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Stochastic Process

A stochastic or random process {Z;}, ---,—1,0,1,---, is
a collection of random variables, real or complex-valued,
defined on the same probability space.

Gaussian Process: A real-valued process {Z:}, t € T,

is called Gaussian process if for all t1,tp,---,t, € T, the
joint distribution of (%4, Z;,,---, Z; ) is multivariate nor-
mal.

The finite dimensional distributions of a Gaussian pro-
cess are completely determined from:

m(t) = E[Z]

and
R(s,t) = Cov[Zs, Z4].

Markov Process: For t1 < - - <t o <th_1<tn
P(Ztn S Z‘Ztn,l, Zt ---Ztl) = P(Ztn S Z‘Ztn,l)

n—27



Stationary Processes

A stochastic process {Z;} is said to be a strictly station-
ary process if its joint distributions are invariant under
time shifts:

Dist
(Ztys Ztyy -+ 3 Zt,) = (Liyrs Ztyrs 5 Lty r)

for all t1,to,---,t,, N, and .

When 2nd order moments exist, strict stationarity im-
plies:

E[Zi] = E|Z4;]) = E[Zo] = m (1)

Covl|Z:, Zs] = R(t — s). (2)
{Z.} is called weakly stationary when (1),(2) hold.

For simplicity, we shall assume all our processes are both
strictly and weakly stationary and also real-valued.



Assume: E(Z;) = 0.

Autocovariance:

R, = E(Z:Zi_y,) = /7r cos(kN)dEF () (3)

—Tr

Autocorrelation:

R m _
=% — | cos(kN)dF(N)
Ro  J_.

Spectral Distribution:

Pk

F(\), —-rn<\<nr

When F' is absolutely continuous, we have the Spectral
Density:

f)=F(Q), —-nm<A<nw
In general in practice:
F(A\) = Fe(A) + Fu(N)
where F.()\) is absolutely continuous and Fy()\) is a step
function, both monotone nondecreasing.

Ry, pr., f(N\) are symmetric.



spectral representation

A. Kolmogorov and H. Cramér in the early 1940’s.

Let {Z}, t=0,£1,+£2,---, be a zero mean weakly sta-
tionary process. Then (3) implies

s

Zy = e de(N), t=0,+1,--- (4)

—Tr

where now the spectral distribution satisfies

plasVaE@) = { 87V 112 (5)

We may interpret

dF(X) = E|d¢(N)|?

as the weight or “power” given to frequency A.



Example: Sum of Random Sinusoids.

p
Zi =) {Ajcos(wjt) + Bjsin(wit)}, t=0,%1,--- (6)
J=1
Aiq,--+-,Ap, B1,---,Bp uncorrelated. E[A;] = E[B;] = 0,
Var[A;] = Var[B;] = 0%, wj € (0,7), for all j.

Then for all ¢, E[Z;] = 0, and

p
R, = FE[ZiZi_;] = 2012 cos(wjk)
j=1
p

1 1
— 2{5092 cos(w;k) + 5032 cos(—wjk)}, k=0,+1,- -

j=1
R P02 cos(wik)
Pr = k: J=1"J 5 J , k:O’j:]_’ (7)
Fo j=19;

Discrete spectrum:

F(w) is a nondecreasing step function with jumps of

size %ajz at tw;, and F(—n) =0, F(r) = Ro = ?:1 032.



Example: Stationary AR(1) Process.

Let {&}, t = 0,£1,+2,---, be a sequence of uncorre-
lated real-valued random variables with mean zero and
variance o2. Define

Zt:¢lzt—l+€t7 t=0,:|:1,:|:2, (8)
where |¢1] < 1. The process ( 8) is called a first or-

der autoregressive process and is commonly denoted by
AR(1).

ElZ)=Eq lim > ¢jejo=1lim BEq) ¢la =0
o2 Ld
Ry, L, k=0,£1,42,--

pe=a]!, k=0+1,4+2, .

Continuous spectrum:

oy =% 1 A<
T 21 1-2¢1cos(\) + ¢2’ =A==



Example: Sum of Random Sinusoids Plus Noise.

Let {Z;} be a “signal” as in (6), and let {¢} be a zero
mean weakly stationary “noise” uncorrelated with {Z;}
and with a spectrum which possesses a spectral density

fG(w)v
F(w) = fe(A)dA

—Tr

Then the process

b
Y; =Y {Ajcos(wt) + B;sin(wit)} +e, t=0,£1,--- (9)
j=1
has a mixed spectrum of the form:

Fy(w) = F.(w) + F.(w) = Z %0]2 + _w Ffe(N)dA

)\j Sw

Aj € {—wp, —wp—1, ..., wp—1, —wp}



(a) Sum of two sinusoids.
(b) Sum of two sinusoids plus white noise.

A=0.5, B=1, w1=0.513, w2=0.771, CN=0, SNR=Inf
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Plots of AR(1) time series and their estimated autocor-
relation.

AR(1) and Estimated ACF
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Plots of AR(1) time series and their spectral densities
on [0, ].

AR(1): Spectral Density
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Linear Filtering

By a time invariant linear filter applied to a station-
ary time series {Z:}, t = 0,4£1,..., we mean the linear
operation or convolution,

Yi=L{Z}) = f: h;jZi; (10)

j=—00

with

H()\) = Z hie U 0< A<
j=—oo

The function H()) is called the transfer function.
|[H()\)| is called the gain.
Fact:

dF,(\) = |[H(\)|?dF.(\) (11)

In particular, when spectral densities exist we have

fs ) = [HMWPf(N) (12)

This is an important relationship between the input and
output spectral densities.

12



The Difference Operator:

V2t = Zt — Zi—1
This is a linear filter with ho = 1,h1 = —1, and h; =0
otherwise.

The transfer function is,
HMN) =1—e %
and the squared gain is
IH\)|? =11 —-e 2 =2(1 —cos\)

In [0, w] the gain is monotone increasing and hence this
is a high-pass filter.

The squared gain of the second difference vQ is
4(1 — cos))?,

and hence this is a more pronounced high-pass filter.
Repeated differencing is a simple way to obtain high-
pass filters.

13



Differencing white noise: Higher frequencies get more
power.

Differencing WN
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We define a parametric filter by the convolution,
20(0) = Lo(Z)1 =) hn(8) Zin (13)

In other words
Z1(0) = h(0) ® Zy (14)

where ® denotes convolution.

15



The Parametric AR(1) Filter.

Let |o| < 1.

The AR(1) (or «) filter is the recursive filter
Yi =aYi-1+ Z;
or
Y; = Ea(Z)t =+ +aZi—1 + OéQZt_Q + .-

The transfer function for w € [0, 7] is
1

1 — e

HO\) =

The squared gain is
1
1 — 2acos(w) + a?’

|H(w; o)|* =

a€e(—1,1).

(15)

16



For « > 0 the AR(1) filter is a low-pass filter, and a
high-pass for o < O.

Squared Gain of the AR(1) Filter
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The Parametric AR(2) Filter.

With a € (—=1,1), define Y;(a) by operating on Z;,

Yi(a) = (L +n)aYi1(@) = n?Yi2(a) + 2 (16)
where n € (0,1) is the bandwidth parameter.

Squared gains of the AR(2) filter centered approximately
at cos~!(«) for n close to 1.

Squared Gain of the AR(2) Filter
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Zero-crossings in Discrete Time

Let Z1,45,---,Zy be a zero-mean stationary time series.
The zero-crossing count in discrete time is defined as
the number of symbol changes in the corresponding
Cclipped binary time series.

First define the clipped binary time series:

[ 1, ifz, >0
‘&_{o,wa<o

The number of zero-crossings, denoted by D, is defined
in terms of {X;},

N
D=7 [Xi— Xi1]? (17)
t=2

O<DSN-1

N
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w
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(o) Cosine Formula

{Z:} a stationary Gaussian process.

There is an explicit formula connecting p1 and E[D],

(x) p1 = cos (”E [D]) (18)

N -1

An inverse relationship:

E(D) - 0<=p1 —1
E(D) - N —1<«<= p; — —1

20



(o) zero-crossing spectral representation

e (WE[D]) _ C?S(w)dF(w) (19)
N —1 f_: dF'(w)
Assume F'is continuous at the origin,
rE[D]\ _ [, cos(w)dF(w)
05 <N = 1) = [T dF () (20)

(o) Dominant Frequency Principle: For wo € (0,7)

F(w+) —F(w—) > 0, w=uwo

= 0, w# wo
then
wE[D]
cos = COS
(N — 1) (wo)
or, by the monotonicity of cos(z) in [0, «],
wE[D]
= wo
N -1

21



(e) Higher Order Crossings (HOC)

1.
(Z), t=0,41,42,- -
2.
3.
Lo(Z)1,Le(Z)2,- -, Lo(Z)N
4.

(1, ifLe(2) >0
Xi(0) = { 0. if £o(Z), <O

5. HOC {Dy, 0 € ©):

N
Dy = Z[Xt(g) — X;-1(0)]?
=2

HOC Combines ZC counts and linear operations
(filters.)

22



Connection Between ZC and Filtering

H(w; 0) the transfer function corresponding to Ly(-), and
assume {Z;} is a zero-mean stationary Gaussian process.

B rE[Dg]\ _ J ,cos(w)|H (w; 0)[?dF (w)
(o) =cos (T ) = (MO ORI
Assuming F' is continuous at O,

_ wE[Dg]\ [ cos(w)|H (w; 6)|2dF (w)

The representation ( 21) and ( 22) help to understand
the effect of filtering on zero-crossings through the spec-
trum even in the general non-Gaussian case.

HOC now refers to both p1(6) and Dy.

Note: p1(0) can be defined directly and in general. There
IS no need for the Gaussian assumption.

|7 cos(w)|H (w; 0)2dF ()

p1(0) = [T |H(w; 0)[2dF(w)

(23)

23



HOC From Differences

Vit =2y — 21
and define
L=t j€{1,2,3,--}
with £1 = v° being the identity filter. The correspond-
ing HOC
Dl, DQ’ D3’ ce
are called the simple HOC.

Thus,
D1 from ZC of Z;

Dy from ZC of (vZ):
Dz from ZC of (7°2);
D4 from ZC of (v32);

24



Properties of Simple HOC:

(a) Monotonicity:
Dj—1<Djp
which implies under strict stationarity,

O < E[Di] < E[D2] < E[D3] <---<N -1

Example: E[D;] of Gaussian White Noise. N = 1000:

BID] = (N - D + ~sin (")

E[Dy]
499.50
666.00
731.55
769.18
794.37
812.76
826.93
838.30
847.67
855.58

OQOLOVWWONOOOUPPWNRX

[
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Problem: Thus, {E[D;]} is a monotone bounded se-
quence. What does it converge to as j — oo 777

Problem: What happens when E[D:] = E[D>] 7?77
Problem: As j — oo, {Xi(j)} = 777
D,

Problem: As N — oo, 5 Constant 777

26



(b) K (1984). If {Z:} is Gaussian, then with prob. 1

E[D:] _ E[D3]
N—-1 N-1
wo = TE[D1]/(N — 1).

< Z; = Acos(wot + ¢)

(c) Suppose {Z;} is Gaussian, and let w* be the highest
positive frequency in the spectral support

w € [0,w"].
Then, regardless of spectrum type,
WE[Dj]
_
N -1

*

w*, J— o0 (24)

(d) Suppose {Z;} is Gaussian.
D
N Constant 777
N

K-=Slud (1994):

(%) Yes in the continuous spectrum case.

(x) Sometime if the spectrum contains 1 jump.
(x) No if the spectrum contains 2 or more jumps.

27



(e) K=Slud (1982): Higher Order Crossings Theorem

{Z:}, t =0,+£1,.-., be a zero-mean stationary process,
and assume that m is included in the spectral support.
Define

N 1, if/~1Z; >0
Xi(j) = { 0, if W1z <0

Then,
Q)
. .--01010101---, wp 1/2
{X:(} = { +--10101010---, wp 1/2
as 7 — oo.
(i) liMjose IMy—oe w25 = 1, wp 1.

28



Demonstration of the HOC Theorem using AR(1) with
parameter ¢ = 0.0,0.8. N = 1000. 15 inferences.

X,(j) D, X,(j) D,
100100000111111 207 011101010111111 503
001100110111111 515 011001010101101 617
001100110101101 659 010001010101101 695
011001100101101 715 010111010101101 729
011001001101001 745 010101010101001 743
010011001101001 773 010101010101001 761
010011011101011 807 010101010101011 781
010110011001011 823 010101010101010 795
010110010001010 829 010101010101010 813
010100110101010 849 010101010101010 821
010100110101010 855 010101010101010 827
010101110101010 865 110101010101010 831
010101000101010 875 110101010101010 837
010101010101010 883 100101010101010 841
010101010101010 885 100101010101010 843
010101010101010 893 101101010101010 849

[ T S a g
OOPWNRFHOOONOTOTPWN P,

$»=0.8 ¢ = 0.0 (WN)
The ...010101010101... state is approached quite fast,
and
D1 < D> < D3z<---< Dig

Only the first few D;'s are useful in discrimination be-
tween processes.

29



(f) For a zero-mean stationary Gaussian process, the
sequence of expected simple HOC {E[Dy]} determines
the spectrum up to a constant:

{ELDr]} & {or} & F(w) (25)

(9) K (1980): Let {Z;} be a zero mean stationary Gaus-
sian process with acf p;. If > °° |pj| < oo, then

j=—o0

(0.}

> ka(1,—5,1 = §)] < o0
j=—o0
and
D1 — E[D
NG
VN
where

1 ~— (, . _ - - L
= Z {(sin™ p))? +sin" p; 1 sin piyy + 4k, (1, -5, 1 —5) }

j=—o00

30



(h) Slud (1991): Let {Z;}, t =0,+£1,---, be a zero mean
stationary Gaussian process with acf p;, Var[Zo] = 1,
and square integrable spectral density f. Then

D= P £ 0,09, N o
VN
where o2 satisfies,
4 s
o2 > — | 1p1 — cos(w)2f2(w)dw > 0
77(1 T pl) —T

Proof: Use It6—Wiener calculus.

(i) Problem: Given two stationary processes with the
same spectrum of which one is Gaussian and the other
is not. Is it true that the Gaussian process has a higher
expected ZCR 777

Answer: Assume continuous time. {Z(t)}, stationary
Gaussian process, Z(t) ~ N(0,1), —oco <t < oo.

Consider the interval [0, 1].

31



Divide [0, 1] into N — 1 intervals of size A.

Define the sampled time series,

Zr=2((k—1A), k=1,2,---,N

Then
p1 = p(A) (26)
From the cosine formula we obtain: Rice (1944) formula
1
E[D] = lim E[Di] = lim —cos (p(A
(0 B[D] = lim E[Di] = lim —cos ' (p(A))

1

= —v-r"(0) (27)
T

Barnett—K (1998): There are non-Gaussian processes

such that
(5 BID]=~/=p"(0)

with kK <1 and s > 1.

If Z1(t), Z>(t) are independent copies of Z(t), then the
product Z1(t)Z>(t) has k = V2.

For Z3(t), kK = 1/5/9.

32



Application: Discrimination by Simple HOC

The ? Statistic:

When N is sufficiently large (e.g. N > 200), then with
a high probability

O<Di<Dr<D3<---<(N-1)

To capture the rate of increase in the first few Dy,
consider the increments

D, if k=1
A.={ D.— D1, ifh=2 .. K—1
(N—1)— Dy 1, ifh=K

Then

K
Y Ap=N-1
k=1

Let my = E[A]. We define a general similarity measure

K
W2 = Z (Ak;mk)Q (28)
k=1

k

When Ay, m; are from the same process, and K = 9:

P(¢? > 30) < 0.05

33



Application: Frequency Estimation

Recall the AR(1) filter (o-filter),
Zt(a) — »Ca(Z)t = Zt —I— OéZt—l —|— OZQZt_Q —|— .o

with squared gain

1

SN2
[H(wie)l” = 1 — 2acos(w) + a?’

ac(-1,1), we [0,n].

Consider:

Zy = Ay cos(wit) + Brsin(wit) + ¢, t=0,£1,---

w1 € (0,7‘(‘).
A1, By are uncorrelated N (O, 0%).
{¢t} N(0,0¢) white noise independent of Ay, Bs.

Define:
_ Var(G(a))
D) = oz (29)
Then for a € (—1,1),
0<C(a) <1.

34



He—K (1989) Algorithm

Let {D,} be the HOC from the AR(1) filter.
Fix a1 € (=1,1). Define

()  agg1 = COS (WNL?O;U , k=1,2,--. (30)
Then, as k — oo,

ay — Cos(wi)
and

wE[Dg,]
—_—

31
o Wl (31)

Proof:

Note the fundamental property of the AR(1) filter

gain:

f:r cos(w)|H (w; a)|?dw
ffW|H(w;oz)\2dw

() a=pi(a) = (32)

35



We have
TE[D,]
= COS| ——
p1(a) ( N1 )

_ 03[H(w1; @) x cos(wr) + [ |H(w; a)]PdFy(w) x o
B o3| H(wi; )2 + [T |H(w; o) PdF (w)

A weighted average of a* = cos(wi) and « (1)

Thus, we have a contraction mapping

(x)  pi(e) =a" + Cla)(a — &) (33)

and the recursion ( 30) becomes,

(*)  agy1 = p1(ag) (34)
with fixed point o*:

o = p1(a”)
or
TE[Dq]
CoS =cos| ——
(w1) ( N1 )
By the monotonicity of cos(x), = € [0, «],
E[Dq
w, = TEWD]
N —1

36



Extension: Contractions From Bandpass Filters (CM)

Yakowitz (1991): We do not need the Gaussian assump-
tion, and can speed up the contraction convergence.

1. Parametric family of band-pass filters indexed by
r € (—1,1), and by a bandwidth parameter M:

{ET,M(')y rE (_17 1)7 M = 1a27}

2. Let h(n;r,M) and H(w;r, M), be the corresponding
complex impulse response and transfer function, respec-
tively.

3. It is required that as M — oo, |H(w;r, M)|? converges
to a Dirac delta function centered at 0(r) = cos~1(r).

4. Assume further that the filter passes only the (posi-
tive) discrete frequency to be detected; suppose it is ws.
Also, observe that

g J ELG(r M)Goa (r M) | _ J2, cos(@)|H (wir, M)PdEF(w)
E|G(r, M)|? 2o [H (w;r, M) PdF(w)

where the overbar denotes “complex conjugate”.

37



5. Suppose that for any M the fundamental property
takes the form

o ) ElG(r, M)G—1(r, M)]
= 3%{ EIACYTE } (35)
6. Define,
p1(r, M) =R {E[Zt(ET]Z()TZM)ﬁZ’ 2] } (36)
7. Clearly,
p1(r, M) =

—01|H(w1 r, M)|? x cos(wi) + f |H (w; r, M)|?dF(w) x 7
so|H(wi;r, M2 4 [T |H(w;r, M)[2dF¢(w)
8. Let

E|Ct(’f’, M)|2

E|Z(r, M)|?

9. The contraction has now an extra parameter M:
pi(r,M)=r"+C(r,M)(r —r") (37)

where r* = cos(wi), and w; is the true frequency.

C(r,M) =

10. The CM algorithm takes now the form
ri+1 = p1(rx, My) (38)

38



CM With the Parametric AR(2) Filter in Practice

With e« € (-1,1), n € (0,1),

Yi(e) = (1 +n?)aYi-1(a) — n°Yi2(a) + Vi (39)
Initial guess of wi: 6Op.
Start with ag = cos(6p).

Start with n close to 1, for example n = 0.98.
Increment of n: e.g. 0.0015.

Define the sample autocorrelation

S Yi(a)Yio1(e)
o Y2()

ﬁl(aﬂ?) — (40)

Then the CM algorithm is given by,

(*) Ap4+1 — ﬁl(@kaﬁk)> k= Oa172a"' (41)
where 7, increases with each iteration.
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Li (1992), Song—Li (2000), Li—Song (2002):

Y; = Bcos(wit + ¢) + & (42)
B is a positive constant.
w1 € (—m,m).
¢ ~ Unif (0, 7]

{e:} i.i.d. with mean 0 and variance o2, independent of ¢.

€

If (1 —n)°N — 0 as N — oo, then

(1 —n)"Y2N (@1 —w1) 5 N(0,771)

1
Y = 552/062

The implication of this is that by a judicious choice of n,
the precision of the CM estimate can be made arbitrar-

ily close to that achieved by periodogram maximization
and nonlinear least squares.

More properties and discussions can be found in
Li—K (1993a, 1993b, 1994, 1998), K (1994),
Li—Song (2002).
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S-Plus Code for the CM Algorithm

KY.AR2 <- function(z,thetal,eta,inc,niter){
y <- rep(0,length(z))
r <- rep(O,niter); OMEGA <- rep(O,niter)
r [1] <- cos(theta0); OMEGA[1] <- thetal
cat(c("Initial frequency guess is", OMEGA[1]),fill=T)
cat(c("eta"," rk)"," Omega (k) ",
" Var(y)"), £i11=T)
for(k in 2:niter){# eta increments by inc
eta <- etatinc
if((eta < 0)]|(eta >1))
stop("eta must be between O and 1")
FiltCoeff <- c((l+eta~2)*r[k-1],-(eta"2))
y <- filter(z,FiltCoeff, "rec")
# CM Iterations——————-----------—-

rrr <- acf(y) # motif() must be on
r[k] <- rrr$acf[2] # Gives acf(1)!!!
# ________________________________

OMEGA [k] <- acos(r[k])
cat(c(eta,r[k] ,0MEGA [k] ,var(y)) ,fi11=T) }}
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Example:

Y; = 0.5¢c0s(0.513¢t + ¢1) + cos(0.771t + ¢2) + 2.2¢;

t=1,..., 1500.
e i.i.d. N(0,1).
SNR = 10109;0((.52/2 4 12/2)/2.22) = —8.890

Starting at 6p = 0.48, n = 0.98. Increment of n 0.0015.
Final estimate is w = 0.5135. Error: 0.0005.

U alk)  w(k) Var(Yi(a))
0.9815 0.8807 0.4932 425.958
0.9830 0.8755 0.5042 574.342
0.9845 0.8723 0.5107 356.165
0.9860 0.8711 0.5131 1134.483
0.9875 0.8708 0.5138 1365.735
0.9890 0.8707 0.5139 1666.432
0.9905 0.8708 0.5138 2106.870
0.9920 0.8709 0.5136 2783.643
0.9935 0.8710 0.5135 3892.713

We are going to apply CM to the data without centering.
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Starting at p = 0.88, n = 0.98. Increment of n 0.001.

Final estimate is w = 0.7709. Error: 0.0001.

n a(k) w(k)  Var(Yi(a))
0.981 0.6518 0.8607 102.987
0.982 0.6672 0.8403 128.128
0.983 0.6822 0.8199 162.341
0.984 0.6973 0.7990 215.022
0.985 0.7104 0.7806 371.580
0.986 0.7162 0.7723 988.001
0.987 0.7171 0.7710 1555.238
0.988 0.7172 0.7708 1817.274
0.989 0.7172 0.7709 2130.545

Algorithm B w Error

CM 0.5135 0.513 1074
FFT 0.5152 103
CM 0.7709 0.771 104
FFT 0.7749 103
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Example: Detection of a Diurnal Cycle in GATE 1.

The CM algorithm with the AR(2) parametric filter was
applied to a time series of length N = 450 of hourly rain
rate from GATE I (early 1970s) averaged over a region
of 280 x 280 km?2.

GATE I: Hourly Averaged Rain Rate

0 100 200 300 400
TIME
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Starting at 0.29 to the right of 0.2617994:
n = 0.99. Increment of n 0.0015.

U a(k) w(k) Var(Yi(a))
0.9915 0.962263 0.275596 554.29
0.9930 0.966709 0.258754 751.11
0.9945 0.968074 0.253367 2413.23
0.9960 0.966535 0.259434 3025.10
0.9975 0.967380 0.256120 4556.35
0.9990 0.966261 0.260501 7252.38

21
= 24.11962
0.260501

Starting at 0.25 to the left of 0.2617994.
n = 0.995. Increment of n 0.001.

n a(k) w(k) Var(Yi(a))
0.996 0.967167 0.256960  2353.12
0.997 0.967349 0.256243  4229.05
0.998 0.966722 0.258706  5453.12
0.999 0.967329 0.256323  7057.93
1.000 0.966053 0.261308  9989.52

2T _ 54.04513

0.261308
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