (β1,n, . . . , β1,0)′ satisfies the following
system of equations

− 1
W

(β1,n − φβ1,n−1) +
η

V
(Y1,n − ηβ1,n)

= − 1
W

wn +
η

V
vn

φ

W
(β1,t+1 − φβ1,t) −

1
W

(β1,t − φβ1,t−1) +
η

V
(Y1,t − ηβ1,t)

=
φ

W
wt+1 −

1
W

wt +
η

V
vt

for t = n − 1, . . . , 1
φ

W
(β1,1 − φβ1,0) −

1
W0

(β1,0 − b0)

=
φ

W
w1 −

1
W0

w0 .

Let the first partition of partial smoothers β̂
s

1 = (β̂s
1,n, . . . , β̂s

1,0)
′ satisfy the

following system of state estimating equations

− 1
W

(
β̂s

1,n − φβ̂s
1,n−1

)
+

η

V

(
Y1,n − ηβ̂s

1,n

)
= 0

φ

W

(
β̂s

1,t+1 − φβ̂s
1,t

)
− 1

W

(
β̂s

1,t − φβ̂s
1,t−1

)
+

η

V

(
Y1,t − ηβ̂s

1,t

)
= 0

for t = n − 1, . . . , 1
φ

W

(
β̂s

1,1 − φβ̂s
1,0

)
− 1

W0

(
β̂s

1,0 − b0

)
= 0 .
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Each partial smoother β̂s
j,i ∈ β̂

s
1 depends on the observations Yt ∈ Y s

1. The
first partition of partial smoother residuals β̃

s
1 = (β̃s

1,n, . . . , β̃s
1,0)

′ has the
following distribution

M s
1β̃

s
1 ∼ N(0,M s

1) or β̃
s
1 ∼ N

(
0, (M s

1)
−1
)

M s
1 ≡ Mn ∈ Rn+1×n+1

where the precision for β̂s
1,n, as shown in Lemma 3.12, is

Var β̃s
1,n =

(
A − C2

G∗
n (D)

)−1

G∗
k (D) ≡

{
D : k = 1
B − C2

G∗
k−1(D) : k > 1

.

The linear Gaussian state space model shows that each subsequent par-
tition of states {βs

j = (βj,n, . . . , βj,0)′ : j = 2, . . . , r} satisfies the following
system of equations

− 1
W

(βj,n − φβj,n−1) +
η

V
(Yj,n − ηβj,n)

= − 1
W

wjn +
η

V
vjn

φ

W
(βj,t+1 − φβj,t) −

1
W

(βj,t − φβj,t−1) +
η

V
(Yj,t − ηβj,t)

=
φ

W
w(j−1)n+t+1 −

1
W

w(j−1)n+t +
η

V
v(j−1)n+t

for t = n − 1, . . . , 1

φ

W
(βj,1 − φβj,0) −

(
A − C2

G∗
(j−1)n

(D)

)
(βj,0 − βj−1,n)

=
φ

W
w(j−1)n+1 .

Let each subsequent partition of partial smoothers {β̂s
j : j = 2, . . . , r} satisfy
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the following system of state estimating equations

− 1
W

(
β̂s

j,n − φβ̂s
j,n−1

)
+

η

V

(
Yj,n − ηβ̂s

j,n

)
= 0

φ

W

(
β̂s

j,t+1 − φβ̂s
j,t

)
− 1

W

(
β̂s

j,t − φβ̂s
j,t−1

)
+

η

V

(
Yj,t − ηβ̂s

j,t

)
= 0

for t = n − 1, . . . , 1

φ

W

(
β̂s

j,1 − φβ̂s
j,0

)
−
(

A − C2

G∗
(j−1)n (D)

)(
β̂s

j,0 − β̂s
j−1,n

)
= 0 .

It is easy to see that each partial smoother β̂s
j,i ∈ β̂

s
j depends on the ob-

servations Yt ∈ {Y s
1, . . . ,Y

s
j}, j = 2, . . . , r. Each subsequent partition of

partial smoother residuals {β̃s
j : j = 2, . . . , r} satisfies the following system

of equations

− 1
W

(
β̃j,n − φβ̃j,n−1

)
− η2

V
β̃j,n

= − 1
W

wjn +
η

V
vjn

φ

W

(
β̃j,t+1 − φβ̃j,t

)
− 1

W

(
β̃j,t − φβ̃j,t−1

)
− η2

V
β̃j,t

=
φ

W
w(j−1)n+t+1 −

1
W

w(j−1)n+t +
η

V
v(j−1)n+t

for t = n − 1, . . . , 1

φ

W

(
β̃j,1 − φβ̃j,0

)
−

(
A − C2

G∗
(j−1)n (D)

)
β̃j,0

=
φ

W
w(j−1)n+1 −

(
A − C2

G∗
(j−1)n (D)

)
β̃j−1,n

and has the following distribution

M s
jβ̃

s
j ∼ N

(
0,M s

j

)
or β̃

s
j ∼ N

(
0,
(
M s

j

)−1
)

M s
j ≡




A −C
−C B −C

. . .
−C B −C

−C B − C2

G∗
(j−1)n

(D)



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where the precision for β̂s
j,n, as shown in Lemma 3.12, is

Var β̃s
j,n =

(
A − C2

G∗
jn (D)

)−1

.

Precision formulas for each of the partial smoothers are easy to find using
the M s

j matrices for j = 1, . . . , r.

Lemma 3.12. Given the linear Gaussian state space model (91) with N =
rn, then precisions for the partial smoothers in β̂

s
r:1 = (β̂s

j,i : j = 1, . . . , r; i =
0, . . . , n)′ are calculated as follows

Var β̃s
j,i =

(
G∗

(j−1)n+i+1 (D) − C2

Gn−i

)−1

, i = 0, . . . , n − 1

Var β̃s
j,n =

(
A − C2

G∗
jn (D)

)−1

.

Proof: Let Xn+1 ≡ (xn, . . . , x0)′. Gaussian elimination of M s
jXn+1 =

en+1 shows

Var β̃s
j,0 = x0 =

(
G∗

(j−1)n+1 (D) − C2

Gn

)−1

which proves the result for Var β̃s
j,0. Gaussian elimination of M s

jXn+1 =
en+1−i where i = 1, . . . , n − 1 shows

Var β̃s
j,i = xi =


B − C2

G∗
i

(
G∗

(j−1)n+1 (D)
) − C2

Gn−i




−1

=

(
B − C2

G∗
(j−1)n+i (D)

− C2

Gn−i

)−1

which is equivalent to the result for Var β̃s
j,i, i = 1, . . . , n − 1. Gaussian

elimination of M s
jXn+1 = e1 shows

Var β̃s
j,n = xn =


A − C2

G∗
n

(
G∗

(j−1)n+1 (D)
)




−1

=

(
A − C2

G∗
jn (D)

)−1
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which proves the result for Var β̃s
j,n. Hence the complete result is proven. �

Comparison of the formulas from Lemma 3.12 for the partial smoother
precisions, together with the inequality A ≤ Gk for k = 1, . . . , n, leads to
the following result.

Corollary 3.8. Given the linear Gaussian state space model (91) with N =
rn, then for j = 2, . . . , r the precisions of β̂s

j,0 are better than the precisions
of β̂s

j−1,n where β̂s
j,0 and β̂s

j−1,n are both partial smoother estimates of the
state β(j−1)n

Var β̃s
j,0 < Var β̃s

j−1,n . �

Comparison of the formulas, from Lemma 3.3 for the Kalman filter pre-
cisions and from Lemma 3.12 for the partial smoother precisions, shows the
following result.

Corollary 3.9. Given the linear Gaussian state space model (91) with N =
rn, then for j = 1, . . . , r the Kalman filter estimates βjn|jn and the partial
smoother estimates β̂s

jn of the states βjn have the same precision

Var β̃jn|jn = Var β̃s
jn . �

The asymptotic limits on the precisions associated with the most recent
partition of partial smoothers estimates β̂

s

r are found by using the limit
property of G∗

r(D) from Lemma 3.6.

Proposition 3.12. Given the linear Gaussian state space model (91) with
N = rn, then precisions of the partial smoother estimates in the rth partition
β̂

s
r converge as r → ∞

Var β̃s
r,i →

(
G∗

∞ − C2

Gn−i

)−1

, i = 0, . . . , n − 1

Var β̃s
r,n →

(
A − C2

G∗
∞

)−1

. �

The next result of this section relates the precisions of the partial smoother
estimates β̂

s
0:rn ≡ {β̂s

t : t = 0, . . . , rn} to the precisions of the state space
smoother estimates βk

0:rn|rn ≡ {βt|rn : t = 0, . . . , rn} and to the precisions

of the other partial smoother estimates β̂
m
0:rn ≡ {β̂m

t|rn : t = 0, . . . , rn} where
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the partitions sizes associated with β̂
m
0:rn are chosen such that the first el-

ement in each partition β̂
m
j = (β̂m

j,i : i = nj, . . . , 1)′ and β̂
s
j = (β̂s

j,i : i =
n, . . . , 0)′ are estimating the same state βjn for j = 1, . . . , r

n1 = n + 1, n2 = · · · = nr = n

Mm
1 ∈ Rn+1×n+1, Mm

2 = · · · = Mm
r ∈ Rn×n .

Theorem 3.3. Given the linear Gaussian state space model (91) with N =
rn, then the precisions of the state space smoothers βt|rn ∈ βk

0:rn|rn and of

the partial smoothers β̂m
t ∈ β̂

m

0:rn and β̂s
t ∈ β̂

s

0:rn are related as follows

Var β̃0|rn ≤ Var β̃m
0|rn ≤ Var β̃s

0

Var β̃t|rn ≤ Var β̃s
t ≤ Var β̃m

t|rn for t = 1, . . . , rn .

Proof: With regards to the lower bound, applying the linear Gaussian
state space model (91) to the residual of the partial smoother estimate β̂s

0

of the initial state β0 shows

β̃s
0 ≡ β0 − β̂s

0 ≡ β0 − b0 ∼ N (0,W0) .

The combination of the previous display together with the precision formulas
at t = 0 for the complete state space smoother from Lemma 3.10 and for
the partial smoothers from Propositions 3.10 and 3.11 are applied to show
the full result at t = 0

Var β̃0|rn ≤ Var β̃m
0|rn ≤ Var β̃l

0|0 = W0 = Var β̃s
0 .

Direct comparison of the precision formulas for the complete state space
smoothers from Lemmas 3.3 and 3.4 for βt|rn = β(j−1)n+i|rn and for the
partial smoothers from Lemma 3.12 for β̂s

t = β̂(j−1)n+i = β̂s
j,i where j =

1, . . . , r and i = 1, . . . , n shows

Var β̃t|rn ≤ Var β̃s
t for t = 1, . . . , rn .

The combination of the two previous displays proves the result for the lower
bound.

With regards to the upper bound, the result has already been proven for
t = 0. Precision formulas of the partial smoothers from Proposition 3.11 for
β̂

m
1 and from the introduction to this section for β̂

s
1 are compared to show

Var β̃
m
1 = (Mm

1 )−1 = M−1
n = (M s

1)
−1 = Var β̃

s
1
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such that

Var β̃m
1,i = Var β̃s

1,i for i = 0, . . . , n (124)

Var β̃m
t|rn = Var β̃s

t for t = 1, . . . , n .

The system of equations for β̃
s
j for j = 2, . . . , r is rewritten to show




A −C
−C B −C

. . .
−C B







β̃s
j,n

β̃s
j,n−1
...

β̃s
j,1




=




1
W wjn − η

V vjn

− φ
W wjn + 1

W w(j−1)n+n−1 − η
V v(j−1)n+n−1

...
− φ

W w(j−1)n+2 + 1
W w(j−1)n+1 − η

V v(j−1)n+1 + Cβ̃s
j,0




which leads directly to the precision for the partial smoothers β̂
s

j,n:1 = (β̂j,i :
i = n, . . . , 1)

Var
(
Mm

j β̃
s
j,n:1

)
= Mm

j + C2Var
(
β̃s

j,0

)



0 . . . 0
...

...
0 . . . 1




Var
(
β̃

s
j,n:1

)
=
(
Mm

j

)−1 + C2Var
(
β̃s

j,0

)
ZnZ ′

n

(
Mm

j

)−1 = [zi1,i2 : i1, i2 = 1, . . . , n]

Zn = (zi,n : i = 1, . . . , n)′ .

Proposition 3.11 also provides the precision for the partial smoothers β̂
m
j ,

j = 2, . . . , r

Var
(
β̃

m
j

)
=
(
Mm

j

)−1 + C2Var
(
β̃m

j−1,n

)
ZnZ ′

n .

For j = 2, applying (124) and Corollary 3.8 to the previous two displays
shows

Var β̃s
2,i ≤ Var β̃m

2,i for i = 1, . . . , n

Var β̃s
t ≤ Var β̃m

t|rn for t = n + 1, . . . , 2n .
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Induction for j = 3, . . . , r is used to complete the proof of the result for the
upper bound. Hence the result is proven. �

With the partition size set to n = 1, Lemma 3.12 shows that the pre-
cisions for the partial smoother estimates β̂

s
0:N = {β̂s

t : t = 0, . . . , N} are
the same as the precisions for the Kalman filter estimates β

t|t
0:N = {βt|t :

t = 0, . . . , N}. The next result in this section shows when n = 1 that in
fact the partial smoother estimates β̂

s

0:N are equivalent to the Kalman filter
estimates β

t|t
0:N and also shows that the initial partial smoother estimates

β̂
s+1

0:N = {β̂s
t,0 : t = 1, . . . , N} are equivalent to the one step state space

smoother estimates β
t−1|t
0:N = {βt−1|t : t = 1, . . . , N}.

Theorem 3.4. Given the linear Gaussian state space model (91) with N = r
and given n = 1, then the partial smoother estimates β̂

s

0:N and the Kalman
filter estimates β

t|t
0:N are equivalent

β̂s
t = βt|t for t = 0, . . . , N

and the initial partial smoother estimates β̂
s+1
0:N and the one step state space

smoother estimates β
t−1|t
0:N are equivalent

β̂s
t,0 = βt−1|t for t = 1, . . . , N .

Proof: Proposition 3.3 proved the following results

β0|0 ≡ b0

β1|1 =
(

A − C2

G∗
1(D)

)−1(
η

V
Y1 +

C

G∗
1(D)

b0

W0

)

β2|2 =
(

A − C2

G∗
2(D)

)−1(
η

V
Y2 +

C

G∗
2(D)

(
η

V
Y1 +

C

G∗
1(D)

b0

W0

))

βt|t =
(

A − C2

G∗
t (D)

)−1(
η

V
Yt +

C

G∗
t (D)

(
A − C2

G∗
t−1(D)

)
βt−1|t−1

)

for t = 2, . . . , N .

The system of state estimating equations for the partial smoother esti-
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mates with n = 1 at time indices 0, 1, 2, t are

β̂s
0 ≡ b0

[
A −C
−C G∗

1(D)

](
β̂s

1,1

β̂s
1,0

)
=
( η

V Y1
b0
W0

)

[
A −C
−C G∗

2(D)

](
β̂s

2,1

β̂s
2,0

)
=

( η
V Y2(

A − C2

G∗
1(D)

)
βs

1,1

)

[
A −C
−C G∗

t (D)

](
β̂s

t,1

β̂s
t,0

)
=

( η
V Yt(

A − C2

G∗
t−1(D)

)
βs

t−1,1

)
.

Gaussian elimination of each system of state estimating equations in the
previous display to remove the upper diagonal in each (2×2) matrix in order
to solve for β̂s

j,1 for j = 1, 2, t shows that the partial smoother estimates with
n = 1 are equivalent to the Kalman filter estimates

β0|0 = β̂s
0 and βj|j = β̂s

j,1 = β̂s
j for j = 1, 2, t .

Hence the first result for the Kalman filter estimates is proven by induction.
The system of equations that the state space smoother estimates satisfy,

MNβk
N :0 = Y ∗

N :0 with N = t, shows that the Kalman filter βt|t and the one
step smoother βt−1|t are related as follows

Aβt|t − Cβt−1|t =
η

V
Yt for t = 1, . . . , N .

The corresponding system of equations for the tth partition of partial smoother
estimates β̂

s

t ≡ {β̂s
t,1, β̂

s
t,0} shows the following relationship

Aβ̂s
t,1 − Cβ̂s

t,0 =
η

V
Yt for t = 1, . . . , N .

The first result of this lemma and the two previous displays prove the second
result

βt−1|t = β̂s
t,0 for t = 1, . . . , N . �

With the partition size set to n ≥ 1, the final result in this section
generalizes the result from the previous lemma to show how the partial
smoother estimates and the state space smoother estimates of each state
are related.
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Theorem 3.5. Given the linear Gaussian state space model (91) with N =
rn, then the partial smoother partitions β̂

s
j and the state space smoother

estimates βk
(j−1)n:jn|jn are equivalent for j = 1, . . . , r

β̂s
j,i = β(j−1)n+i|nj for j = 1, . . . , r; i = 0, . . . , n .

Proof: With respect to the first partition, the partial smoother β̂
s
1 and

the corresponding state space smoother βk
n:0|n both satisfy the same system

of equations

M s
1β̂

s
1 = Y ∗

n:0, Mnβk
n:0|n = Y ∗

n:0, M s
1 = Mn .

Hence the result is proven for the first partition since Mn is invertible and
the two solutions are equivalent

β̂
s

1 = βk
n:0|n .

Using Gaussian elimination to solve for β̂s
1,n = βn|n by eliminating the upper

diagonal in Mn shows that the solution is

βn|n =
(

A − C2

G∗
n (D)

)−1(
η

V
Yn +

C

G∗
n (D)

( η

V
Yn−1 + . . .

+
C

G∗
2 (D)

(
η

V
Y1 +

C

G∗
1 (D)

b0

W0

)
. . .

))
.

With respect to the second partition, the partial smoother β̂
s

2 satisfies
the following system of equations




A −C
−C B −C

. . .
−C B −C

−C G∗
n+1 (D)







β̂s
2,n

β̂s
2,n−1
...

β̂s
2,1

β̂s
2,0




=




η
V Y2n

η
V Y2n−1

...
η
V Yn+1(

A − C2

G∗
n(D)

)
β̂s

1,n




.

Gaussian elimination of the system of equations in the previous display to
solve for β̂s

2,n by eliminating the upper diagonal in the square matrix shows
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that the solution is

β̂s
2,n =

(
A − C2

G∗
2n (D)

)−1(
η

V
Y2n +

C

G∗
2n (D)

( η

V
Y2n−1 + . . .

+
C

G∗
n+2 (D)

(
η

V
Yn+1 +

C

G∗
n+1 (D)

(
A − C2

G∗
n (D)

)
β̂s

1,n

)
. . .

))

=
(

A − C2

G∗
2n (D)

)−1(
η

V
Y2n +

C

G∗
2n (D)

( η

V
Y2n−1 + . . .

+
C

G∗
2 (D)

(
η

V
Y1 +

C

G∗
1 (D)

b0

W0

)
. . .

))
.

Hence β̂s
2,n = β2n|2n since β̂s

2,n has the same solution as β2n|2n where β2n|2n

is found by Gaussian elimination of M2nβk
2n:0|2n = Y ∗

2n:0. The system

of equations associated with the partial smoothers {β̂s
2,1, . . . , β̂

s
2,n} and the

state space smoothers βk
n+1:2n|2n shows that both sets of smoothers satisfy

the same system of equations

Aβ̂s
2,n − Cβ̂s

2,n−1 =
η

V
Y2n

Aβ2n|2n − Cβ2n−1|2n =
η

V
Y2n

and for i = n − 1, . . . , 1

−Cβ̂s
2,i+1 + Bβ̂s

2,i − Cβ̂s
2,i−1 =

η

V
Yn+i

−Cβn+i+1|2n + Bβn+i|2n − Cβn+i−1|2n =
η

V
Yn+i .

Hence the result is proven for the second partition

β̂s
2,i = βn+i|2n for i = n, . . . , 0 .

Induction is used to prove the result for the remaining partitions

β̂s
j,i = βk

(j−1)n+i|jn for j = 3, . . . , r; i = n, . . . , 0 .

Hence the complete result is proven. �
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