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We study the properties of projection inference for set-identified Structural

Vector Autoregressions. A nominal 1 − α projection region collects the struc-

tural parameters that are compatible with a 1 − α Wald ellipsoid for the

model’s reduced-form parameters (autoregressive coefficients and the covari-

ance matrix of residuals).

We show that projection inference can be applied to a general class of sta-

tionary models, is computationally feasible, and—as the sample size grows

large—it produces regions that have both frequentist coverage and robust

Bayesian credibility of at least 1 − α.

A drawback of the projection approach is that both coverage and robust

credibility may be strictly above their nominal level. Following the recent

work of Kaido, Molinari, and Stoye (2016), we ‘calibrate’ the radius of the

Wald ellipsoid to guarantee that—for a given posterior on the reduced-form

parameters—the projection method produces a region with robust Bayesian

credibility of exactly 1 − α.

We illustrate the main results of the paper using the demand/supply-model

for the U.S. labor market in Baumeister and Hamilton (2015).

Keywords: Sign-restricted SVARs, Set-Identified Models, Projection Method.

1. INTRODUCTION

A Structural Vector Autoregression (SVAR) (Sims (1980, 1986)) is a time series

model that brings theoretical restrictions into a linear, multivariate autoregression.

The theoretical restrictions are used to transform reduced-form parameters (regres-

sion coefficients and the covariance matrix of residuals) into structural parameters

that are more amenable to policy interpretation. Depending on the restrictions im-

posed, the map between reduced-form and structural parameters can be one-to-one

(a point-identified SVAR) or one-to-many (a set-identified SVAR).
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It is now customary for empirical macroeconomic studies to impose sign and/or

exclusion restrictions on structural dynamic responses in SVARs in order to set-

identify the model, as in the pioneering work of Faust (1998) and Uhlig (2005). The

vast majority of these studies use numerical Bayesian methods to construct posterior

credible sets for the coefficients of the structural impulse-response function.

Despite the popularity of the Bayesian approach, a practical concern is the fact

that posterior inference for the structural parameters continues to be influenced by

prior beliefs even if the sample size is infinite. This point has been documented—

in detail and generality—in the work of Poirier (1998), Gustafson (2009), and

Moon and Schorfheide (2012). More recently, Baumeister and Hamilton (2015) pro-

vided an explicit characterization of the influence of prior beliefs on posterior dis-

tributions for structural parameters in set-identified SVARs.

This paper studies the properties of the projection method—which does not rely

on the specification of prior beliefs for set-identified parameters—to conduct simul-

taneous inference about the coefficients of the structural impulse-response function

(and their identified set). The proposal is to ‘project’ a typical Wald ellipsoid for

the reduced-form parameters of a VAR. The suggested nominal 1 − α projection

region consists of all the structural parameters of interest that are compatible with

the reduced-form parameters belonging to the nominal 1 − α Wald ellipsoid.

The attractive features of the projection approach—explained in more detail in

the next section—are its general applicability, its computational feasibility, and the

fact that a nominal 1 − α projection region has—asymptotically and under mild

assumptions—both frequentist coverage and robust Bayesian credibility of at least

1−α.1 Moreover, we adapt the results in Kaido et al. (2016) to show that our baseline

projection can be ‘calibrated’ to eliminate excessive robust Bayesian credibility.

The remainder of the paper is organized as follows. Section 2 presents a brief

overview of the projection approach. Section 3 presents the basic SVAR model and

establishes the frequentist coverage of projection. Section 4 establishes the robust

Bayesian credibility of the projection region as the sample size grows large. Sec-

tion 5 presents the ‘calibration’ algorithm designed to eliminate the excess of ro-

bust Bayesian credibility. Section 6 discusses the implementation of projection in

the context of the demand/supply SVAR for the U.S. labor market analyzed in

Baumeister and Hamilton (2015). Section 7 concludes.

1The robustness is relative to the choice of prior for the so-called ‘rotation’ matrix as in the recent
work of Giacomini and Kitagawa (2015).
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2. OVERVIEW AND RELATED LITERATURE

2.1. Overview

Let µ denote the parameters of a reduced-form vector autoregression; i.e., the

slope coefficients in the regression model and the covariance matrix of residuals. Let

λ denote the structural parameter of interest; i.e., the response of some variable

i to a structural shock j at horizon k (or a vector of responses). In set-identified

SVARs there is a known map between µ and the lower and upper bound for λ; see

Uhlig (2005). Consequently, the smallest and largest value of a particular structural

coefficient of interest can be written, simply and succinctly, as v(µ) and v(µ).

Our projection region for λ (and for its identified set) is based on a straightforward

application of the classical idea of projection inference; see Scheffé (1953), Dufour

(1990), and Dufour and Taamouti (2005, 2007). Let µ̂T denote the sample ordinary

least squares estimator for µ and let CST (1 − α; µ) denote its nominal 1 − α Wald

confidence ellipsoid. If, asymptotically, CST (1 − α; µ) covers the parameter µ with

probability 1 − α, then, asymptotically, the interval

(2.1) CST (1 − α; λ) ≡
[

inf
µ∈CST (1−α,µ)

v(µ) , sup
µ∈CST (1−α,µ)

v(µ)
]

covers the set-identified parameter λ (and its identified set) with probability at least

1 − α (uniformly over a large class of data generating processes).2,3

In many applications there is interest in conducting simultaneous inference on h

structural parameters; for example, if one wants to analyze the response of variable i

to a structural shock j for all horizons ranging from period 1 to h as in Jordà (2009),

Inoue and Kilian (2013, 2016), and Lütkepohl, Staszewska-Bystrova, and Winker

(2015). In this case, the projection region given by:

(2.2) CST (1 − α; (λ1, . . . , λh)) ≡ CST (1 − α; λ1) × . . . × CST (1 − α; λh),

covers the structural coefficients (λ1, . . . λh) and their identified set with probability

at least 1 − α as the sample size grows large. The only assumption required to

2Formally, we show that the confidence interval described in (2.1) is uniformly consistent of level
1 − α for the structural parameter λ (and its identified set) over some class of data generating
processes.

3The application of projection inference to SVARs was first suggested by Moon and Schorfheide
(2012) (p. 11, NBER working paper 14882). The projection approach is also briefly mentioned in
the work Kline and Tamer (2015) (Remark 8) in the context of set-identified models. None of these
papers establish any of the properties for projection inference discussed in our work.
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guarantee that our projection region covers the impulse-response function is the

asymptotic validity of the confidence set for the reduced-form parameters, µ.

General Applicability: The validity of our projection method requires no

regularity assumptions (like continuity or differentiability) on the bounds of the

identified set v(·) and v(·). This means we can handle the typical application of

set-identified SVARs in the empirical macroeconomics literature (exclusion restric-

tions on contemporaneous coefficients, long-run restrictions, elasticity bounds, and

of course sign/zero restrictions on the responses of different variables at different

horizons for different shocks).

Computational Feasibility: The implementation of our projection approach

requires neither numerical inversion of hypothesis tests nor sampling from the space

of rotation matrices. Instead, we use state-of-the-art optimization algorithms to solve

for the maximum and minimum value of a mathematical program to compute the

two end points of the confidence interval in (2.1).

Robust Bayesian Credibility: In the spirit of making our results appealing

to Bayesian decision makers, we show that our suggested nominal 1 − α projection

region will have—as the sample size grows large—robust Bayesian credibility of at

least 1 − α. This means that the asymptotic posterior probability that the vector

of structural parameters of interest belongs to the projection region will be at least

1−α; for a fixed prior on the reduced-form parameters, µ, and for any given prior on

the set-identified parameters. A sufficient condition to establish the robust Bayesian

credibility of projection is that the prior for µ used to compute credibility satisfies

a Bernstein-von Mises theorem.

‘Calibrated’ Projection: Despite the features highlighted above, projection

inference is conservative both for a frequentist and a robust Bayesian. That is, both

the asymptotic confidence level and the asymptotic robust credibility of projection

can be strictly above 1−α. Kaido et al. (2016) [henceforth, KMS] refer to the excess

of frequentist coverage as projection conservatism and develop an innovative method

to eliminate it.4

The calibration exercise in KMS requires, in the SVAR context, the computation

of Monte-Carlo coverage probabilities for the projection region over an exhaustive

grid of values for the reduced-form parameters, µ. In several SVAR applications, the

4Another recent paper proposing a procedure to eliminate the frequentist excess coverage in
moment-inequality models is Bugni, Canay, and Shi (2014). Adapting their profiling idea to our
set-up could be of theoretical interest and of practical relevance. We leave this question open for
future research.
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dimension of µ compromises the construction of an exhaustive grid.

Instead of insisting on removing excessive frequentist coverage, we suggest prac-

titioners to calibrate projection to achieve robust Bayesian credibility of exactly

1 − α. The calibration for the robust Bayesian is computationally feasible even if µ

is of large dimension, as no exhaustive grid for µ is needed. We provide a detailed

description of our calibration procedure in Section 5. Broadly speaking, the calibra-

tion consists of drawing µ from its posterior distribution (or a suitable large-sample

Gaussian approximation); evaluating the functions v(µ), v(µ) for each draw of µ;

and decreasing the radius defining the projection region until it contains exactly

(1 − α)% of the values of v(µ), v(µ) (for different horizons and different shocks if

desired).5

Illustrative Example: The illustrative example in this paper is a simple de-

mand and supply model of the U.S. labor market. We estimate standard Bayesian

credible sets for the dynamic responses of wages and employment using the Normal-

Wishart-Haar prior specification in Uhlig (2005) and also the alternative prior

specification recently proposed by Baumeister and Hamilton (2015). The main set-

identifying assumptions are sign restrictions on contemporaneous responses: an ex-

pansionary structural demand shock increases wages and employment upon impact;

an expansionary structural supply shock decreases wages but increases employment,

also upon impact.6

The Bayesian credible sets for this application illustrate the attractiveness of

set-identified SVARs. The data, combined with prior beliefs, and with the (set)-

identifying assumptions imply that the initial responses to demand and supply

shocks persist in the medium-run, which was not restricted ex-ante.

The Bayesian credible sets for this application also illustrate how the quantita-

tive results in set-identified SVARs could be affected by the prior specification. For

example, under the prior in Baumeister and Hamilton (2015) the 5-year ahead re-

sponse of employment to a demand shock could be as large as 4%; whereas under

the priors in Uhlig (2005) the same effect is at most 2%.

Our baseline projection approach (which takes around 15 minutes) allows us to get

a prior-free assessment about the direction and the magnitude of the responses to

5In Section 6 we provide more detials on the computation time of our approach (which is around
5 hours in our illustrative example).

6Following Baumeister and Hamilton (2015) we also consider elasticity bounds on the wage elas-
ticity of both labor demand and labor supply, and also bounds on the long-run impact of a demand
shock over employment.
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structural demand and supply shocks. For example, the projection approach allows

us to say that the qualitative medium-run effects of demand shocks over employ-

ment implied by standard credible sets are robust to the choice of priors, but the

quantitative effects are not. The largest value in our projection region for the 5-year

response of employment to a structural demand shock is around 2.5%. This effect is

larger than the one implied by the prior in Uhlig (2005), but smaller than the one

implied by the priors in Baumeister and Hamilton (2015).

Our baseline projection approach—though informative about the effects of de-

mand shocks—is not conclusive about the medium-run effects of structural supply

shocks on wages and employment (the projection region allows for both positive and

negative responses). This could be a consequence of either the robustness of projec-

tion or its conservativeness. To disentangle these effects, we calibrate projection to

guarantee that it has exact robust Bayesian credibility. The calibrated projection

shows that an expansionary supply shock will decrease wages in each quarter over

a 5 year horizon. The qualitative effects of supply shocks on employment remain

undetermined. The simple SVAR for the labor market illustrates the usefulness of

both the baseline and the calibrated projection.

2.2. Related Literature

There has been recent interest in departing from the standard Bayesian analysis

of set-identified SVARs in an attempt to provide robustness to the choice of priors.

Below we provide a short description of the similarities and differences between our

projection approach and three alternative methods available in the literature. It is

worth mentioning that the baseline projection approach discussed in this paper is

the only procedure (among the three alternative methods discussed) that delivers

asymptotic frequentist coverage, guarantees asymptotic robust Bayesian credibility,

and at the same time allows for simultaneous inference.

a) In a pioneering paper, Moon, Schorfheide, and Granziera (2013) [MSG] pro-

posed both projection and Bonferroni frequentist inference using a moment-inequality,

minimum distance framework based on Andrews and Soares (2010). In terms of ap-

plicability, their procedures are designed for set-identified SVARs that impose re-

strictions on the dynamic responses of only one structural shock. It is possible to

extend their approach to the same class of modes that we consider; there is, however,

a serious issue regarding computational feasibility. Specifically, both the projection

and Bonferroni approaches require the researcher to compute—by simulation—a
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critical value for each single orthogonal matrix of dimension n × n, where n is the

dimension of the SVAR. Our baseline implementation of the projection method

does not require any type of grid over the space of orthogonal matrices and does

not require the simulation of any critical value.7

b) Giacomini and Kitagawa (2015) [GK] develop a novel and generally applicable

robust Bayesian approach to conduct inference about a specific coefficient of the

impulse-response function in a set-identified SVAR. In terms of our notation, their

procedure can be described as follows. One takes posterior draws from µ and eval-

utes, at each posterior draw, the functions v(µ), v(µ) by solving a nonlinear program.

Their credible set is the smallest interval that covers 100(1 − α)% of the posterior

realizations of the identified set.

GK and Baseline projection: In terms of properties, our baseline projection is

shown to admit both a frequentist and a robust Bayes interpretation, whereas the

GK procedure has only been shown to admit the latter. In terms of implementation,

GK solve as many nonlinear programs as posterior draws for µ. This means that

our baseline procedure will be typically faster to implement than the GK robust

procedure (since our baseline projection only needs to solve two nonlinear programs).

The price to pay for the reduced computational time is the excess robust Bayesian

credibility.

GK and Calibrated projection: Our calibrated projection requires a similar amount

of work as the GK robust method. The main difference remaining between the

two approaches is that our calibrated projection allows for simultaneous credibility

statements over different horizons, different variables, and different shocks.

c) Gafarov, Meier, and Montiel Olea (2015) [GMM1] establish the differentiabil-

ity of the bounds of v(µ), v(µ) for a class of SVAR models that impose restrictions

only on the responses to one structural shock. Based on the differentiability results,

they propose a ‘delta-method’ confidence interval for the set-identified parameter.

Their typical interval is given by the plug-in estimators of the bounds of the identi-

fied set plus/minus r times standard errors. In Appendix C we show that, in large

samples, the ‘delta-method’ procedure proposed in GMM1 is equivalent to a pro-

jection region based on a Wald ellipsoid for µ with radius r2—provided the bounds

are differentiable (in an appropriate sense).

7Also, MSG assume that the typical plug-in estimators of the reduced-form impulse-response
functions, denoted φ in their paper, converge uniformly to a Gaussian Limiting Distribution (see
part iii) of Assumption 1 in MSG, p. 21). We do not require such assumption, which has been
criticized by Benkwitz, Neumann, and Lütekpohl (2000), p. 5 and 6 and Kilian (1998).
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3. BASIC MODEL, MAIN ASSUMPTIONS, AND FREQUENTIST RESULTS

3.1. Model

This paper studies the n-dimensional Structural Vector Autoregression with p lags;

i.i.d. structural innovations—denoted εt—distributed according to F ; and unknown

n × n structural matrix B:

(3.1) Yt = A1Yt−1 + . . . + ApYt−p + Bεt, EF [εt] = 0n×1, EF [εtε
′
t] ≡ In.

see Lütkepohl (2007), p. 362.

The reduced-form parameters of the SVAR model are defined as the vectorized

autoregressive coefficients and the half vectorized covariance matrix of reduced-form

residuals:

µ ≡ (vec(A)′, vech(Σ)′)′ ∈ R
d, where A ≡ (A1, A2, . . . , Ap), Σ ≡ BB′.

In applied work, these reduced-form parameters are estimated directly from the

data using ordinary least squares. That is:

µ̂T ≡ (vec(ÂT )′, vech(Σ̂T )′)′,

where

ÂT ≡
( 1

T

T∑

t=1

YtX
′
t

)( 1

T

T∑

t=1

XtX
′
t

)−1
, Σ̂T ≡

1

T

T∑

t=1

η̂tη̂
′
t,

and

Xt ≡ (Y ′
t−1, . . . , Y ′

t−p)′, η̂t ≡ Yt − ÂT Xt.

A common formula for the asymptotic variance of µ̂T in stationary models is:

Ω̂T ≡ VT

( 1

T

T∑

t=1

vec
(
[η̂tX

′
t, η̂tη̂

′
t − Σ̂T ]

)
vec
(
[η̂tX

′
t, η̂tη̂

′
t − Σ̂T ]

)′
V ′

T

where

VT ≡


In ⊗

(
1
T

∑T
t=1 XtX

′
t

)−1
0

0 Ln


 ,

and Ln is the matrix of dimension n(n + 1)/2 × n2 such that vech(Σ) = Lnvec(Σ),

see Lütkepohl (2007), p. 662 equation A.12.1.
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3.2. Assumptions for frequentist inference

The SVAR parameters (A1, . . . , Ap, B, F ) define a probability measure, denoted

P , over the data observed by the econometrician. The measure P is assumed to

belong to some class P which we describe in this section.

We state a simple high-level assumption concerning the asymptotic behavior of

the 1 − α Wald confidence ellipsoid for µ, which is defined as:

(3.2) CST (1 − α; µ) ≡
{

µ ∈ R
d | T (µ̂T − µ)′Ω̂−1

T (µ̂T − µ) ≤ χ2
d,1−α

}
.8

The first assumption requires that a frequentist can conduct uniform inference

about the reduced-form parameters of the VAR model. Formally, we require the

uniform consistency in level (over the class P) of the Wald confidence set for the

reduced-form parameters. This is:

Assumption 1 lim infT →∞ infP ∈P P
(
µ(P ) ∈ CST (1 − α; µ)

)
≥ 1 − α.

Assumption 1 holds if the class P under consideration contains only uniformly sta-

ble VARs where the error distributions under consideration have uniformly bounded

fourth moments.9 Assumption 1 turns out to be sufficient to conduct frequentist in-

ference on the structural parameters of a set-identified SVAR, defined as follows.

Coefficients of the Structural Impulse-Response Function: Given the

autoregressive coefficients A ≡ (A1, A2, . . . , Ap) define, recursively, the nonlinear

transformation

Ck(A) ≡
k∑

m=1

Ck−m(A) Am, k ∈ N,

where C0 = In and Am = 0 if m > p; see Lütkepohl (1990), p. 116.

8The radius χ2
d,1−α in equation (3.2) denotes the 1 − α quantile of a central χ2 distribution with

d degrees of freedom.
9A class P that satisfies Assumption 1 could be written by using a uniform version of the

conditions in Lütkepohl (2007), p. 73. This is, there are positive constants c1, c2, c3, c4 such that:
P = {(A1, A2, . . . , Ap, B, F ) | det(In − A1z − . . . Apzp) /∈ (−c1, c1) for z ∈ C, |z| ≤ 1;

B is such that 0 < c2 < eigmin(BB′) < eigmax(BB′) < c3; and EF [|εn1,tεn2,tεn3,tεn4,t|] < c4

for all t and n1, n2, n3, n4 ∈ {1, . . . n}, and EF [εt] = 0n×1, EF[εtε′
t] = In }.

Other possible definitions of P can be given by generalizing Theorem 3.5 in Chen and Fang (2015)
to either multivariate linear processes with i.i.d. innovations or to martingale difference sequences.
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Definition (Coefficients of the Structural IRF) The (k, i, j)-coefficient of

the structural impulse-response function is defined as the scalar parameter:

λk,i,j(A, B) ≡ e′
iCk(A)Bej ,

where ei and ej denote the i-th and j-th column of the identity matrix In.

3.3. Main result concerning frequentist inference

In this section we show that, under Assumption 1, it is possible to ‘project’ the

1−α Wald confidence set for µ to conduct frequentist inference about the coefficients

of the structural impulse-response function and the function itself in set-identified

models.

Set-Identified SVARs: As mentioned in the introduction, the SVAR allows

researchers to transform the reduced-form parameters, µ ≡ (vec(A)′, vech(Σ)′)′, into

the structural parameters of interest, λk,i,j(A, B). The parameter µ determines a

unique value of A; however, several values of B are compatible with Σ (any B

such that BB′ = Σ). This indeterminacy of B implies there are multiple values of

λk,i,j(A, B) that are compatible with one value of µ.

The Identified Set and its Bounds: It is common in applied macroeconomic

work to impose restrictions on the matrix B ∈ R
n×n in order to limit the range of a

structural coefficient of interest, λk,i,j (taking µ as given). Mathematically, a set of

restrictions on B—that we denote as R(µ)—can be interpreted as a subset of Rn×n.

This leads to the following definition:

Definition (Identified Set and its bounds) Fix a vector of reduced-form

parameters, µ, and a set of restrictions R(µ) on B.

a) The identified set for the structural parameter λk,i,j(A, B) is defined as:

(3.3) IR
k,i,j(µ) ≡

{
v ∈ R

∣∣∣ v = λk,i,j(A, B), BB′ = Σ, and B ∈ R(µ)
}

.

b) The upper bound of the identified set vk,i,j(µ) is defined as the value function of

the program:

(3.4) vk,i,j(µ) ≡ sup
B∈Rn×n

e′
iCk(A)Bej , s.t. BB′ = Σ, and B ∈ R(µ).
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The lower bound is defined analogously.

c) Consider any collection λH ≡ {λkh,ih,jh
}H

h=1 of structural coefficients and let its

identified set be given by:

IR
H (µ) ≡

{
(v1, . . . , vH) ∈ R

H
∣∣∣ vh = λkh,ih,jh

(A, B), BB′ = Σ, and B ∈ R(µ)
}

.

The main elements in the previous definition can be illustrated as follows:

SVAR

BB′ = Σ and B ∈ R(µ)

(Theoretical Restrictions on B)

λH(A, B)µ

Identified Set-Identified

IR
H (µ) ⊆ R

H : The identified-Set for λH(A, B).

Table I presents a list of the most common restrictions, R(µ), used in SVAR anal-

ysis (all of which can be handled by our frequentist approach described below).

Projection Approach: The function vk,i,j(µ) refers to the largest value of λk,i,j

over its identified set and vk,i,j(µ) is defined analogously. A key feature of set-

identified SVARs, thus, is that the bounds of the identified set depend on a finite-

dimensional parameter. ‘Projecting’ down the 1 − α Wald ellipsoid for µ seems a

natural approach to conduct inference on the structural impulse response function.

The first result in this paper establishes the frequentist uniform validity of projection

inference.

Result 1 (Frequentist Uniform Validity of Projection Inference for λH)

Consider the projection region for the collection of structural coefficients λH ≡
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{λkh,ih,jh
}H

h=1 given by:

(3.5) CST (1 − α, λH) ≡ CST (1 − α, λk1,i1,j1) × . . . × CST (1 − α, λkH ,iH ,jH
) ⊆ R

H ,

where

(3.6) CST (1 − α; λk,i,j) ≡
[

inf
µ∈CST (1−α,µ)

vk,i,j(µ) , sup
µ∈CST (1−α,µ)

vk,i,j(µ)
]
,

and CST (1 − α; µ) is the 1 − α Wald confidence ellipsoid for µ. If the class of data

generating processes P satisfies Assumption 1, then:

lim inf
T →∞

inf
P ∈P

inf
λH ∈IR

H
(µ(P ))

P
(
λH ∈ CST (1 − α; λH)

)
≥ 1 − α.

That is, the projected confidence interval in (3.5) covers the vector of structural

coefficients λH with probability at least 1 − α, uniformly over the class P.

Proof: The proof of Result 1 uses a standard and conceptually straightforward

projection argument. Take an element P ∈ P and let λH ∈ R
H be any given element

of the identified set IR
H (µ(P )). Note that:

P
(
λH ∈ CST (1 − α; λH)

)

= P
(
(λk1,i1,j1, . . . , λkH ,iH ,jH

) ∈ CST (1 − α; λk1,i1,j1) × . . . × CST (1 − α; λkH ,iH ,jH
)
)

(
by definition of our confidence interval for λH

)

≥ P
(
[vkh,ih,jh

(µ(P )) , vkh,ih,jh
(µ(P ))] ⊆

[
inf

µ∈CST (1−α,µ)
vkh,ih,jh

(µ) , sup
µ∈CST (1−α,µ)

vkh,ih,jh
(µ)
]

∀h = 1, . . . , H
)
,

(
since λkh,ih,jh

∈ [vkh,ih,jh
(µ(P ), vkh,ih,jh

(µ(P ))]
)

≥ P
(
µ(P ) ∈ CST (1 − α; µ)

)
.

The desired result follows directly from Assumption 1. This shows that the projection

region for λH is uniformly consistent in level. Q.E.D.



Table I: Common Restrictions Used in Set-Identified SVARs

(i denotes the variable, j denotes the shock, and k the horizon)

Restrictions Description Notation Examples

Short-run Exclusion Restrictions imposed on B or B′−1
e′

iBej = 0 or e′
iB

′−1
ej = 0 Sims (1980)

(Note that B′−1 = Σ−1B) Christiano et al. (1996)

Rubio-Ramirez et al. (2015)

Long-run A zero constraint on the long-run impact matrix e′
i(In − A1 − A2 − . . . Ap)−1Bej = 0 Blanchard and Quah (1989)

Sign Sign restrictions on IRFs e′
iCk(A)Bej ≥, ≤ 0 Uhlig (2005)

Mountford and Uhlig (2009)

Elasticity Bounds Bounds on the elasticity of a variable
e′

i
Ck(A)Bej

e′

ĩ
Ck(A)Bej

≥, ≤ c, ĩ 6= i Kilian and Murphy (2012)

Shape Constraints Shape constraints on IRFs (e.g., monotonicity) e.g., e′
iCk(A)Bej ≤ e′

iCk+1(A)Bej Scholl and Uhlig (2008)

Other Sign Restrictions on Long-Run Impacts e′
i(In − A1 − A2 − . . . Ap)−1Bej ≥, ≤ 0

Noncontemporaneous Zero Restrictions e′
iCk(A)Bej = 0

General equalities/inequalities on B g(B, µ) ≥, ≤, = 0

The projection approach can handle SVAR models with any of the restrictions described on this table (imposed on one or multiple shocks).
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Remark 1: The idea of ‘projecting’ a confidence set for a parameter µ to conduct

inference about a lower dimensional parameter λ has been used extensively in econo-

metrics; see Scheffé (1953), Dufour (1990), and Dufour and Taamouti (2005, 2007)

for some examples. In addition to its conceptual simplicity, one advantage of the

projection approach is that its validity does not require special conditions on the

identifying restrictions that can be imposed by practitioners.10

Remark 2: The problem of conducting inference on the whole impulse-response

function (and not only on one specific coefficient) has been a topic of recent interest,

both from the Bayesian and frequentist perspective.

For Bayesian set-identified SVARs with only sign restrictions, Inoue and Kilian

(2013) report the vector of structural impulse-response coefficients with highest

posterior density (based on a prior on reduced-form parameters and a uniform prior

on rotation matrices). They propose a Bayesian credible set (represented by shotgun

plots) that characterizes the joint uncertainty about a given collection of structural

impulse-response coefficients.

For frequentist point-identified SVARs, Inoue and Kilian (2016) propose a boot-

strap procedure that allows the construction of asymptotically valid confidence re-

gions for any subset of structural impulse responses. To the best of our knowledge,

our projection approach is the first frequentist procedure for set-identified SVARs

that provide confidence regions for any collection of structural coefficients (response

of different variables, to different shocks, over different horizons).

It is important to note that Uhlig (2005)’s approach to conduct inference on set-

identified SVARs does not provide credible sets for vectors of the structural param-

eters. The same is true for the Bayesian approaches described in the recent work of

Arias, Rubio-Ramirez, and Waggoner (2014) and Baumeister and Hamilton (2015),

as well as the approaches of Moon et al. (2013) and Giacomini and Kitagawa (2015).

Remark 3: A common concern in set-identified models is whether the suggested

inference approach is valid only for the identified parameter, λH , or also for its

identified set IR
H (µ). Note that the second to last inequality in the proof of Result 2

imply that our projection region covers the identified set of any vector of coefficients

λH .

10For instance, we do not need to assume that vk,i,j(·) and vk,i,j(·) are continuous or differentiable
functions of the reduced-form parameters.
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4. ROBUST BAYESIAN CREDIBILITY

This section analyzes the robust credibility of projection as the sample size grows

large.

Bayesian Set-up: In a Bayesian SVAR the distribution of the structural inno-

vations is fixed and treated as a known object. A common choice—which we follow

in this section—is to assume that F ∼ Nn(0, In). We discuss how to relax this

restriction after stating Assumption 2.

Let P ∗ denote some prior for the structural parameters (A1, . . . Ap, B) and let

λH(A, B) ∈ R
H denote the vector of structural coefficients of interest. For a given

square root of Σ ≡ BB′ define the ‘rotation’ matrix Q ≡ Σ−1/2B. It is well known

that a prior P ∗ can be written as (P ∗
µ , P ∗

Q|µ), where P ∗
µ is a prior on the reduced-form

parameters, and P ∗
Q|µ is a prior on the rotation matrix, conditional on µ.11 Following

this notation, let P(P ∗
µ ) denote the class of prior distributions such that µ ∼ P ∗

µ .

We are interested in characterizing the smallest posterior probability that the set

CST (1 − α; λH) could receive, allowing the researcher to vary the prior for Q:

(4.1) inf
P ∗∈P(P ∗

µ )
P ∗
(
λH(A, B) ∈ CST (1 − α; λH)

∣∣∣ Y1, . . . , YT

)
.

The event of interest is whether the structural coefficients λH(A, B) (treated as

random variables in the Bayesian Set-up) belong to the projection region, after con-

ditioning on the data. This event would typically be referred to as the credibility of

CST (1−α; λH) (see Berger (1985), p. 140). We would like to find the smallest credi-

bility of projection when different priors over Q are considered. We follow the recent

work of Giacomini and Kitagawa (2015) and refer to (4.1) as the robust Bayesian

credibility of the set CST (1 − α, λH).

Let f(Y1, ..., YT |µ) denote the Gaussian statistical model for the data (which de-

pends solely on the reduced-form parameters) and let op(1; Y1, . . . YT |µ) denote a

random variable such that limT →∞ PY1,...,YT |µ(|op(1; Y1, . . . YT |µ)| > ǫ) = 0 for all

ǫ > 0 when the distribution of the data is conditioned on µ.

Main Assumption for Bayesians: Robust credibility can be viewed as a ran-

dom variable (as it depends on Y1, . . . , YT ). We use the following high-level assump-

tion to characterize its asymptotic behavior:

11Arias et al. (2014) refer to this parameterization of the SVAR model as the orthogonal reduced-
form.
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Assumption 2 Whenever Y1, . . . , YT ∼ f(Y1, . . . , YT |µ0), the prior P ∗ is such

that as T goes to infinity:

P ∗
(
µ(A, B) ∈ CST (1 − α; µ)

∣∣∣ Y1, . . . , YT

)
= 1 − α + op(1; Y1, . . . , YT |µ0).

Assumption 2 requires the prior over the reduced-form parameters (and the sta-

tistical model) to be regular enough to guarantee that the asymptotic Bayesian

credibility of the 1 − α Wald ellipsoid converges in probability to 1 − α. Thus, our

high-level assumption is implied by the Bernstein von-Mises Theorem (DasGupta

(2008), p. 291) for the reduced-form parameter µ.

Since the Gaussian statistical model f(Y1, . . . YT |µ0) can be shown to be Locally

Asymptotically Normal (LAN) whenever A0 is stable and Σ0 has full rank, Theo-

rem 1 and 2 in Ghosal, Ghosh, and Samanta (1995) (GGS) imply that Assumption

2 will be satisfied whenever P ∗
µ has a continuous density at µ0 with polynomial

majorants.12 In fact, the same theorems could be used to establish Assumption

2 for non-Gaussian SVARs that are LAN and satisfy the regularity conditions of

Ibragimov and Has’ minskii (2013) (IH), as long as CST (1 − α; µ) is centered at the

Maximum Likelihood estimator of µ and Ω̂T is replaced by the model’s information

matrix. An alternative approach to establish Assumption 2 using a different set of

primitive conditions can be found in the recent work of Connault (2016).

We now establish the robust Bayesian credibility of projection as T → ∞.

Result 2 [Asymptotic Robust Bayesian Credibility of Projection] Sup-

pose that the prior P ∗ for (A, B) satisfies Assumption 2 at µ0. Then:

inf
P ∗∈P∗(µ)

P ∗
(
λH(A, B) ∈ CST (1 − α; λH )

∣∣∣ Y1, . . . , YT

)
≥ 1 − α + op(1; Y1, . . . YT |µ0).

Proof: Note that:

P ∗
(
λH(A, B) ∈ CST (1 − α; λH

∣∣∣ Y1, . . . YT

)

12In Appendix A.1 we verify an ‘almost sure’ version of Assumption 2 for a Gaussian SVAR for
the Normal-Wishart priors suggested in Uhlig (1994) and Uhlig (2005) and a confidence set for µ

based on the formula for the asymptotic variance Ω̂T that obtains in the Gaussian model [Lütkepohl
(2007) p. 93].
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= P ∗
(
λkh,ih,jh

(A, B) ∈ CST (1 − α; λkh,ih,jh
) ∀ h = 1 . . . , H

∣∣∣ Y1, . . . , YT

)

(
by definition of the projection region for λH

)

≥ P ∗
(
[vkh,ih,jh

(µ(A, B)) , vkh,ih,jh
(µ(A, B))] ∈ CST (1 − α; λkh,ih,jh

) ∀ h = 1 . . . ,

H
∣∣∣ Y1, . . . , YT

)
,

(
since λkh,ih,jh

(A, B) ∈ [vkh,ih,jh
(µ(A, B)), vkh,ih,jh

(µ(A, B))] for any A, B
)

≥ P ∗
(
µ(A, B) ∈ CST (1 − α; µ)

∣∣∣ Y1, . . . , YT

)
.

This implies that in any finite sample:

inf
P ∗∈P(P ∗

µ )
P ∗
(
λH(A, B) ∈ CST (1 − α; λH)

∣∣∣ Y1, . . . , YT

)

is at least as large as

P ∗
(
µ(A, B) ∈ CST (1 − α; µ)

∣∣∣ Y1, . . . , YT

)
.

Assumption 2 gives the desired result. Q.E.D.

This means that—given any prior that satisfies Assumption 2—our projection

region can be interpreted, in large samples, as a robust 1 − α credible region for the

impulse-response function and its coefficients.
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5. CALIBRATED PROJECTION FOR A ROBUST BAYESIAN

The projection approach generates conservative regions for both a frequentist and

a robust Bayesian. For a frequentist, the large-sample coverage is strictly above the

desired confidence level. For a robust Bayesian, the asymptotic robust credibility of

the nominal 1 − α projection region is strictly above 1 − α.

This section applies the approach in Kaido et al. (2016) to eliminate the excess

of robust Bayesian credibility in a computationally tractable way. We focus on cal-

ibrating the robust credibility of our projection region to be exactly equal to 1 − α

(either in a finite sample for a given prior on µ, or in large samples for a large class

of priors on µ).13

Given a vector ΛH = {λkh,ih,jh
}H

h=1 of structural coefficients of interest and its

corresponding nominal 1 − α projection region, the calibration exercise is based on

the following result.

Result 3 Let P ∗
µ denote a prior for the reduced-form parameters. Suppose there

is a nominal level 1 − α∗(Y1, . . . , YT ) such that for every data realization:

P ∗
µ

(
×H

h=1[vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ⊆ CST (1 − α∗(Y1, . . . , YT ), λH)|Y1, . . . , YT

)

equals 1 − α. Then, for every data realization:

inf
P ∗∈P(P ∗

µ )
P ∗
(
λH(A, B) ∈ CST (1 − α∗(Y1, . . . , YT ); λH)

∣∣∣ Y1, . . . , YT

)
= 1 − α.

Proof: See Appendix A.2. Q.E.D.

This means that in order to calibrate the robust credibility of projection in a given

finite sample, it is sufficient to choose 1 − α∗(Y1, . . . , YT ) to guarantee that exactly

α% of the bounds of the identified set for the different structural coefficients in λH

fall outside the projection region.

Calibration Algorithm: The calibration algorithm we propose consists in find-

ing a nominal level 1 − α∗(Y1, . . . , YT ) such that, conditional on the data, the prob-

ability of the event:

[vk1,i1,j1
(µ), vk1,i1,j1(µ)] × . . . × [vkh,ih,jh

(µ), vkh,ih,jh
(µ)] ⊆ CST (1 − α∗, λH)

13We also discuss the calibration of projection in SVARs from the frequentist perspective (see
Appendix B). We argue that the computational feasibility of the frequentist calibration might be
compromised when µ is of large dimension.
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equals 1 − α under the posterior distribution associated to the prior P ∗
µ or un-

der a suitable large-sample approximation for the posterior such as µ|Y1, . . . YT ∼

Nd(µ̂T , Ω̂T /T ).14

The calibration algorithm is the following:

1. Generate M draws (for example, M = 1, 000) from the posterior of the

reduced-form parameters. If desired, one could use the large-sample approxi-

mation of the posterior given by:

µ∗
m ∼ Nd(µ̂T , Ω̂T /T ).

2. Let λH = {λkh,ih,jh
}H

h=1 denote the structural coefficients of interest. For each

h = 1, . . . H and for each m = 1, . . . M evaluate:

[vkh,ih,jh
(µ∗

m), vkh,ih,jh
(µ∗

m)],

as defined in equation (3.4). We provide Matlab code to evaluate these bounds.

3. Fix an element αs on the interval (α, 1). Set a tolerance level η > 0.

4. For each m = 1, . . . M generate the indicator function zm that takes the value

of 0 whenever there exists a structural coefficient h ∈ {1, . . . H} such that:

[vkh,ih,jh
(µ∗

m), vkh,ih,jh
(µ∗

m)] /∈ CST (1 − αs, λkh,ih,jh
).

The projection region CST (1 − αs, λkh,ih,jh
) is defined in equation (3.6) in

Result 3 and implemented using the SQP/IP algorithm that will described in

the next section (Section 6).

5. Compute the robust credibility of the nominal 1 − αs projection as:

RCT (αs) =
1

M

M∑

m=1

zm.

If such quantity is in the interval [1 − α − η, 1 − α + η] stop the algorithm.

If RCT (αs) is strictly above 1 − α + η, go back to Step 3 and choose a larger

value of αs. If RCT (αs) is strictly below 1−α−η go back to Step 3 and choose

a smaller value of αs.

14The Gaussian approximation for the posterior will eliminate projection bias asymptotically
provided a Berstein von-Mises Theorem for µ holds. We establish this result in Appendix A.3.
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6. IMPLEMENTATION OF BASELINE AND CALIBRATED PROJECTION

6.1. Projection as a mathematical optimization problem

This subsection discusses the implementation of the baseline projection region:

CST (1 − α; λk,i,j) ≡
[

inf
µ∈CST (1−α,µ)

vk,i,j(µ) , sup
µ∈CST (1−α,µ)

vk,i,j(µ)
]
.

We note that both the upper bound and lower bound of this confidence interval can

be thought of as solutions to a pair of ‘nested’ optimization problems.

The first optimization problem—that we refer to as the inner optimization—solves

for vk,i,j(µ) and vk,i,j(µ). These functions correspond to the largest and smallest

value of the structural impulse response λk,i,j given a set of restrictions and a vector

of reduced-form parameters µ.

The second optimization problem—that we refer to as outer optimization—solves

for the maximum value of vk,i,j(·) and the minimum value of vk,i,j(·) over the (1−α)

Wald Confidence ellipsoid, CST (1 − α, µ).

Implementation: Our proposal is to combine the inner and outer problem into

a single mathematical program that gives the bounds of the projection confidence

interval directly. The upper bound can be found by solving:

sup
A,Σ,B

e′
iCk(A)Bej subject to BB′ = Σ, B ∈ R(µ), and(6.1)

T (µ̂T − µ(A, Σ))′Ω̂−1
T (µ̂T − µ(A, Σ)) ≤ χ2

d,1−α.

The lower bound of the projection confidence interval can be found analogously.

Importantly, the simple reformulation in (6.1) allows us to base the implementation

of our projection region upon state-of-the-art solution algorithms for optimization

problems. Our suggestion is to use a simple SQP/IP algorithm.

6.2. Solution algorithms to implement baseline projection

The nature of the optimization problem: The nonlinear mathematical pro-

gram in (6.1) has two challenging features. On the one hand, the optimization

problem is non-convex; this complicates the task of finding a global minimum with

algorithms designed to detect local optima. On the other hand, the number of op-

timization arguments and constraints increases quadratically in the dimension of
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the SVAR; this compromises the feasibility of some optimization routines designed

to detect global optima (for example, brute-force grid search on CST (1 − α, µ) to

optimize vk,i,j(µ) and vk,i,j(µ)).

Our Approach: Taking these two features into consideration, we first imple-

mented projection by running a local optimization algorithm followed by a global

algorithm that used the local solution as an input. The algorithms and the func-

tions used to implement the projection confidence interval are described below. In

the application analyzed in this paper, the global stage of the algorithm did not

have any impact on the local solution. We thus suggest researchers to implement

our approach using only the SQP/IP routine described below.

Local Algorithms: Although no standard classification exists for local opti-

mization algorithms, the most common procedures are often grouped as follows:

penalty and Augmented Lagrangian Methods; Sequential Quadratic Programming

(SQP); and Interior Point Methods (IP); see p. 422 of Nocedal and Wright (2006)

for more details.

Within this class of algorithms, we focus on the IP and SQP algorithms, both

of which are considered as the “most powerful algorithms for large-scale nonlinear

programming”, Nocedal and Wright (2006), p. 563.15 Conveniently, IP and SQP

are included in Matlab R©’s fmincon function, which comes with the Optimization

toolbox. We run the SQP algorithm—which is usually faster than IP—and in case it

does not find a solution, we switch to IP, an algorithm which we denote by SQP/IP.

Global Algorithms: IP and SQP are well adjusted to handle various degen-

eracy problems in order to find a local minimum for large-scale non-convex prob-

lems. There is now a large body of literature on global optimization strategies; see

Horst and Pardalos (1995) and Romeijn and Pardalos (2013). Popular global opti-

mization algorithms include adaptive stochastic search; branch and bound methods;

homotopy methods; Genetic algorithms (GA); simulated annealing and two-phase

algorithms such as MultiStart and GlobalSearch.16

We focus on the two-phase algorithms MultiStart, GlobalSearch and on the ge-

netic algorithm.17 These routines are available in Matlab R©’s Global Optimization

15Furthermore, these algorithms exploit the existence of second-order derivatives which are well-
defined in our problem.

16For a more detailed list and classification of global methods see p. 519 of Chapter 15
in Romeijn and Pardalos (2013). For a description of two-phase algorithms see Chapter 12 in
Romeijn and Pardalos (2013).

17Genetic algorithms are a well developed field of computing and they have been used in many
applications; see the introduction to Chapter 9 in Romeijn and Pardalos (2013). A very interesting
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toolboxes with the objects MultiStart, GlobalSearch and the function ga. These

routines accept an initial condition, which we fix as the local solution obtained from

the local optimization routine.

application in economics that motivated our focus on GA is given in Qu and Tkachenko (2015).



PROJECTION INFERENCE FOR SET-IDENTIFIED SVARS 23

6.3. Implementing baseline projection in an example

As a running example, we consider the demand-supply SVAR model studied in

Section 5 of Baumeister and Hamilton (2015) [henceforth, BH]. We fit a 6-lag VAR

to U.S. data on growth rates of real labor compensation, ∆wt, and total employment,

∆nt, from 1970:Q1 to 2014:Q2.18

Using our notation, the demand-supply SVAR can be written as:

(
∆wt

∆ηt

)
= A1

(
∆wt−1

∆ηt−1

)
+ . . . + A6

(
∆wt−6

∆ηt−6

)
+ B

(
ǫd
t

ǫs
t

)
,

BH set-identify an expansionary demand and supply shock by means of the following

sign restrictions:

B ≡

(
b1 b3

b2 b4

)
satisfies

[
+ −

+ +

]
.

The sign restrictions state that a demand shock increases both real labor compen-

sation and total employment, while a supply shock lowers wages but raises employ-

ment.

In this model, the short-run wage elasticity of labor supply (identified from a

demand shock) is defined as:

α ≡ b2/b1

Likewise, the short-run wage elasticity of labor demand (identified from a supply

shock) is defined as:

β ≡ b4/b3

Finally, the long-run impact of a demand shock over employment is given by:

γ ≡ e′
2(In −

6∑

p=1

Ap)−1Be1.

BH impose three additional restrictions. The first two of them are elasticity

bounds motivated by the findings of different empirical studies. Hamermesh (1996),

Akerlof and Dickens (2007), Lichter, Peichl, and Siegloch (2014) provide bounds on

18Our selection is based on the fact that 6 is the smallest number of lags such that CS(68%; µ)
does not contain unstable VAR coefficients and non-invertible reduced-form covariance matrices.
68% confidence sets correspond to a single standard deviation and are frequently used in applied
macroeconomic research. The Bayes Information Criteria and the Information Criteria both select
only one lag.
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the wage elasticity of labor demand. Chetty, Guren, Manoli, and Weber (2011),

Reichling and Whalen (2012) provide bounds on the wage elasticity of labor supply.

The third and final restriction arises from imposing lower and upper bounds on the

long-run impact of a demand shock on employment.

BH incorporate the restrictions in the form of priors on the structural parame-

ters, but we treat the constraints as additional sign restrictions. Let tv denote the

standard t distribution with v degrees of freedom. The following table summarizes

the way in which BH incorporate prior information:

TABLE II

Additional Identifying Restrictions

Restrictions Motivation BH This paper

Bounds on α Empirical studies α ∼ max{.6 + .6t3, 0} .27 ≤ α ≤ 2
report α ∈ [.27, 2]

Bounds on β Empirical studies β ∼ min{−.6 + .6t3, 0} −2.5 ≤ β ≤ −.15
β ∈ [−2.5, −.15]

Bounds on γ γ = 0 is too strong γ ∼ N (0, V ) −2V ≤ γ ≤ 2V

Thus, summarizing, our version of the BH model has 10 sign restrictions:

Demand and Supply Shocks: : b1 ≥ 0, b2 ≥ 0, −b3 ≥ 0, b4 ≥ 0,

Elasticity Bounds : 2b1 − b2 ≥ 0, b2 − .27b1 ≥ 0,

b4 + .15b3 ≥ 0, −2.5b3 − b4 ≥ 0,

Long-Run : e′
2(In −

6∑

p=1

Ap)−1Be1 + 2V ≥ 0,

− e′
2(In −

6∑

p=1

Ap)−1Be1 + 2V ≥ 0,

where the parameter V is allowed to take the values {.01, .1, 1} as in p. 1992 of BH.
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6.4. Results of the implementation of baseline projection

Using our SQP/IP local solution algorithm, we compute the 68% projection con-

fidence intervals for the cumulative response of wages and employment to the struc-

tural shocks in the model (20 consecutive quarters and setting V = 1). In addition

to the projection region, we compute the 68% Bayesian credible set following the

implementation in both Uhlig (2005) and BH.

Figure 1 shows the projection region as solid blue line and the standard Bayesian

credible set (based on BH priors) as a grey-shaded area.

Figure 1: 68% Projection Region and 68% Credible Set.

(Baumeister and Hamilton (2015) priors)
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(a) Expansionary Demand Shock
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(b) Expansionary Supply Shock

(Solid, Blue Line) 68% Projection Region; (Shaded, Gray Area) 68% Bayesian Credible Set
based on the priors in Baumeister and Hamilton (2015).
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Figure 2 shows the boundaries of the projection region as solid blue line and the

Bayesian credible set based on Uhlig (2005)’s priors as a grey-shaded area.

Figure 2: 68% Projection Region and 68% Credible Set.

(Uhlig (2005) priors)
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(a) Expansionary Demand Shock
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(b) Expansionary Supply Shock

(Solid, Blue Line) 68% Projection region; (Shaded, Gray Area) 68% Bayesian Credible Set
based on the Nornal-Wishart-Haar priors suggested in Uhlig (2005) and the inequality constraints
summarized below Table II. The credible set is implemented following Arias et al. (2014).

Comment about Credible Sets: The 68% credible sets differ substantially de-

pending on the specification of prior beliefs. Such sensitivity is the main motivation

for our projection approach. In this example, the length of the credible sets for the

cumulative response of employment seems to differ by a factor of at least two. The

projection region seems quite large compared to the credible sets. This could be a
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consequence of either the robustness of projection or its conservativeness. To dis-

entangle these effects, we calibrate projection to guarantee that it has exact robust

Bayesian credibility in the next subsection.

Concrete comments regarding computational feasibility: Table III com-

pares computing time for the projection (which has both a frequentist and a Robust

Bayes interpretation) and the standard Bayesian methods.19 Since the global meth-

ods are initialized at the local solution, these procedures take as least as much time as

SQP/IP. Among the three global methods considered, the Genetic Algorithm takes

the longest. Brute-force grid search (which refers to grid search on CST (1 − α, µ) to

optimize vk,i,j(µ) and vk,i,j(µ)) with only 1,000 draws from µ ∈ R
27 takes about 6

times longer than the baseline SQP/IP and generates substantially smaller bounds

(see Appendix D.2).20

TABLE III

Computational time in seconds

Algorithm Details Time

SQP/IP 734

SQP/IP + MultiStart 100 initial points 33,314
SQP/IP + GlobalSearch 100 trial points (20 in Stage 1) 1,359
Genetic Algorithm population of 100, 500 generations 76,863

Grid Search on CST (1 − α, µ) 1,000 draws from µ 4,548

Bayesian, BH 1,000,000 Metropolis-Hastings draws 3,992
Bayesian, Uhlig 100,000 accepted posterior draws 2,338

Notes: Laptop @2.4GHz IntelCore i7.

Comments Regarding Local and Global algorithms: Figure 6 in Ap-

pendix D.1 compares the bounds of the projection confidence interval for the first

four algorithms listed in Table III. For this application, it seems that none of the

global algorithms improve on the local solution obtained from SQP/IP.21

19To get a fair sense of the computational cost, none of the global algorithms were parallelized.
20Instead of quasi-random draws from the multi-variate normal distribution, we use pseudo-

random Sobol sequences, which have the property of being a low-discrepancy sequence in the hy-
percube. We translate the sequence into multivariate-normal draws using Cholesky decomposition.
In our experience, this improves the performance of grid search substantially for a given number of
grid points.

21In our Matlab code to implement projection we take SQP/IP as the default algorithm to
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6.5. Implementing Calibrated projection in our example

The key restriction used to set-identify an expansionary demand shock in the

illustrative example is that it must increase wages and employment, upon impact.

According to the credible sets in Figures 1 and 2, the expansionary shock has—

in fact—noncontemporaneous effects over these two variables (every quarter over

a 5 year horizon). Our calibrated projection confirms that there are medium-run

effects of demand shocks over employment, but suggests that the non-zero effects

over wages beyond the first two quarters could be an artifact of prior beliefs.

A similar observation is true for supply shocks. Our calibrated projection suggests

that the decrease in wages five years after an expansionary supply shock is robust

to the choice of prior on the set-identified parameters. The medium-run effects of

supply shocks over employment lack this robustness.

Implementation of our Calibrated Projection: We close this subsection

providing further details about the computational demands of our calibration exer-

cise.

Instead of working with a specific posterior for µ, we calibrated projection relying

on the large-sample approximation µ|Y1, . . . YT ∼ Nd(µ̂T , Ω̂T /T ). Taking draws from

this model is straightforward and does not require any special sampling technique

(as a Monte-Carlo Markov Chain). Figure 3 used M=100,000 draws.

As described in our calibration algorithm, for each of the draws of µ (denoted

µ∗
m), and for each horizon k ∈ {0, 1, 2, . . . 20}, variable i ∈ {wage, employment} and

shock j ∈ {demand shock, supply shock} we solved two mathematical programs to

generate:

[vk,i,j(µ
∗
m), vk,i,j(µ

∗
m)].

Computing the bounds of the identified set for all the combinations (k, i, j) given

µ∗
m took approximately 9 seconds. Generating the boxes and the black dashed lines

in Figure 3 took approximately 5 hours using 50 parallel Matlab ‘workers’ on a

computer cluster at the University of Bonn.22 Notice that we choose M=100,000 for

illustrative purposes and the calibration results are barely different for M=1,000,

which takes 3 minutes using the same computer cluster (or 2.5 hours not using

parallelization at all).

After generating the bounds of the identified set, the calibration exercise adjusts

construct the projection region.
22Calibrating projection to guarantee frequentist coverage at one point in the parameter space

took us 76 hours using the 50 parallel Matlab workers in the same computer cluster.
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Figure 3: 68% Projection Region and 68% Calibrated Projection.
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(a) Expansionary Demand Shock
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(b) Expansionary Supply Shock

(Solid Line) 68% Projection region; (Dotted Line) 68% Projection region calibrated to guarantee
68% robust Bayesian credibility of the IRF functions jointly (100,000 draws from the Gaussian
approximation to the posterior of µ); (Box) 68% Projection region calibrated horizon by horizon
and shock by shock; (Black Dashed Line) Support of the bounds of the identified set given the
100,000 posterior draws.

the nominal level of projection to simulatenously contain 68% of the draws from the

bounds of the identified set for each combination (k, i, j).23 The calibrated confidence

level for the Wald ellipsoid is 1.85 · 10−4% instead of the original 68%. This means

that instead of projecting a Wald ellipsoid with radius χ2
68%,27 we are using a χ2

68%,4.5.

23To do this, we ran the baseline projection SQP/IP algorithm for different nominal confidence
levels. An efficient calibration algorithm that requires only few iterations over the nominal level is
the combination of bisection with secant and interpolation as provided by Matlab’s fzero function.
For reasonably low tolerance of η = 0.001, we need 15 iteration steps. With each step taking about
734 seconds, see Table III, steps 3 through 5 take about 1 hour.
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7. CONCLUSION

A practical concern regarding standard Bayesian inference for set-identified Struc-

tural Vector Autoregressions is the fact that prior beliefs continue to influence pos-

terior inference even when the sample size is infinite. Motivated by this observation,

this paper studied the properties of projection inference for set-identified SVARs.

A nominal 1−α projection region collects all the structural parameters of interest

that are compatible with the VAR reduced-form parameters in a nominal 1−α Wald

ellipsoid. By construction, projection inference does not rely on the specification of

prior beliefs for set-identified parameters.

We argued that the projection approach is general, computationally feasible, and—

under mild assumptions concerning the asymptotic behavior of estimators and pos-

terior distributions for the reduced-form parameters—produces regions with fre-

quentist coverage and asymptotic robust Bayesian credibility of at least 1 − α.

The main drawback of our projection region is that it is conservative, both from

a frequentist and a robust Bayesian perspective. For a frequentist, the large-sample

coverage is strictly above the desired confidence level. For a robust Bayesian, the

asymptotic robust credibility of the nominal 1−α projection region is strictly above

1 − α.

We used the calibration idea described in Kaido et al. (2016) to eliminate the

excess of robust Bayesian credibility. The calibration procedure consists of drawing

the reduced-form parameters, µ, from its posterior distribution (or a suitable large-

sample Gaussian approximation); evaluating the functions v(µ), v(µ) for each draw

of µ (at different horizons and for different shocks of interest); and, finally, decreasing

the nominal level of the projection region until it contains exactly (1 − α)% of the

values of v(µ), v(µ). The calibration exercise required more work than the baseline

projection, but it is computationally feasible (and easily parallelizable).

We implemented our projection confidence set in the demand/supply SVAR for

the U.S. labor market. The main set-identifying assumptions were sign restrictions

on contemporaneous responses. Standard Bayesian credible sets suggested that the

medium-run response of wages and employment to structural shocks behave in the

same way as the contemporaneous responses. Our projection region (baseline and

calibrated) showed that only the qualitative effects of demand shocks over employ-

ment and the qualitative effects of supply shocks over wages are robust to the choice

of prior. Our projection approach is a natural complement for the Bayesian credible

sets that are commonly reported in applied macroeconomic work.
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APPENDIX A: PROOF OF MAIN RESULTS

A.1. Verification of Assumption 2 for the Gaussian SVAR with a Normal-Wishart Prior.

Consider the SVAR in (3.1) and assume that F ∼ N (0, In). Let P ∗ denote a prior on the SVAR

parameters (A, B).

Note first that Assumption 2 depends only on the distribution that P ∗ induces over the reduced-

form parameters, µ. Thus, we abuse notation and refer to P ∗ as the prior distribution on (A, Σ).

The analysis in this section focuses on the Normal-Wishart prior P ∗ used in Gaussian SVAR

analysis. We establish an almost sure version of Assumption 2.

Prior for µ: Consider the hyper-parameters:

Ā0 ∈ R
n×np, S0 ∈ R

n×n, N0 ∈ R
np×np, v0 ∈ R.

Definition The Normal-Wishart Prior P ∗ over the parameters (vec(A), vech(Σ))—defined by

hyper parameters (Ā0, S0, N0, v0)—is given by:

vec(A)|Σ ∼ N
(

vec(Ā0) , N−1
0 ⊗ Σ

)
,

and

Σ−1 ∼ Wishartn

(
S−1

0 /v0 , v0

)
.

Posterior in the Gaussian SVAR: Let

QT ≡ 1

T

T∑

t=1

XtX
′
t,

and define the updated hyperparameters:

ĀT = ÂT QT

(
N0

T
+ QT

)−1

+ Ā0
N0

T

(
N0

T
+ QT

)−1

ST =
v0

T + v0
S0 +

T

T + v0
Σ̂T +

1

T + v0

(
ĀT − Ā0

)
N0

(
N0

T
+ QT

)−1

QT

(
ĀT − Ā0

)′

where ÂT and Σ̂T are the ordinary least squares estimators for A and Σ defined in Section 3.1.

From p. 410 in Uhlig (1994) and p. 410 in Uhlig (2005) the posterior distribution for the vector

(vec(A)′, vech(Σ)′)′ can be written as:

vec(A)|Y1, . . . , YT = vec(ĀT ) +
[(

N0

T
+ QT

)−1

⊗ Σ

T

]1/2

W, W ∼ Nn2p(0, In2p),

Σ|Y1, . . . , YT = S
1/2
T

(
1

T

T∑

t=1

ZtZ
′
t

)−1

S
1/2
T , Zt ∼ Nn(0 , In), i.i.d,

where both random vectors are independent of the data and {Zt}T
t=1 independent of W . Note

that for a given data realization, the posterior distribution of (A, Σ) is a measurable function of
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W ≡ (W, Z1, . . . ZT ). We use the term oW(1) to denote any sequence that converges to zero as

T → ∞ for almost every realization of W.

Asymptotic Behavior of the posterior for µ: We now show that all of the Normal-Wishart

priors in the Gaussian model satisfy our Assumption 2. Note first that for almost every data

realization (Y1, . . . , YT ) and almost every realization of the random vector Zt we have that

Σ − Σ̂T → 0,

by applying the strong of large numbers to (1/T )
∑T

t=1
ZtZ

′
t. Consequently:

√
T (vec(A) − vec(ÂT )) = ÂT

√
T
(

QT

(
N0

T
+ QT

)−1

− In2p

)
+ Ā0

N0√
T

(
N0

T
+ QT

)−1

+
[(

N0

T
+ QT

)−1

⊗ Σ̂T

]1/2

W + oP ∗|Y1,...YT
(1),

= ÂT

√
T
(

QT

(
Q−1

T + Q−1
T

N0

T
Q−1

T + O(1/T 2)
)

− In2p

)

(by a first-order Taylor expansion)

+ Ā0
N0√

T

(
N0

T
+ QT

)−1

+
[(

N0

T
+ QT

)−1

⊗ Σ̂T

]1/2

W + oW (1),

=
[
Q−1

T ⊗ Σ̂T

]1/2

W + oW(1).

This implies that the posterior distribution of
√

T (vec(A) − vec(ÂT )) converges in distribution,

for almost every data realization (Y1, . . . , YT ), to the random vector:

(A.1) [Q
−1/2
T ⊗ Σ̂

1/2
T ]W, where W ∼ Nn2p(0, In2p).

Note now that

√
T (vech(Σ) − vech(Σ̂T )) =

√
Tvech

(
S

1/2
T

(
1

T

T∑

t=1

ZtZ
′
t

)−1

S
1/2
T − Σ̂T

)
,

=
√

Tvech
(

Σ̂
1/2
T

(
1

T

T∑

t=1

ZtZ
′
t

)−1

Σ̂
1/2
T + O(1/T ) − Σ̂T

)
,

=
√

Tvech
(

Σ̂
1/2
T

[(
1

T

T∑

t=1

ZtZ
′
t

)−1

− In

]
Σ̂

1/2
T

)
+ o(1).

This implies that the posterior distribution of
√

T (vech(Σ)−vech(Σ̂T )) converges in distribution,

for almost every data realization (Y1, . . . , YT ), to the random vector:

(A.2)
(

2D+(Σ̂T ⊗ Σ̂T )D+
)1/2

Z, where Z ∼ Nn(n+1)/2(0, In(n+1)/2), Z⊥W,
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and D+ ≡ (D′D)−1D′ is the Moore-Penrose inverse of the duplication matrix D such that vec(Σ) =

Dvech(Σ).

Now, assume that the confidence set for the reduced-form parameters is constructed using the

Gaussian Maximum Likelihood asymptotic variance of µ̂T as in p.93 of Lütkepohl (2007); that is:

(A.3) Ω̂T ≡
(

Q−1
T ⊗ Σ̂T 0n2p×(n(n+1)/2)

0(n(n+1)/2)×n2p 2D+(Σ̂T ⊗ Σ̂T )D+′

)
.

Let G denote the joint distribution of (W, Z), which is a standard multivariate normal indepen-

dently of the data. Then, combining (A.1), (A.2), (A.3)

P ∗
(

µ ∈ CST (1 − α, µ)|(Y1, . . . , YT )
)

= P ∗
(√

T (µ − µ̂T )′Ω̂−1
T

√
T (µ − µ̂T ) ≤ χ2

d,1−α|(Y1, . . . YT )
)

→ G
((

W

Z

)′(
W

Z

)
≤ χ2

d,1−α | Y1, . . . , YT

)
for a.e. data realization

= G
((

W

Z

)′(
W

Z

)
≤ χ2

d,1−α

)

= (1 − α).
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A.2. Proof of Result 3 (Finite-Sample Calibration for a Robust Bayesian)

Proof: The proof of Result 2 has already established that for any data realization:

inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗(Y1, . . . , YT ); λH)
∣∣∣ Y1, . . . , YT

)
.

is at least as large as:

P ∗
µ

(
×H

h=1[vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ⊆ CST (1 − α∗(Y1, . . . , YT ), λH)|Y1, . . . , YT

)
.

Hence, it is sufficient to show that for any data realization:

inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗(Y1, . . . , YT ); λH)

∣∣∣ Y1, . . . , YT

)
≤ 1 − α.

In order to establish this upper bound for each data realization, we will find a prior on Q

(conditional on µ) that gives credibility of exactly 1 − α to the calibrated projection region. Fix

the data, and denote the set CST (1 − α(Y1, . . . , YT ); λH) simply by C(Y T ). Before the realization

of the data, the set C(Y T ) is just some subset of RH , so the prior can depend on this set. Let vh(µ)

abbreviate vkh,ih,jh
(µ) and define vh(µ) analogously. Let Qmax(µ; h) denote the rotation matrix for

which the structural parameter achieves its upper bound; i.e., λ(µ, Qmax(µ; h)) = vh(µ) (the matrix

Qmin is defined analogously).

For each µ such that ×H
h=1[vh(µ), vh(µ)] /∈ C(Y T ), let h(µ) denote the smallest horizon for which

v
h(µ)

(µ) is not contained in the h(µ)-th coordinate of the region C(Y T ). If no upperbound falls

outside C(Y T ) set h(µ) = 0. Define h(µ) analogously. Consider the following prior for Q|µ that

depends on the set CT (Y T ):

Q|µ =





Qmax(µ; 1) if ×H
h=1[vh(µ), vh(µ)] ⊆ CT (Y T ),

Qmax(µ, h(µ)) if ×H
h=1[vh(µ), vh(µ)] 6⊆ C(Y T ) and h(µ) ≥ h(µ),

Qmin(µ, h(µ)) if ×H
h=1[vh(µ), vh(µ)] 6⊆ C(Y T ) and h(µ) < h(µ),

Finally, let P ∗∗ denote the prior induced by P ∗
µ and Q|µ as defined above. Note that for each data

realization (Y1, . . . , YT ) :

inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α(Y1, . . . YT ); λH)

∣∣∣ Y1, . . . , YT

)

is—by definition of infimum—smaller than or equal

P ∗∗
(

λH(µ, Q) ∈ CST (1 − α(Y1, . . . , YT ); λH)

∣∣∣ Y1, . . . , YT

)
.

By construction, the prior for Q|µ is such that λH(µ, Q) ∈ CST (1 − α(Y1, . . . , YT ); λH) if and only

if ×H
h=1[vh(µ), vh(µ)] ⊆ CT (Y T ). To see this, note that whenever the bounds of the identified set

×H
h=1[vh(µ), vh(µ)] 6⊆ CT (Y T ), either h(µ) 6= 0 or h(µ) 6= 0 implying that the structural parameter

λh(µ, Q) takes the value of v
h(µ)

(µ) or v
h(µ)

(µ) (whichever horizon is largest). Since these bounds

are not contained in CT (Y T ):

P ∗∗
(

λH(µ, Q) ∈ CST (1 − α(Y1, . . . , YT ); λH)

∣∣∣ Y1, . . . , YT

)
.
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equals

P ∗
µ

(
×H

h=1[vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ∈ CST (1 − α∗(Y1, . . . , YT ), λH)|Y1, . . . , YT

)
= 1 − α.

This means that:

1 − α ≤ inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗(Y1, . . . , YT ); λH)
∣∣∣ Y1, . . . , YT

)
≤ 1 − α.

Q.E.D.
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A.3. Asymptotic Calibration for a Robust Bayesian (µ|Y1, . . . YT ∼ Nd(µ̂T , Ω̂T /T ))

We now show that whenever α∗
T ≡ α(Y1, . . . , YT ) is calibrated to guarantee that

PT

(
×H

h=1 [vk1,i1,j1
(µ), vk1,i1,j1

(µ)]× . . .× [vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ⊆ CST (1−α∗
T , λH) |Y1, . . . YT

)

equals 1 − α whenever µ|Y1, . . . YT ∼ Nd(µ̂T , Ω̂T /T ), then one can guarantee asymptotic robust

credibility of 1 − α for a large class of priors on µ. This is formalized below.

Let f(Y1, . . . YT | µ0) denote the Gaussian density for the VAR data and let Ω ∈ R
d×d denote the

probability limit of Ω̂T . Let GΩ denote a Gaussian measure centered at 0d with covariance matrix

Ω. Let B(d) denote Borel sets in R
d.

Result 4 Let Y1, . . . YT ∼ f(Y1, . . . YT | µ0) and suppose that the prior P ∗
µ is such that:

sup
A∈B(d)

∣∣P ∗
µ (

√
T (µ − µ̂T ) ∈ A | Y1, . . . YT ) − GΩ(A)

∣∣ = op(Y1, . . . YT ; µ0).

Then,

inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗
T , λH) | Y1, . . . YT

)
= 1 − α + op(Y1, . . . YT ; µ0).

Proof: Result 3 has shown that for any α(Y1, . . . , YY )

inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗
T , λH) | Y1, . . . YT

)
= P ∗

µ (µ ∈ A∗
T | Y1, . . . YT ) ,

where AT ⊆ R
d is defined as:

{µ ∈ R
d | ×H

h=1 [vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ⊆ CST (1 − α∗
T , λH)}.

Note that

P ∗
µ (µ ∈ A∗

T | Y1, . . . YT ) = P ∗
µ

(√
T (µ − µ̂T ) ∈

√
T (A∗

T − µ̂T ) : | Y1, . . . YT

)
− GΩ(

√
T (A∗

T − µ̂T ))

+ GΩ(
√

T (A∗
T − µ̂T )) − G

Ω̂T
(
√

T (A∗
T − µ̂T ))

+ G
Ω̂T

(
√

T (A∗
T − µ̂T ))

We make three observations:

1. Note first that:

P ∗
µ

(√
T (µ − µ̂T ) ∈

√
T (A∗

T − µ̂T ) : | Y1, . . . YT

)
− GΩ(

√
T (A∗

T − µ̂T ))

is smaller than or equal

sup
A∈B(d)

∣∣P ∗
µ (

√
T (µ − µ̂T ) ∈ A | Y1, . . . YT ) − GΩ(A)

∣∣ ,

which is, by assumption, op(Y1, . . . YT ; µ0).
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2. Note then that

|G
Ω̂T

(
√

T (A∗
T − µ̂T )) − GΩ(

√
T (A∗

T − µ̂T ))| = op(Y1, . . . , YT ; µ0)

since Ω̂T
p→ Ω and G is the Gaussian measure centered at zero.

3. Finally, note that G
Ω̂T

(
√

T (A∗
T − µ̂T )) is the same as is the same as

P(N(µ̂T , Ω̂T /T ) ∈ A∗
T |Y1, . . . , YT ),

which, by definition of A∗
T , is the same as:

PT

(
×H

h=1[vk1,i1,j1
(µ), vk1,i1,j1

(µ)]×. . .×[vkh,ih,jh
(µ), vkh,ih,jh

(µ)] ⊆ CST (1−α∗
T , λH)|Y1, . . . YT

)

where µ|Y1, . . . YT ∼ Nd(µ̂T , Ω̂T /T ).

We conclude that:

| inf
P ∗∈P(P ∗

µ )
P ∗
(

λH(A, B) ∈ CST (1 − α∗
T , λH) | Y1, . . . YT

)
− (1 − α)| ≤ op(Y1, . . . YT ; µ0),

which implies the desired result. Q.E.D.
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Appendix B and C
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APPENDIX B: FREQUENTIST CALIBRATION OF PROJECTION

We have shown that projection can be calibrated to achieve exact robust Bayesian credibility for

a given prior on the reduced-form parameters. We now discuss the extent to which projection can

be calibrated to achieve large-sample frequentist coverage of 1 − α.

Frequentist calibration requires either an exact or an approximate statistical model for the data.

We assume that: µ̂T ∼ Pµ ≡ Nd(µ, Ω̂T /T ), where µ belongs to some set M ⊆ R
d and Ω̂T is treated

as a non-stochastic matrix.

Let λ be some structural coefficient of interest. The frequentist calibration exercise consists in

finding a radius, rT (α), for the Wald ellipsoid such that:

inf
µ∈M

inf
λ∈IR(µ)

Pµ

(
λ ∈ CST (rT (α); λ)

)
= 1 − α.

An algorithm to Calibrate Projection over a grid G: Let d denote the dimension of µ

and let 1 − α be the desired confidence level.

1. Generate a grid of S scalars {r1, r2, . . . , rS} on the interval [0,
√

χ2
d,1−α]. Each of these values

will serve as the potential ‘radius’ of the Wald ellipsoid for µ. Fix one element rs.

2. Generate a grid of I values G ≡ {µ1, µ2, . . . , µI} ∈ M ⊆ R
d. Fix an element µi ∈ G.

3. Generate M i.i.d. draws from the model

µ̂i
T,m ∼ Nd(µi, Ω̂T /T ).

Let CSm
T (rs, λ) denote the confidence interval for λ associated to µ̂i

T,m with radius rs. Note

that in order to compute the confidence interval for λ, Ω̂T is fixed across all draws.

4. Generate a grid of size K {λi
1, λi

2, . . . , λi
K} from the identified-set for λ given µi, denoted

IR(µi).

5. For each µi compute:

CPT (µi; rs, Ω̂T ) ≡ min
k∈K

1

M

M∑

m=1

1

{
λk ∈ CSm

T (rs; λ)
}

.

6. Report the approximate confidence level of the projection confidence interval with radius rs

as:

ApproxCLT (rs) ≡ min
i∈I

CPT (µi; rs, Ω̂T )

7. Find the value in the grid

{ApproxCLT (r1), . . . ApproxCLT (rS)}.

that is the closest to the desired confidence level 1 − α. Denote this value by r∗
T (α, G).

8. The radius r∗
T (α, G) obtained in Step 6 approximates the value rT (α) that calibrates fre-

quentist projection.

In our application µ ∈ R
27, which means that constructing an exhaustive grid for µ is computa-

tionally infeasible. To illustrate the computational demands of frequentist calibration in the SVAR
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exercise, consider a grid G that contains only µ̂T . We follow Step 1 to 5 to adjust the confidence

set for the responses of wages and employment to a structural demand shock (the first column of

Figure 1).

Figure 4 below reports our calibrated radii, horizon by horizon, for the responses of wages and

employment to an expansionary demand shock. Note that the default radius used by our projection

method is χ2
27,68% = 29.87.

Figure 4: Calibrated Radii for the 68% Projection Region; G = {µ̂T }

(Responses to an Expansionary Demand Shock)
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(a) Radii for Wages
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(b) Radii for Employment

(Blue Pluses) For each horizon k and each variable i the blue markers in Panel a) and b) cor-
respond to the calibrated radius rT (α, G) for λk,i,j (as computed in Step 1 to 5). Each radius is
computed using a grid of 16 points ranging from .5 to 5 (S = 16 in Step 1); a grid G containing
only µ̂T (I = 1 in Step 2); 1,000 draws for the reduced-form parameters (J = 1, 000 in Step 3); and
a grid of 1, 000 points for λk,i,j (K = 1, 000 in Step 4). Generating this figure took approximately
76 hours using 50 parallel Matlab ‘workers’ on a computer cluster at Bonn University.

Calibrating coverage for a coefficient or a vector of coefficients: One could modify

Step 4 in the algorithm to cover a vector of impulse-response functions, as opposed to one particular

coefficient. In our application, this alternative calibrated radius (over the grid that contains only

µ̂T ) is 4.21. This radius is designed to cover the vector of responses for wages and employment to

a structural demand shock over the 20 quarters under consideration. Calculating this radius took

approximately 57 hours using 50 Matlab workers on a private computer cluster at Bonn University.24

The following figure compares the calibrated projection using the horizon by horizon calibrated

radii against the calibrated projection using a radius of 4.21. The calibration over G implies that

the true calibrated radius rT (α) designed to cover the impulse-response functionshould be larger

24The cluster consists of 16 worker-nodes, where each node comprises 8 virtual CPUs and 32
GB virtual RAM, that is a maximum of 8 workers. Each virtual CPU is the core of a Xeon E7-
8837@2.67GHz-processor.
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than 4.21.

Figure 5: 68% Calibrated Projection for a Frequentist; G = {µ̂T }

(Responses to an Expansionary Demand Shock)
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(a) Cumulative Response of Wages
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(b) Cumulative Response of Employment

(Solid, Blue Line) 68% Projection region using the default radius χ2
27,68% = 29.87; (Dash-

Dotted, Blue Line) 68% Calibrated Projection Region using the radius 4.21; (Dashed, Blue
Line) 68% Calibrated Projection Confidence Region based on the radii in Figure 4; (Shaded, Gray
Area) 68% Bayesian Credible Set based on the priors in Baumeister and Hamilton (2015).
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APPENDIX C: PROJECTION BOUNDS UNDER DIFFERENTIABILITY

This section studies the solution to the mathematical program defining projection whenever the

bounds vk,i,j , vk,i,j are differentiable (and their derivative is bounded away from zero). We show

that a projection region for the (k, i, j) coefficient of the impulse-response function is approximately

equal to the delta-method confidence interval suggested in Gafarov et al. (2015):

[
vk,i,j(µ̂T ) − rσ̂T√

T
, vk,i,j(µ̂T ) +

rσ̂T√
T

]
.

This result can be used to show that, under differentiability, the frequentist calibration of projection

is straightforward: it is sufficient to use the square of the (1 − α) quantile of a standard normal

as the radius of the Wald ellipsoid for the reduced-form parameters. For example, if the desired

confidence level is 95%, the radius of the Wald ellipsoid can be set to (1.64)2.

Let M be the parameter space for µ. The notion of differentiability employed in this section

is based on p. 379 of Van der Vaart and Wellner (1996) and also p. 41 of the recent paper by

Belloni, Chernozhukov, Fernández-Val, and Hansen (2016):

Definition (Uniform Differentiability over Compacta) v : Rd → R is M-uniformly differ-

entiable over compact sets—with derivative function v̇ : Rd → R
d—if for any compact set H ⊆ R

d:

sup
µ∈M

sup
h∈H

∣∣∣
√

T
(

v(µ + h/
√

T ) − v(µ)
)

− v̇(µ)′h
∣∣∣→ 0, as T → ∞.

As usual, the derivative function is said to be bounded away from zero if there is η > 0 such

that:

inf
µ∈M

||v̇(µ)|| > η.

Assuming that the functions vk,i,j and vk,i,j are both M-uniform differentiable over compact

sets—wih derivatives v̇k,i,j , and v̇k,i,j bounded away from zero— it is easy to establish a connection

between our projection confidence interval and a typical ‘delta-method’ confidence interval. Define

the ‘delta-method’ standard errors as:

σ̂T ≡
(

v̇k,i,j(µ̂T )′Ω̂T v̇k,i,j(µ̂T )
)1/2

, σ̂T ≡
(

v̇k,i,j(µ̂T )′Ω̂T v̇k,i,j(µ̂T )
)1/2

,

and, for δ ∈ R, consider the interval

(C.1) DMT (r, δ) ≡
[
vk,i,j(µ̂T ) − rσ̂T√

T
− δ√

T
, vk,i,j(µ̂T ) +

rσ̂T√
T

+
δ√
T

]
,

which—up to the term δ/
√

T —can be interpreted as a ‘delta-method’ plug-in version of the

Imbens and Manski (2004) confidence interval for a set-identified scalar parameter.25 The following

result establishes the relation between the projection confidence set and the confidence interval in

(C.1):

Result 5 (Projection and delta-method confidence interval) Suppose that for T large

enough and with probability one: i) the eigenvalues of Ω̂T belong to some set H ≡ [a, b], 0 < a, b < ∞
25Such interval has been recently considered in the work of Gafarov et al. (2015)
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and ii) µ̂T ∈ M. Suppose also that vk,i,j and vk,i,j are both M-uniform differentiable over compact

sets with derivatives v̇k,i,j , and v̇k,i,j that are bounded away from zero. Then, for every ǫ > 0 there

is T (ǫ, H) such that whenever T > T (ǫ, H):

DMT (r, −ǫ) ⊆ CST (r, λ) ⊆ DMT (r, ǫ).

That is, the projection confidence interval with radius r is approximately equal—in large samples—to

the delta-method confidence interval in equation (C.1).

C.1. Proof of Result 5

Lemma 1 Suppose that the for T large enough and with probability 1: i) the eigenvalues of Ω̂T

belong to some set [a, b], 0 < a, b < ∞ and ii) µ̂T ∈ M. Let v be M-uniformly differentiable with

derivative function bounded away from zero. Then, for every ǫ > 0 there is T (ǫ, a, b) such that if

T > T (ǫ, a, b):

(C.2)

∣∣∣ sup
µ∈CST (r;µ)

v(µ) − v(µ̂T ) − r√
T

(
v̇(µ̂T )′Ω̂T v̇(µ̂T )

)1/2∣∣∣ ≤ ǫ√
T

Proof: Note first that

sup
µ∈CST (r;µ)

v(µ)

can be re-parameterized as

sup
w∈Rd

v
(

µ̂T +
r√
T

Ω̂
1/2
T w

)
.

subject to w′w ≤ 1. Note now that the objective function can be written as:

1√
T

[√
T
(

v
(

µ̂T +
r√
T

Ω̂
1/2
T w

)
− v(µ̂T )

)
− rv̇(µ̂T )′Ω̂

1/2
T w

]
+ v(µ̂) +

r√
T

v̇(µ̂T )′Ω̂
1/2
T w

Since w′w ≤ 1, the assumptions of the lemma imply that there is T1(a, b) such that T > T1(a, b)

implies that Ω̂
1/2
T ω belong to some compact set H [a, b] with probability one. Therefore, the M-

uniform differentiability of v over compacts imply that for every ǫ > 0 there is T (ǫ, a, b) such that

if T > T (ǫ, a, b):

− ǫ√
T

+ v(µ̂T ) +
r√
T

v̇(µ̂T )′Ω̂
1/2
T w ≤ v

(
µ̂T +

r√
T

Ω̂
1/2
T w

)
≤ ǫ√

T
+ v(µ̂T ) +

r√
T

v̇(µ̂T )′Ω̂
1/2
T w.

We use this result to bound the supremum of interest from above and below. Note that:

v(µ̂T )′Ω̂T v(µ̂T ) ≥ inf
µ∈M

||v(µ)||a > 0,

since the derivative is bounded away away from zero and a > 0. Therefore, the value function of

the program:

sup
w∈Rd

v̇(µ̂T )′Ω̂
1/2
T w, s.t. w′w ≤ 1,
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is simply given by
(

v(µ̂T )′Ω̂T v(µ̂T )
)1/2

. This implies that:

− ǫ√
T

+ r
(

v(µ̂T )′Ω̂T v(µ̂T )

T

)1/2

≤ sup
µ∈CST (r,µ)

v
(

µ̂T +
r√
T

Ω̂
1/2
T w

)
− v(µ̂T ),

and

sup
µ∈CST (r,µ)

v
(

µ̂T +
r√
T

Ω̂
1/2
T w

)
− v(µ̂T ) ≤ ǫ√

T
+ r
(

v(µ̂T )′Ω̂T v(µ̂T )

T

)1/2

.

Q.E.D.

Proof of Result 5: Using the same reasoning as above, it is straightforward to show that for

every ǫ > 0 there is T (ǫ, a, b) such that if T > T (ǫ, a, b):

(C.3)
∣∣∣ inf

µ∈CST (r;µ)
v(µ) − v(µ̂T ) +

r√
T

(
v̇′(µ̂T )′Ω̂T v̇(µ̂T )

)1/2∣∣∣ ≤ ǫ√
T

.

Thus, this means that:

CST (r; λ) ⊆
[
vk,i,j(µ̂T ) − (rσ̂T + ǫ)√

T
, vk,i,j(µ̂T ) +

(rσ̂T + ǫ)√
T

]

and

[
vk,i,j(µ̂T ) − (rσ̂T − ǫ)√

T
, vk,i,j(µ̂T ) +

(rσ̂T − ǫ)√
T

]
⊆ CST (r; λ),

where

σ̂T ≡
(

v̇k,i,j(µ̂T )′Ω̂T v̇k,i,j(µ̂T )
)1/2

, σ̂T ≡
(

v̇k,i,j(µ̂T )′Ω̂T v̇k,i,j(µ̂T )
)1/2

.

This establishes Result 5.
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APPENDIX D: ADDENDA FOR IMPLEMENTATION

D.1. SQP/IP vs. Global Methods

Figure 6: Accuracy of SQP/IP for a demand shock
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(a) Wage Response
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(b) Employment Response

(Square, Blue) Optimal Value reported by SQP/IP minus Optimal Value reported by SQP/IP +
Multistart; (Cross, Blue) Optimal Value reported by SQP/IP minus Optimal Value reported by
SQP/IP + Global Search; (Circle, Blue) Optimal Value reported by SQP/IP minus Optimal
Value reported by ga.
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D.2. SQP/IP vs. Grid Search on CST (1 − α, µ)

Figure 7: Simulation error in Projection region.
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(a) Expansionary Demand Shock
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(b) Expansionary Supply Shock

(Solid Line) 68% Projection region using the SQP/IP algorithm described in Section 4; (Con-
nected, Solid Line) 68% Projection region using a two-step algorithm: 1) Sample M=100,000
reduced form parameters that satisfy the 68% Wald ellipsoid constraint. 2) For each draw, solve
for the identified set. The smallest and largest value of the identified set is the simulation-based
approximation of the Projection region.
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D.3. Comparison with the credible set in Giacomini and Kitagawa (2015)

Figure 8: 68% Differentiable Projection and 68% GK Robust Credible Set.
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(a) Expansionary Demand Shock
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(b) Expansionary Supply Shock

(Solid, Blue Line) 68% Frequentist Projection Confidence Interval; (Shaded, Gray Area) 68%
Bayesian Credible Set based on the priors in Uhlig (2005); (Dotted, Blue Line) 68% Calibrated
Projection Confidence Interval. The calibration is implemented assuming differentiability of the
bounds of the identified set and strict set-identification of the structural parameter; (Crosses,
Gray) 68% Robust Credible Set based on Giacomini and Kitagawa (2015) using the priors for the
reduced-form parameters described in Uhlig (2005).


	Introduction
	Overview and Related Literature
	Overview
	Related Literature

	Basic Model, Main Assumptions, and Frequentist Results
	Model
	Assumptions for frequentist inference
	Main result concerning frequentist inference

	Robust Bayesian Credibility
	Calibrated Projection for a Robust Bayesian
	Implementation of Baseline and Calibrated Projection
	Projection as a mathematical optimization problem
	Solution algorithms to implement baseline projection
	Implementing baseline projection in an example
	Results of the implementation of baseline projection
	Implementing Calibrated projection in our example

	Conclusion
	Proof of Main Results
	Verification of Assumption 2 for the Gaussian SVAR with a Normal-Wishart Prior.
	Proof of Result 3 (Finite-Sample Calibration for a Robust Bayesian)
	Asymptotic Calibration for a Robust Bayesian (| Y1, …YT Nd("0362T,"0362T/T))

	Frequentist Calibration of Projection
	Projection bounds under differentiability
	Proof of Result 5

	Addenda for implementation
	SQP/IP vs. Global Methods
	SQP/IP vs. Grid Search on CST(1-, )
	Comparison with the credible set in giacominikitagawa:2014


