DataAnalysis (version 0.0.1)
index
DataAnalysis.html

This package implements tools to build python package and tools.
 
>>> from DataAnalysis import DataAnalysis
>>> from pprint import pprint
>>> data = [
...     {
...             "age": 45,
...             "pay": 80000,
...             "level": 12,
...     },
...     {
...             "age": 18,
...             "pay": 25000,
...             "level": 3,
...     },
...     {
...             "age": 45,
...             "pay": 40000,
...             "level": 3,
...     }
... ]
>>> analyse = DataAnalysis(data)
>>> pprint([x for x in analyse.get_medians()])
[statistictype(key='age', value=45),
 statistictype(key='pay', value=40000),
 statistictype(key='level', value=3)]
>>> pprint([x for x in analyse.get_deviations()])
[statistictype(key='age', value=12.727922061357855),
 statistictype(key='pay', value=23213.98046197353),
 statistictype(key='level', value=4.242640687119285)]
>>> pprint([x for x in analyse.get_variances()])
[statistictype(key='age', value=243),
 statistictype(key='pay', value=808333333.3333334),
 statistictype(key='level', value=27)]
>>> pprint([x for x in analyse.get_averages()])
[statistictype(key='age', value=36.0),
 statistictype(key='pay', value=48333.333333333336),
 statistictype(key='level', value=6.0)]
>>> pprint([x for x in analyse.get_maximums()])
[statistictype(key='age', value=valuetype(key='age', value=45, counter=2)),
 statistictype(key='pay', value=valuetype(key='pay', value=80000, counter=1)),
 statistictype(key='level', value=valuetype(key='level', value=12, counter=1))]
>>> pprint([x for x in analyse.get_minimums()])
[statistictype(key='age', value=valuetype(key='age', value=18, counter=1)),
 statistictype(key='pay', value=valuetype(key='pay', value=25000, counter=1)),
 statistictype(key='level', value=valuetype(key='level', value=3, counter=2))]
>>> pprint([x for x in analyse.count_values_by_keys()])
[statistictype(key='age', value=2),
 statistictype(key='pay', value=3),
 statistictype(key='level', value=2)]
>>> analyse.count_values_by_key('level')
statistictype(key='level', value=2)
>>> pprint([x for x in analyse.sort_by_value()])
[valuetype(key='level', value=3, counter=2),
 valuetype(key='level', value=12, counter=1),
 valuetype(key='age', value=18, counter=1),
 valuetype(key='age', value=45, counter=2),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1),
 valuetype(key='pay', value=80000, counter=1)]
>>> pprint([x for x in analyse.sort_values_by_sum()])
[valuetype(key='level', value=3, counter=2),
 valuetype(key='level', value=12, counter=1),
 valuetype(key='age', value=18, counter=1),
 valuetype(key='age', value=45, counter=2),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1),
 valuetype(key='pay', value=80000, counter=1)]
>>> pprint([x for x in analyse.sort_keys_by_sum()])
[('pay', 145000), ('age', 108), ('level', 18)]
>>> pprint([x for x in analyse.sort_by_counter()])
[valuetype(key='age', value=18, counter=1),
 valuetype(key='pay', value=80000, counter=1),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1),
 valuetype(key='level', value=12, counter=1),
 valuetype(key='age', value=45, counter=2),
 valuetype(key='level', value=3, counter=2)]
>>> pprint([x for x in analyse.sort_by_key()])
[valuetype(key='age', value=45, counter=2),
 valuetype(key='age', value=18, counter=1),
 valuetype(key='level', value=12, counter=1),
 valuetype(key='level', value=3, counter=2),
 valuetype(key='pay', value=80000, counter=1),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1)]
>>> pprint([x for x in analyse.keys_frequences()])
[statistictype(key='age', value=0.07441809186500006),
 statistictype(key='pay', value=99.91317889282416),
 statistictype(key='level', value=0.012403015310833345)]
>>> pprint([x for x in analyse.keys_values_frequences()])
[statistictype(key=valuetype(key='age', value=45, counter=2), value=0.06201507655416673),
 statistictype(key=valuetype(key='age', value=18, counter=1), value=0.012403015310833345),
 statistictype(key=valuetype(key='pay', value=80000, counter=1), value=55.12451249259265),
 statistictype(key=valuetype(key='pay', value=25000, counter=1), value=17.226410153935202),
 statistictype(key=valuetype(key='pay', value=40000, counter=1), value=27.562256246296325),
 statistictype(key=valuetype(key='level', value=12, counter=1), value=0.008268676873888896),
 statistictype(key=valuetype(key='level', value=3, counter=2), value=0.004134338436944448)]
>>> pprint([x for x in analyse.keys_values_count_frequences()])
[statistictype(key=valuetype(key='age', value=45, counter=2), value=22.22222222222222),
 statistictype(key=valuetype(key='age', value=18, counter=1), value=11.11111111111111),
 statistictype(key=valuetype(key='pay', value=80000, counter=1), value=11.11111111111111),
 statistictype(key=valuetype(key='pay', value=25000, counter=1), value=11.11111111111111),
 statistictype(key=valuetype(key='pay', value=40000, counter=1), value=11.11111111111111),
 statistictype(key=valuetype(key='level', value=12, counter=1), value=11.11111111111111),
 statistictype(key=valuetype(key='level', value=3, counter=2), value=22.22222222222222)]
>>> pprint([x for x in analyse.values_frequences()])
[statistictype(key=45, value=22.22222222222222),
 statistictype(key=18, value=11.11111111111111),
 statistictype(key=80000, value=11.11111111111111),
 statistictype(key=25000, value=11.11111111111111),
 statistictype(key=40000, value=11.11111111111111),
 statistictype(key=12, value=11.11111111111111),
 statistictype(key=3, value=22.22222222222222)]
>>> pprint([x for x in analyse.value_frequence(45)])
[45, 22.22222222222222]
>>> pprint([x for x in analyse.key_value_count_frequence(analyse.valuetype(key='pay', value=80000, counter=1))])
[valuetype(key='pay', value=80000, counter=1), 11.11111111111111]
>>> pprint([x for x in analyse.key_value_frequence(analyse.valuetype(key='pay', value=80000, counter=1))])
[valuetype(key='pay', value=80000, counter=1), 55.12451249259265]
>>> pprint([x for x in analyse.key_frequence('pay')])
['pay', 99.91317889282416]
>>> statistictypes = [DataAnalysis.statistictype(key=45, value=22.22222222222222),
...  DataAnalysis.statistictype(key=18, value=11.11111111111111),
...  DataAnalysis.statistictype(key=80000, value=11.11111111111111),
...  DataAnalysis.statistictype(key=25000, value=11.11111111111111),
...  DataAnalysis.statistictype(key=40000, value=11.11111111111111),
...  DataAnalysis.statistictype(key=12, value=11.11111111111111),
...  DataAnalysis.statistictype(key=3, value=22.22222222222222)]
>>> pprint([x for x in DataAnalysis.sort_statistictype_by_key(statistictypes)])
[statistictype(key=3, value=22.22222222222222),
 statistictype(key=12, value=11.11111111111111),
 statistictype(key=18, value=11.11111111111111),
 statistictype(key=45, value=22.22222222222222),
 statistictype(key=25000, value=11.11111111111111),
 statistictype(key=40000, value=11.11111111111111),
 statistictype(key=80000, value=11.11111111111111)]
>>> pprint([x for x in DataAnalysis.sort_statistictype_by_value(statistictypes)])
[statistictype(key=18, value=11.11111111111111),
 statistictype(key=80000, value=11.11111111111111),
 statistictype(key=25000, value=11.11111111111111),
 statistictype(key=40000, value=11.11111111111111),
 statistictype(key=12, value=11.11111111111111),
 statistictype(key=45, value=22.22222222222222),
 statistictype(key=3, value=22.22222222222222)]
>>> pprint([x for x in DataAnalysis.sort_dict_by_value({"a": 2, "b": 1, "c": 3})])
['b', 'a', 'c']
>>> pprint([x for x in analyse.get_values_by_key('pay')])
[valuetype(key='pay', value=80000, counter=1),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1)]
>>> pprint([x for x in analyse.get_gt(DataAnalysis.valuetype(key='level', value=3, counter=2))])
[valuetype(key='age', value=45, counter=2),
 valuetype(key='age', value=18, counter=1),
 valuetype(key='pay', value=80000, counter=1),
 valuetype(key='pay', value=25000, counter=1),
 valuetype(key='pay', value=40000, counter=1),
 valuetype(key='level', value=12, counter=1),
 None]
>>> pprint([x for x in analyse.get_lt(DataAnalysis.valuetype(key='level', value=3, counter=2))])
[None, None, None, None, None, None, None]
>>> pprint([x for x in analyse.get_lt(DataAnalysis.valuetype(key='pay', value=25000, counter=1))])
[valuetype(key='age', value=45, counter=2),
 valuetype(key='age', value=18, counter=1),
 None,
 None,
 None,
 valuetype(key='level', value=12, counter=1),
 valuetype(key='level', value=3, counter=2)]
>>> analyse.count_lt(DataAnalysis.valuetype(key='pay', value=25000, counter=1))
6
>>> analyse.count_gt(DataAnalysis.valuetype(key='pay', value=25000, counter=1))
2
>>> analyse.count_value('level', 3)
valuetype(key='level', value=3, counter=2)
>>> analyse.get_minimum('level')
statistictype(key='level', value=valuetype(key='level', value=3, counter=2))
>>> analyse.get_maximum('level')
statistictype(key='level', value=valuetype(key='level', value=12, counter=1))
>>> analyse.get_sum('level')
statistictype(key='level', value=18)
>>> analyse.get_average('level')
statistictype(key='level', value=6.0)
>>> analyse.get_variance('level')
statistictype(key='level', value=27)
>>> analyse.get_deviation('level')
statistictype(key='level', value=4.242640687119285)
>>> analyse.get_median('level')
statistictype(key='level', value=3)
>>> data = [
...     {
...             "filename": "__init__.py",
...             "size": 255,
...             "lines": 5,
...             "modification": datetime.now(),
...     },
...     {
...             "filename": "WebScripts.py",
...             "size": 256520,
...             "lines": 3214,
...             "modification": datetime(2016, 6, 22, 12, 25, 48),
...     },
...     {
...             "filename": "future_python_file.py",
...     },
... ]
>>> analyse = DataAnalysis(data)
>>> pprint([x for x in analyse.get_sums()])
[statistictype(key='filename', value=None),
 statistictype(key='size', value=256775),
 statistictype(key='lines', value=3219),
 statistictype(key='modification', value=None)]
>>> analyse = DataAnalysis(data, fields=['size', 'lines', 'modification'])
>>> pprint([x for x in analyse.get_sums()])
[statistictype(key='size', value=256775),
 statistictype(key='lines', value=3219),
 statistictype(key='modification', value=None)]
>>> analyse = DataAnalysis(data, filter_=lambda x: x.get("size"))
>>> len(analyse.keys['filename'])
2
>>> analyse = DataAnalysis(data)
>>> len(analyse.keys['filename'])
3
>>> data = (
...     (1,2,3),
...     (500, 412, 561),
...     (721, 216, 683),
...     (10,25,56),
... )
>>> analyse = DataAnalysis(data)
>>> len(analyse.keys[0])
4
>>> analyse = DataAnalysis(data, filters={0: lambda x: x < 100})
>>> len(analyse.keys[0])
2
>>> analyse = DataAnalysis(data, fields=[1,3])
>>> len(analyse.keys[0])
0
>>> pprint([x for x in analyse.get_all_values()])
[valuetype(key=1, value=2, counter=1),
 valuetype(key=1, value=412, counter=1),
 valuetype(key=1, value=216, counter=1),
 valuetype(key=1, value=25, counter=1)]
>>> data = [{"key1": 1, "key2": 2}] * 3 + [{"key1": 2, "key2": 1}] * 2
>>> DataAnalysis.print_data(data, {"key1": "Column name", "key2": 5}, True)
|Column name|key2 |
|-----------|-----|
|1          |2    |
|1          |2    |
|1          |2    |
|1          |2    |
|2          |1    |
|2          |1    |
>>> DataAnalysis.print_data(data, {"key1": "Column name", "key2": 2}, True)
|Column name|ke|
|-----------|--|
|1          |2 |
|1          |2 |
|1          |2 |
|1          |2 |
|2          |1 |
|2          |1 |
>>> DataAnalysis.print_data(data)
|key1|key2|
|----|----|
|1   |2   |
|1   |2   |
|1   |2   |
|1   |2   |
|2   |1   |
|2   |1   |
>>> analysis = DataAnalysis(data)
>>> analysis.statistictypes_printer(analysis.get_deviations())
|key                    |value              |
|-----------------------|-------------------|
|key1                   |0.4898979485566356 |
|key2                   |0.4898979485566356 |
>>> analysis.statistictypes_printer(analysis.get_averages())
|key                    |value              |
|-----------------------|-------------------|
|key1                   |1.4                |
|key2                   |1.6                |
>>> analysis.valuetypes_printer(analysis.get_gt(analysis.valuetype(key="key1", value=0.5, counter=0)))
|key                    |value              |counter     |
|-----------------------|-------------------|------------|
|key1                   |1                  |3           |
|key1                   |2                  |2           |
|key2                   |2                  |3           |
|key2                   |1                  |2           |
>>> from DataAnalysis import PYPLOT
>>> if PYPLOT: analysis.statistictypes_chart(analysis.get_averages())
...
>>> for x in DataAnalysis.get_grouped_DataAnalysis(data, ("key1", "key2")): DataAnalysis.valuetypes_printer(x.get_values()); print()
...
|key                    |value              |counter     |
|-----------------------|-------------------|------------|
|key1                   |1                  |3           |
|key2                   |2                  |3           |
<BLANKLINE>
|key                    |value              |counter     |
|-----------------------|-------------------|------------|
|key1                   |2                  |2           |
|key2                   |1                  |2           |
<BLANKLINE>
>>> if PYPLOT: analysis.valuetypes_values_chart(analysis.get_all_values())
...
>>> if PYPLOT: analysis.valuetypes_counters_chart(analysis.get_values())
...
>>> import sys
>>> sys.modules["matplotlib"] = sys
>>> sys.modules["matplotlib.pyplot"] = sys
>>> from importlib import reload
>>> DataAnalysis = reload(sys.modules["DataAnalysis"]).DataAnalysis
>>> DataAnalysis.show_chart
Traceback (most recent call last):
  ...
AttributeError: type object 'DataAnalysis' has no attribute 'show_chart'
>>>
 
Run tests:
 ~# python -m doctest DataAnalysis.py
 ~# python DataAnalysis.py            # Verbose mode
 
1 items passed all tests:
  79 tests in __main__
79 tests in 65 items.
79 passed and 0 failed.
Test passed.
 
~# coverage run DataAnalysis.py
~# coverage report
Name              Stmts   Miss  Cover
-------------------------------------
DataAnalysis.py     290      0   100%
-------------------------------------
TOTAL               290      0   100%
~#

 
Classes
       
builtins.object
DataAnalysis

 
class DataAnalysis(builtins.object)
    DataAnalysis(data: collections.abc.Iterable[typing.Dict[collections.abc.Hashable, ~Value], collections.abc.Iterable[~Value]], fields: List[collections.abc.Hashable] = None, filter_: collections.abc.Callable = None, filters: Dict[collections.abc.Hashable, collections.abc.Callable] = {})
 

 
  Methods defined here:
__init__(self, data: collections.abc.Iterable[typing.Dict[collections.abc.Hashable, ~Value], collections.abc.Iterable[~Value]], fields: List[collections.abc.Hashable] = None, filter_: collections.abc.Callable = None, filters: Dict[collections.abc.Hashable, collections.abc.Callable] = {})
Initialize self.  See help(type(self)) for accurate signature.
build_keys(self) -> None
This function build data keys (reqired for all functions).
compare_event_action(self, ref_value: DataAnalysis.valuetype, event: collections.abc.Callable, match_action: collections.abc.Callable, not_match_action: collections.abc.Callable = <function DataAnalysis.<lambda> at 0x0000013E035B5630>) -> Any
This function calls match_action if event
return is True else calls not_match_action.
 
event signature: event(tested_value: valuetype, ref_value: valuetype) -> bool
match_action signature: match_action(value: valuetype) -> Any
not_match_action signature: not_match_action(value: valuetype) -> Any
compare_values(self, function: collections.abc.Callable, value1: DataAnalysis.valuetype, value2: DataAnalysis.valuetype) -> bool
This function compares valuetypes.
count_gt(self, value: DataAnalysis.valuetype) -> int
This function counts values greater than value.
count_lt(self, value: DataAnalysis.valuetype) -> int
This function counts values lesser than value.
count_value(self, key: collections.abc.Hashable, value: ~Value) -> DataAnalysis.valuetype
This function returns valuetype representing
a key value and counter of this value.
count_values_by_key(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This functions returns a statistictype with
key and counter of differents values for this key.
count_values_by_keys(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This functions returns statistictypes with
key and counter of differents values for this key.
get_all_values(self) -> collections.abc.Iterable[DataAnalysis.valuetype]
This function returns a list of
all keys, values and counters.
get_average(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns average for a specific key.
get_averages(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns averages.
get_deviation(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns deviation for a specific key.
get_deviations(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns deviations.
get_gt(self, value: DataAnalysis.valuetype) -> collections.abc.Iterable[DataAnalysis.valuetype]
This function yields valuetype greater than value.
get_keys_counter(self) -> collections.Counter
This function returns a Counter object
representing key and sum of the values.
get_keys_values_count_counter(self) -> collections.Counter
This function returns a Counter object
representing valuetypes and values count.
get_keys_values_counter(self) -> collections.Counter
This function returns a Counter object
representing valuetypes and sum of the values.
get_lt(self, value: DataAnalysis.valuetype) -> collections.abc.Iterable[DataAnalysis.valuetype]
This function yields valuetype lesser than value.
get_maximum(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns maximum for a specific key.
get_maximums(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns maximums.
get_median(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns median for a specific key.
get_medians(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns medians.
get_minimum(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns minimum for a specific key.
get_minimums(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns minimums.
get_numbers_by_key(self, key: collections.abc.Hashable) -> Optional[List[Union[int, float]]]
This function returns a list of numbers by key value.
get_statistic(self, key: collections.abc.Hashable, function: collections.abc.Callable, valuegetter: collections.abc.Callable = None) -> DataAnalysis.statistictype
This function returns specific statistic for a specific key.
get_statistics(self, function: collections.abc.Callable, valuegetter: collections.abc.Callable = None) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns specific statistics.
get_sum(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns sum for a specific key.
get_sums(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns sums.
get_values(self) -> collections.abc.Iterable[DataAnalysis.valuetype]
This function returns a list of
each keys, values and counters.
get_values_by_key(self, key: collections.abc.Hashable) -> collections.abc.Iterable[DataAnalysis.valuetype]
This function returns the list of
keys, values and counters for a key.
get_values_counter(self) -> collections.Counter
This function returns a Counter object
representing values and values count.
get_variance(self, key: collections.abc.Hashable) -> DataAnalysis.statistictype
This function returns variance for a specific key.
get_variances(self) -> collections.abc.Iterable[DataAnalysis.statistictype]
This function returns variances.
key_frequence(self, key: collections.abc.Hashable, pourcent: bool = True, counter: collections.Counter = None, all_sum: Union[int, float] = None) -> DataAnalysis.statistictype
This functions returns a statistictype of key frequence.
key_value_count_frequence(self, value: DataAnalysis.valuetype, pourcent: bool = True, counter: collections.Counter = None, all_sum: Union[int, float] = None) -> DataAnalysis.statistictype
This function returns a statistictype of
the frequency of the sum of the values in
the key.
key_value_frequence(self, value: DataAnalysis.valuetype, pourcent: bool = True, counter: collections.Counter = None, all_sum: Union[int, float] = None) -> DataAnalysis.statistictype
This function returns a statistictype of
the frequency of the sum of the values in
the key.
keys_frequences(self, pourcent: bool = True, counter: collections.Counter = None) -> collections.abc.Iterable[DataAnalysis.statistictype]
This generator yields statistictypes of keys frequences.
keys_values_count_frequences(self, pourcent: bool = True, counter: collections.Counter = None) -> collections.abc.Iterable[DataAnalysis.statistictype]
This generator yields statistictypes of
the frequency of the sum of the values in
the key.
keys_values_frequences(self, pourcent: bool = True, counter: collections.Counter = None) -> collections.abc.Iterable[DataAnalysis.statistictype]
This generator yields statistictypes of
the frequency of the sum of the values in
the key.
sort_by_counter(self, *args, **kwargs) -> collections.abc.Iterable[DataAnalysis.valuetype]
This functions returns keys, values
and counters sorted by counters.
sort_by_key(self, *args, **kwargs) -> collections.abc.Iterable[DataAnalysis.valuetype]
This functions returns keys, values and counters sorted by counters.
sort_by_value(self, *args, **kwargs) -> DataAnalysis.valuetype
This functions returns keys, values
and counters sorted by values.
sort_keys_by_sum(self, counter: collections.Counter = None) -> List[Tuple[collections.abc.Hashable, ~Value]]
This functions returns keys and
values sorted by sum of values.
sort_values_by_sum(self, *args, **kwargs) -> collections.abc.Iterable[DataAnalysis.valuetype]
This functions returns keys, values
and counters sorted by sum of values.
value_frequence(self, value: ~Value, pourcent: bool = True, counter: collections.Counter = None, all_sum: Union[int, float] = None) -> DataAnalysis.statistictype
This functions returns a statistictype of value frequence.
values_frequences(self, pourcent: bool = True, counter: collections.Counter = None) -> collections.abc.Iterable[DataAnalysis.statistictype]
This generator yields statistictypes of values frequences.

Class methods defined here:
get_grouped_DataAnalysis(data: collections.abc.Iterable[typing.Dict[collections.abc.Hashable, ~Value], collections.abc.Iterable[~Value]], columns: Tuple[collections.abc.Hashable], *args, **kwargs) -> collections.abc.Iterable[~DataAnalysis] from builtins.type
This function returns a DataAnalysis instance
for each group formatted by columns values.

Static methods defined here:
frequence(all_sum: Union[int, float], sample_sum: Union[int, float], pourcent: bool = True) -> Union[int, float]
This function returns the frequence of sample in all.
get_iterator_tuples(data: collections.abc.Iterable[typing.Dict[collections.abc.Hashable, ~Value], collections.abc.Iterable[~Value]]) -> collections.abc.Iterable[typing.Tuple[collections.abc.Hashable, ~Value]]
This function returns an iterator of tuples from dict or Iterable.
print_data(data: collections.abc.Iterable[typing.Dict[collections.abc.Hashable, ~Value], collections.abc.Iterable[~Value]], headers: Dict[collections.abc.Hashable, Union[str, int]] = {}, onetime: bool = False) -> None
This function prints data.
 
The headers are printed on the first
row and set the width of the columns.
sort_dict_by_value(data: Dict[collections.abc.Hashable, ~Value], *args, **kwargs) -> Dict[collections.abc.Hashable, ~Value]
This functions returns the dict sorted by values.
sort_statistictype_by_key(data: collections.abc.Iterable[DataAnalysis.statistictype], *args, **kwargs) -> collections.abc.Iterable[DataAnalysis.statistictype]
This functions returns statistictypes sorted by keys.
sort_statistictype_by_value(data: collections.abc.Iterable[DataAnalysis.statistictype], *args, **kwargs) -> collections.abc.Iterable[DataAnalysis.statistictype]
This functions returns statistictypes sorted by values.
statistictypes_printer(data: collections.abc.Iterable[DataAnalysis.statistictype]) -> None
This function prints statistictypes.
valuetypes_printer(data: collections.abc.Iterable[DataAnalysis.valuetype]) -> None
This function prints valuetypes.

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
statistictype = <class 'DataAnalysis.statistictype'>
statistictype(key, value)
valuetype = <class 'DataAnalysis.valuetype'>
valuetype(key, value, counter)

 
Data
        __all__ = ['DataAnalysis']
__author_email__ = 'mauricelambert434@gmail.com'
__copyright__ = '\nPythonToolsKit Copyright (C) 2022 Maurice Lam...ome to redistribute it\nunder certain conditions.\n'
__description__ = '\nThis package implements tools to build python package and tools.\n'
__license__ = 'GPL-3.0 License'
__maintainer__ = 'Maurice Lambert'
__maintainer_email__ = 'mauricelambert434@gmail.com'
__url__ = 'https://github.com/mauricelambert/PythonToolsKit'

 
Author
        Maurice Lambert
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy