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ABSTRACT

We introduce a novel class of stochastic volatility models, which can utilize and relate many high-frequency realized

volatility (RV) measures to latent volatility. Instrumental variable methods provide a unified framework for estima-

tion and testing. We study parameter inference problems in the proposed framework with nonstationary stochastic

volatility and exogenous predictors in the latent volatility process. Identification-robust methods are developed for

a joint hypothesis involving the volatility persistence parameter and the autocorrelation parameter of the composite

error (or the noise ratio). For inference about the volatility persistence parameter, projection techniques are applied.

The proposed tests include Anderson-Rubin-type tests and their point-optimal versions. For distributional theory,

we provide finite-sample tests and confidence sets for Gaussian errors, establish exact Monte Carlo test procedures

for non-Gaussian errors (possibly heavy-tailed), and show asymptotic validity under weaker assumptions. Simula-

tion results show that the proposed tests outperform the asymptotic test regarding size and exhibit excellent power

in empirically realistic settings. The proposed inference methods are applied to IBM’s price and option data (2009–

2013). We consider 175 different instruments (IVs) spanning 22 classes and analyze their ability to describe the low-

frequency volatility. IVs are compared based on the average length of the proposed identification-robust confidence

intervals. The superior instrument set mostly comprises 5-minute HF realized measures, and these IVs produce

confidence sets which show that the volatility process is nearly unit-root. In addition, we find RVs with higher fre-

quency yield wider confidence intervals than RVs with slightly lower frequency, indicating that these confidence in-

tervals adjust to absorb market microstructure noise. Furthermore, when we consider irrelevant or weak IVs (jumps

and signed jumps), the proposed tests produce unbounded confidence intervals. We also find that both RV and BV

measures produce almost identical confidence intervals across all 14 subclasses, confirming that our methodology

is robust in the presence of jumps. Finally, although jumps contain little information regarding the low-frequency

volatility, we find evidence that there may be a nonlinear relationship between jumps and low-frequency volatility.

JEL Classification: C15, C22, C53, C58.

Keywords: Realized variance, high-frequency data, identification-robust test, market microstructure

noise.
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1 Introduction

Alongside GARCH models [see Francq and Zakoïan (2019)], the stochastic volatility (SV) model [origi-

nally proposed by Taylor (1982)] is a fundamental framework for modelling time-varying volatility in

financial and macroeconomic time series. The SV model is conceptually simple and theoretically at-

tractive, but can pose challenges for estimation, due to the presence of latent variables.1 In previous

work [Ahsan and Dufour (2019, 2021)], we have proposed computationally simple and efficient (moment-

based) methods for estimating SV models. In particular, these results show that allowing for additional

explanatory variables (such as more lags in the volatility specification) can provide substantial gains in

statistical fit and volatility forecasting. In this paper, we pursue this research by allowing the use of other

variables (such as data on realized volatility) and developing testing procedures better adapted to a setup

that includes latent variables and instruments.

Hypothesis testing on such models has remained relatively underdeveloped, relying on asymptotic stan-

dard errors – based on delta-method local approximations [for theoretical discussions of this issue, see

Dufour (1997), Dufour et al. (2024)] and stationarity assumptions. High persistence in volatility data is

also a common problem which complicates asymptotic distributional theory and should be accommo-

dated. Allowing for information from additional variables may also provide power gains. In view of these

issues, we first introduce a new class of discrete-time SV models, which are direct extensions of the usual

state-space representation of stochastic volatility models with an instrument equation. We then achieve

robustness to persistence and avoid the delta method by exploiting instrumental variables (IV) methods

in the context of identification-robust (IR) procedures, which are adapted to a model with latent variables

and measurement errors. Power is further improved through point-optimal tests, and Monte-Carlo test

methods are used to achieve better level control (with possibly non-Gaussian error distributions). Since

the choice of the instruments (IVs) plays a crucial role, we consider broad classes of IVs for the latent

volatility, e.g., high-frequency (HF) realized volatility (RV) measures. To the best of our knowledge, the

present paper is the first one to propose such IV-based methods for testing SV models.

In the proposed framework, the problem of testing hypotheses and building confidence sets for the

volatility persistence parameter is explored; for discussions on the importance of this parameter, see Ap-

pendix A. We investigate restrictions on volatility persistence, including nonstationarity of the volatility

process by testing for a unit root in the volatility equation, within log-squared low-frequency returns using

multiple measures of volatility; for discussions on nonstationarity in conditional variance, see Appendix

B. The autoregressive root of the latent volatility process is allowed to be close to or equal to one. Beyond

testing, the aim is to construct a valid confidence set for the persistence parameter that can be used to

1On the advantages and disadvantages of the stochastic volatility specification, see the discussion in Ahsan and Dufour (2021).
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determine the volatility forecast interval and/or the distribution of volatility forecasts.

Previous attempts on hypothesis testing for the volatility persistence parameter are limited. According to

Harvey et al. (1994), the SV model has an ARMA representation with a large negative moving average (MA)

root. Standard unit root tests are known to suffer from severe size distortions in the presence of negative

MA roots [Pantula (1991), Schwert (2002)], which undermines their reliability in this context. Wright (1999)

proposed to use the unit root test of Perron and Ng (1996) which is based on large-sample approximations

and is not reliable in finite samples (requires extremely large samples) and different parameter settings.

Furthermore, Wright (1999) considered other classical unit root tests, which were found to perform even

worse under similar parameter settings. These inference procedures are based on asymptotic standard

errors, which can be markedly different when a time series is nearly nonstationary and unreliable in finite

samples; see Park and Phillips (2001) and Bandi and Phillips (2003) for the discussion of asymptotic theory

for nonstationary nonlinear models.

Dufour and Valéry (2009) and Ahsan and Dufour (2019, 2021) developed both exact and asymptotic tests

for no persistence (or no clustering) hypothesis, which are primarily based on stationarity (time invariance

of unconditional variances and autocovariances) and normality assumptions. Since the latent log volatility

process may be highly persistent, applying these procedures to empirical data is problematic. Simulation

results (in this paper, see Panel A of Table 1) show that tests based on asymptotic standard errors fail to

control the type I errors when the volatility persistence parameter approaches the unit circle. The formal

hypothesis testing problem for the persistence parameter (concerning size and power) in the latent non-

stationary stochastic volatility equation with additional measurements for volatility has not been studied

in the literature, i.e., all these previous studies did not exploit high-frequency information.

To be more specific, the other contributions of this paper can be summarized as follows.

First, we consider a variety of IVs for the latent log volatility, including realized volatility (RV) measures

at a different frequency (e.g., 1-second or 5-minute), sampling scheme (calendar time or tick time), and

functional form (e.g., jumps or kernel). We also consider subsampled versions of some of these HF IVs;

these include realized semivariance, realized range RV, nearest neighbor truncated RV, and HF principal

component factors.2

Second, we propose inference methods which are robust to weak instruments since potential HF IVs may

2We use RV measures as IVs for the daily latent volatility, in contrast with recent studies, where RV has been incorporated in

traditional volatility models (GARCH or SV) by adding a measurement equation which connects the daily volatility measure and

the realized volatility. It is worthwhile to note that several studies in the SV literature, such as those by Takahashi et al. (2009)

and Koopman and Scharth (2012), model realized volatility and daily returns simultaneously, assuming that the realized volatility

includes the market microstructure noise but still contains much information regarding the latent volatility whereas daily returns

contain less noise but may not have sufficient information about the latent volatility. In the GARCH-type framework, examples

of such models are the Multiplicative Error Model (MEM) model [Engle and Gallo (2006)], the HEAVY (High-frEquency-bAsed

VolatilitY) model [Shephard and Sheppard (2010), Noureldin et al. (2012)] and the Realized GARCH model [Hansen et al. (2012)].
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be weak due to discretization errors or market microstructure noise.3 The discretization error is present in

the estimates of the volatility since we only observe prices at intermittent and discrete points in time. The

market microstructure noise is due to bid/ask bounces, the different price impact of different types of

trades, limited liquidity, or other types of market frictions. These noises may lead to a divergence between

the observed price process and the true or latent frictionless equilibrium price process.4 Thus incorporat-

ing noisy RV estimates may lead to weak identification. As a result, standard inference procedures may

produce invalid confidence tests and sets.

As pointed out by Dufour (1997), the statistical inference should be based on proper pivots, especially

when a model involves locally almost unidentified parameters, i.e., in the presence of weak IVs. The

proposed inference methods include Anderson-Rubin-type (AR) test and point-optimal version of this

test (AR∗). The AR test is considered robust to weak IVs because the test has the correct size in cases

where IVs are weak and/or strong. Point-optimal tests gain power by exploiting the differences in the er-

ror covariance matrices under the null and the alternative; see King (1980), Dufour and King (1991), and

Andrews et al. (2006).

Third, we consider a joint testing problem where we make an inference jointly on both the volatility per-

sistence parameter and the autocorrelation parameter of the composite error (or the noise ratio). Hence,

for inference on general (possibly nonlinear) transformations of model parameters [single parameter or

a subvector], projection techniques can be applied [see Dufour (1989), Dufour (1990), Dufour and Jasiak

(2001), Dufour and Taamouti (2005, 2007)].

Fourth, the proposed inference procedures are also robust to dynamics, i.e., nonstationarity. Under the

null hypothesis (even with nonstationary stochastic volatility) and appropriate assumptions on IVs, these

tests can become pivotal functions with the possibility of exact inference.

Fifth, we employ three different sets of assumptions for the error distribution:

1. Assuming Gaussian errors, we provide confidence sets and tests based on standard Fisher critical

values for the AR test statistic. For the point-optimal version, we propose to use the Monte Carlo

3In IV regressions, when IVs are not valid (the identification conditions are not satisfied), the standard asymptotic theory for

estimators and test statistics typically collapses. Further, when IVs are weak, the limiting distributions of standard test statistics -

like Student, Wald, likelihood ratio and Lagrange multiplier criteria - have non-standard distributions and often depend heavily

on nuisance parameters; see Phillips (1989), Bekker (1994), Dufour (1997), Staiger and Stock (1997), and Wang and Zivot (1998).

In particular, standard Wald-type procedures based on asymptotic standard errors are very unreliable in the presence of weak

identification.
4The literature on constructing consistent volatility proxy using HF data is considerable. These include but not limited to

maximum likelihood estimation [Aït-Sahalia et al. (2005)], quasi-maximum likelihood estimation [Xiu (2010)], Two Scales Real-

ized Volatility [Zhang et al. (2005)], Multi-Scale Realized Volatility [Zhang (2006)], Realized Kernels [Hansen and Lunde (2006),

Barndorff-Nielsen et al. (2008, 2011)], and Pre-Averaging volatility estimation [Jacod et al. (2009)]. Other relevant references in-

clude Bandi and Russell (2006), Fan and Wang (2007), Gatheral and Oomen (2010), Kalnina and Linton (2008), Li and Mykland

(2007), and Aït-Sahalia et al. (2011).
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tests (MCT) method [see Dwass (1957), Barnard (1963) and Dufour (2006)].

2. We assume that the conditional distribution of scale transformed error is completely specified up to

an unknown scale factor, under which the MCT technique can apply for exact statistical inference.

This assumption enables us to deal with non-standard error distributions. For example, even when

errors have a heavy-tailed distribution, such as Cauchy distribution or more generally the family of

stable distributions, which may not have moments and thus makes statistical inference complicated,

our procedures provide exact solutions.

3. We show the asymptotic validity of these procedures under quite general distributional assumptions.

Sixth, we study the statistical properties of the proposed inference procedures by simulation experi-

ments. We find that the usual asymptotic t-tests fail to control the level, whereas the proposed tests con-

trol the level and show excellent power. These findings hold for several empirically realistic simulation

setups, where the simulated DGPs are incorrectly specified due to the violation of independence assump-

tion and/or misspecification of error distributions together with either weak, low- or high-frequency in-

struments.

Finally, we apply the proposed procedures to IBM’s price and option data (2009-2013). We consider 175

different instruments spanning 22 different classes and look at their ability to describe the low-frequency

volatility. The average length of confidence intervals produced by the proposed tests is used to examine

the strength of the IVs. The superior instrument set constitutes of 1-, 5- and 10-minute high-frequency re-

alized measures and option implied volatilities. These IVs produce confidence sets where the persistence

parameter lies roughly between 0.9 and 1.0. This result shows that the latent volatility process of IBM is

highly persistent and close to unit-root.

Further, we find RVs with higher frequency produce wider confidence intervals than RVs with slightly

lower frequency, pointing out that these confidence intervals adjust to incorporate the microstructure

noise or discretization error. We also find jumps and signed jumps have no or little information con-

tent regarding the low-frequency volatility, whereas their log squared versions have a strong identification

strength. When we consider irrelevant or weak instruments, such as jumps and signed jumps, the pro-

posed procedures produce unbounded (valid) confidence sets with a non-zero probability.

This paper proceeds as follows. Section 2 specifies models and assumptions. Section 3 proposes finite-

sample identification-robust inference procedures, whereas Section 4 extends finite-sample procedures

with non-standard error distributions. Section 5 develops the asymptotic validity of the proposed tests.

Section 6 presents the simulation study, and Section 7 presents the empirical applications. Section 8 offers
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conclusions. The mathematical proofs, other discussions, and additional results are provided in an online

Supplementary Appendix.

2 Framework

This paper explores extensions of the standard log-normal SV model, which is characterized by the follow-

ing equations:

st =σt zt , log(σ2
t ) =µ+φ log(σ2

t−1)+ vt , (2.1)

where st is the return observed at time t , and σt is the corresponding volatility. The zt ’s and vt ’s, are i.i.d.

N (0, 1) and N (0, σ2
v ) random variables, respectively and φ, µ, σv are the fixed parameters of the model.

The above SV model can be written in state-space form:

wt =µ+φwt−1 + vt , yt = wt +ǫt , (2.2)

where yt := log(s2
t )−E

[

log(z2
t )

]

, wt := log(σ2
t ), and ǫt := log(z2

t )−E
[

log(z2
t )

]

. By the normality assumption

on zt , the transformed errors ǫt are i.i.d. according to a centered log(χ2
(1)) distribution, so that E

[

log(z2
t )

]

≃

−1.2704 and σ2
ǫ := E[ǫ2

t ] = Var
(

log(z2
t )

)

=π2/2.5

From (2.2), it is clear that using a proxy for latent volatility (e.g., replacing wt by yt ) can induce a mea-

surement error problem. Further, the latent volatility process induces moving-average measurement er-

rors. These problems motivate one to use IV methods. In the following assumption, we introduce a gen-

eralized stochastic volatility (GSV) model, where IVs are incorporated in Z̄t−2, which are related to wt−1

but uncorrelated to ǫt−1.

Assumption 2.1. GENERALIZED STOCHASTIC VOLATILITY MODEL. The process
{

yt : t ∈N0

}

satisfies the

following equations:

State Transition Equation: w = φw−1 +Xβ+ v (2.3)

Measurement Equation: y = w +ǫ (2.4)

Instrument Equation: w−1 = Z̄−2π̄+u−1 (2.5)

where w = (w1, . . . , wT )′, w−1 = (w0, . . . , wT−1)′, y = (y1, . . . , yT )′ are T ×1 vector, X = [X ′
1, . . . , X ′

T ]′ is a T ×k

matrix of exogenous explanatory variables, Z̄−2 = [Z̄ ′
−1, . . . , Z̄ ′

T−2]′ is a T ×m matrix of of variables related

to w−1, while ǫ = (ǫ1, . . . , ǫT )′, v = (v1, . . . , vT )′, u−1 = (u0, . . . , uT−1)′ are T × 1 vector of disturbances. The

5(2.2) can be expressed in an ARMA form, which can be used to derive estimators for log-normal SV model; for further details,

see Francq and Zakoïan (2006) and Ahsan and Dufour (2021).
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matrices of unknown coefficients φ, β, and π̄ have dimensions 1×1, k ×1 and m ×1, respectively.

We do not impose any stationary restriction on the latent volatility process, i.e., |φ| = 1 belongs to the

parameter space. This is allowed by the fact that we focus on hypothesis testing (as opposed to point

estimation), as is typically done by identification-robust and finite-sample methods. Indeed, difficulties

with non-stationarity or identification failure can often be bypassed by using such an approach; see, for

example, Dufour (2003), Dufour and King (1991), and Dufour and Kiviet (1998). The assumption that the

latent autoregressive volatility process is first-order is not essential to the analysis. Indeed, higher-level

dynamics could be allowed, but in this paper we focus on the first-order case which illustrates the main

points of the paper without needless generality. The matrix X t is a set of exogenous variables, which may

predict the latent volatility, capture the leverage effect, or incorporate heterogeneous autoregressive (HAR)

structure, and jump components. For instance, consider a basic formulation of the leverage function as:

X t = τ1 z̃t + τ2(z̃2
t − 1), where z̃t = st /RVt and RVt is the realized volatility at time t . This specification

can generate an asymmetric response in volatility to return shocks; for a discussion regarding this type of

leverage function, see Hansen et al. (2012).

To derive finite distributional theory for test statistics (proposed in Section 3), we employ the following

assumptions.

Assumption 2.2. INDEPENDENCE. The T ×k matrix X and the T ×m matrix Z̄−2 are independent of the

T ×1 vectors v and ǫ.

Assumption 2.3. FULL RANK. rank(X ) = k, 1 ≤ rank(Z̄−2) = m < T , 1 ≤ rank[Z−2, X1, X2] = l +k < T , where

Z−2, X1, and X2 are T × l , T ×k1, and T ×k2 matrices respectively, k = k1 +k2 and m = l +k2.

Assumption 2.4. GAUSSIAN NOISE. The ǫt ’s and vt ’s are i.i.d. N (0, σ2
ǫ) and N (0, σ2

v ) random variables,

respectively.

In order to handle common variables (e.g., the constant term) in equations (2.3) and (2.5), Assumption

2.3 allows for the presence of common columns in the matrices Z̄−2 and X . If Z̄−2 and X have k2 columns

in common (0 ≤ k2 < m) then the other k1 columns of X are linearly independent of Z̄−2. The full-rank

Assumption 2.3 guarantees unique least-squares estimates in AR-type regressions. It would be easy to al-

low for rank-deficiency, but degree-of-freedom corrections would then be required; for ways this can be

done in a similar IV context, see Dufour and Taamouti (2007). For exposition simplicity, we focus here

on the full-rank case. Due to the robustness of AR-type procedures to missing instruments, any subset of

the instrument matrix that satisfies the rank condition yields a valid test; we call this important feature

robustness to missing instruments (or instrument exclusion) [Dufour and Taamouti (2007). Note also that
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using too many instruments (which may be quasi-collinear or redundant) can reduce the power the pro-

posed procedures. No restriction is imposed on the distribution of u and it may follow any distribution

(heteroskedastic or autocorrelated) since no statistical property of u has effects on the validity of the tests

proposed in this paper.

Note that we change the distributional assumption of ǫt by an i.i.d. N (0, σ2
ǫ) distribution. This is con-

sistent with several previous studies where the distribution of ǫt is approximated by a normal distribution

characterized by a mean of zero and a variance of π2/2; see Harvey et al. (1994), Wright (1999). We relax

the above assumptions in Sections 4 and 5.

The IV regression requires valid IVs for the observable volatility proxy yt , which is typically the low-

frequency (LF) daily squared return. As a result, IVs are also connected to the logarithm of latent daily

volatility [see equation (2.5)]. To find valid IVs, we first look at the properties of the observed volatility

proxy yt . If yt is autocorrelated with a sufficiently long lag and the ǫt ’s are uncorrelated, then the lag values

of observed proxy (yt−2, yt−3, yt−4, . . .) are potential IVs for yt−1. For the sake of efficiency, it is typically

preferable to avoid using too many lagged values as IVs, because this requires truncating the sample. We

can also use realized volatility as IV (Z̄t−2 contains past realized volatilities) since HF price data contain

valuable information regarding the latent volatility. In Section 7, we consider daily and HF IVs, as well

option implied volatility.

3 Finite-sample test procedures

In this section, we consider the problem of testing the volatility persistence parameter in a GSV model

(as specified by Assumption 2.1), i.e., testing a restriction on volatility clustering. We propose two finite-

sample procedures, which are valid under Assumptions 2.2 - 2.4. We first focus on the null hypothesis:

H0 : φ=φ0 . (3.1)

To do this, we consider an instrument substitution method, based on replacing unobserved variables with

a set of IVs. We first substitute (2.4) into (2.3):

y =φy−1 +Xβ+ v +ǫ−φǫ−1 . (3.2)

Subtracting φ0 y−1 on both sides of (3.2), we get:

y −φ0 y−1 = (φ−φ0)y−1 +Xβ+ v +ǫ−φǫ−1 . (3.3)

7



Since E[yt−1ǫt−1] 6= 0, we need to find IVs for w−1 to tackle this endogeneity problem. Substituting (2.4)

into (2.5), we have y−1 = Z̄−2π̄+η−1 , where η−1 := ǫ−1 +u−1.6 By Assumption 2.2, Z̄−2 is independent of

ǫ−1. On introducing the expression fro y−1 into (3.3), we get:

y −φ0 y−1 = Z̄−2π̄(φ−φ0)+Xβ+ξ , ξ := (φ−φ0)u−1 + v +ǫ−φ0ǫ−1 . (3.4)

Using Assumption 2.3, we can write (3.4) as

y −φ0 y−1 = Z−2δ+Xβ∗+ξ (3.5)

where δ := π̄1(φ−φ0), β∗ := (β′
1,β′

2∗)′, β2∗ :=β2 + π̄2(φ−φ0), π̄ := (π̄′
1, π̄′

2)′ and π̄i is a ki ×1 vector.

3.1 Anderson-Rubin-type procedure

Since ǫt −φ0ǫt−1 is an MA(1) process, the components of ξ are serially correlated. However, when φ=φ0 =

0, ξ is distributed according to N (0, σ2
ξ

IT ) distribution, with σ2
ξ
= σ2

v +σ2
ǫ . Consequently the model (3.5)

satisfies all the assumptions of the classical linear model when φ0 = 0. Furthermore, since δ = 0 when

φ=φ0, we can test H0 by a standard F-test of the null hypothesis: H∗
0 : δ= 0. This F -statistic has the form

AR(φ0) =
(y −φ0 y−1)′(M [X ]−M [X , Z−2])(y −φ0 y−1)/l

(y −φ0 y−1)′M [X , Z−2](y −φ0 y−1)/(T − l −k)
(3.6)

where M(A) = I − A(A′A)−1 A′. AR(φ0) can be interpreted as an Anderson-Rubin-type statistic. When nor-

mality holds
[

ξ∼N (0, σ2
ξ

IT )
]

and X and Z−2 are exogenous, we have AR(φ0) ∼ F (l ,T − l −k), and H0(φ0)

can be tested by using a critical region of the form
{

AR(φ0) > f (α)
}

where f (α) = Fα(l , T − l − k) is the

(1−α)-quantile of the F (l , T − l −k) distribution.7

Unfortunately, this property does not extend to a more general AR(φ0) statistic where φ0 6= 0, because in

this case the errors ξt are not i.i.d. under H0. When φ0 6= 0, it is easy to see that the model (3.5) under H0

does not satisfy all the assumptions of the classical linear model. In this case, under the null hypothesis,

ξ= v +ǫ−φ0ǫ−1 is an MA(1) process which makes the standard t-tests and F-tests are invalid because the

standard errors are wrong. We could correct the standard errors by a Generalized Least Squares (GLS) type

transformation. The model defined by equation (3.5) can be transformed under the H0 to a model such

that an AR-type test is valid, and the distribution of the test statistic follows an F -distribution.

Under the null hypothesis, ξ= v + ǫ−φ0ǫ−1 is an MA(1) process with ξ∼N
[

0, σ2
ξ
Σ(ρ)

]

[by Assumption

6The MA(1) assumption follows naturally from the basic SV(1) specification. It would be of interest to consider more general

error structures, such as MA(q), and indeed our approach can be extended to deal with more complex models. As this raises a

wide range of associated problems, it is left for further work.
7When the disturbances are i.i.d with finite fourth-order moments, the AR-statistic converges under H0 to a χ2 distributed

random variable when the sample size gets large. This large sample distribution of the AR-statistic does not depend on the value

of π̄ which makes it a more reliable statistic for practical purposes than the Wald statistic.
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, (3.7)

σ2
ξ := (1+φ2

0)σ2
ǫ +σ2

v , ρ :=
−Cov(ξtξt−1)

Var(ξt )
=

φ0σ
2
ǫ

(1+φ2
0)σ2

ǫ +σ2
v

. (3.8)

Clearly, ρ is a function of φ0, σ2
v , and σ2

ǫ . Σ(ρ) is a Toeplitz matrix (or diagonal-constant matrix) with

dimension T ×T . Because Σ(ρ) is a symmetric positive-definite matrix, there exists a T ×T matrix C such

that CΣ(ρ)C ′ = IT . If Σ(ρ) is known, we can propose the following transformation. Multiply equation (3.5)

by C to make the error covariance matrix to an identity matrix. However, ρ is not known. On setting the

noise ratio λ := σ2
ǫ/σ2

v ∈ [0, ∞), we can write ρ as ρ(φ0, λ) = φ0λ/[(1+φ2
0)λ+1]. Hence, we can do a joint

test such that under the null ρ is known.

To deal with the presence of two nuisance parameters in the serial covariance structure, we shall per-

form joint inference, as typically done for identification-robust and finite-sample inference.8 This is mo-

tivated by the fact that nuisance parameters may be difficult to eliminate in nonlinear models or when

identification is weak [see Dufour (2003), Dufour and Taamouti (2005, 2007)]. As far as we know, this is

one of the original contributions of this paper, in the context of inference on stochastic volatility. Con-

sider the following null hypothesis:

H0(φ0, λ0) : φ=φ0 , λ=λ0 . (3.9)

Under H0(φ0, λ0), we can write ρ0 := φ0λ0/[(1+φ2
0)λ0 +1] ∈ [−1/2, 1/2], and the joint null hypothesis [in

(3.9)] becomes

H̄0(φ0, ρ0) : φ=φ0 , ρ = ρ0 . (3.10)

Under H̄0(φ0, ρ0), we have λ0 = ρ0/[φ0 −ρ0(1+φ0)2] ∈ [0, ∞); see Table A1 of Appendix F for testable null

values (φ0, ρ0) with corresponding values of λ0. Since ρ0 is known under H0(φ0, λ0) or H̄0(φ0, ρ0), we can

8This is motivated by the fact that nuisance parameters may be difficult to eliminate in nonlinear models or when identifica-

tion is weak [see Dufour (2003), Dufour and Taamouti (2005, 2007)]. As far as we know, this approach has not been applied in

earlier work on stochastic volatility models. No other paper has focused on developing tests for a stochastic volatility model.
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consider the following transformed model:

C0(y −φ0 y−1) =C0Z−2δ+C0Xβ∗+C0ξ (3.11)

where C0 =C (ρ0) is a T ×T matrix such that C0Σ(ρ0)C ′
0 = IT . The variance-covariance matrix of ξ∗ :=C0ξ

is now an i.i.d. N (0, σ2
ξ

IT ) distribution. The F -statistic for testing δ= 0 (or φ=φ0) in (3.11) is:

AR(φ0, ρ0) =
y(φ0, ρ0)′(MC0

[X ]−MC0
[X , Z−2])y(φ0, ρ0)/l

y(φ0, ρ0)′MC0
[X , Z−2]y(φ0, ρ0)/(T − l −k)

(3.12)

where y(φ0, ρ0) =C0(y −φ0 y−1), MC0
[A] = I − A[A′Σ(ρ0)−1 A]−1 A′Σ(ρ0)−1. A central feature of most situa-

tions where IV methods are required come from the fact that IVs may be used to solve an endogeneity or

an errors-in-variables problem. It is very rare that one can or should use all the possible valid IVs. A draw-

back of the AR method is that it loses power when too many IVs are used. However, the AR procedure is

robust to missing IVs (or instrument exclusion) [see Dufour and Taamouti (2007)]. Alternative methods of

inference aimed at being robust to weak identification [Wang and Zivot (1998), Kleibergen (2002), Moreira

(2003)] do not enjoy this type of robustness. In the case of feasible GLS-type transformations, where ρ is

replaced by an estimate ρ̂, the test statistic is no longer F-distributed, but it converges under H̄0(φ0, ρ0) to

a χ2 distribution in large samples. The tests and confidence sets obtained by the instrument substitution

method can be interpreted as likelihood ratio (LR) procedures (based on appropriately chosen reduced

form alternatives), or equivalently as profile likelihood techniques [for further discussion of such tech-

niques, see Bates and Watts (1988), Meeker and Escobar (1995) and Chen and Jennrich (1996)].

3.2 Anderson-Rubin-type point-optimal procedure (AR∗)

In this section, we propose a point-optimal (PO) version of AR-type tests. PO tests provide simple and

effective methods for building tests with excellent power properties in a wide variety of problems in linear

regression. The empirical evidence in the literature indicates that in general, PO tests often outperform

other testing methods in terms of power. Besides, exact small-sample critical values for PO tests can be

computed in most cases. Thus, one does not have to rely on the asymptotic properties of the test statistic

to make inferences. For a general review of PO tests, the reader may consult King (1980), King (1987) and

Dufour and King (1991).

Following Dufour and King (1991), the PO test for ρ = ρ0 against ρ = ρ1 under Gaussian assumptions is

given by
S(ρ0, ρ1) =

ξ̂
′
Σ(ρ0)−1ξ̂

ξ̃
′
Σ(ρ1)−1ξ̃

(3.13)

where |ρ0| ≤ 1/2, |ρ1| ≤ 1/2, and ξ̂ and ξ̃ are the GLS residual vectors corresponding to covariance matrices
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Σ(ρ0) and Σ(ρ1), respectively. The test rejects the null for large values of S(ρ0, ρ1). However, the choice of

ρ1 is important. To obtain a test of ρ = ρ0 against ρ > ρ0, we select a value of ρ1, such that ρ0 < ρ1 ≤ 1/2

and apply the test based on S(ρ0,ρ1). Similarly, testing ρ = ρ0 against ρ < ρ0, we select ρ1, such that

−1/2 ≤ ρ1 < ρ0. For example, we may choose ρ1 such that ρ1 = ρ0 − ∆̄ where 0 < ∆̄< 1. The test based on

(3.13) is point-optimal, and it gains power by exploiting the differences in the error covariance matrices

under the null and the alternative.

As pointed out by King (1987), a PO test can be viewed as a partition of the sample space into two

regions, a rejection region and a non-rejection region. If the observed sample falls in the rejection region,

the null is rejected. Otherwise, the null is not rejected. Consider an AR-type PO test statistic AR(φ0,ρ0,ρ1)

similar to (3.13) for ρ = ρ0 against ρ = ρ1 (under φ=φ0):

AR(φ0, ρ0, ρ1) =
y(φ0, ρ0)′MC0

[X ]y(φ0, ρ0)

y(φ0, ρ1)′MC1
[X , Z−2]y(φ0, ρ1)

(3.14)

where y(φ0, ρ0) =C0(y −φ0 y−1), y(φ0, ρ1) =C1(y −φ0 y−1) and MCi
[A] = I − A

[

A′Σ(ρi )−1 A
]−1

A′Σ(ρi )−1 for

i = 0, 1. Note that it is difficult to derive the analytical null distribution of (3.14) even under the Gaussian

assumption, while the MCT method described in Section 4 can be implemented and confidence set for φ

and ρ with level (1−α) is obtained by inverting the tests.

It is worth noting that AR(φ0, ρ0, ρ1) can become degenerate in the limit. Thus we consider a monotonic

transformation of AR(φ0, ρ0, ρ1), which is given as:

AR∗(φ0, ρ0, ρ1) = T
[

AR(φ0, ρ0, ρ1)−1
]

. (3.15)

For finite-sample inference, both AR(φ0, ρ0, ρ1) and AR∗(φ0, ρ0, ρ1) lead to identical results since a mono-

tonic transformation does not change the rank of the statistic in the MCT method. On the other hand,

AR∗(φ0, ρ0, ρ1) is more appropriate for proving the asymptotic validity.

3.3 Inference on general transformations

In Sections 3.1-3.2, we make joint inference on (φ, ρ)′. These tests are based on extensions of Anderson-

Rubin statistics and designed to test hypotheses fixing the entire vector of the endogenous (or unob-

served) regressor coefficients. When one is interested in its subsets, or more generally in any functions

of the parameters, projection technique can be applied; see Dufour (1989), Dufour and Jasiak (2001),

Dufour and Taamouti (2005, 2007).

Let θ := (φ, ρ)′ for notational convenience. A confidence set associated with one of the tests for H0(θ0) :

θ = θ0 in the previous subsections can be written as

Cα(θ) =
{

θ0 | H0(θ0) is not rejected
}

. (3.16)
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If the test has level α, the confidence set Cα(θ) has level 1−α. Note that all the four tests are based on

pivotal functions and have size α. Thus, the confidence sets in (3.16) from these tests have size 1−α.

Now consider an arbitrary (possibly nonlinear) transformation δ= g (θ) of θ, then a confidence set of δ,

with the level at least 1−α, can be constructed as

Cα(δ) =
{

δ0 | δ0 = g (θ) for some θ ∈Cα(θ)
}

. (3.17)

Since θ ∈ Cα(θ) implies δ= g (θ) ∈ Cα(δ), and further, Pr
[

δ ∈ Cα(δ)
]

≥ Pr
[

θ ∈ Cα(θ)
]

≥ 1−α, so that Cα(δ)

has level 1−α. We reject H0(δ0) : δ= δ0 when δ0 6∈Cα(δ) and get a test of level α.

One can use numerical optimization technique or grid search over economically or statistically plausi-

ble parameter space to implement the projection method. However, if the parameter transformation of

interest is a linear scalar function, an analytical expression for Cα(δ) is available in Dufour and Taamouti

(2005).

If δ = φ where θ = (φ, ρ)′, the projection method can be implemented more efficiently. Let F (θ0) and

cα denote a test statistic used in confidence set in (3.16) and a corresponding critical value, respectively.

Then, the confidence set in (3.17) is rewritten as

Cα(φ) =
{

φ0 | inf
ρ∈ρ̄

F (φ0, ρ) ≤ cα

}

(3.18)

where ρ̄ is the parameter space for ρ. An alternative projection technique improves efficiency by restrict-

ing ρ. The procedure can be described in two steps: (1) construct Cα1
(ρ |φ0), a confidence set for ρ under

H0 : φ= φ0 with level (1−α1); (2) reject H0 : φ= φ0 if Cα1
(ρ | φ0) =;, or infρ∈Cα1

(ρ|φ0) F (φ0,ρ) > cα2
, where

α=α1 +α2 and cα2
is a critical value chosen in the same manner as cα but with α2 instead of α. By Bon-

ferroni inequality, the test has level α, and it can be inverted to get confidence set for φ with level 1−α.

Since the infimum is computed over Cα1
(ρ | φ0), this procedure is expected to be more efficient. Fur-

thermore, it is worthwhile noting that, even though the simultaneous confidence set Cα(θ) for θ may be

interpreted as a confidence set based on inverting LR-type tests for θ = θ0 [see Meeker and Escobar (1995)

or Chen and Jennrich (1996)], projection-based confidence sets, such as Cα(δ), are not (strictly speaking)

LR confidence sets. For more details and further discussion about the projection technique; see Dufour

(1989, 1990) and Chaudhuri and Zivot (2011).

4 Finite-sample procedures with possibly non-Gaussian errors

In this section, we extend the exact tests proposed in the previous section, by allowing non-Gaussian dis-

tributions. The use of Gaussian assumptions, when the volatility distributions are not normal, can be

hazardous; such a practice could lead us to invalid inferences. Under the non-Gaussian assumptions, we
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can build an exact test based on the MCT technique. We can take the observed test statistic (derived un-

der Gaussian assumptions) and perform simulations to obtain an exact test. In order to do that, we need

the null distribution of the test statistic under non-Gaussian errors. Under the Assumption 2.4, the GLS

transformed composite error ξ∗ ∼N (0, σ2
ξ

IT ), where σ2
ξ
= (1+φ2

0)σ2
ǫ+σ2

v . We need the following additional

assumption about the transformed composite error to get the finite-sample inference under non-Gaussian

errors.

Assumption 4.1. CONDITIONAL SCALE MODEL OF TRANSFORMED COMPOSITE ERROR. ξ∗ =σξϑ , where σξ

is a (possibly random) scalar such that P [σξ 6= 0] = 1, and the conditional distribution of ϑ is completely or

incompletely specified such that

ϑ | X := (ϑ1, . . . , ϑT ) ∼ F (υ) (4.1)

where F (·) represents a known distribution function and X = [X , Z−2].

We consider both the case where the error distribution does not involve nuisance parameters,

ϑ | X ∼ F (υ0) , where υ0 is specified (4.2)

and the one where it does

ϑ | X ∼ F (υ) , where υ is unknown. (4.3)

The above assumption includes the Gaussian distribution, all elliptically symmetric distributions, such as

the multivariate t , and cases where ϑ1, . . . , ϑT are i.i.d. according to any given distribution.

In the following proposition, we characterize the null distribution of AR(φ0,ρ0) given in (3.12) under the

above assumption.

Proposition 4.1. NULL DISTRIBUTION OF AR-TEST STATISTIC UNDER NON-GAUSSIAN ERRORS. Suppose

that Assumptions 2.1-2.3 and 4.1 hold. If φ=φ0 and ρ = ρ0, we have

AR(φ0, ρ0) = κ
ϑ′(MC0

[X ]−MC0
[X , Z−2])ϑ

ϑ′MC0
[X , Z−2]ϑ

(4.4)

where κ= (T − l −k)/l , and the conditional distribution of AR(φ0, ρ0) given X only depends on X and the

distribution of ϑ, which is given in Assumption 4.1.

Proposition 4.1 covers the null distribution of AR(φ0, ρ0). It is easy to see that the null distribution of

the other proposed test statistic under non-Gaussian errors can be derived in the same way upon em-

ploying Assumption 4.1. Proposition 4.1 means that the conditional null distribution of AR(φ0, ρ0) given

X , only depends on the distribution of ϑ. If the distribution of ϑ | X can be simulated, one can get exact

tests based on AR(φ0, ρ0, ϑ | X ) through the MCT method [see Dufour (2006)], even if this distribution
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is non-Gaussian. Furthermore, the exact test obtained in this way is robust to weak IVs as well as if the

distribution does not have moments (e.g., the Cauchy distribution).

The MCT technique was originally proposed by Dwass (1957) for implementing permutation tests and

did not involve nuisance parameters. This technique was also independently proposed by Barnard (1963);

for a general discussion and proofs, see Dufour (2006). It has the great attraction of providing exact (ran-

domized) tests based on any statistic whose finite-sample distribution may be intractable but can be sim-

ulated. Here we have briefly summarized the procedure.

Let S(Y , X ) be a test statistic which can be rewritten in the form S(Y , X ) = S̄(ϑ, X ) under the null hy-

pothesis, where ϑ is defined by (4.1) and the distribution of ϑ is known. For example, S(Y , X ) could be

the AR-type statistic considered in Proposition 4.1. Then the conditional distribution of S(Y , X ), given X ,

is completely determined by the matrix X and the conditional distribution of ϑ given X , i.e., S(Y , X ) is

pivotal. We can then proceed as follows to obtain an exact critical region.

1. Compute the statistic S(0) (based on data), where S(0) = AR(0)
(

φ0, ρ0

)

.

2. By Monte Carlo methods, draw N i.i.d. replications of ϑ : ϑ( j ) = [ϑ
( j )
1 , . . . , ϑ

( j )

T
], j = 1, . . . , N .

3. From each simulated error matrix ϑ( j ), compute the statistics, S( j ) = S̄(ϑ( j ), X ), j = 1, . . . , N , according

to the fully specified distribution of ϑ | X . For instance, in the case of the AR statistic underlying

Proposition 4.1, calculate

AR( j ) := AR(ϑ( j )) =
ϑ′

( j )

(

MC0
[X ]−MC0

[X , Z−2]
)

ϑ( j )

ϑ′
( j )MC0

[X , Z−2]ϑ( j )

, 1, . . . , N . (4.5)

4. Compute the MC p-value p̂N [S] := pN (S(0);S), where

pN (x,S) :=
NGN (x;S)+1

N +1
, , GN (x;S) :=

1

N

N∑

j=1

I[0,∞)(S( j ) −x) , I[0,∞)(x) =







1 if x ∈ [0,∞)

0 if x ∉ [0,∞)

. (4.6)

In other words, pN (S(0);S) = [NGN (S(0);S)+1]/(N +1) where NGN (S(0);S) is the number of simulated

values which are greater than or equal to S(0) . When S(0),S(1), . . . , S(N ) are all distinct [an event

with probability one when the vector (S(0),S(1), . . . , S(N ))′ has an absolutely continuous distribution],

R̂N (S(0)) = N +1−NGN (S(0);S) is the rank of S(0) in the series S(0),S(1), . . . , S(N ).

5. The MC critical region is: p̂N [S] ≤α, 0 <α< 1 . If α∗ and N such that α(N +1) is an integer and the

distribution of S is continuous under the null hypothesis, then under null, P [p̂N [S] ≤α] =α.

The above algorithm is valid for any fully specified distribution of ϑ and we reject the null hypothesis
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H0(φ0, ρ0) at level α when p̂N [AR(0)(φ0, ρ0)] ≤α. If the distribution of the test statistic is not continuous,

the MC test procedure can easily be adapted by using “tie-breaking” method described in Dufour (2006).9

Correspondingly, a confidence set with level 1−α for (φ, ρ) is given by the set of all values (φ0, ρ0) which

are not rejected by the above MC test. More precisely, the set C(φ,ρ)(α) =
{

(φ0, ρ0) : p̂N [AR(0)(φ0, ρ0)] >α
}

is a confidence set with level 1−α for (φ0, ρ0). For further discussion regarding MCT techniques with

nuisance parameters, see Appendix D.

5 Asymptotic distributional theory

In this section, we relax the Assumptions 2.2-2.4 and 4.1, and show that under weaker distributional as-

sumptions on X , Z−2 and ξ, the proposed procedures remain “asymptotically valid” . More precisely, we

wish to show that if Assumption 2.2-2.4 hold jointly with a specific distributional assumption on ξ∗/σξ

[e.g., ξ∗/σξ ∼N (0, IT )] yields tests whose probability of type I error converges to the nominal level of the

test as T →∞ under any parameter configuration compatible with the null hypothesis (pointwise asymp-

totic validity).

All our results up to now have been established for a given sample size of T . To formulate asymptotic

properties, we need to consider a sequence of tests indexed by T . Consider the following sequence

{

S(T ) := [y(T ), y−1(T ), X (T ), Z−2(T ), ξ(T )],T ≥ T0

}

(5.1)

and rewrite the test statistic (3.6) in the following form:

ART (φ0) = κ(T )
y ′

T

(

M [Q1T ]−M [QT ]
)

yT

y ′
T

M [QT ]yT /T
(5.2)

where yT =
(

y(T )−φ0 y−1(T )
)

, QT = [Q1T , Q2T ], Q1T = X (T ), Q2T = Z−2(T ), κ(T ) = (T − l −k)/lT , and k and

l are the number of columns in Q1T and Q2T , respectively.

We examine the asymptotic distribution of ART (φ0) under the following assumptions (where =⇒ refers

to weak convergence as the sample size tends to infinity).

Assumption 5.1. The sequence
(

S(T ),T ≥ T0

)

given in (5.1) belongs to a class Z of stochastic processes such

that for each process in Z the following limits hold:

1.
ξ′(T )ξ(T )

T

p−→
T→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;

2. There exists a sequence of m ×m, nonsingular matrices DT such that:

9Without the correction for continuity, the algorithm proposed for statistics with continuous distributions yields a conservative

test, i.e., the probability of rejection under the null hypothesis is not larger than the nominal level.
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(A) D ′
T Q ′

T QT DT
p−→

T→∞
ΣQQ =




ΣQ1Q1

ΣQ1Q2

ΣQ2Q1
ΣQ2Q2



, where ΣQQ and ΣQ1Q1
are m×m and k×k nonsin-

gular matrices, respectively;

(B) D ′
T Q ′

T ξ(T ) =⇒ q ∼N
(

0, σ2
ξ
ΣQQ

)

, where q =
(

q ′
1, q ′

2

)′
, q1 and q2 are k ×1 and l ×1 random vec-

tors, respectively.

It should be emphasized that Assumption 5.1 satisfies the condition

q2 | q1 ∼N
(

ΣQ2Q1
Σ−1

Q1Q1
q1, σ2

ξΣq2|q1

)

where Σq2|q1
=ΣQ2Q2

−ΣQ2Q1
Σ−1

Q1Q1
ΣQ2Q2

. Thus the asymptotic distribution of
(

q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1

)

/σ2
ξ

is

a χ2
(l )

distributed random variable. Note that the normality of the sub-vector of q1 is not required, the

conditional normality of q2 given q1 is sufficient.

Further, in the above Assumption 5.1(2), we allow both stationary and nonstationary regressors by ad-

justing the scaling matrix DT , which is typical of the form, DT = di ag
[

T −d1 , . . . , T −dm
]

, where di > 0 for

i = 1, . . . , m relying on the degree of nonstationarity of the regressors. For example, if X (T ) and Z−2(T )

are stationary then di = 1/2 for i = 1, . . . , m. However, if X (T ) and Z−2(T ) are nonstationary and are inte-

grated of order one, then the corresponding di should be one. The following proposition establishes the

asymptotic validity of the AR procedure.

Proposition 5.1. ASYMPTOTIC VALIDITY OF AR-TYPE TEST. Under the Assumption 5.1 and the null hy-

pothesis in (3.1), the statistic ART (φ0) in (5.2) has the same limiting distribution for all processes in Z , i.e.,

ART (φ0) =⇒χ2
(l )

/l .

Similarly, one can show that the joint test defined in (3.12) has the null distribution of ART (φ0, ρ0) =⇒

χ2
(l )

/l . Now we consider the test statistic of the AR-type PO procedure, which is rewritten in the following

form:
AR∗

T (φ0, ρ0, ρ1) = T

[
yT (φ0, ρ0)′M [Q̂1T ]yT (φ0, ρ0)

yT (φ0,ρ1)′M [Q̃T ]yT (φ0,ρ1)
−1

]

(5.3)

where yT (φ0, ρ0) = C (ρ0)
(

y(T )−φ0 y−1(T )
)

, yT (φ0,ρ1) = C (ρ1)
(

y(T )−φ0 y−1(T )
)

, Q̂1T = C (ρ0)X (T ), Q̃T =

[Q̃1T , Q̃2T ], Q̃1T = C (ρ1)X (T ), Q̃2T = C (ρ1)Z−2(T ), k is the number of columns in Q̂1T or Q̃2T , l is the

number of columns in Q̃2T and m = l +k. In order to prove the asymptotic validity of the test based on

AR∗
T (φ0, ρ0, ρ1) in (3.15), we need following assumption.

Assumption 5.2. The sequence (S(T ), T ≥ T0) given in (5.1) belongs to a class Z of stochastic processes such

that for each process in Z the following limits hold:

1.
ξ̂
′
(T )ξ̂(T )

T

p−→
T→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;

2.
ξ̃
′
(T )ξ̃(T )

T

p−→
T→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;
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Table 1: Size and power of asymptotic t-type test for H0 : φ=φ0 (nominal level: 5%)

Panel A: Size Panel B: Power (H0 : φ0 = 1)

φ T = 100 200 300 500 1000 5000 10000 100 200 300 500 1000 5000 10000

0.10000 0.2 0.1 0.0 0.0 0.0 0.1 0.4 6.0 6.3 7.7 10.9 20.3 75.8 96.0
0.20000 0.2 0.2 0.1 0.0 0.1 1.8 2.8 7.4 13.4 20.0 33.5 61.9 99.8 100.0
0.30000 0.2 0.2 0.1 0.2 0.7 2.8 3.3 12.0 27.2 40.5 61.9 88.8 100.0 100.0
0.40000 0.2 0.2 0.3 0.9 2.2 2.8 3.0 19.5 43.0 60.0 81.1 97.6 100.0 100.0
0.50000 0.4 0.7 1.2 1.7 2.5 2.3 2.6 28.0 56.3 73.0 91.2 99.6 100.0 100.0
0.60000 1.0 1.5 1.9 2.1 2.3 2.1 2.1 35.3 65.0 81.5 96.1 100.0 100.0 100.0
0.70000 1.8 2.2 2.3 2.1 2.2 1.8 1.9 40.0 70.6 86.7 98.4 100.0 100.0 100.0
0.80000 2.7 2.5 2.7 2.1 2.2 2.3 1.9 41.4 72.7 89.2 99.1 100.0 100.0 100.0
0.90000 4.3 3.4 3.5 3.2 3.0 2.8 2.6 37.8 64.9 85.2 98.8 100.0 100.0 100.0
0.95000 7.7 5.9 5.2 4.1 3.5 3.7 3.2 31.7 48.3 69.1 94.6 100.0 100.0 100.0
0.98000 14.1 9.8 7.6 5.8 4.7 4.1 3.6 27.7 32.5 41.4 65.7 97.9 100.0 100.0
0.98500 15.8 11.5 8.8 6.8 5.0 4.4 4.0 26.9 30.4 36.3 54.8 91.5 100.0 100.0
0.99000 18.0 13.8 11.0 8.8 6.5 4.5 4.2 26.2 28.1 31.7 43.3 74.8 100.0 100.0
0.99500 20.8 17.5 15.6 13.1 9.4 5.7 4.5 25.2 26.1 27.8 34.3 48.8 100.0 100.0
0.99900 24.0 22.0 21.5 22.9 21.5 12.1 8.2 25.0 24.6 25.4 29.2 33.3 56.4 84.5
0.99950 24.5 23.1 23.1 25.4 25.5 18.2 12.7 25.0 24.3 25.0 28.8 32.5 44.2 57.5
0.99990 25.0 23.8 24.6 27.8 30.1 30.4 27.1 25.1 24.1 25.0 28.6 31.8 38.3 40.5
0.99999 25.1 24.1 24.9 28.6 31.6 36.8 36.6 25.1 24.1 25.0 28.7 31.7 37.8 38.3
1.00000 25.1 24.1 25.0 28.7 31.8 37.9 38.1 25.1 24.1 25.0 28.7 31.8 37.9 38.1

3. There exists a sequence of m ×m, nonsingular matrices DT such that:

(A) D ′
T Q̃ ′

T Q̃T DT
p−→

T→∞
ΣQ̃Q̃ =




ΣQ̃1Q̃1

ΣQ̃1Q̃2

ΣQ̃2Q̃1
ΣQ̃2Q̃2



, where ΣQ̃Q̃ and ΣQ̃1Q̃1
are m×m and k×k nonsin-

gular matrices, respectively;

(B) D ′
T 1Q̂ ′

T 1Q̂T 1DT 1
p−→

T→∞
ΣQ̂1Q̂1

, where ΣQ̂1Q̂1
is a k ×k nonsingular matrix;

(C) D ′
T Q̃ ′

T ξ̃(T ) =⇒ q̃ ∼N
(

0, σ2
ξ
ΣQ̃Q̃

)

, where q̃ = (q̃ ′
1, q̃ ′

2)′, q̃1 and q̃2 are k×1 and l×1 random vectors,

respectively.

(D) D ′
T Q̂ ′

1T ξ̂(T ) =⇒ q̂1 ∼N
(

0, σ2
ξ
ΣQ̂1Q̂1

)

, where q̂1 is a k ×1 random vector.

The following proposition establishes the asymptotic validity of the AR∗ optimal procedure.

Proposition 5.2. ASYMPTOTIC VALIDITY OF AR-TYPE POINT-OPTIMAL TEST. Under the Assumption 5.2 and

the null hypothesis in (3.10) against a fixed alternative ρ = ρ1, the statistic AR∗
T (φ0, ρ0, ρ1) in (5.3) has the

same limiting distribution for all processes in Z , i.e., AR∗
T (φ0, ρ0, ρ1) =⇒χ2

(l )
.

6 Simulation study

We simulate the DGP given in (2.2) with an instrument equation, which has the following compact repre-

sentation:

yt =µ+φyt−1 +ξt , ξt := vt +ǫt −φǫt−1 , vt ∼ i.i.d. N (0,σ2
v ) , ǫt ∼ i.i.d. log(χ2

(1)) (6.1)

yt−1 = π̄0 +Z ′
t−2π̄1 +ηt−1 , ηt−1 := ǫt−1 +ut−1 , ut ∼ i.i.d. N (0,σ2

u) , (6.2)
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Table 2. Size and power comparison of joint tests with weak, low-and high-frequency instruments, nominal level: 5%

Panel A: M1 with weak instruments Panel B: M3 with low-frequency instruments Panel C: M5 with high-frequency instruments

Size T = 200 T = 300 Size T = 200 T = 300 Size T = 200 T = 300

ρ φ σv CP π̄1 AR AR∗ π̄1 AR AR∗ ρ φ σv AR AR∗ AR AR∗ Freq. φl σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗

0.05 0.2 3.8 0.0 0.00 5.2 5.0 0.00 4.8 4.7 0.10 0.5 4.3 4.8 3.9 4.8 4.0 1-min 0.5 0.033 0.398 0.398 5.4 1.5 5.6 1.6
3.8 0.5 0.11 5.2 5.1 0.09 4.9 4.5 0.6 4.8 5.0 3.9 5.0 3.9 0.6 0.038 0.439 0.439 5.4 0.8 5.4 0.6
3.8 5.0 0.35 5.3 5.3 0.29 5.2 5.0 0.7 5.2 5.3 3.8 5.2 3.7 0.7 0.043 0.467 0.467 5.5 0.1 4.9 0.1

0.5 6.6 0.0 0.00 5.3 5.1 0.00 4.8 4.6 0.8 5.6 5.6 4.0 5.5 3.8 0.8 0.048 0.485 0.485 5.1 0.0 5.2 0.0
6.6 0.5 0.11 5.1 5.0 0.09 4.8 4.6 0.9 6.0 6.2 4.2 6.3 4.0 0.9 0.054 0.494 0.494 5.2 0.0 5.2 0.0
6.6 5.0 0.35 5.0 4.8 0.29 5.0 5.1 1.0 6.3 5.9 3.7 5.5 3.3 1.0 0.059 0.497 0.497 5.4 0.0 5.3 0.0

0.9 8.9 0.0 0.00 5.2 5.0 0.00 4.8 4.6 0.15 0.5 3.2 4.8 3.4 4.8 3.4 5-min 0.5 0.003 0.400 0.400 5.4 1.6 5.0 1.4
8.9 0.5 0.11 5.1 5.1 0.09 4.7 4.7 0.6 3.6 4.9 3.4 5.1 3.2 0.6 0.003 0.441 0.441 5.3 0.9 5.2 0.7
8.9 5.0 0.35 4.8 4.7 0.29 4.7 4.5 0.7 4.0 5.2 3.3 5.0 3.1 0.7 0.003 0.470 0.470 5.2 0.4 5.4 0.2

1.0 9.4 0.0 0.00 5.3 5.0 0.00 5.1 5.0 0.8 4.3 5.5 3.2 5.5 3.0 0.8 0.004 0.488 0.488 5.3 0.0 5.6 0.1
9.4 0.5 0.11 5.3 5.1 0.09 5.2 5.1 0.9 4.5 6.3 3.5 6.3 3.3 0.9 0.004 0.497 0.497 4.7 0.0 5.2 0.0
9.4 5.0 0.35 5.5 5.1 0.29 5.1 5.1 1.0 4.8 5.5 2.7 5.2 2.5 1.0 0.005 0.500 0.500 5.4 0.0 4.9 0.0

0.10 0.2 2.2 0.0 0.00 5.1 4.9 0.00 4.9 4.6 0.25 0.5 1.9 4.9 2.6 4.7 2.4 10-min 0.5 0.003 0.400 0.400 5.0 1.5 5.2 1.4
2.2 0.5 0.11 5.3 5.0 0.09 5.1 4.6 0.6 2.3 4.9 2.5 4.7 2.1 0.6 0.004 0.441 0.441 5.1 0.8 5.7 0.7
2.2 5.0 0.35 6.4 5.9 0.29 6.1 5.8 0.7 2.5 5.2 2.4 4.9 2.0 0.7 0.004 0.470 0.470 5.5 0.4 5.9 0.2

0.5 4.3 0.0 0.00 5.2 4.8 0.00 4.9 4.4 0.8 2.8 5.5 2.0 5.4 1.8 0.8 0.005 0.488 0.488 5.9 0.1 5.9 0.1
4.3 0.5 0.11 5.1 4.9 0.09 4.9 4.4 0.9 3.0 6.4 1.9 6.1 1.9 0.9 0.005 0.497 0.497 5.5 0.0 5.7 0.0
4.3 5.0 0.35 5.9 5.6 0.29 6.0 5.8 1.0 3.1 5.1 1.1 4.9 1.0 1.0 0.006 0.500 0.500 5.0 0.0 4.9 0.0

0.9 6.0 0.0 0.00 5.2 4.8 0.00 4.7 4.5 0.35 0.5 0.9 4.9 1.9 4.8 1.8 15-min 0.5 0.010 0.399 0.399 4.7 1.6 5.1 1.4
6.0 0.5 0.11 5.0 4.7 0.09 4.6 4.4 0.6 1.3 4.9 1.7 4.9 1.2 0.6 0.011 0.440 0.440 4.9 0.8 5.1 0.7
6.0 5.0 0.35 4.7 4.3 0.29 4.6 4.3 0.7 1.6 5.1 1.3 5.2 1.0 0.7 0.013 0.469 0.469 5.2 0.5 5.2 0.2

1.0 6.3 0.0 0.00 5.2 4.8 0.00 5.1 4.8 0.8 1.8 5.4 1.1 5.2 1.0 0.8 0.014 0.487 0.487 5.5 0.0 5.4 0.0
6.3 0.5 0.11 5.2 4.9 0.09 4.9 4.8 0.9 1.9 6.3 0.9 6.3 0.8 0.9 0.016 0.496 0.496 5.3 0.0 5.0 0.0
6.3 5.0 0.35 5.2 4.5 0.29 5.1 4.6 1.0 2.1 5.0 0.3 5.1 0.4 1.0 0.018 0.499 0.499 4.9 0.0 4.6 0.0

Power (φ0 = 1,ρ0 = 0.05) Power (φ0 = 1,ρ0 = 0.1) Power (φl = 1,ρl = ρ0)

T = 200 T = 300 T = 200 T = 300 T = 200 T = 300

ρ φ σv CP π̄1 AR AR∗ π̄1 AR AR∗ ρ φ σv AR AR∗ AR AR∗ Freq. φl σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗

0.05 0.2 3.8 0.0 0.00 4.7 4.6 0.00 4.6 4.5 0.10 0.5 4.3 97.8 96.1 99.9 99.8 1-min 0.5 0.033 0.398 0.398 99.7 97.5 100.0 99.7
3.8 0.5 0.11 12.7 12.1 0.09 12.2 11.9 0.6 4.8 99.4 98.8 100.0 100.0 0.6 0.038 0.439 0.398 100.0 100.0 100.0 100.0
3.8 5.0 0.35 75.3 73.8 0.29 76.0 73.9 0.7 5.2 99.8 99.4 100.0 100.0 0.7 0.043 0.467 0.398 100.0 100.0 100.0 100.0

0.5 6.6 0.0 0.00 4.9 4.8 0.00 4.4 4.5 0.8 5.6 99.8 99.0 100.0 100.0 0.8 0.048 0.485 0.398 100.0 100.0 100.0 100.0
6.6 0.5 0.11 10.5 10.1 0.09 10.4 10.4 0.9 6.0 97.9 92.6 100.0 99.5 0.9 0.054 0.494 0.398 100.0 100.0 100.0 100.0
6.6 5.0 0.35 63.5 61.7 0.29 63.8 61.6 1.0 6.3 5.9 3.7 5.5 3.3 1.0 0.059 0.497 0.497 5.4 0.0 5.3 0.0

0.9 8.9 0.0 0.00 5.0 4.9 0.00 4.4 4.4 0.15 0.5 3.2 92.8 100.0 99.2 100.0 5-min 0.5 0.003 0.400 0.400 96.9 87.3 99.9 98.0
8.9 0.5 0.11 6.3 6.1 0.09 5.7 5.6 0.6 3.6 97.7 100.0 99.9 100.0 0.6 0.003 0.441 0.400 97.3 100.0 99.9 100.0
8.9 5.0 0.35 18.9 18.1 0.29 19.0 18.0 0.7 4.0 99.2 100.0 100.0 100.0 0.7 0.003 0.470 0.400 98.2 100.0 99.9 100.0

1.0 9.4 0.0 0.00 5.3 5.0 0.00 5.1 5.0 0.8 4.3 99.3 100.0 100.0 100.0 0.8 0.004 0.488 0.400 99.7 100.0 100.0 100.0
9.4 0.5 0.11 5.3 5.1 0.09 5.2 5.1 0.9 4.5 95.8 99.9 99.9 100.0 0.9 0.004 0.497 0.400 100.0 100.0 100.0 100.0
9.4 5.0 0.35 5.5 5.1 0.29 5.1 5.1 1.0 4.8 4.1 20.5 3.9 44.6 1.0 0.005 0.500 0.500 5.4 0.0 4.9 0.0

0.10 0.2 2.2 0.0 0.00 4.5 100.0 0.00 4.6 100.0 0.25 0.5 1.9 67.9 100.0 85.8 100.0 10-min 0.5 0.003 0.400 0.400 96.9 85.6 99.8 97.7
2.2 0.5 0.11 9.6 100.0 0.09 9.4 100.0 0.6 2.3 83.1 100.0 95.6 100.0 0.6 0.004 0.441 0.400 97.0 100.0 99.8 100.0
2.2 5.0 0.35 54.1 100.0 0.29 54.5 100.0 0.7 2.5 90.7 100.0 98.8 100.0 0.7 0.004 0.470 0.400 97.3 100.0 99.8 100.0

0.5 4.3 0.0 0.00 4.9 96.9 0.00 4.4 100.0 0.8 2.8 92.8 100.0 99.4 100.0 0.8 0.005 0.488 0.400 98.3 100.0 99.8 100.0
4.3 0.5 0.11 9.6 97.1 0.09 9.5 100.0 0.9 3.0 86.6 100.0 98.1 100.0 0.9 0.005 0.497 0.400 99.7 100.0 100.0 100.0
4.3 5.0 0.35 55.4 99.3 0.29 55.6 100.0 1.0 3.1 1.6 95.1 1.6 99.5 1.0 0.006 0.500 0.500 5.0 0.0 4.9 0.0

0.9 6.0 0.0 0.00 4.9 30.3 0.00 4.4 54.2 0.35 0.5 0.9 29.9 100.0 42.7 100.0 15-min 0.5 0.010 0.399 0.399 96.3 84.5 99.7 97.0
6.0 0.5 0.11 6.1 31.8 0.09 5.8 55.3 0.6 1.3 46.6 100.0 66.0 100.0 0.6 0.011 0.440 0.399 96.8 100.0 99.8 100.0
6.0 5.0 0.35 17.4 45.2 0.29 16.9 65.5 0.7 1.6 60.3 100.0 80.6 100.0 0.7 0.013 0.469 0.399 98.1 100.0 99.9 100.0

1.0 6.3 0.0 0.00 5.0 17.3 0.00 4.9 29.8 0.8 1.8 66.5 100.0 86.7 100.0 0.8 0.014 0.487 0.399 99.7 100.0 100.0 100.0
6.3 0.5 0.11 5.1 17.2 0.09 4.9 30.0 0.9 1.9 64.4 100.0 86.1 100.0 0.9 0.016 0.496 0.399 100.0 100.0 100.0 100.0
6.3 5.0 0.35 5.0 17.1 0.29 4.9 29.4 1.0 2.1 0.1 100.0 0.3 100.0 1.0 0.018 0.499 0.499 4.9 0.0 4.6 0.0

Notes: The instrument set consists of a constant π̄0 = 1 and an instrument, l = 1. For M1 with weak instruments, based on the concentration parameter (CP), we construct first-stage coefficients π̄1

with σ2
ǫ =π2/2 and σ2

u = 0.01. For M5 with HF instruments, equal-spaced HF intraday data are considered with different frequency [1m, 5m, 10m, and 15m where 1m stands for 1-minute frequency].

We use logarithms of RV measures as instruments for high-frequency design. Details of M5 design are given in Appendix H.2.3. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2

and corresponding test statistics are given in equations (3.12) and (3.15). We use 99 Monte Carlo replications for point-optimal type procedures. For PO tests, we set the alternative to ρ1 = ρ.

1
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where yt = log(s2
t )+1.2704, π̄1 is an l-vector of first-stage coefficients, Zt−2 is an l-vector of independent

N (0,1) variables, and the vector (ξt ,ηt−1) has zero mean with Var(ξt ) = (1+φ2)σ2
ǫ+σ2

v , Var(ηt−1) =σ2
ǫ+σ2

u

and Cov(ξt ,ηt−1) =−φσ2
ǫ . Note that (6.1) is equivalent to a log-normal SV model, and in all our simulations

we generate (6.1) non-linearly as given in (2.1).

We use 10,000 replications to compute the empirical levels and powers, and 99 replications for PO tests

based on the MCT procedure. For all tests, the nominal level is fixed at 5%. Thus, under the null hypoth-

esis, the rejection rates should be less than (or close to) 5% for tests to be valid.

For the DGP (6.1), we evaluate the performance of the asymptotic t-type test [H0 : φ=φ0]. We set µ= 0,

σv = 2 and φ ∈ [0, 1]. Table 1 reports the size and power. The test statistic is calculated using the sim-

ple winsorized estimator of Ahsan and Dufour (2019) [see equations (3.8)-(3.9) with J = 10 for the esti-

mator and Section 6.1 for the test statistic]. This estimator is more efficient than conventional methods

(QMLE, GMM) and as efficient as the Bayesian procedure. In addition to this, it is extremely time-efficient,

and it produces empirical estimates which are similar to the Bayesian estimates. For the details of this

asymptotic t-test, see Ahsan and Dufour (2019, 2021). From the results, we can see that the asymptotic

t-test (based on delta-method local approximations) fails to control the level when φ −→ 1. Size distor-

tions are severe and equal up to 38.1% when φ = 1. These size distortions persist even in larger samples

(T = 5000, 10000), particularly when φ> 0.999. For theoretical discussions of this issue (the unreliability of

asymptotic standard error methods), see Dufour (1997) and Dufour et al. (2024), especially when persis-

tence is high, which appears to be common in practice.

We will now examine the performance of the tests proposed in Sections 3.1-3.2. We focus on empir-

ically motivated misspecified model setups with weak, low- and high-frequency instruments to simplify

the exposition: (1) weak instrument designs where the generated IVs are weakly correlated [based on the

concentration parameter (CP)] with past lags of yt−1 [M1: (6.1)-(6.2) with ǫt ∼ i.i.d. N (0,π2/2) and M2:

(6.1)-(6.2)]; (2) low-frequency instrument designs where we use past lags of yt−1 as IVs [M3: (6.1)-(6.2) and

M4: (6.1)-(6.2) with ǫt ∼ i.i.d. N (0,π2/2)]; (3) high-frequency instrument designs where we use HF real-

ized volatility measures as IVs [M5: (6.1)-(6.2) with |φ| < 1 and ǫt ∼ i.i.d. N (0,σ2
ǫ), and M6: (6.1)-(6.2)].

Further, model M5 is closed under temporal aggregation; see Appendix E for related discussion and proof.

Consequently, in this design, we make inferences for the low-frequency model parameters using generated

IVs from the HF series. Note that |φ| < 1 is required for the identification of µl parameter under temporal

aggregation. However, it also ensures stationarity and invertibility of both HF and LF models.

We see that models M2, M3, and M6 correspond to a log-normal SV model with nonstationary volatil-

ity from the above setups. Therefore, it is easy to see that these models (M2, M3, M6) are misspecified

under Assumptions 2.2 and 2.4. On the other hand, in models M1, M4, and M5, we have Gaussian noise
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for ǫt ; thus, these models are correctly specified under Assumption 2.4 but misspecified under Assumption

2.2. Note that all these models violate the independence assumption, which is in line with the property of

financial returns. However, the instrument set Zt−2 is uncorrelated with ηt−1. These models are designed

to broadly mimic the features of financial returns used in our empirical application.

To save space, we present only the results of models M1, M3, and M5 (given in Table 2) with the num-

ber of IVs l = 1. Additional results of models M1, M3, and M5 with l = 3, 5 and other parameter values,

and the results of models M2, M4, and M6 are reported in Tables A2-A7 of Appendix H. The results of

Table 2 confirmed the theoretical contributions of Sections 3.1-3.2 even with model misspecification. Our

findings can be summarized as follows.

First, from Table 2, the levels of the proposed tests (AR, AR∗) are well controlled: rejection frequencies

are less than (or close to) 5%. This result holds whether the identification is completely failed [CP = 0],

weak [CP ∈ (0, 0.5)], partial [CP ∈ (0.5, 5)], moderately strong [CP = 5] (from Panel A), or strong to very

strong [these are with LF and HF IVs, see Panel B and C]. This represents a substantial improvement over

the asymptotic test. This result also holds whether sample sizes are different (T = 200, 300), or the instru-

ment set contains a different number of IVs (l = 3, 5) [see Tables A2, A4 and A6]. However, as the number

of IVs increases, PO tests are undersized with HF IVs when ρ −→ 0.5: rejection frequencies are less than

5% and close to 0%. This shows that PO tests need large samples for level control with HF IVs. In all cases,

AR tests perfectly control the level.

Second, from Table 2, all tests exhibit excellent power as long as identification is not very weak. As ex-

pected, the power of these tests increases with sample size and concentration parameter (in many cases,

rejection frequencies reach 100%) and decreases as the number of IVs increases [see Tables A2, A4, and

A6]. Note that, in our joint tests, we have an additional restriction under the null hypothesis on the pa-

rameter of the error distribution. This restriction works as an additional source of power for the optimal

tests since PO tests can gain power from the differences in covariance structure, i.e., when ρ1 6= ρ0. Hence,

when ρ1 > ρ0, PO tests outperform their counterpart as expected. However, AR tests have more power in

all cases compared to their counterpart AR∗. In HF design, from Panel C, in all cases of HF IVs (1-minute

to 15-minute), the proposed tests have excellent power against the alternative: up to 100%, 100%, 99.2%,

and 100%, respectively and the power of these tests increases with the sample size, and decreases as the

number of IVs increases. All tests have excellent power across different sampling frequencies, and these

tests gain power when the sampling frequency increases.

Third, from Appendix H, the empirical levels of the proposed tests are almost identical to those obtained

when the model is only misspecified under Assumption 2.2 [compare Table A2 with Table A3]: rejection

frequencies are similar [less than (or close to) 5% for all levels of identification] for all sample sizes con-
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sidered. Further, from Table A3, the misspecification of the error distribution [ǫt ∼ i.i.d. log(χ2
(1))] does not

affect the power of these tests [compare Table A3 with Table A2]. Overall, these tests appear to be rea-

sonably robust to a misspecification of the error distribution, even with small samples. The above results

also hold for low- and high-frequency designs [compare Table A5 with Table A4 and Table A6 with Table

A7]. However, from Table A7, when we simulate the M6 model under nonstationary volatility, results are

slightly different [compare Table A7 with Table A6]: level controls are similar, but rejection frequencies for

power simulations are different.

7 Application to stock prices

In this section, we consider various types of financial data, discuss a large number of IVs, and examine the

strength of these IVs. The proposed tests are implemented with various IVs and confidence intervals for

the volatility persistence parameter φ are constructed by inverting the tests.

7.1 Data description

The LF daily prices are obtained from the CRSP database. The raw series pt is converted to returns by

the transformation rt := 100[log(pt )− log(pt−1)] and the returns are converted to residual returns by st :=

rt −µ̂r , where µ̂r is the sample average of returns. The sample period is from January 1, 2009, to December

31, 2013 (1258 trading days). The daily volatility proxy is constructed by the transformation yt = log(s2
t )+

1.2704. Initially, we consider daily IVs of nine stocks: General Electric Company (GE), IBM Common Stock

(IBM), JPMorgan Chase & Co. (JPM), The Coca-Cola Co (KO), Pfizer Inc. (PFE), Exxon Mobil Corporation

(XOM), The Procter and Gamble Company (PG), AT&T Inc. (T) and Walmart Inc. (WMT). After examining

the strength of daily IVs [see Appendix L], we proceed with IBM stock and consider realized measures and

option implied volatilities as IVs.

IBM’s tick price data are taken from the TAQ (Trade and Quote) database and option (American) data

are sourced from the OptionMetrics database. The access to these databases (CRSP, TAQ, OptionMetrics)

is done through the Wharton Research Data Services. Using the tick data, we construct a large number

of HF IVs. Details of these HF IVs are given in Appendix J and computations are carried out using the

MATLAB Oxford MFE Toolbox developed by Sheppard (2013).10 From IBM American options, three classes

of implied volatility (ImV) are considered: (1) call options; (2) put options; (3) both call and put options.

For each class, we use all implied volatilities available at a given date to construct six ImV subclasses,

which are mean, minimum, maximum, and three quantiles (q1, q2, q3).

10The Oxford MFE Toolbox can be downloaded from the GitHub: https://github.com/bashtage/mfe-toolbox.
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7.2 Final instrument set, econometric model and test statistics

We consider one hundred and seventy-five IVs, which can be divided into 22 classes. The description

of these IVs are given in Appendix Table A12. The HF subclass includes different sampling frequencies

[tick, second and minute], sampling scheme [tick or business], and sub-sampling; these are discussed in

Appendix J. We use 1-minute sub-sampling [ss] in the calculation of several HF measures.

The final instrument set also includes principal component factors (PCF) and daily log volatility of

yt . The three largest principal component factors are extracted from HF IVs. Formally, PCF-based

identification-robust inference in the context of IV regressions was considered by Kapetanios et al. (2016)

to deal with the problem of many IVs. Note that we use logarithms of RV-RSVP and PCF classes of IVs; see

Table A12 for details about transformations.

For empirical analysis, we consider the following GSV model:

wt =µ+φwt−1 + vt , yt = wt +ǫt , vt ∼ i.i.d. N (0,σ2
v ) , ǫt ∼ i.i.d. log(χ2

(1)) , (7.1)

yt−1 = π̄0 +Z ′
t−2π̄1 +ηt−1 , ηt−1 := ǫt−1 +ut−1 , ut ∼ i.i.d. N (0,σ2

u) , (7.2)

where wt = log(σ2
t ), yt = log(s2

t )+1.2704 with st := rt −µr is residual return of an asset with µr is the mean

of return rt = 100[log(pt )− log(pt−1)] and Zt−2 is the set of IVs.

For inference, we consider joint tests (φ, ρ) = (φ0, ρ0). The inference procedures (AR, AR∗) are proposed

in Sections 3.1-3.2 and corresponding test statistics are given in equations (3.12) and (3.15). We use 99

Monte Carlo replications for PO type procedures.

7.3 Projection-based confidence sets

We discuss and build projection-based confidence sets for the volatility persistence parameter. To con-

struct a projection-based confidence interval for the volatility persistence parameter φ, we first construct

a confidence interval for λ with level (1 −α1), denoted as Cα1
(λ). We parametrize the noise ratio λ

rather than ρ since this is the more natural choice. We set α1 = 0.05, and compute λ using the simple

winsorized method proposed by Ahsan and Dufour (2019). We use equations (3.8)-(3.9) with J = 10 of

Ahsan and Dufour (2019) to estimate σ2
v and the corresponding standard error (SE). By setting σ2

ǫ = π2/2,

the SE of λ̂ = σ2
ǫ/σ̂2

v is computed using the delta method. The estimated 95% confidence interval for the

nuisance parameter λ is C0.05(λ) = [33.943, 61.154] with λ̂= 47.548 and SE(λ̂) = 6.935. For each value of λ

in the confidence interval Cα1
(λ), we then construct (1−α2) confidence intervals for φ given λ [denoted

by Cα2
(φ|λ)] by inverting a test robust to weak IVs proposed in Sections 3.1-3.2. By Bonferroni’s inequality,

this confidence interval has coverage of at least 100(1−α)%, where α=α1+α2. If we use α2 = 0.05, then a
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90% confidence interval for φ which does not depend on λ can be obtained by

C0.10(φ) =
⋃

λ∈C0.05(λ)

C0.05(φ|λ) . (7.3)

The projection method is thoroughly discussed in Section 3.3. Note that we employ grid testing during

the test inversion, in which a series of tests [H0 : φ= φ0, λ= λ0, where φ0 ∈ [0, 1], λ0 ∈Cα1
(λ)] performed.

Note that we restrict φ0 in the most relevant part of the parameter space, i.e., φ0 ∈ [0, 1]. Note that these

confidence intervals formed from a range of accepted values due to grid testing; thus, it is easy to get a

nonparametric estimate of φ by applying the Hodges-Lehmann principal.

We use α1 =α2, which is the rule typically employed in the literature on simultaneous inference (e.g., in

Bonferroni-type procedures) and test combination; see Miller (1981), Savin (1984). Cavanagh et al. (1995)

suggested a refinement of the Bonferroni method which makes it less conservative than the basic ap-

proach. The idea is to shrink the confidence interval for λ so that the refined interval is a subset of the

original (unrefined) interval. This consequently shrinks the Bonferroni confidence interval for φ, achiev-

ing an exact test of the desired significance level. However, it is important to note that α should be selected

a priori, not on the basis of the results yielded by different choices of α1 for a given sample.

7.4 Precision (or informational efficiency) of instruments

We define the notions of precision (or informational efficiency) and average precision of instruments using

the corresponding lengths of these identification-robust confidence sets. As pointed out by Dufour (1997),

when IVs are arbitrarily weak, then confidence sets with correct coverage probability must have an infinite

length with positive probability.11 As a result, the length of a weak instrument robust confidence interval

can summarize the identification strength of the corresponding instrument. Since we restrict φ0 ∈ [0, 1],

then an irrelevant (no identification) instrument for the regressor should produce a confidence interval

with length equal to 1.

From an identification-robust confidence interval, we define the precision (or informational efficiency)

of an instrument set i as follows:
di := 1− (ubi − lbi ) (7.4)

where ub and lb are the upper and lower bound of the confidence set, and ub − lb is the length of the

confidence set. The definition di implies that if i is a weak instrument then it will produce di close to 0

and if i is a strong instrument then it will produce di close to 1. For example, a large value of di implies

11Dufour (1997) showed that if the IVs are not correlated with the regressor [irrelevant IVs], then the corresponding parameter

is not identified, and any value of the parameter is consistent with data. A valid confidence set in such a case must be infinite, at

least with probability equal to the coverage. Most empirical applications use the conventional Wald confidence interval, which is

always finite. As a result, the Wald confidence interval has a low coverage probability and should not be used when IVs are weak.
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that the corresponding instrument set is highly informative about the parameter φ.

Figure A1 of Appendix G shows the precision measure di of different classes of IVs, where the instrument

set consists of a constant and a lag of the corresponding instrument. For each class, we consider average,

median, minimum, and maximum precision measures across the proposed inference methods. The fol-

lowing inferences emerge from Figure A1. First, except for JV and SJV classes, all HF classes are considered

as strong instruments, i.e., these classes produce very high di values. These results hold in all precision

measures and across four inference methods. Second, JV and SJV classes have many weak and irrelevant

(no identification) IVs because average and median precision measures of these classes are low and zero,

respectively. These results suggest that JV and SJV classes have no or little predictive power regarding the

latent daily volatility. However, log squared JV and SJV IVs are informative about the volatility clustering.

This finding suggests that the second moment of jumps or signed jumps is correlated with the latent daily

volatility proxy. Third, both PCF and ImV classes have some relevant IVs. However, all ImV classes include

some weak IVs.

Figure A2 of Appendix G shows the precision measure of different subclasses of HF IVs. On average, all

HF subclasses produce confidence intervals with similar lengths, e.g., on average, both 1s and 5m produce

almost similar identification-robust confidence intervals. Hence, it is easy to see that each HF subclasses

contains some IVs with strong identification.

To formalize, we also define the notion of the average precision of an instrument set i over the proposed

inference methods by
d̄i ,s :=

S∑

i=1

di /S (7.5)

where s ∈ S and S is the set of identification-robust inference methods. We use this measure to rank the

information content of instruments.

7.5 Empirical Results

We construct projection-based 90% confidence intervals for φ using numerous types of instruments; then,

using the proposed identification measures (precision and average precision), we identify several crucial

empirical stylized facts. To preserve space, we present only the results with strong IVs and other comple-

mentary results are given in Tables A15-A20 of Appendix M.

7.5.1 Superior instruments

Table 3 reports the projection-based 90% confidence intervals for φ using strong IVs, i.e., based on d̄i ,s .

Panel A includes superior IVs while panel B and C [see Table A15] include IVs which produce slightly larger

confidence sets compared to the IVs in panel A. Panel A mostly includes HF IVs, and 70% of these are 5m
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Table 3. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Strong instruments

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A Panel B

No Instruments d̄i ,s AR AR∗ No Instruments d̄i ,s AR AR∗

1 RSVN-5m-ss 0.8860 [0.950, 1.0] [0.866, 1.0] 11 ImV-C-q3 0.8805 [0.964, 1.0] [0.843, 1.0]
2 RSVN-5m 0.8855 [0.948, 1.0] [0.864, 1.0] 12 RV-1m 0.8800 [0.944, 1.0] [0.857, 1.0]
3 RSVN-1m 0.8848 [0.947, 1.0] [0.856, 1.0] 13 ImV-C-q2 0.8795 [0.958, 1.0] [0.860, 1.0]
4 ImV-C-mean 0.8830 [0.964, 1.0] [0.852, 1.0] 14 RRV-1m 0.8790 [0.945, 1.0] [0.858, 1.0]
5 MinRV-5m 0.8828 [0.945, 1.0] [0.867, 1.0] 15 MedRV-1m 0.8785 [0.944, 1.0] [0.857, 1.0]
6 RV-5m-ss 0.8825 [0.946, 1.0] [0.863, 1.0] 16 RV-5m 0.8783 [0.943, 1.0] [0.858, 1.0]
7 BV-5m 0.8823 [0.945, 1.0] [0.865, 1.0] 17 BV-1m 0.8775 [0.944, 1.0] [0.857, 1.0]
8 BV-5m-ss 0.8823 [0.945, 1.0] [0.865, 1.0] 18 RSVN-10m-ss 0.8775 [0.949, 1.0] [0.858, 1.0]
9 BV-10m-ss 0.8823 [0.945, 1.0] [0.865, 1.0] 19 RSVN-10m 0.8760 [0.946, 1.0] [0.861, 1.0]

10 MedRV-5m 0.8823 [0.945, 1.0] [0.866, 1.0] 20 RV-10m-ss 0.8758 [0.944, 1.0] [0.857, 1.0]

Notes: The instrument set consists of a constant and a lag of an instrument, l = 1. We use logarithms of RV-RSVP and PCF classes of instruments

given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test statistics are given in equations

(3.12) and (3.15). The confidence intervals are constructed by projection technique described in Section 3.3. The corresponding 95% confidence

interval for the nuisance parameter λ is [33.943, 61.154] with λ̂= 47.548 and SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal

type procedures. The average precision of an instrument set i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where

s ∈ S and S is the set of identification-robust inference methods.

subclass [consistent with Liu et al. (2015)]. This finding proves that HF RV does provide an additional gain

in predicting the LF volatility proxy.

Panel A of Table 3 reveals a strong relationship between negative realized semivariance (RSVN) and

low-frequency volatility. The top three strong IVs are all RSVN, where 5-minute subsampled RSVN has

the most predictive power. This result is related to recent studies [see Patton and Sheppard (2015),

Chen and Ghysels (2011), Audrino and Hu (2016), Baillie et al. (2019), Bollerslev et al. (2020)], which

showed that negative realized semivariance is crucial for asset pricing, volatility modelling, and forecast-

ing. The average implied volatility which extracts from IBM call options is also a strong instrument. This

finding is in line with Christensen and Prabhala (1998), who find that implied volatility has large explana-

tory power regarding past volatility.

7.5.2 Robustness to dynamics

Table 3 also gives several other conclusions. First, we can infer from these confidence sets that the per-

sistence parameter lies roughly between 0.9 and 1.0 for IBM. This outcome indicates that the volatility

process is highly persistent, close to unit-root, consistent with the empirical literature; see Harvey et al.

(1994), Hansen (1995), Broto and Ruiz (2004). These confidence sets include φ = 1, implying that these

sets are also robust to nonstationarity. Second, in all cases, simulation-based point-optimal confidence

sets are conservative compared to the corresponding AR-type confidence sets. In all tests and across in-

struments, we do not reject the null hypothesis of nonstationary stochastic volatility.
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7.5.3 Robustness to weak instruments

Table A16 presents the projection-based 90% confidence intervals for φ using weak IVs, i.e., based on d̄i ,s .

Panel A of Table A16 contains IVs with no identification. As a result, these IVs produce unbounded confi-

dence intervals. These confidence intervals cover the entire set of φ ∈ [0, 1]. Panel A comprises mostly by

JV and SJV HF classes and ImV-max subclass. Note that under no identification, all values of φ are obser-

vationally equivalent, which implies that the proposed test statistics yield valid confidence sets which are

unbounded with a non-zero probability. Consequently, the proposed tests are robust to weak identifica-

tion. From Panel C, we find that the LF daily instrument produces a valid confidence set. However, the

length of this set is larger compared to HF confidence sets given in Table 3.

7.5.4 Robustness to microstructure noise

It is well-known that the market microstructure noise becomes progressively more dominant as the

sampling frequency increases; see Zhang et al. (2005), Bandi and Russell (2008), and Hansen and Lunde

(2006). From Table A15, we find that confidence sets with 30s RVs [Panel C: RSVN-30s, RV-30s, BV-30s,

MSRV-30s] are spacious than confidence sets with 5m RVs [Panel A and B] and conclude that the effect

of market microstructure noise leads to slightly wider confidence sets. Thus, our result suggests that the

proposed inference methods produce valid confidence sets even with noisy RVs at a higher frequency.

Further, 85% of the time, Panel A and B include IVs with frequency 1m, 5m, and 10m. These confidence

sets are less sensitive to the market microstructure noise.

Further, the constant term π̄0 in the instrument equation (7.2) may captures the bias in the RV esti-

mate due to the non-trading hours and microstructure noise. As pointed out by Takahashi et al. (2009),

if the bias-correction term π̄0 is negative, RV has an upward bias which may be due to the market mi-

crostructure noise, and if π̄0 is positive, it has a downward bias due to the non-trading hours. Hence, this

bias-correction term may provide an additional layer of robustness to the proposed methodology in the

presence of non-trading hours and microstructure noise even with a very high sampling frequency.

7.5.5 Robustness to jumps

Table A17 presents the projection-based 90% confidence intervals for φ using RV and BV measures as

IVs. From Panel A and B of Table A17, we see that both RV and BV measures produce almost identical

confidence intervals across all 14 subclasses. This result is consistent with the fact that the proposed

tests are robust to missing IVs (or instrument exclusion) [see Dufour and Taamouti (2007) for theoretical

results]. When we make inferences with BV, then jump variation is considered as a missing instrument;
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hence, BV produces a valid confidence set. Note that alternative methods of inference aimed at being

robust to weak identification [see Wang and Zivot (1998), Kleibergen (2002), Moreira (2003), etc.] do not

enjoy this type of robustness. Further, RVs produce almost identical confidence intervals as with BVs,

confirming that our methodology is robust in the presence of jumps.

7.5.6 Combination of strong instruments

In Table A18, we report the estimated confidence intervals, where the instrument set includes a constant

and several lags of an instrument, l = 1, 3, 5. In this setup, we use the first set of strong IVs [Table A15 -

Panel A], ImV-C-q3, and 1-day. In most cases, we find that all confidence intervals for φ (AR, AR∗) are

getting wider as l increases. The average length of these confidence intervals when l = 3, 5 are larger than

the confidence intervals were when l = 1. Therefore, we do not see any apparent gains by adding more

lags in the instrument set. The only exception is the LF daily instrument, where the average length of

confidence intervals is shorter than before. This result implies that we should use more daily lags as IVs to

get a smaller confidence set. We also construct several confidence sets where the instrument set includes

a constant and various combinations of strong IVs. We report these confidence sets in Table A19. The

conclusion is similar to Table A18, i.e., no apparent gains from combining strong IVs.

7.5.7 Nonlinear relationship between jumps and LF volatility

Table A20 presents the projection-based 90% confidence intervals for φ using jump variation (JV) and log

squared jump variation (LJV) measures as IVs. From Panel A and B of Table A20, we see that both JV and

LJV measures yield completely different confidence intervals across all subclasses except 5m; JV measures

produce unbounded sets, while LJV measures provide informative sets. This result suggests there may be

a nonlinear relationship between jumps and low-frequency volatility.

8 Conclusion

This paper has introduced a novel class of GSV models, which can use high-frequency information con-

tent and accommodate nonstationary volatility. We employ IV methods to provide a unified framework

for the analysis of GSV models. Within this framework, we have studied the problem of testing hypothe-

ses and building confidence sets for the volatility persistence parameter. This parameter has an intrinsic

interest because it measures the persistence of the latent volatility process. We proposed more reliable

identification-robust finite-sample procedures, which are robust to weak IVs and/or nonstationary latent

volatility. We also showed that these finite-sample procedures (based on a Gaussian assumption on the
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errors) remain asymptotically valid under weaker distributional assumptions. We then study the statistical

properties of the proposed tests in simulation experiments. These tests outperform the asymptotic t-type

test in terms of size and exhibit excellent power.

We applied these methods to IBM’s price and option data and observed several empirical facts. The

superior instrument set constitutes of HF realized measures and call option implied volatilities. These IVs

produce confidence sets, which show that the latent volatility process of IBM is close to unit-root. We

find RVs at higher frequency produce more spacious confidence intervals than RVs at slightly lower fre-

quencies, pointing out that these confidence intervals adjust to incorporate the microstructure noise. We

also find jumps and signed jumps have little information content regarding the low-frequency volatility,

whereas their log squared versions have strong identification strength. When we consider irrelevant or

weak instruments, the proposed procedures give unbounded confidence intervals. These confidence sets

can be extended to allow for non-Gaussian error distributions [where the conditional distribution of scale

transformed error has a non-Gaussian error distribution] using the MCT procedure (Section 4).

This paper focuses on testing assumptions on the persistence parameter φ, which are central in the

present context. Of course, other hypotheses can be considered. It is important to remember that all the

assumptions and restrictions which define a hypothesis are jointly tested. Error normality is a defining

feature of the stochastic volatility model, which still allows the model to reproduce heteroskedasticity and

heavy-tailed marginal distributions. However, we may still wish to consider other possible distributions.

Given the regression framework (3.2), it is relatively simple to adapt standard specification tests to our

context. The Monte Carlo test approach of Section 4 does allow one to test normality and use various

non-Gaussian distributions to build confidence intervals. The inference methods developed in this paper

can also be adapted to other situations, e.g., measurement error in ARMA-type models, noisy realized

measures in HAR volatility modeling, and multivariate models. Such extensions are topics of ongoing

research.

Data availability statement

The data source is described in Section 7.1. The LF daily prices are obtained from the CRSP database.

The raw series pt is converted to returns by the transformation rt := 100[log(pt )− log(pt−1)] and the re-

turns are converted to residual returns by st := rt − µ̂r , where µ̂r is the sample average of returns. The

sample period is from January 1, 2009, to December 31, 2013 (1258 trading days). The daily volatility

proxy is constructed by the transformation yt = log(s2
t )+ 1.2704. Initially, we consider daily IVs of nine

stocks: General Electric Company (GE), IBM Common Stock (IBM), JPMorgan Chase & Co. (JPM), The

Coca-Cola Co (KO), Pfizer Inc. (PFE), Exxon Mobil Corporation (XOM) and (2) The Procter and Gamble

Company (PG), AT&T Inc. (T) and Walmart Inc. (WMT). IBM’s tick price data are taken from the TAQ

(Trade and Quote) database and option (American) data are sourced from the OptionMetrics database.

The access to these databases (CRSP, TAQ, OptionMetrics) is done through the Wharton Research Data
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Services (https://wrds-www.wharton.upenn.edu). Using the tick data, we construct a large number of

HF IVs. From IBM American options, three classes of implied volatility (ImV) are considered: (1) call op-

tions; (2) put options; (3) both call and put options. For each class, we use all implied volatilities available

at a given date to construct six ImV subclasses, which are mean, minimum, maximum, and three quantiles

(q1, q2, q3).
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A Discussions on the importance of volatility persistence parameter

The volatility persistence parameter captures volatility clustering and plays a crucial role in many areas of

financial economics. First, asset allocation theories have shown that this parameter can reflect the per-

sistence in the risk premium, e.g., when there is high persistence in volatility (a strong negative relation

between return and volatility), a rational investor should frequently and permanently change the weight-

ing of assets whenever a volatility shock arrives; see Bollerslev and Engle (1993), Chou (1988), So and Li

(1999). Second, a confidence set of the volatility persistence parameter determines the conditional volatil-

ity forecast interval given the current volatility, which in turn determines the prediction interval of returns

through the projection technique (risk-return trade-off). This is important for risk management, option

pricing, and asset pricing:

• accurate estimation of the tails of the return distribution are of particular importance for risk man-

agement tools (Value at Risk and Expected Shortfall); see Taylor (1999);

• the volatility forecast interval is important for option pricing [see Hansen (1994)];

• accurate confidence interval estimation of volatility has consequences for the forecasts of the condi-

tional mean (prediction interval of returns) through projection techniques; see Baillie and Bollerslev

(1992), Hansen (1995), Poterba and Summers (1986).

B Discussions on nonstationarity in conditional variance

Nonstationarity in the volatility process has been well documented for macroeconomic

and financial time series data; see Pagan and Schwert (1990), Loretan and Phillips (1994),

McConnell and Perez-Quiros (2000), Blanchard and Simon (2001), Busetti and Taylor (2003),

Sensier and Dijk (2004), Cavaliere and Taylor (2007) and Cavaliere and Taylor (2008). For instance,

nonstationary volatility arises when the variance is trending (upward or downward) or undergoes struc-

tural breaks. Several studies note that the empirical estimate of the dominant root of the SV-type process

is close to the unit circle; see Harvey et al. (1994), Hansen (1995), Broto and Ruiz (2004). Conditional

variance nonstationarity is also important from a theoretical point of view and has broad implications

for the construction of long-term volatility forecasts, which are essential in many asset-pricing models;

see Poterba and Summers (1986). Inference under nonstationary stochastic volatility is rarely considered

in the literature. Hansen (1995) and Boswijk et al. (2021) are the notable studies which proposed robust

inference methods for the mean equation with nonstationary stochastic volatility. Compared to these

studies, we consider inference on the nonstationary volatility equation.

C Proofs

PROOF OF PROPOSITION 4.1 Suppose 4.1 holds and φ=φ0, ρ = ρ0. Under Assumptions 2.1-2.3, equation

(3.11) holds. Then, on multiplying the two sides of (3.11) by MC0
[X ]−MC0

[X , Z−2] and MC0
[X ], we have:

(MC0
[X ]−MC0

[X , Z−2])C0(y −φ0 y−1) =σξ(MC0
[X ]−MC0

[X , Z−2])ϑ , (C.1)

MC0
[X ]C0(y −φ0 y−1) =σξMC0

[X ]ϑ . (C.2)

Thus, the AR-statistic in (3.12) can be rewritten as:

AR(φ0,ρ0) =
σ2
ξ
ϑ′(MC0

[X ]−MC0
[X , Z−2])ϑ/l

σ2
ξ
ϑ′MC0

[X ]ϑ/(T − l −k)
=

ϑ′(MC0
[X ]−MC0

[X , Z−2])ϑ/l

ϑ′MC0
[X ]ϑ/(T − l −k)

. (C.3)

A–2



Hence, the null conditional distribution of AR(φ0,ρ0), given X , only depends on distribution of ϑ. If

normality holds conditional on X , i.e., ϑ | X ∼ N (0, IT ),we have ϑ′(MC0
[X ]− MC0

[X , Z−2])ϑ ∼ χ2
(l )

and

ϑ′MC0
[X ]ϑ∼χ2

(T−l−k)
. Since MC0

[X , Z−2](MC0
[X ]−MC0

[X , Z−2]) = 0, hence ϑ′(MC0
[X ]−MC0

[X , Z−2])ϑ and

ϑ′MC0
[X ]ϑ are independent conditional on X . Consequently, AR(φ0,ρ0) ∼ F (l ,T − l −k).

PROOF OF PROPOSITION 5.1 Under the null hypothesis φ=φ0,

ART (φ0) =κ(T )
Λ1T −Λ2T

Λ2T /T
, (C.4)

where

Λ1T := ξ(T )′M [Q1T ]ξ(T ) , Λ2T := ξ(T )′M [QT ]ξ(T ) , κ(T ) :=
T − l −k

lT
. (C.5)

Under the Assumption (5.1), we have

κ(T ) −→
T→∞

1/l , (C.6)

q2 | q1 ∼N (ΣQ2Q1
Σ−1

Q1Q1
q1,σ2

ξΣq2|q1
) , (C.7)

where Σq2|q1
=ΣQ2Q2

−ΣQ2Q1
Σ−1

Q1Q1
ΣQ1Q2

. Then

(q2 −ΣQ2Q1
Σ−1

Q1Q1
q1)′Σ−1

q2|q1
(q2 −ΣQ2Q1

Σ−1
Q1Q1

q1) ∼σ2
ξχ

2
(l ). (C.8)

Λ1T −Λ2T = ξ(T )′M [Q1T ]ξ(T )−ξ(T )′M [QT ]ξ(T )

= ξ(T )′(I −P [Q1T ])ξ(T )−ξ(T )′(I −P [QT ])ξ(T )

= ξ(T )′QT (Q ′
T QT )−1Q ′

T ξ(T )−ξ(T )′Q1T (Q ′
1T Q1T )−1Q ′

1T ξ(T )

= ξ(T )′QT DT (D ′
T Q ′

T QT DT )−1D ′
T Q ′

T ξ(T )−ξ(T )′D1T Q1T (D ′
1T Q ′

1T Q1T D1T )−1D ′
1T Q ′

1T ξ(T )

=⇒ q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1. (C.9)

Now using standard formulas of a partitioned matrix inverse for ΣQQ and setting S = q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1

[see Gentle (2007, Section 3.4.1)], we have

S = q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1

= (q ′
1, q ′

2)′
[

Σ−1
Q1Q1

+Σ−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1
ΣQ2Q1

Σ−1
Q1Q1

−Σ−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1

−Σ−1
q2|q1

ΣQ2Q1
Σ−1

Q1Q1
Σ−1

q2|q1

](
q1

q2

)

−q ′
1Σ

−1
Q1Q1

q1

= q ′
1Σ

−1
Q1Q1

q1 +q ′
1Σ

−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1
ΣQ2Q1

Σ−1
Q1Q1

q1 −2q ′
2Σ

−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1
q2 +q ′

2Σ
−1
q2|q1

q2 −q ′
1Σ

−1
Q1Q1

q1

= q ′
1Σ

−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1
ΣQ2Q1

Σ−1
Q1Q1

q1 −2q ′
2Σ

−1
Q1Q1

ΣQ1Q2
Σ−1

q2|q1
q2 +q ′

2Σ
−1
q2|q1

q2

= (q2 −ΣQ2Q1
Σ−1

Q1Q1
q1)′Σ−1

q2|q1
(q2 −ΣQ2Q1

Σ−1
Q1Q1

q1) . (C.10)

Thus, from (C.8), (C.9), and (C.10), we get:

Λ1T −Λ2T =⇒σ2
ξχ

2
(l ) and

Λ2T

T

p−→
T→∞

σ2
ξ (C.11)

hence

ART (φ0) =⇒
χ2

(l )

l
. (C.12)
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PROOF OF PROPOSITION 5.2 Under the null hypothesis (φ=φ0 ,ρ = ρ0),

AR∗
T (φ0,ρ0,ρ1) =

Λ1T −Λ2T

Λ2T /T
(C.13)

where

Λ1T := ξ̂(T )′M [Q̂1T ]ξ̂(T ) , Λ2T = ξ̃(T )′M [Q̃T ]ξ̃(T ) . (C.14)

Under the Assumption 5.2, we have:

Λ2T /T = ξ̃(T )′ξ̃(T )/T − ξ̃(T )′P [Q̃T ]ξ̃(T )/T

= ξ̃(T )′ξ̃(T )/T − ξ̃(T )′Q̃T DT (D ′
T Q̃ ′

T Q̃T DT )−1D ′
T Q̃ ′

T ξ̃(T )/T
p−→

T→∞
σ2
ξ (C.15)

where the last equality follows from

ξ̃(T )′ξ̃(T )/T
p−→

T→∞
σ2
ξ , (C.16)

ξ̃(T )′Q̃T DT (D ′
T Q̃ ′

T Q̃T DT )−1D ′
T Q̃ ′

T ξ̃(T )/T =⇒
σ2
ξ
χ2

(l+k)

T

p−→
T→∞

0. (C.17)

Now using restrictions under the null and alternative that ξ̂(T ) = ξ̃(T ) := ξ∗T ∼N (0, IT ), we have

Λ1T −Λ2T = ξ̂(T )′M [Q̂1T ]ξ̂(T )− ξ̃(T )′M [Q̃T ]ξ̃(T )

= ξ∗T
′
M [Q̂1T ]ξ∗T −ξ∗T

′
M [Q̃T ]ξ∗T

=
[

ξ∗T
′
ξ∗T −ξ∗T

′
ξ∗T

]

+
[

ξ∗T
′
P [Q̃T ]ξ∗T −ξ∗T

′
P [Q̂1T ]ξ∗T

]

= ξ∗T
′
P [Q̃T ]ξ∗T −ξ∗T

′
P [Q̂1T ]ξ∗T

= ξ∗T
′
Q̃T (Q̃ ′

T Q̃T )−1Q̃ ′
T ξ

∗
T −ξ∗T

′
Q̂1T (Q̂ ′

1T Q̂1T )−1Q̂ ′
1T ξ

∗
T

= ξ∗T
′
QT [Q ′

T Σ(ρ1)−1QT ]−1Q ′
T Σ(ρ1)−1ξ∗T −ξ∗T

′
Q1T [Q ′

1T Σ(ρ0)−1Q1T ]−1Q ′
1T Σ(ρ0)−1ξ∗T

= ξ∗T
′
QT DT [D ′

T Q ′
T Σ(ρ1)−1QT DT ]−1D ′

T Q ′
T Σ(ρ1)−1ξ∗T

−ξ∗T
′
Q1T D1T [D ′

1T Q ′
1T Σ(ρ0)−1Q1T D1T ]−1D ′

1T Q ′
1T Σ(ρ0)−1ξ∗T

= ξ∗T
′
Λ1ξ

∗
T −ξ∗T

′
Λ0ξ

∗
T

=Λ1 −Λ0, (C.18)

where QT = [Q1T

... Q2T ], Q1T = X (T ), Q2T = Z−2(T ), and

Λ1 :=QT DT [D ′
T Q ′

T Σ(ρ1)−1QT DT ]−1D ′
T Q ′

T Σ(ρ1)−1 , (C.19)

Λ0 :=Q1T D1T [D ′
1T Q ′

1T Σ(ρ0)−1Q1T D1T ]−1D ′
1T Q ′

1T Σ(ρ0)−1 , (C.20)

Λ1 := ξ∗T
′
Λ1ξ

∗
T , Λ0 := ξ∗T

′
Λ0ξ

∗
T . (C.21)

Under the Assumption 5.2, we have

Λ1 = ξ∗T
′
Λ1ξ

∗
T =⇒σ2

ξχ
2
(l+k) , Λ0 = ξ∗T

′
Λ0ξ

∗
T =⇒σ2

ξχ
2
(k) . (C.22)

Further, from the properties of quadratic forms [see Hogg and Craig (1958)], if Λ1 −Λ0 ≥ 0, then

Λ1 −Λ0 =⇒σ2
ξχ

2
(l ) . (C.23)
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Since Λ1 is a projection onto [D1T X (T ), D2T Z−2(T )] plane and Λ0 is a projection onto D1T X (T ), Λ1 −
Λ0 is a projection onto D2T Z−2(T ), i.e., it is a projection onto the orthogonal complement of D1T X (T )

within [D1T X (T ), D2T Z−2(T )]. As a result, Λ1 −Λ0 is an idempotent and positive-semidefinite matrix.

This implies

Λ1 −Λ0 = ξ∗T
′
(Λ1 −Λ0)ξ∗T ≥ 0, (C.24)

and therefore

Λ1 −Λ0 =⇒σ2
ξχ

2
(l ) . (C.25)

Hence from (C.15) and (C.25), we have

AR∗
T (φ0,ρ0,ρ1) =⇒χ2

(l ) . (C.26)

D Monte Carlo tests with nuisance parameters

In this section, we discuss Monte Carlo tests when the distribution of the test statistic depends on nuisance

parameters. Consider now the case where the distribution of ϑ involves a nuisance parameter υ and υ ∈Φ0.

1. Let S(0) be the observed test statistic (based on data).

2. For each υ ∈ Φ0, by Monte Carlo methods, draw N i.i.d. replications of ϑ : ϑ( j ) =
[

ϑ
( j )
1 , . . . , ϑ

( j )

T

]

, j =
1, . . . , N and compute the statistics, S( j )(υ) = S̄(ϑ( j )(υ), X ), j = 1, . . . , N .

3. Using these simulations we compute the MC p-value p̂N [S] := pN (S(0);S), where

p̂N

[

x;S | υ
]

:=
NĜN

[

x;S | υ
]

+1

N +1
. (D.1)

4. The p-value function p̂N [S | υ] as a function of υ is maximized over the parameter values compatible

with the Φ0, and H0 is rejected if

sup
υ∈Φ0

p̂N [S | υ] ≤α. (D.2)

If the number of simulated statistics N is chosen such that α(N+1) is an integer, then we have under

H0:

P
[

sup
υ∈Φ0

{

p̂N [S | υ]
}

≤α
]

≤α, (D.3)

The test defined by p̂N [S | υ] ≤α has size α for known υ . Treating υ as a nuisance parameter and Φ0

is a nuisance parameter set consistent with null, the test is exact at level α; for a proof, see Dufour

(2006).

Because of the maximization in the critical region (D.2) the test is called a maximized Monte Carlo

(MMC) test. MMC tests provide valid inference under general regularity conditions such as almost-

unidentified models or time series processes involving unit-roots. In particular, even though the moment

conditions defining the estimator are derived under the stationarity assumption, this does not question in

any way the validity of maximized MC tests, unlike the parametric bootstrap whose distributional theory

is based on strong regularity conditions. Only the power of MMC tests may be affected. However, the
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simulated p-value function is not continuous, thus standard gradient-based methods cannot be used to

maximize it. But search methods applicable to non-differentiable functions are applicable, e.g., simulated

annealing [see Goffe et al. (1994)]. A simplified approximate version of the MMC procedure can alleviate

its computational load whenever a consistent point or set estimate of υ is available; for further discussion,

see Dufour (2006).

E Temporal aggregation of stochastic volatility models

In this section, we consider the following HF SV model:

wt =µh +φh wt−1 + vt , yt = wt +ǫt , yt := log(s2
t )−µh,z , (E.1)

where µh,z = E
[

log(z2
t )

]

. Further, the model satisfy |φ| < 1 and (vt ,ǫt )
′ ∼ i.i.d. N

(

0,diag[σ2
v , σ2

ǫ ]
)

. This

model is a modified version of the log-normal SV model where ǫt ∼ i.i.d. log(χ2
(1)

) is replaced by ǫt ∼
i.i.d. N (0,σ2

ǫ).

Since we assume stationarity of the latent HF volatility process (|φh | < 1), the HF process yt given in (E.1)

admits an ARMA(1, 1) representation [see Ahsan and Dufour (2019, Proposition 3.1), Granger and Morris

(1976)], which is given by

(1−φhB)yt =µh + (1−θhB)ςt , (E.2)

where ςt −θhςt−1 = vt + ǫt −φhǫt−1. The moving average parameter θh and the white noise variance σ2
h,ς

are related to φh , σ2
h,v

and σ2
h,ǫ

through non-linear equations:

(1+θ2
h)σ2

h,ς =σ2
h,v + (1+φ2

h)σ2
h,ǫ , −θhσ

2
h,ς =−φhσ

2
h,ǫ . (E.3)

Equating coefficients and making substitutions leads to σ2
h,ς

= σ2
h,ǫ

φh/θh and θh is a solution to the

quadratic equation

θ2
h −θh k̃ +1 = 0, where k̃ = (σ2

h,v +σ2
h,ǫ(1+φ2

h))/(σ2
h,ǫφh).

It can be shown that k̃2 −4 = (k̃ −2)(k̃ +2) is positive since k̃ > 2 is equivalent to σ2
h,v

+σ2
h,ǫ

(1−φh)2 > 0.

The induced model (E.2) is invertible if |θh | < 1 which after some algebra is shown to be true for the root

(k̃−(k̃2−4)1/2)/2 when 0 <φh < 1 and for the root (k̃+(k̃2−4)1/2)/2 when −1 <φh < 0. So, given 0 <φh < 1,

we have

θh = (k̃ − (k̃2 −4)1/2)/2, σ2
h,ς =

φh

θh
σ2

h,ǫ . (E.4)

The following Proposition establishes temporal aggregation for model (E.2) by exploiting several well-

known results for ARMA processes.1

Proposition E.1. TEMPORAL AGGREGATION OF HIGH-FREQUENCY MODEL. Under Assumptions of the

model (E.1), the process yt [given in (E.2)] is closed under temporal aggregation and the m-period nonover-

lapping aggregates of yt , denoted by y∗
T , has the following ARMA(1, 1) representation:

(1−φlB)y∗
T =µl + (1−θlB)ς∗T (E.5)

1Temporal aggregation of the family of linear ARMA models has been widely studied; see for example, Amemiya and Wu

(1972), Brewer (1973), Stram and Wei (1986), Silvestrini and Veredas (2008) and Teles and Sousa (2018), among many others. In

general, we call a basic model “closed" under temporal aggregation if the aggregated model belongs to the same family of pro-

cesses as the basic model, with possibly different orders and parameter values, for any order of aggregation m. It can be shown

that the ARMA model is closed under temporal aggregation. The orders and parameters of the aggregated ARMA process can

be derived from the autocovariance links between the basic and aggregated series; see Wei (2006, Chapter 20) and references

therein.
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where T is the aggregate (LF) temporal index such that T = (m,2m, . . .), B is the backshift operator on the

aggregate time unit T such that y∗
TB

j = y∗
T− j

and

y∗
T = y∗

tm =W(B)ytm , φl =φm
h , µl = m

((

1−φm
h

)

/
(

1−φh

))

µh , (E.6)

where the m-period temporal aggregation operator W(B) =
∑m−1

j=0 B j = (1−B m)/(1−B), B is the disaggregate

backshift operator and θl is the root of the quadratic equation:

θ2
l + ψ̄θl +1 = 0 (E.7)

where

ψ̄=ψ1/ψ2 , (E.8)

ψ1 =
m−1∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)2

+
2(m−1)∑

i=m

(

(φh −θh)
m−2∑

j=i−m

φ
j

h
−θhφ

m−1
h

)2

+
(

θhφ
m−1
h

)2

, (E.9)

ψ2 =
m−2∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)(

(φh −θh)
m−2∑

j=i

φ
j

h
−θhφ

m−1
h

)

−
(

1+ (φh −θh)
m−2∑

j=0

φ
j

h

)

θhφ
m−1
h , (E.10)

and θl = (−ψ̄± (ψ̄2 − 4)1/2)/2 such that |θl | < 1 to ensure invertibility of the LF model. Further, σ2
l ,ς

=
ψ2σ

2
h,ς

/(1+θ2
l ).

Note that if we have 0 < φh < 1 in the HF SV model, then both HF and LF ARMA models are invertible

with the following MA parameters:

θh = (k̃ − (k̃2 −4)1/2)/2, θl = (−ψ̄− (ψ̄2 −4)1/2)/2. (E.11)

Further, given the LF ARMA parameters Θl =
(

µl ,φl ,θl ,σ2
l ,ς

)

, we can also recuperate the parameters of

the following LF SV model

w∗
T =µl +φl w∗

T−1 + v∗
T , y∗

T = w∗
T +ǫ∗T , y∗

T := log(s∗T
2

)−µl ,z , (E.12)

where µl ,z = E
[

log(z∗
T

2)
]

= mµh,z and LF SV parameters Θsv,l =
(

µsv,l , φsv,l , σ2
sv,l ,v

, σ2
sv,l ,ǫ

)

are given by the

following non-linear equations [similar to (E.3)]:

µsv,l =µl , φsv,l =φl , σ2
sv,l ,ǫ =

θl

φl

σ2
l ,ς , σ2

sv,l ,v = (1+θ2
l )σ2

l ,ς− (1+φ2
l )σ2

sv,l ,ǫ . (E.13)

It is easy to see that the LF parameter ρl =
θl

(1+θ2
l )

. Finally, due to the above temporal aggregation results,

we can consider the joint test φl =φ0, ρl = ρ0 in the LF model with HF instruments.

PROOF OF PROPOSITION E.1 Under Assumptions of model (E.1), the HF model is given by

(1−φhB)yt =µh + (1−θhB)ςt , (E.14)

where the HF ARMA parameters are Θh =
(

µh ,φh ,θh ,σ2
h,ς

)

. We define an m-period nonoverlapping aggre-

gates of yt as

y∗
t =W(B)yt =

m−1∑

j=0

B j yt , (E.15)

where m is the fixed order of aggregation, yt and y∗
t are basic HF and aggregate LF time series. The m-

period temporal aggregation operator W(B) =
∑m−1

j=0 B j = (1−B m)/(1−B) transforms a HF process to a LF
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process under this flow scheme [note that m = 1 implies no aggregation]. Now re-writing model (E.14) as

φh(B)ỹt = θh(B)ςt , (E.16)

where φh(B) = 1−φhB , θh(B) = 1−θhB , ỹt = yt −E[yt ] and E[yt ] = µh/(1−φh). In an ARMA context, HF

and LF models are linked via a polynomial operator T (B). This polynomial is a function of the roots of

φh(B) and of the temporal aggregation operator W(B). This function drives us from one model to the

other. In general, the AR and MA polynomials of the disaggregate model expressed in terms of their roots

are multiplied by T (B):

T (B)φh(B)ỹt = T (B)θh(B)ςt . (E.17)

The resulting AR polynomial, T (B)φh(B), has roots only divisible by B m = B [i.e., at the aggre-

gate frequency], and this way ỹt is transformed into ỹ∗
T . Furthermore, from Brewer (1973) [also see

Silvestrini and Veredas (2008)], it is well-known that the temporal aggregation of an ARMA(p, q) model

can be represented by an ARMA(p,r ) process where r , the maximum order of the aggregate moving av-

erage polynomial, is equal to r =
⌊

m−1
(

(p +1)(m −1)+q
)⌋

with ⌊b⌋ indicating the integer part of a real

number b. As a result, since the HF time series yt in (E.14) follows an ARMA(1, 1) model, the LF series

y∗
T in (E.15) follows an ARMA(1, 1) model and the LF parameters Θl =

(

µl ,φl ,θl ,σ2
l ,ς

)

are functions of HF

parameters Θh =
(

µh ,φh ,θh ,σ2
h,ς

)

. For an ARMA(1, 1) model, the T (B) operator takes the following form:

T (B) =
[

1−φm
h

B m

1−φhB

]

W(B) =
[

1−φm
h

B m

1−φhB

][
1−B m

1−B

]

. (E.18)

Using the form of ARMA(1, 1)−T (B) in (E.17), we have

[
1−φm

h
B m

1−φhB

][
1−B m

1−B

]

ỹt =
[

1−φm
h

B m

1−φhB

][
1−B m

1−B

]

θh(B)ςt , (E.19)

=⇒
[

1−φm
h

B m

1−φhB

]

W(B)φh(B)ỹt =
[

1−φm
h

B m

1−φhB

]

θh(B)W(B)ςt , (E.20)

=⇒
(

1−φm
h B m

)

W(B)ỹt =
m−1∑

j=0

(φhB) j
W(B)(1−θhB)ςt , (E.21)

=⇒
(

1−φm
h B m

)

ỹ∗
t =

m−1∑

j=0

(φhB) j (1−θhB)ς∗t , (E.22)

Let now B = B m to operate on the aggregate time unit T . The temporal index T = m,2m, . . . is in the

low-frequency. Then, the aggregate series in (E.22) may be represented by the process

(

1−φlB
)

ỹ∗
T =

(

1−θlB
)

ς∗T , (E.23)

or,
(

1−φlB
)

y∗
T =µl +

(

1−θlB
)

ς∗T . (E.24)

where

φl =φm
h , µl = m

((

1−φm
h

)

/
(

1−φh

))

µh . (E.25)

The expected value of y∗
T is also a function of past values of y∗

T and past values of ς∗T . However, what

differs now with respect to yt is that y∗
T = y∗

tm = W(B)ytm . That is, the aggregate data are a function

of the disaggregated data. Therefore aggregate parameters θl and σ2
l ,ς

are, through y∗
T , functions of the

autocovariance structure of yt . As a result, to compute LF parameters (θl ,σ2
l ,ς

)′, we define Ytm :=
(

1−
φm

h
B m

)

W(B)ỹtm , then it is easily seen that E(Ytm) = 0 from (E.21) since ςt ’s are i.i.d. variables with mean
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zero and autocovariances of Ytm are given by

Cov(Ytm , Ytm+km) = E(Ytm , Ytm+km) =







ψ1σ
2
h,ς

if k = 0

ψ2σ
2
h,ς

if k = 1

0 if k ≥ 2,

(E.26)

where

ψ1 =
m−1∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)2

+
2(m−1)∑

i=m

(

(φh −θh)
m−2∑

j=i−m

φ
j

h
−θhφ

m−1
h

)2

+
(

θhφ
m−1
h

)2

, (E.27)

ψ2 =
m−2∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)(

(φh −θh)
m−2∑

j=i

φ
j

h
−θhφ

m−1
h

)

−
(

1+ (φh −θh)
m−2∑

j=0

φ
j

h

)

θhφ
m−1
h . (E.28)

The expression given in (E.26) is also derived in Teles and Sousa (2018, Section 2.2) and Wei (2006, Chapter

20). Therefore, from (E.26), Ytm is an MA(1) model, i.e., Ytm =
(

1−θlB
)

ς∗T and θl is the root of the quadratic

equation:

θ2
l + ψ̄θl +1 = 0 (E.29)

where ψ̄ = ψ1/ψ2 and θl = (−ψ̄± (ψ̄2 −4)1/2)/2 such that |θl | < 1 to ensure invertibility of the LF model.

Further, σ2
l ,ς

=ψ1σ
2
h,ς

/(1+θ2
l ).
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F Testable null values for joint hypothesis

Table A1. Testable null values for joint hypothesis (φ0,ρ0) and corresponding values of λ0

φ0

ρ0 -0.5 -0.4999 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.4999 0.5

-1 - 2499.50 4.50 2.00 1.17 0.75 0.50 0.33 0.21 0.13 0.06 0.00 - - - - - - - - - - -

-0.9999 - 2499.81 4.50 2.00 1.17 0.75 0.50 0.33 0.21 0.13 0.06 0.00 - - - - - - - - - - -

-0.95 - - 4.79 2.12 1.23 0.79 0.53 0.35 0.23 0.13 0.06 0.00 - - - - - - - - - - -

-0.9 - - 5.26 2.27 1.31 0.84 0.56 0.37 0.24 0.14 0.06 0.00 - - - - - - - - - - -

-0.8 - - 7.26 2.78 1.55 0.97 0.64 0.42 0.27 0.16 0.07 0.00 - - - - - - - - - - -

-0.7 - - 15.25 3.85 1.96 1.19 0.76 0.50 0.31 0.18 0.08 0.00 - - - - - - - - - - -

-0.6 - - - 7.14 2.82 1.56 0.96 0.61 0.38 0.22 0.09 0.00 - - - - - - - - - - -

-0.5 - - - - 5.60 2.40 1.33 0.80 0.48 0.27 0.11 0.00 - - - - - - - - - - -

-0.4 - - - - - 5.77 2.27 1.19 0.66 0.35 0.15 0.00 - - - - - - - - - - -

-0.3 - - - - - - 9.09 2.44 1.10 0.52 0.20 0.00 - - - - - - - - - - -

-0.2 - - - - - - - - 3.41 1.04 0.34 0.00 - - - - - - - - - - -

-0.1 - - - - - - - - - - 1.01 0.00 - - - - - - - - - - -

0 - - - - - - - - - - - - - - - - - - - - - - -

0.1 - - - - - - - - - - - 0.00 1.01 - - - - - - - - - -

0.2 - - - - - - - - - - - 0.00 0.34 1.04 3.41 - - - - - - - -

0.3 - - - - - - - - - - - 0.00 0.20 0.52 1.10 2.44 9.09 - - - - - -

0.4 - - - - - - - - - - - 0.00 0.15 0.35 0.66 1.19 2.27 5.77 - - - - -

0.5 - - - - - - - - - - - 0.00 0.11 0.27 0.48 0.80 1.33 2.40 5.60 ∞ - - -

0.6 - - - - - - - - - - - 0.00 0.09 0.22 0.38 0.61 0.96 1.56 2.82 7.14 - - -

0.7 - - - - - - - - - - - 0.00 0.08 0.18 0.31 0.50 0.76 1.19 1.96 3.85 15.25 - -

0.8 - - - - - - - - - - - 0.00 0.07 0.16 0.27 0.42 0.64 0.97 1.55 2.78 7.26 - -

0.9 - - - - - - - - - - - 0.00 0.06 0.14 0.24 0.37 0.56 0.84 1.31 2.27 5.26 - -

0.95 - - - - - - - - - - - 0.00 0.06 0.13 0.23 0.35 0.53 0.79 1.23 2.12 4.79 - -

0.9999 - - - - - - - - - - - 0.00 0.06 0.13 0.21 0.33 0.50 0.75 1.17 2.00 4.50 2499.81 -

1 - - - - - - - - - - - 0.00 0.06 0.13 0.21 0.33 0.50 0.75 1.17 2.00 4.50 2499.50 ∞

Note: These are corresponding values for λ0 = ρ0/[φ0−ρ0(1+φ0)2] ∈ [0, ∞), under the joint null hypothesis

given by

H̄0(φ0, ρ0) :
(

φ=φ0 ∈ [−1, 1] , ρ = ρ0 ∈ [−1/2, 1/2]
)

.

G Figures
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Figure A1. IBM: 2009-2013: Precision of different classes of instruments.

Note: The instrument set consists of a constant and a lag of instrument, l = 1. We use logarithms of RV-

RSVP and PCF classes of instruments given in Table A12. The precision of an instrument set i is defined as

di = 1− (ubi − lbi ). For each class, we consider the average, median, minimum, and maximum precision

measure across the proposed inference methods [AR, AR∗]. These inference procedures are proposed

in Sections 3.1-3.2 and corresponding test statistics are given in equations ( 3.12) and (3.15). We use 99

Monte Carlo replications for point-optimal type procedures.
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Figure A2. IBM: 2009-2013: Precision of different subclasses of HF instruments.

Note: The instrument set consists of a constant and a lag of instrument, l = 1. We use logarithms of RV-

RSVP and PCF classes of instruments given in Table A12. The precision of an instrument set i is defined as

di = 1− (ubi − lbi ). For each class, we consider the average, median, minimum, and maximum precision

measure across the proposed inference methods [AR, AR∗]. These inference procedures are proposed in

Sections 3.1-3.2 and corresponding test statistics are given in equations (3.12) and (3.15). We use 99 Monte

Carlo replications for point-optimal type procedures.
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H Extended simulation study

We simulate the DGP given in (2.2) with an instrument equation, which has the following compact repre-

sentation:

yt =µ+φyt−1 +ξt , ξt := vt +ǫt −φǫt−1 , vt ∼ i.i.d. N (0,σ2
v ) , ǫt ∼ i.i.d. log(χ2

(1)) (H.1)

yt−1 = π̄0 +Z ′
t−2π̄1 +ηt−1 , ηt−1 := ǫt−1 +ut−1 , ut ∼ i.i.d. N (0,σ2

u) , (H.2)

where yt = log(s2
t )+1.2704, π̄1 is an l-vector of first-stage coefficients, Zt−2 is an l-vector of independent

N (0,1) variables, and the vector (ξt ,ηt−1) has zero mean with Var(ξt ) = (1+φ2)σ2
ǫ+σ2

v , Var(ηt−1) =σ2
ǫ+σ2

u

and Cov(ξt ,ηt−1) = −φσ2
ǫ . Note that (H.1) is equivalent to a log-normal SV model, and in all our simula-

tions we generate (H.1) non-linearly as given in (2.1).

We use 10,000 replications to compute the empirical level and powers, and 99 replications for PO tests

based on the MCT procedure. For all tests, the nominal level is fixed at 5%. Thus, under the null hypoth-

esis, the rejection rates should be less than (or close to) 5% for tests to be valid. Except for the analysis of

asymptotic tests (Section H.1), the sample sizes are T = 200, 300.

H.1 Test performance of asymptotic t-test

In this section, we evaluate the performance of the asymptotic t-type test of H0 : φ = φ0. The simulated

DGP is (H.1) with ǫt ∼ i.i.d. log(χ2
(1)

) [it is the log-normal SV model]. We set µ= 0, σv = 2 and φ ∈ [0, 1]. For

sample sizes, T ∈ (100, 10,000) are used.

Table 1 reports the size and power of asymptotic t-type tests for H0(φ) : φ = φ0. The test statistic is

calculated using the simple winsorized estimator of Ahsan and Dufour (2019) [equations (3.8)-(3.9) with

J = 10]. This estimator is more efficient than conventional methods (QMLE, GMM) and as efficient as

the Bayesian procedure. In addition, it is extremely time-efficient, and it produces empirical estimates

which are similar to the Bayesian estimates. For the details of this asymptotic t-test, see Section 6.1 of

Ahsan and Dufour (2019).

We can see from the results that the t-test (which is based on the asymptotic standard error) fails to

control the level when φ −→ 1. Size distortions are severe and equal up to 38.1% when φ = 1. These size

distortions do not go away even in larger samples (T = 5000, 10000), especially when φ > 0.999, i.e., φ is

close to the unit circle.

H.2 Performance of the proposed tests

We will now examine the performance of the tests proposed in Sections 3.1-3.2. We focus on empirically

motivated misspecified model setups with weak, low- and high-frequency instruments to simplify the ex-

position.

• Models with weak instruments where the generated instrument set Zt−2 includes weak IVs which

are weakly correlated with past lags of the LF volatility proxy yt−1.

– M1: (H.1)-(H.2) with ǫt ∼ i.i.d. N (0,π2/2), and M2: (H.1)-(H.2) with ǫt ∼ i.i.d. log(χ2
(1)

).

• Models with low-frequency instruments where we use past lags of the observed volatility proxy yt−1

as IVs.

– M3: (H.1)-(H.2) with ǫt ∼ i.i.d. log(χ2
(1)

) and M4: (H.1)-(H.2) with ǫt ∼ i.i.d. N (0,π2/2).

• Models with high-frequency instruments where we use HF realized volatility measures as IVs.
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– M5: (H.1)-(H.2) with |φ| < 1 and ǫt ∼ i.i.d. N (0,σ2
ǫ), and M6: (H.1)-(H.2) with ǫt ∼

i.i.d. log(χ2
(1)

).

From the above setups, we see that models M2, M3 and M6 correspond to a log-normal SV model

with nonstationary volatility. It is easy to see that these models (M2, M3, M6) are misspecified under

Assumptions 2.2 and 2.4. On the other hand, in models M1, M4, and M5, we have Gaussian noise for

ǫt ; thus, these models are correctly specified under Assumption 2.4 but misspecified under Assumption

2.2. Note that all these models violate the independence assumption, which is in line with the property of

financial returns. However, the instrument set Zt−2 is uncorrelated with ηt−1. These models are designed

to broadly mimic the features of financial returns used in our empirical application. For all models M1-

M6, we consider the joint tests [H0 : (φ, ρ) = (φ0, ρ0)]. The test statistics (AR, AR∗, SS, SS∗) are given in

equations (3.12) and (3.15).

The results of models M1-M6 are reported in Tables A2-A7 and additional results of models M1-M2

are reported in Appendix I.

H.2.1 Test performance under M1 −M2 with weak instruments

For the weak IVs robustness check, we simulate models M1 −M2 and construct first-stage coefficients

π̄1 as
||λ̄||

p
(σ2

ǫ+σ2
u )p

T l
ιl , where ιl is an l-vector of ones. Since Var(Zt−2) = Il and Var(ηt−1) = σ2

ǫ +σ2
u , so that

||λ̄2|| = T π̄′
1π̄1

σ2
ǫ+σ2

u
is the concentration parameter (CP) in this model. We consider the number of IVs l = (1,3,5),

CP = (0,0.5,5), π̄0 = 1, σ2
ǫ = π2/2 (this also holds for M2, since Var

(

log(χ2
(1)

)

= π2/2) and σ2
u = 0.01. Thus,

given C P = (0,0.5,5), the corresponding values of the first stage coefficients for l = 1 are π̄1 = (0,0.11,0.35)

for T = 200 and π̄1 = (0,0.09,0.29) for T = 300.

The simulated models use µz = −1.2704, µ = 2.5 and different values of φ and ρ. These val-

ues are φ ∈ (0.1,1) and ρ = (0.05,0.1). Thus, given ρ = 0.05 and φ = (0.1,0.2,0.5,0.8,0.9,1), the cor-

responding values of λ [= ρ/(φ − ρ(1 + φ)2)] are (1.01,0.34,0.11,0.07,0.06,0.06). Since we fix σ2
ǫ =

π2/2, so λ = (1.010,0.338,0.114,0.070,0.062,0.056) the corresponding values of σv [= σǫ/
p
λ] are

(2.21,3.82,6.57,8.42,8.94,9.42). Similarly, for ρ = 0.1, we have different set of values for λ and σv . As a

result, a restriction on ρ implies a restriction on λ or σv . For example, a joint null (φ0,ρ0) = (1,0.05) is

same as (φ0,λ0) = (1,0.06) or (φ0,σv0) = (1,9.42). For PO tests, we set the alternative ρ1 to the simulated ρ

value.

The results of M1 −M2 confirmed the theoretical contributions of Sections 3.1-3.2 even with model

misspecification. Our findings can be summarized as follows.

First, from Table A2, the levels of the proposed tests (AR, AR∗) are well controlled: rejection frequencies

are less than (or close to) 5%. This result holds whether the identification is completely failed [CP = 0],

weak [CP ∈ (0,0.5)], partial [CP ∈ (0.5,5)], or moderately strong [CP = 5]. This represents a substantial

improvement over the asymptotic test; AR and AR∗ tests perfectly control the level.

Second, from Table A2, all tests exhibit excellent power as long as identification is not very weak. Note

that, in our joint tests, we have an additional restriction under the null hypothesis on the parameter of

the error distribution. This restriction works as an additional source of power for the optimal tests. In all

cases [weak or strong IVs], the AR∗ tests have more power than the AR tests. As expected, the power of

these tests increases with sample size (in many cases, rejection frequencies reach 100%) and concentration

parameter and decreases as the number of IVs increases.

Third, from Table A3, the empirical levels of the proposed tests are almost identical to those obtained

when the model is only misspecified under Assumption 2.2 [compare Table A2 with Table A3]: rejection

frequencies are less than (or close to) 5%, whether identification is completely failed [CP = 0], weak [CP

∈ (0,0.5)], partial [CP ∈ (0.5,5)], or moderately strong [CP = 5], for all sample sizes considered.

Fourth, from Table A3, the misspecification of the error distribution [ǫt ∼ i.i.d. log(χ2
(1)

)] does not affect
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the power of these tests [compare Table A3 with Table A2]. Overall, these tests appear to be reasonably

robust to a misspecification of the error distribution, even with small samples.

H.2.2 Test performance under M3 −M4 with low-frequency instruments

We simulate M3 −M4 models with µz =−1.2704, µ= 2.5, φ ∈ (0.5, 1] and ρ ∈ (0.1, 0.35). We use past lags

of yt−1 as IVs (Zt−2) with a constant π̄0 = 1, so the instrument set Zt−2 is not independent of the error

distributions of v and ǫ. In this setting, for PO tests, we set the alternative to ρ1 = ρ. The results appear in

Tables A4 and A5, and the main findings are the following.

First, in both samples (T = 200,300), the levels of the proposed tests (AR, AR∗) are well controlled, even

when φ= 1.

Second, all these tests exhibit excellent power (see from the second part of Table A4). Note that PO

tests can gain power from the differences in covariance structure, i.e., when ρ1 6= ρ0. Hence, when ρ1 ∈
(0.15,0.35), PO tests outperform their counterpart as expected. However, AR tests have more power in all

cases compared to their counterpart AR∗ when l = 1 and ρ = 0.1. Again, as expected, the power of these

tests increases with sample size and decreases as the number of IVs increases.

Third, from Table A5, when we simulate the same DGP with ǫt ∼ i.i.d. N (0,π2/2), results are almost

identical [compare Table A5 with Table A4]: rejection frequencies are similar.

H.2.3 Test performance under M5 −M6 with high-frequency instruments

The model (H.1) with |φ| < 1 and ǫt ∼ i.i.d. N (0,σ2
v ) is closed under temporal aggregation; see Appendix E

for related discussion and proof. Both yt and y∗
T [the m-period nonoverlapping aggregates of yt , defined

as y∗
T :=

∑m−1
j=0 B j yt ] have an ARMA(1, 1) representation, and the following equations relate LF and HF

parameters:

φl =φm
h , µl ,z = mµh,z , µl = m

((

1−φm
h

)

/
(

1−φh

))

µh , σ2
l ,ǫ =

θl

φl

σ2
l ,ς , σ2

l ,v = (1+θ2
l )σ2

l ,ς−(1+φ2
l )σ2

l ,ǫ , (H.3)

and if we have 0 <φh < 1 then θl = (−ψ̄− (ψ̄2 −4)1/2)/2 where ψ̄=ψ1/ψ2,

ψ1 =
m−1∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)2

+
2(m−1)∑

i=m

(

(φh −θh)
m−2∑

j=i−m

φ
j

h
−θhφ

m−1
h

)2

+
(

θhφ
m−1
h

)2

, (H.4)

ψ2 =
m−2∑

i=0

(

1+ (φh −θh)
i−1∑

j=0

φ
j

h

)(

(φh −θh)
m−2∑

j=i

φ
j

h
−θhφ

m−1
h

)

−
(

1+ (φh −θh)
m−2∑

j=0

φ
j

h

)

θhφ
m−1
h , (H.5)

θh = (k̃ − (k̃2 −4)1/2)/2, k̃ = (σ2
h,v +σ2

h,ǫ(1+φ2
h))/(σ2

h,ǫφh) , (H.6)

σ2
l ,ς =ψ2σ

2
h,ς/(1+θ2

l ) , σ2
h,ς =σ2

h,ǫφh/θh . (H.7)

For model M5, we simulate (H.1) with |φ| < 1 and ǫt ∼ i.i.d. N (0,σ2
ǫ)] at a higher frequency and use

these HF observations to construct RV estimates. The instrument set contains a constant π̄0 = 1 and log of

lagged RVs in this setup. Consequently, we make inferences for the low-frequency model parameters using

generated IVs from the HF series. Note that |φ| < 1 is required for the identification of µl parameter under

temporal aggregation. However, it also ensures stationarity and invertibility of both HF and LF models.

Equal-spaced HF intraday data are considered with frequency set = (1m, 5m, 10m, 15m) where 1m

stands for 1-minute frequency. Therefore, within a day (trading hours = 6.5) the number of HF obser-

vations are m = (390,78,39,26). The HF sample size Th f is equal to T × m, where T is the LF sam-

ple size. Given the frequency set m, we generate data from the HF model (H.1 with µh = (1e−4, 5e−4,

1e−3, 5e−3), σ2
h,v

= (1e−9, 1e−8, 1e−7, 1e−6), σ2
h,ǫ

= (0.01268,0.06328,0.12655,0.1900), φh f = φ1/m
l f

with

φl f = (0.5,0.6,0.7,0.8,0.9,0.99999) and µh,z = µl ,z /m with µl ,z = −1.2704. For each of this four settings
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leads to σ2
l ,ǫ

≈π2/2. Note that, to generate a nearly nonstationary LF volatility process, we use large values

of φh f , e.g., in case of 1-min frequency, φh f = 0.99999997 is corresponds to φl f = 0.99999.

For model M6, in all frequency, we set µh,z = −1.2704, σ2
h,v

= 1e−7, σ2
h,ǫ

= π2/2, and φh f = φ1/m
l f

with φl f = (0.5,0.6,0.7,0.8,0.9,1). Compared to M5, we allow nonstationary volatility in M6 with ǫt ∼
i.i.d. log(χ2

(1)
). Hence, M6 does not have the same error distributions under temporal aggregation. How-

ever, (H.3) is still valid for the HF and LF parameters of M6 model. For the identification of the µl param-

eter when φh f =φl f = 1, we put an identification restriction such that µl = m
((

1− φ̃
m
h

)

/
(

1− φ̃h

))

µh , where

φ̃h =φh − d̂ with d̂ = 1e−15.

The simulation results for model M5− M6 are displayed in Tables A6-A7. The following conclusions

emerge from these tables.

First, we see from Table A6 that in all cases of HF IVs (these are the logarithms of RVs), the proposed

tests (AR, AR∗) controls the levels very well: rejection frequencies are less than (or close to) 5%. This

result holds whether sample sizes are different (T = 200,300), or the instrument set contains a different

number of IVs (l = 1,3,5). However, PO tests are undersized with HF IVs: rejection frequencies are less

than 5% and close to 0% when ρ −→ 0.5. This shows that PO tests need large samples for level control in

these cases.

Second, from Table A6, in all cases of HF IVs (1-minute to 15-minute), the proposed tests have excellent

power against the alternative: up to 100%, and the power of these tests increases with the sample size, and

decreases as the number of IVs increases.

Third, all tests have excellent power across different sampling frequencies, and these tests gain power

when the sampling frequency increases.

Fourth, from Table A7, when we simulate the M6 model under nonstationary volatility, results are

slightly different [compare Table A7 with Table A6]: level controls are similar, but rejection frequencies

for power simulations are slightly different.
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Table A2. Size and power comparison of joint tests under M1 with weak instruments, nominal level: 5%

Size

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 5.1 5.1 0.00 4.8 4.6 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.3 5.0 0.00 5.1 4.9
2.21 1.010 0.5 0.11 5.1 5.3 0.06 4.9 4.7 0.05 4.8 4.7 0.09 5.1 4.9 0.05 5.2 5.0 0.04 5.0 4.9
2.21 1.010 5.0 0.35 5.5 5.3 0.20 5.4 5.1 0.16 4.9 5.0 0.29 5.3 5.3 0.17 5.4 5.0 0.13 5.2 5.1

0.2 3.82 0.338 0.0 0.00 5.2 5.0 0.00 4.9 4.8 0.00 4.9 4.8 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.2 5.0
3.82 0.338 0.5 0.11 5.2 5.1 0.06 4.9 4.9 0.05 4.9 5.0 0.09 4.9 4.5 0.05 4.9 4.8 0.04 5.1 5.0
3.82 0.338 5.0 0.35 5.3 5.3 0.20 5.1 5.0 0.16 4.9 5.1 0.29 5.2 5.0 0.17 5.1 5.0 0.13 5.5 5.1

0.5 6.57 0.114 0.0 0.00 5.3 5.1 0.00 5.2 5.2 0.00 4.9 4.8 0.00 4.8 4.6 0.00 5.1 5.0 0.00 5.0 5.0
6.57 0.114 0.5 0.11 5.1 5.0 0.06 5.1 5.0 0.05 4.9 4.9 0.09 4.8 4.6 0.05 5.2 4.9 0.04 5.0 4.9
6.57 0.114 5.0 0.35 5.0 4.8 0.20 5.1 5.0 0.16 4.9 4.9 0.29 5.0 5.1 0.17 5.1 5.0 0.13 5.2 4.9

0.8 8.42 0.070 0.0 0.00 5.2 5.0 0.00 5.1 5.1 0.00 5.0 4.8 0.00 4.7 4.6 0.00 5.1 5.0 0.00 5.0 4.8
8.42 0.070 0.5 0.11 5.0 5.0 0.06 5.1 5.0 0.05 5.0 4.8 0.09 4.7 4.5 0.05 5.0 4.9 0.04 5.0 4.8
8.42 0.070 5.0 0.35 4.9 4.7 0.20 5.1 4.8 0.16 4.9 4.8 0.29 4.8 4.6 0.17 4.9 4.9 0.13 5.0 4.9

0.9 8.94 0.062 0.0 0.00 5.2 5.0 0.00 5.0 5.1 0.00 5.1 4.8 0.00 4.8 4.6 0.00 5.1 5.0 0.00 5.0 4.8
8.94 0.062 0.5 0.11 5.1 5.1 0.06 5.1 4.9 0.05 5.0 4.8 0.09 4.7 4.7 0.05 5.1 4.9 0.04 5.0 4.7
8.94 0.062 5.0 0.35 4.8 4.7 0.20 5.0 4.8 0.16 4.9 4.9 0.29 4.7 4.5 0.17 4.8 4.8 0.13 4.9 4.8

1.0 9.42 0.056 0.0 0.00 5.3 5.0 0.00 4.9 5.1 0.00 5.1 4.9 0.00 5.1 5.0 0.00 5.2 5.0 0.00 4.8 4.7
9.42 0.056 0.5 0.11 5.3 5.1 0.06 5.0 4.9 0.05 4.9 4.9 0.09 5.2 5.1 0.05 5.2 5.2 0.04 4.7 4.8
9.42 0.056 5.0 0.35 5.5 5.1 0.20 5.1 4.9 0.16 5.2 4.9 0.29 5.1 5.1 0.17 5.1 5.0 0.13 4.9 4.7

0.10 0.2 2.18 1.042 0.0 0.00 5.1 4.9 0.00 4.7 4.4 0.00 4.7 4.4 0.00 4.9 4.6 0.00 5.1 4.8 0.00 5.1 4.6
2.18 1.042 0.5 0.11 5.3 5.0 0.06 4.9 4.5 0.05 4.7 4.4 0.09 5.1 4.6 0.05 5.2 4.7 0.04 5.1 4.6
2.18 1.042 5.0 0.35 6.4 5.9 0.20 5.4 5.2 0.16 5.2 5.0 0.29 6.1 5.8 0.17 5.6 5.1 0.13 5.4 4.9

0.5 4.30 0.267 0.0 0.00 5.2 4.8 0.00 5.2 4.7 0.00 4.7 4.4 0.00 4.9 4.4 0.00 4.9 4.6 0.00 5.1 4.5
4.30 0.267 0.5 0.11 5.1 4.9 0.06 5.3 4.8 0.05 4.8 4.6 0.09 4.9 4.4 0.05 5.0 4.7 0.04 5.2 4.5
4.30 0.267 5.0 0.35 5.9 5.6 0.20 5.7 5.3 0.16 5.3 4.8 0.29 6.0 5.8 0.17 5.5 5.1 0.13 5.6 4.9

0.8 5.60 0.157 0.0 0.00 5.3 4.8 0.00 5.1 4.8 0.00 5.0 4.5 0.00 4.7 4.4 0.00 5.0 4.6 0.00 4.8 4.4
5.60 0.157 0.5 0.11 5.1 4.7 0.06 5.2 4.9 0.05 4.9 4.5 0.09 4.8 4.4 0.05 5.0 4.6 0.04 4.9 4.4
5.60 0.157 5.0 0.35 5.1 4.7 0.20 5.1 4.6 0.16 4.9 4.7 0.29 5.1 4.6 0.17 5.1 4.6 0.13 5.0 4.6

0.9 5.96 0.139 0.0 0.00 5.2 4.8 0.00 5.1 4.9 0.00 5.0 4.6 0.00 4.7 4.5 0.00 5.0 4.7 0.00 4.9 4.3
5.96 0.139 0.5 0.11 5.0 4.7 0.06 5.2 4.9 0.05 4.9 4.6 0.09 4.6 4.4 0.05 5.0 4.6 0.04 4.9 4.3
5.96 0.139 5.0 0.35 4.7 4.3 0.20 5.1 4.6 0.16 4.8 4.4 0.29 4.6 4.3 0.17 4.9 4.6 0.13 5.0 4.4

1.0 6.28 0.125 0.0 0.00 5.2 4.8 0.00 5.1 4.9 0.00 4.9 4.5 0.00 5.1 4.8 0.00 5.2 4.9 0.00 4.8 4.5
6.28 0.125 0.5 0.11 5.2 4.9 0.06 5.1 4.7 0.05 4.9 4.5 0.09 4.9 4.8 0.05 5.2 4.9 0.04 4.7 4.5
6.28 0.125 5.0 0.35 5.2 4.5 0.20 5.1 4.5 0.16 5.0 4.5 0.29 5.1 4.6 0.17 5.1 4.7 0.13 4.7 4.3

Panel B: Power (H0 : φ0 = 1,ρ0 = 0.05)

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.5 4.3 0.00 4.3 4.3 0.00 4.4 4.3 0.00 4.5 4.4 0.00 4.4 4.3 0.00 4.3 4.0
2.21 1.010 0.5 0.11 10.3 9.8 0.06 7.2 6.9 0.05 6.7 6.4 0.09 10.1 9.9 0.05 7.3 7.0 0.04 6.1 6.2
2.21 1.010 5.0 0.35 61.5 60.3 0.20 40.9 39.8 0.16 31.1 30.4 0.29 62.1 60.5 0.17 40.5 39.5 0.13 32.0 30.8

0.2 3.82 0.338 0.0 0.00 4.7 4.6 0.00 4.2 4.4 0.00 4.5 4.5 0.00 4.6 4.5 0.00 4.3 4.5 0.00 4.4 4.1
3.82 0.338 0.5 0.11 12.7 12.1 0.06 8.3 8.2 0.05 7.6 7.1 0.09 12.2 11.9 0.05 8.0 7.8 0.04 7.2 6.8
3.82 0.338 5.0 0.35 75.3 73.8 0.20 53.6 51.9 0.16 42.5 41.1 0.29 76.0 73.9 0.17 54.7 53.3 0.13 44.1 42.5

0.4 5.81 0.146 0.0 0.00 4.9 4.8 0.00 4.4 4.6 0.00 4.5 4.5 0.00 4.4 4.4 0.00 4.6 4.5 0.00 4.5 4.3
5.81 0.146 0.5 0.11 11.5 11.0 0.06 7.8 7.6 0.05 7.3 6.9 0.09 11.4 11.3 0.05 7.6 7.4 0.04 7.0 6.7
5.81 0.146 5.0 0.35 70.1 68.2 0.20 47.8 46.1 0.16 37.9 36.5 0.29 70.4 68.4 0.17 49.1 47.2 0.13 39.3 37.8

0.5 6.57 0.114 0.0 0.00 4.9 4.8 0.00 4.4 4.6 0.00 4.5 4.4 0.00 4.4 4.5 0.00 4.6 4.6 0.00 4.6 4.5
6.57 0.114 0.5 0.11 10.5 10.1 0.06 7.4 7.3 0.05 6.7 6.5 0.09 10.4 10.4 0.05 7.4 7.1 0.04 6.5 6.3
6.57 0.114 5.0 0.35 63.5 61.7 0.20 41.5 39.8 0.16 32.3 31.5 0.29 63.8 61.6 0.17 42.4 40.8 0.13 33.6 32.2

0.8 8.42 0.070 0.0 0.00 5.1 4.8 0.00 4.6 4.8 0.00 4.8 4.8 0.00 4.3 4.3 0.00 4.8 4.8 0.00 4.9 4.7
8.42 0.070 0.5 0.11 7.5 7.4 0.06 5.8 5.7 0.05 5.7 5.6 0.09 7.0 6.8 0.05 5.7 5.7 0.04 5.7 5.5
8.42 0.070 5.0 0.35 32.2 30.5 0.20 19.4 18.3 0.16 14.7 14.3 0.29 32.1 30.4 0.17 18.7 18.3 0.13 15.0 14.4

0.9 8.94 0.062 0.0 0.00 5.0 4.9 0.00 4.9 5.1 0.00 5.0 4.7 0.00 4.4 4.4 0.00 4.9 4.9 0.00 4.9 4.7
8.94 0.062 0.5 0.11 6.3 6.1 0.06 5.4 5.4 0.05 5.4 5.1 0.09 5.7 5.6 0.05 5.5 5.4 0.04 5.4 5.2
8.94 0.062 5.0 0.35 18.9 18.1 0.20 11.9 11.3 0.16 9.7 9.4 0.29 19.0 18.0 0.17 11.6 11.2 0.13 9.8 9.3

1.0 9.42 0.056 0.0 0.00 5.3 5.0 0.00 4.9 5.1 0.00 5.1 4.9 0.00 5.1 5.0 0.00 5.2 5.0 0.00 4.8 4.7
9.42 0.056 0.5 0.11 5.3 5.1 0.06 5.0 4.9 0.05 4.9 4.9 0.09 5.2 5.1 0.05 5.2 5.2 0.04 4.7 4.8
9.42 0.056 5.0 0.35 5.5 5.1 0.20 5.1 4.9 0.16 5.2 4.9 0.29 5.1 5.1 0.17 5.1 5.0 0.13 4.9 4.7

0.10 0.2 2.18 1.042 0.0 0.00 4.5 100.0 0.00 4.4 95.7 0.00 4.5 75.2 0.00 4.6 100.0 0.00 4.4 100.0 0.00 4.3 99.7
2.18 1.042 0.5 0.11 9.6 100.0 0.06 6.8 96.2 0.05 6.4 78.1 0.09 9.4 100.0 0.05 7.0 100.0 0.04 5.9 99.7
2.18 1.042 5.0 0.35 54.1 100.0 0.20 34.3 99.0 0.16 26.0 92.2 0.29 54.5 100.0 0.17 34.4 100.0 0.13 26.9 99.9

0.5 4.30 0.267 0.0 0.00 4.9 96.9 0.00 4.5 62.5 0.00 4.6 41.4 0.00 4.4 100.0 0.00 4.5 96.3 0.00 4.4 81.8
4.30 0.267 0.5 0.11 9.6 97.1 0.06 7.0 66.4 0.05 6.4 45.9 0.09 9.5 100.0 0.05 6.8 96.7 0.04 6.1 83.8
4.30 0.267 5.0 0.35 55.4 99.3 0.20 35.2 88.3 0.16 26.6 74.1 0.29 55.6 100.0 0.17 35.7 99.0 0.13 27.6 94.6

0.8 5.60 0.157 0.0 0.00 4.9 51.1 0.00 4.6 24.0 0.00 4.6 18.0 0.00 4.4 80.8 0.00 4.7 46.9 0.00 4.6 32.4
5.60 0.157 0.5 0.11 7.2 53.5 0.06 5.6 26.0 0.05 5.5 19.5 0.09 6.7 82.1 0.05 5.6 49.1 0.04 5.4 34.5
5.60 0.157 5.0 0.35 28.6 71.0 0.20 17.0 43.5 0.16 13.1 32.8 0.29 28.5 89.8 0.17 16.8 65.3 0.13 13.4 50.2

0.9 5.96 0.139 0.0 0.00 4.9 30.3 0.00 4.9 15.9 0.00 5.0 13.2 0.00 4.4 54.2 0.00 4.7 28.2 0.00 4.7 21.1
5.96 0.139 0.5 0.11 6.1 31.8 0.06 5.5 17.3 0.05 5.3 13.9 0.09 5.8 55.3 0.05 5.1 29.2 0.04 5.2 21.7
5.96 0.139 5.0 0.35 17.4 45.2 0.20 10.9 26.0 0.16 9.0 20.2 0.29 16.9 65.5 0.17 10.5 39.0 0.13 8.7 29.0

1.0 6.28 0.125 0.0 0.00 5.0 17.3 0.00 4.9 11.0 0.00 4.7 9.6 0.00 4.9 29.8 0.00 5.1 16.6 0.00 4.6 13.5
6.28 0.125 0.5 0.11 5.1 17.2 0.06 5.0 11.1 0.05 4.7 9.8 0.09 4.9 30.0 0.05 5.1 16.7 0.04 4.6 13.4
6.28 0.125 5.0 0.35 5.0 17.1 0.20 4.9 11.1 0.16 4.8 9.6 0.29 4.9 29.4 0.17 5.0 16.6 0.13 4.5 13.6

A
–

1
7



Table A3. Size and power comparison of joint tests under M2 with weak instruments, nominal level: 5%

Size

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.2 5.0 0.00 4.8 4.9 0.00 5.0 4.9 0.00 5.1 4.9
2.21 1.010 0.5 0.11 4.7 4.8 0.06 4.8 4.8 0.05 5.2 5.0 0.09 4.8 4.7 0.05 4.9 5.1 0.04 5.2 4.9
2.21 1.010 5.0 0.35 5.0 4.9 0.20 4.9 5.1 0.16 5.2 5.2 0.29 5.0 5.1 0.17 5.2 5.2 0.13 5.2 5.1

0.2 3.82 0.338 0.0 0.00 4.8 5.0 0.00 5.0 4.8 0.00 5.2 5.0 0.00 4.8 4.6 0.00 4.9 4.9 0.00 5.3 5.1
3.82 0.338 0.5 0.11 4.8 4.9 0.06 5.0 4.9 0.05 5.1 4.9 0.09 4.8 4.6 0.05 4.9 4.9 0.04 5.2 5.2
3.82 0.338 5.0 0.35 5.0 5.0 0.20 5.1 4.9 0.16 5.1 5.0 0.29 4.9 4.9 0.17 5.1 5.0 0.13 5.5 5.4

0.5 6.57 0.114 0.0 0.00 5.0 5.3 0.00 5.3 5.1 0.00 5.3 5.1 0.00 4.7 4.6 0.00 5.0 5.0 0.00 5.2 5.0
6.57 0.114 0.5 0.11 5.0 5.2 0.06 5.2 5.0 0.05 5.3 5.1 0.09 4.9 4.6 0.05 5.0 5.0 0.04 5.1 5.1
6.57 0.114 5.0 0.35 4.9 4.9 0.20 5.0 4.9 0.16 5.1 5.1 0.29 4.9 4.8 0.17 5.0 4.9 0.13 5.3 5.1

0.8 8.42 0.070 0.0 0.00 5.1 5.3 0.00 5.4 5.1 0.00 5.3 5.0 0.00 4.9 4.7 0.00 5.1 5.0 0.00 5.1 5.0
8.42 0.070 0.5 0.11 5.1 5.3 0.06 5.2 5.0 0.05 5.3 5.1 0.09 4.8 4.6 0.05 5.1 4.9 0.04 5.2 4.9
8.42 0.070 5.0 0.35 4.6 4.7 0.20 5.0 4.8 0.16 5.1 5.0 0.29 4.7 4.3 0.17 5.0 4.8 0.13 5.2 5.0

0.9 8.94 0.062 0.0 0.00 5.1 5.3 0.00 5.4 5.1 0.00 5.4 5.1 0.00 4.9 4.7 0.00 5.1 5.0 0.00 5.1 5.0
8.94 0.062 0.5 0.11 5.2 5.2 0.06 5.3 5.1 0.05 5.4 5.1 0.09 4.9 4.7 0.05 5.1 5.0 0.04 5.0 5.0
8.94 0.062 5.0 0.35 4.9 4.8 0.20 5.0 4.9 0.16 5.1 5.0 0.29 4.6 4.4 0.17 4.9 4.9 0.13 5.0 4.9

1.0 9.42 0.056 0.0 0.00 5.1 5.2 0.00 5.2 5.0 0.00 5.3 5.0 0.00 5.3 5.3 0.00 5.2 5.1 0.00 4.9 4.8
9.42 0.056 0.5 0.11 5.2 5.1 0.06 5.2 5.1 0.05 5.3 5.0 0.09 5.2 5.2 0.05 5.1 5.0 0.04 4.9 4.7
9.42 0.056 5.0 0.35 5.5 5.4 0.20 5.4 5.2 0.16 5.3 5.0 0.29 5.2 5.1 0.17 5.2 5.0 0.13 4.9 4.8

0.10 0.2 2.18 1.042 0.0 0.00 4.7 4.6 0.00 4.9 4.6 0.00 5.1 4.8 0.00 4.8 4.6 0.00 5.0 4.8 0.00 5.2 4.6
2.18 1.042 0.5 0.11 4.8 4.7 0.06 4.8 4.6 0.05 5.2 4.9 0.09 5.0 4.6 0.05 5.0 4.9 0.04 5.2 4.7
2.18 1.042 5.0 0.35 6.0 5.6 0.20 5.4 5.0 0.16 5.5 5.1 0.29 5.9 5.7 0.17 5.7 5.4 0.13 5.7 5.3

0.5 4.30 0.267 0.0 0.00 4.9 4.8 0.00 5.2 4.8 0.00 5.3 4.9 0.00 4.7 4.4 0.00 4.8 4.7 0.00 5.2 4.8
4.30 0.267 0.5 0.11 5.0 4.8 0.06 5.1 4.7 0.05 5.2 4.9 0.09 4.7 4.4 0.05 5.0 4.8 0.04 5.2 4.9
4.30 0.267 5.0 0.35 6.1 5.6 0.20 5.5 4.9 0.16 5.4 5.2 0.29 5.9 5.4 0.17 5.7 5.4 0.13 5.9 5.3

0.8 5.60 0.157 0.0 0.00 4.9 5.1 0.00 5.3 4.9 0.00 5.5 4.8 0.00 4.8 4.6 0.00 5.1 4.8 0.00 5.1 4.7
5.60 0.157 0.5 0.11 5.1 4.9 0.06 5.2 4.7 0.05 5.4 4.8 0.09 4.6 4.4 0.05 5.1 4.9 0.04 5.2 4.8
5.60 0.157 5.0 0.35 5.1 4.8 0.20 5.2 4.7 0.16 5.2 4.9 0.29 5.0 4.6 0.17 5.3 4.8 0.13 5.4 4.8

0.9 5.96 0.139 0.0 0.00 5.0 5.1 0.00 5.3 4.9 0.00 5.5 4.8 0.00 4.9 4.6 0.00 5.0 4.8 0.00 5.1 4.7
5.96 0.139 0.5 0.11 5.1 5.0 0.06 5.2 4.8 0.05 5.4 4.8 0.09 4.7 4.4 0.05 5.1 4.8 0.04 5.0 4.6
5.96 0.139 5.0 0.35 4.7 4.3 0.20 5.0 4.6 0.16 5.2 4.7 0.29 4.6 4.2 0.17 5.0 4.7 0.13 5.0 4.5

1.0 6.28 0.125 0.0 0.00 5.1 5.1 0.00 5.2 4.8 0.00 5.4 4.9 0.00 5.2 4.9 0.00 5.2 5.0 0.00 5.0 4.7
6.28 0.125 0.5 0.11 5.2 5.0 0.06 5.2 4.7 0.05 5.4 4.8 0.09 5.2 4.8 0.05 5.1 5.0 0.04 5.0 4.5
6.28 0.125 5.0 0.35 5.2 4.7 0.20 5.1 4.9 0.16 5.3 4.8 0.29 5.1 4.9 0.17 5.1 4.8 0.13 4.9 4.5

Power

Panel B: Power (H0 : φ0 = 1,ρ0 = 0.05)

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.4 4.5 0.00 4.4 4.2 0.00 4.1 4.0 0.00 4.3 4.2 0.00 4.4 4.1 0.00 4.4 4.2
2.21 1.010 0.5 0.11 10.0 10.0 0.06 7.0 7.1 0.05 6.4 6.1 0.09 10.3 9.7 0.05 7.0 6.9 0.04 6.1 6.0
2.21 1.010 5.0 0.35 62.2 60.0 0.20 39.2 38.2 0.16 30.6 29.7 0.29 62.3 60.6 0.17 41.4 40.2 0.13 33.0 31.8

0.2 3.82 0.338 0.0 0.00 4.7 4.6 0.00 4.5 4.5 0.00 4.4 4.4 0.00 4.2 4.1 0.00 4.4 4.0 0.00 4.3 4.3
3.82 0.338 0.5 0.11 12.2 11.9 0.06 8.0 8.1 0.05 7.3 7.0 0.09 12.4 12.0 0.05 7.9 7.7 0.04 6.9 6.5
3.82 0.338 5.0 0.35 75.6 73.7 0.20 52.9 51.2 0.16 42.6 40.6 0.29 76.1 74.1 0.17 54.3 53.0 0.13 44.2 42.5

0.5 6.57 0.114 0.0 0.00 4.7 4.6 0.00 4.3 4.6 0.00 4.6 4.6 0.00 4.3 4.2 0.00 4.7 4.4 0.00 4.6 4.5
6.57 0.114 0.5 0.11 10.6 10.2 0.06 7.1 7.3 0.05 6.7 6.4 0.09 10.3 10.4 0.05 7.0 6.9 0.04 6.6 6.2
6.57 0.114 5.0 0.35 63.6 61.4 0.20 41.6 40.1 0.16 32.1 31.0 0.29 63.9 61.8 0.17 43.0 41.7 0.13 34.1 32.9

0.8 8.42 0.070 0.0 0.00 5.0 5.0 0.00 4.9 4.9 0.00 4.9 4.8 0.00 4.3 4.3 0.00 4.7 4.7 0.00 4.8 4.8
8.42 0.070 0.5 0.11 7.2 6.9 0.06 6.1 6.0 0.05 5.6 5.6 0.09 7.3 7.0 0.05 5.9 5.7 0.04 5.8 5.6
8.42 0.070 5.0 0.35 31.8 30.0 0.20 18.8 17.9 0.16 14.7 14.2 0.29 31.9 30.4 0.17 19.6 18.7 0.13 15.3 14.8

0.9 8.94 0.062 0.0 0.00 5.0 5.2 0.00 5.0 5.1 0.00 5.2 5.0 0.00 4.6 4.5 0.00 4.8 4.8 0.00 4.8 4.8
8.94 0.062 0.5 0.11 6.1 6.1 0.06 5.7 5.6 0.05 5.6 5.4 0.09 6.1 5.8 0.05 5.5 5.3 0.04 5.4 5.4
8.94 0.062 5.0 0.35 19.1 18.3 0.20 11.4 11.2 0.16 9.6 9.2 0.29 18.7 17.9 0.17 11.9 11.3 0.13 9.7 9.4

1.0 9.42 0.056 0.0 0.00 5.1 5.2 0.00 5.2 5.0 0.00 5.3 5.0 0.00 5.3 5.3 0.00 5.2 5.1 0.00 4.9 4.8
9.42 0.056 0.5 0.11 5.2 5.1 0.06 5.2 5.1 0.05 5.3 5.0 0.09 5.2 5.2 0.05 5.1 5.0 0.04 4.9 4.7
9.42 0.056 5.0 0.35 5.5 5.4 0.20 5.4 5.2 0.16 5.3 5.0 0.29 5.2 5.1 0.17 5.2 5.0 0.13 4.9 4.8

0.10 0.2 2.18 1.042 0.0 0.00 4.4 100.0 0.00 4.5 95.6 0.00 4.2 75.6 0.00 4.2 100.0 0.00 4.3 100.0 0.00 4.4 99.7
2.18 1.042 0.5 0.11 8.9 100.0 0.06 6.5 95.9 0.05 6.1 78.1 0.09 9.4 100.0 0.05 6.7 100.0 0.04 5.9 99.7
2.18 1.042 5.0 0.35 54.4 100.0 0.20 33.0 99.0 0.16 25.5 91.9 0.29 54.7 100.0 0.17 35.1 100.0 0.13 27.5 99.9

0.5 4.30 0.267 0.0 0.00 4.8 96.6 0.00 4.5 62.4 0.00 4.6 40.9 0.00 4.4 100.0 0.00 4.4 96.4 0.00 4.6 82.0
4.30 0.267 0.5 0.11 9.4 97.3 0.06 6.6 66.9 0.05 6.2 45.3 0.09 9.3 100.0 0.05 6.7 96.9 0.04 5.9 84.2
4.30 0.267 5.0 0.35 55.7 99.3 0.20 34.4 88.1 0.16 26.3 73.7 0.29 55.7 100.0 0.17 35.9 99.1 0.13 28.8 94.5

0.8 5.60 0.157 0.0 0.00 4.9 50.3 0.00 4.8 23.6 0.00 5.0 17.5 0.00 4.4 80.8 0.00 4.6 47.4 0.00 4.8 33.0
5.60 0.157 0.5 0.11 6.9 53.3 0.06 5.8 25.6 0.05 5.6 19.0 0.09 6.9 82.1 0.05 5.7 49.6 0.04 5.5 35.2
5.60 0.157 5.0 0.35 28.5 71.1 0.20 16.4 43.4 0.16 13.3 32.3 0.29 28.6 90.1 0.17 17.4 65.3 0.13 13.5 50.3

0.9 5.96 0.139 0.0 0.00 5.0 30.2 0.00 4.9 15.9 0.00 5.1 12.8 0.00 4.5 54.0 0.00 4.9 28.8 0.00 4.8 21.4
5.96 0.139 0.5 0.11 6.0 31.8 0.06 5.5 16.8 0.05 5.4 13.4 0.09 6.1 54.8 0.05 5.3 30.3 0.04 5.4 22.5
5.96 0.139 5.0 0.35 16.9 45.1 0.20 10.5 25.1 0.16 8.9 19.5 0.29 17.2 65.3 0.17 11.1 39.6 0.13 9.1 30.2

1.0 6.28 0.125 0.0 0.00 5.1 17.7 0.00 5.2 11.3 0.00 5.1 9.7 0.00 5.2 29.8 0.00 5.2 17.1 0.00 4.9 14.2
6.28 0.125 0.5 0.11 5.0 17.5 0.06 5.0 11.4 0.05 5.1 9.7 0.09 5.0 29.9 0.05 5.2 17.1 0.04 4.8 14.0
6.28 0.125 5.0 0.35 5.0 16.9 0.20 5.0 11.1 0.16 5.1 9.5 0.29 4.9 29.2 0.17 5.1 16.8 0.13 4.6 13.9
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Table A4. Size and power comparison of joint tests under M3 with low-frequency (past lags) instruments, nominal level: 5%

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ λ σv AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

0.10 0.50 0.27 4.30 4.8 3.9 4.8 4.2 4.7 4.5 4.8 4.0 5.1 4.4 4.6 4.2
0.60 0.22 4.79 5.0 3.9 4.9 4.3 4.9 4.5 5.0 3.9 5.0 4.3 4.8 4.1
0.70 0.18 5.21 5.3 3.8 5.1 4.2 5.0 4.3 5.2 3.7 5.1 4.1 4.9 4.3
0.80 0.16 5.60 5.6 4.0 5.2 4.1 5.1 4.4 5.5 3.8 5.1 4.2 5.0 4.2
0.90 0.14 5.96 6.2 4.2 5.3 4.3 5.3 4.5 6.3 4.0 5.4 4.2 5.3 4.4
1.00 0.13 6.28 5.9 3.7 5.4 4.0 5.1 4.1 5.5 3.3 5.4 4.1 5.1 4.2

0.15 0.50 0.48 3.21 4.8 3.4 4.8 3.8 4.7 3.9 4.8 3.4 5.1 3.8 4.5 3.9
0.60 0.38 3.61 4.9 3.4 4.9 3.9 4.8 3.8 5.1 3.2 5.1 3.8 4.5 3.8
0.70 0.31 3.96 5.2 3.3 5.0 3.7 4.7 3.7 5.0 3.1 5.1 3.6 4.7 3.7
0.80 0.27 4.27 5.5 3.2 5.0 3.7 4.9 3.9 5.5 3.0 5.2 3.6 4.7 3.8
0.90 0.24 4.55 6.3 3.5 5.3 3.7 5.1 3.9 6.3 3.3 5.3 3.4 5.0 3.8
1.00 0.21 4.80 5.5 2.7 5.1 3.3 4.9 3.4 5.2 2.5 5.5 3.5 5.0 3.5

0.20 0.50 0.80 2.48 4.7 2.9 4.8 3.3 4.8 3.4 4.8 3.0 4.9 3.6 4.8 3.6
0.60 0.61 2.84 4.9 2.9 4.9 3.4 4.8 3.3 4.7 2.7 4.8 3.3 4.6 3.5
0.70 0.50 3.15 5.2 2.8 4.9 3.2 4.8 3.3 4.9 2.5 4.9 3.1 4.7 3.4
0.80 0.42 3.41 5.5 2.6 5.0 3.0 4.8 3.3 5.3 2.4 5.0 2.9 4.6 3.1
0.90 0.37 3.64 6.3 2.7 5.3 3.0 5.2 3.1 6.2 2.6 5.2 2.7 4.8 3.2
1.00 0.33 3.85 5.2 1.7 5.0 2.5 4.9 2.9 5.4 1.7 5.3 2.8 5.0 3.0

0.25 0.50 1.33 1.92 4.9 2.6 4.7 3.0 4.8 3.1 4.7 2.4 4.9 3.1 4.8 3.4
0.60 0.96 2.27 4.9 2.5 4.8 2.9 4.7 2.8 4.7 2.1 5.0 2.9 4.7 3.1
0.70 0.76 2.54 5.2 2.4 4.9 2.8 4.8 2.8 4.9 2.0 5.0 2.6 4.7 2.7
0.80 0.64 2.77 5.5 2.0 5.0 2.4 4.9 2.6 5.4 1.8 5.0 2.5 4.7 2.6
0.90 0.56 2.97 6.4 1.9 5.2 2.4 5.0 2.6 6.1 1.9 5.1 2.4 4.9 2.4
1.00 0.50 3.14 5.1 1.1 4.8 1.9 4.7 2.3 4.9 1.0 5.2 2.2 4.8 2.1

0.30 0.50 2.40 1.43 4.8 2.2 5.1 2.7 4.9 2.6 4.7 2.0 5.0 2.7 4.7 2.8
0.60 1.56 1.78 4.9 2.0 4.8 2.4 4.8 2.4 4.8 1.5 4.8 2.4 4.8 2.6
0.70 1.19 2.04 5.1 1.8 5.0 2.1 4.9 2.3 5.0 1.4 4.9 2.0 4.6 2.2
0.80 0.97 2.25 5.5 1.6 5.0 2.0 4.9 2.1 5.3 1.3 4.9 1.9 4.8 1.9
0.90 0.84 2.42 6.4 1.4 5.3 1.8 5.0 2.1 6.2 1.3 5.3 1.6 4.8 1.8
1.00 0.75 2.57 5.1 0.6 4.8 1.3 5.0 1.7 5.0 0.6 5.1 1.3 4.8 1.4

0.35 0.50 5.60 0.94 4.9 1.9 5.3 2.3 4.8 2.2 4.8 1.8 5.0 2.3 4.8 2.1
0.60 2.82 1.32 4.9 1.7 5.3 1.9 5.0 2.0 4.9 1.2 5.0 2.1 4.8 2.0
0.70 1.96 1.59 5.1 1.3 5.1 1.6 4.8 1.7 5.2 1.0 4.9 1.7 4.8 1.8
0.80 1.55 1.79 5.4 1.1 5.1 1.6 5.0 1.5 5.2 1.0 5.1 1.4 4.8 1.4
0.90 1.31 1.94 6.3 0.9 5.3 1.3 5.2 1.5 6.3 0.8 5.1 1.1 4.8 1.2
1.00 1.17 2.06 5.0 0.3 5.0 0.8 5.1 1.1 5.1 0.4 5.1 0.8 4.7 0.8

Panel B: Power (H0 : φ0 = 1,ρ0 = 0.1)

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ λ σv AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

0.10 0.50 0.27 4.30 97.8 96.1 90.8 88.0 82.0 78.8 99.9 99.8 99.1 98.6 97.2 95.8
0.60 0.22 4.79 99.4 98.8 96.4 94.5 90.7 87.6 100.0 100.0 99.9 99.8 99.3 98.7
0.70 0.18 5.21 99.8 99.4 97.8 96.3 93.4 90.3 100.0 100.0 100.0 99.9 99.7 99.4
0.80 0.16 5.60 99.8 99.0 97.0 94.6 90.2 86.2 100.0 100.0 99.9 99.8 99.4 98.8
0.90 0.14 5.96 97.9 92.6 82.1 74.0 66.4 58.4 100.0 99.5 97.7 95.1 91.3 87.0
1.00 0.13 6.28 5.9 3.7 5.4 4.0 5.1 4.1 5.5 3.3 5.4 4.1 5.1 4.2

0.15 0.50 0.48 3.21 92.8 100.0 80.2 100.0 67.9 100.0 99.2 100.0 96.1 100.0 90.6 100.0
0.60 0.38 3.61 97.7 100.0 91.0 100.0 81.1 100.0 99.9 100.0 99.2 100.0 97.1 100.0
0.70 0.31 3.96 99.2 100.0 94.7 100.0 86.1 100.0 100.0 100.0 99.7 100.0 98.6 100.0
0.80 0.27 4.27 99.3 100.0 93.4 100.0 82.8 99.7 100.0 100.0 99.7 100.0 98.2 100.0
0.90 0.24 4.55 95.8 99.9 74.7 98.0 57.5 89.1 99.9 100.0 95.3 100.0 85.8 99.9
1.00 0.21 4.80 4.1 20.5 4.6 13.1 4.5 11.0 3.9 44.6 4.9 25.5 4.6 19.6

0.20 0.50 0.80 2.48 83.4 100.0 63.8 100.0 51.7 100.0 95.4 100.0 87.3 100.0 77.6 100.0
0.60 0.61 2.84 92.9 100.0 79.7 100.0 67.0 100.0 99.3 100.0 96.3 100.0 90.9 100.0
0.70 0.50 3.15 96.7 100.0 87.3 100.0 74.8 100.0 99.9 100.0 98.6 100.0 95.3 100.0
0.80 0.42 3.41 97.2 100.0 85.9 100.0 71.9 100.0 99.9 100.0 98.5 100.0 94.7 100.0
0.90 0.37 3.64 92.2 100.0 65.5 100.0 48.2 99.7 99.5 100.0 90.9 100.0 77.5 100.0
1.00 0.33 3.85 2.8 73.3 4.3 55.7 4.3 43.4 2.7 92.1 4.6 84.3 4.7 75.4

0.25 0.50 1.33 1.92 67.9 100.0 46.2 100.0 35.9 100.0 85.8 100.0 70.2 100.0 57.4 100.0
0.60 0.96 2.27 83.1 100.0 63.6 100.0 50.4 100.0 95.6 100.0 87.7 100.0 77.3 100.0
0.70 0.76 2.54 90.7 100.0 73.8 100.0 59.3 100.0 98.8 100.0 94.5 100.0 87.1 100.0
0.80 0.64 2.77 92.8 100.0 73.7 100.0 57.9 100.0 99.4 100.0 95.1 100.0 87.0 100.0
0.90 0.56 2.97 86.6 100.0 54.7 100.0 39.1 100.0 98.1 100.0 82.6 100.0 65.3 100.0
1.00 0.50 3.14 1.6 95.1 4.0 90.9 4.1 85.8 1.6 99.5 4.6 99.0 4.4 98.2

0.30 0.50 2.40 1.43 48.2 100.0 30.4 100.0 23.7 100.0 67.1 100.0 46.4 100.0 36.5 100.0
0.60 1.56 1.78 67.1 100.0 44.8 100.0 35.0 100.0 85.7 100.0 70.1 100.0 56.4 100.0
0.70 1.19 2.04 79.0 100.0 56.4 100.0 43.3 100.0 93.7 100.0 83.1 100.0 70.3 100.0
0.80 0.97 2.25 83.1 100.0 57.7 100.0 43.2 100.0 96.3 100.0 85.7 100.0 72.0 100.0
0.90 0.84 2.42 77.4 100.0 43.1 100.0 30.0 100.0 94.5 100.0 70.1 100.0 51.7 100.0
1.00 0.75 2.57 0.7 99.6 4.2 99.3 4.3 98.9 0.8 100.0 4.8 100.0 4.6 100.0

0.35 0.50 5.60 0.94 29.9 100.0 18.4 100.0 15.3 100.0 42.7 100.0 26.3 100.0 21.0 100.0
0.60 2.82 1.32 46.6 100.0 28.8 100.0 22.5 100.0 66.0 100.0 45.0 100.0 35.0 100.0
0.70 1.96 1.59 60.3 100.0 38.2 100.0 29.4 100.0 80.6 100.0 61.8 100.0 47.7 100.0
0.80 1.55 1.79 66.5 100.0 40.4 100.0 30.5 100.0 86.7 100.0 67.2 100.0 51.6 100.0
0.90 1.31 1.94 64.4 100.0 32.1 100.0 22.6 100.0 86.1 100.0 54.0 100.0 37.8 100.0
1.00 1.17 2.06 0.1 100.0 4.8 100.0 4.8 99.9 0.3 100.0 4.7 100.0 5.1 100.0

A
–

1
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Table A5. Size and power comparison of joint tests under M4 with low-frequency instruments, nominal level: 5%

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ λ σv AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

0.10 0.50 0.27 4.30 5.1 4.0 5.0 4.2 4.7 4.2 5.3 4.2 4.9 4.6 5.1 4.5
0.60 0.22 4.79 5.0 3.9 5.1 4.2 4.8 4.1 5.2 4.0 5.0 4.4 5.1 4.5
0.70 0.18 5.21 5.2 3.8 5.3 4.4 4.8 4.0 5.4 3.9 5.2 4.4 5.0 4.3
0.80 0.16 5.60 5.4 3.9 5.4 4.2 4.8 4.0 5.8 4.1 5.3 4.3 5.2 4.3
0.90 0.14 5.96 5.9 4.0 5.5 4.6 5.2 4.3 6.3 4.1 5.5 4.6 5.3 4.5
1.00 0.13 6.28 5.8 3.6 5.3 4.2 5.4 4.4 5.5 3.5 5.5 4.1 5.0 3.9

0.15 0.50 0.48 3.21 4.8 3.4 4.9 3.8 4.9 3.8 5.1 3.6 5.0 4.1 4.9 3.9
0.60 0.38 3.61 5.0 3.2 4.9 3.7 4.8 3.7 5.1 3.4 5.0 4.0 5.0 3.9
0.70 0.31 3.96 5.1 3.3 5.0 3.8 4.9 3.7 5.4 3.2 5.2 3.9 5.0 3.8
0.80 0.27 4.27 5.5 3.2 5.2 3.8 4.9 3.8 5.6 3.2 5.3 3.7 5.1 3.8
0.90 0.24 4.55 6.0 3.2 5.6 3.8 5.2 3.9 6.2 3.4 5.5 3.7 5.2 3.7
1.00 0.21 4.80 5.4 2.5 5.2 3.3 5.3 3.7 5.2 2.5 5.2 3.5 5.0 3.5

0.20 0.50 0.80 2.48 4.7 2.8 5.0 3.6 4.8 3.4 4.9 2.9 4.8 3.6 4.7 3.4
0.60 0.61 2.84 4.8 2.6 5.0 3.4 5.0 3.2 5.2 2.8 4.9 3.4 4.7 3.3
0.70 0.50 3.15 5.0 2.7 4.9 3.3 4.9 3.1 5.2 2.6 5.1 3.3 4.8 3.1
0.80 0.42 3.41 5.3 2.6 5.0 3.3 5.1 3.2 5.6 2.5 5.3 3.0 5.0 3.1
0.90 0.37 3.64 5.9 2.6 5.6 3.4 5.3 3.2 6.1 2.6 5.4 3.1 5.1 3.3
1.00 0.33 3.85 5.3 1.7 5.0 2.7 5.2 3.0 5.2 1.7 5.2 2.7 5.0 2.9

0.25 0.50 1.33 1.92 4.8 2.3 4.8 3.0 4.8 2.9 4.7 2.5 4.8 3.0 4.6 3.0
0.60 0.96 2.27 4.9 2.1 5.0 2.9 4.9 2.8 5.1 2.2 4.9 3.0 4.8 2.7
0.70 0.76 2.54 5.0 2.1 5.1 2.8 4.9 2.6 5.2 2.1 5.0 2.8 4.7 2.7
0.80 0.64 2.77 5.4 1.9 5.1 2.6 5.2 2.5 5.5 2.0 5.3 2.4 4.9 2.6
0.90 0.56 2.97 6.0 2.0 5.8 2.6 5.5 2.6 6.1 1.9 5.4 2.3 5.0 2.7
1.00 0.50 3.14 5.0 1.1 4.9 2.0 5.0 2.6 5.0 1.0 5.1 2.0 4.9 2.3

0.30 0.50 2.40 1.43 4.9 2.1 4.8 2.6 4.6 2.5 4.7 2.2 4.7 2.6 4.7 2.7
0.60 1.56 1.78 4.8 1.7 4.9 2.3 4.7 2.2 5.0 1.9 4.7 2.5 4.7 2.5
0.70 1.19 2.04 4.9 1.5 5.3 2.2 4.8 2.0 5.1 1.6 5.0 2.2 4.8 2.3
0.80 0.97 2.25 5.4 1.4 5.2 2.0 5.1 2.1 5.5 1.4 5.2 1.9 4.8 2.1
0.90 0.84 2.42 6.0 1.4 5.7 2.0 5.4 1.9 6.0 1.4 5.4 1.7 5.0 2.0
1.00 0.75 2.57 4.9 0.7 4.9 1.4 5.0 1.8 5.1 0.5 4.9 1.3 4.9 1.5

0.35 0.50 5.60 0.94 4.7 1.7 4.7 2.0 4.6 2.1 4.8 1.7 4.8 2.2 4.7 2.1
0.60 2.82 1.32 4.9 1.3 4.8 1.9 4.6 1.8 4.8 1.4 4.8 1.8 4.8 1.9
0.70 1.96 1.59 4.8 1.1 5.2 1.6 4.6 1.6 5.2 1.1 4.9 1.7 4.8 1.7
0.80 1.55 1.79 5.3 1.0 5.2 1.5 4.9 1.4 5.4 0.8 5.2 1.4 4.9 1.5
0.90 1.31 1.94 6.1 0.9 5.9 1.2 5.4 1.3 6.1 0.9 5.3 1.1 5.0 1.2
1.00 1.17 2.06 4.9 0.3 4.9 0.8 4.9 1.0 5.1 0.3 4.7 0.8 4.7 1.0

Panel B: Power (H0 : φ0 = 1,ρ0 = 0.1)

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ λ σv AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

0.10 0.50 0.27 4.30 97.6 96.2 90.9 88.1 81.5 78.4 99.9 99.8 99.1 98.6 97.0 96.0
0.60 0.22 4.79 99.4 98.8 96.3 94.5 90.8 88.0 100.0 100.0 99.9 99.8 99.3 98.9
0.70 0.18 5.21 99.8 99.3 97.8 96.3 93.6 90.9 100.0 100.0 100.0 99.9 99.7 99.4
0.80 0.16 5.60 99.8 99.0 97.0 94.5 90.5 86.7 100.0 100.0 100.0 99.8 99.4 98.9
0.90 0.14 5.96 97.8 93.0 82.2 74.7 66.1 59.1 100.0 99.6 97.7 95.1 91.3 87.1
1.00 0.13 6.28 5.8 3.6 5.3 4.2 5.4 4.4 5.5 3.5 5.5 4.1 5.0 3.9

0.15 0.50 0.48 3.21 93.0 100.0 80.5 100.0 67.8 100.0 99.1 100.0 96.2 100.0 90.2 100.0
0.60 0.38 3.61 97.4 100.0 90.5 100.0 80.8 100.0 99.9 100.0 99.2 100.0 97.1 100.0
0.70 0.31 3.96 99.0 100.0 94.3 100.0 86.4 100.0 100.0 100.0 99.8 100.0 98.8 100.0
0.80 0.27 4.27 99.2 100.0 93.1 100.0 82.9 99.8 100.0 100.0 99.7 100.0 98.2 100.0
0.90 0.24 4.55 95.8 99.9 74.8 97.8 57.7 89.9 99.9 100.0 95.4 100.0 85.4 99.8
1.00 0.21 4.80 4.2 20.4 4.7 13.4 4.9 11.0 4.1 44.8 4.6 25.8 4.7 19.6

0.20 0.50 0.80 2.48 83.2 100.0 64.2 100.0 52.3 100.0 95.6 100.0 87.0 100.0 76.9 100.0
0.60 0.61 2.84 93.0 100.0 80.2 100.0 66.8 100.0 99.2 100.0 96.7 100.0 90.2 100.0
0.70 0.50 3.15 96.7 100.0 87.2 100.0 75.1 100.0 99.8 100.0 98.6 100.0 95.2 100.0
0.80 0.42 3.41 97.3 100.0 86.0 100.0 72.0 100.0 99.9 100.0 98.8 100.0 94.5 100.0
0.90 0.37 3.64 92.4 100.0 65.7 100.0 48.3 99.5 99.5 100.0 90.7 100.0 77.1 100.0
1.00 0.33 3.85 2.8 73.4 4.3 56.3 4.5 44.0 2.7 91.7 4.5 84.2 4.5 75.5

0.25 0.50 1.33 1.92 68.3 100.0 46.5 100.0 36.4 100.0 85.5 100.0 69.0 100.0 57.6 100.0
0.60 0.96 2.27 83.0 100.0 64.1 100.0 50.9 100.0 95.8 100.0 87.6 100.0 76.3 100.0
0.70 0.76 2.54 90.6 100.0 74.6 100.0 60.0 100.0 98.7 100.0 94.8 100.0 86.1 100.0
0.80 0.64 2.77 92.5 100.0 74.6 100.0 58.6 100.0 99.4 100.0 95.4 100.0 86.0 100.0
0.90 0.56 2.97 86.6 100.0 55.2 100.0 39.2 100.0 98.2 100.0 82.4 100.0 65.2 100.0
1.00 0.50 3.14 1.7 94.2 4.1 90.6 4.3 84.7 1.5 99.4 4.4 98.8 4.6 98.1

0.30 0.50 2.40 1.43 49.2 100.0 30.1 100.0 24.1 100.0 67.0 100.0 46.7 100.0 37.2 100.0
0.60 1.56 1.78 67.5 100.0 45.4 100.0 35.5 100.0 85.2 100.0 69.2 100.0 56.6 100.0
0.70 1.19 2.04 78.8 100.0 56.7 100.0 44.1 100.0 93.6 100.0 82.7 100.0 69.8 100.0
0.80 0.97 2.25 82.9 100.0 58.5 100.0 44.2 100.0 96.6 100.0 85.4 100.0 71.1 100.0
0.90 0.84 2.42 77.3 100.0 43.6 100.0 30.6 100.0 94.3 100.0 70.0 100.0 52.4 100.0
1.00 0.75 2.57 0.7 99.4 4.2 98.9 4.5 98.3 0.6 100.0 4.7 100.0 4.8 100.0

0.35 0.50 5.60 0.94 30.2 100.0 18.2 100.0 15.2 100.0 42.3 100.0 26.4 100.0 21.8 100.0
0.60 2.82 1.32 47.5 100.0 28.7 100.0 22.9 100.0 65.6 100.0 45.0 100.0 35.6 100.0
0.70 1.96 1.59 61.3 100.0 38.3 100.0 29.7 100.0 80.4 100.0 61.5 100.0 48.3 100.0
0.80 1.55 1.79 67.3 100.0 41.0 100.0 31.0 100.0 86.9 100.0 66.7 100.0 52.1 100.0
0.90 1.31 1.94 64.7 100.0 32.5 100.0 23.2 100.0 85.6 100.0 54.4 100.0 39.2 100.0
1.00 1.17 2.06 0.3 100.0 4.3 99.9 4.7 99.9 0.2 100.0 4.8 100.0 4.9 100.0
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Table A6. Size and power comparison of joint tests under M5 with high-frequency instruments, nominal level: 5%

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

Freq. φh µh σ2
h,ǫ

σ2
h,v

φl µl σ2
l ,ǫ

σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

1-min 0.99822428 0.0001 0.0127 1.00E-09 0.50000 11.0 4.94 0.033 0.398 0.398 5.4 1.5 4.7 1.7 4.7 1.7 5.6 1.6 5.0 1.9 5.0 1.9

0.99869105 0.0001 0.0127 1.00E-09 0.60000 11.9 4.94 0.038 0.439 0.439 5.4 0.8 5.1 1.0 4.8 0.9 5.4 0.6 5.0 1.0 4.9 1.2

0.99908587 0.0001 0.0127 1.00E-09 0.70000 12.8 4.94 0.043 0.467 0.467 5.5 0.1 5.1 0.4 4.7 0.3 4.9 0.1 4.9 0.4 5.2 0.4

0.99942800 0.0001 0.0127 1.00E-09 0.80000 13.6 4.94 0.048 0.485 0.485 5.1 0.0 5.1 0.0 4.8 0.1 5.2 0.0 5.1 0.1 5.2 0.1

0.99972988 0.0001 0.0127 1.00E-09 0.90000 14.4 4.94 0.054 0.494 0.494 5.2 0.0 5.1 0.0 5.1 0.0 5.2 0.0 5.0 0.0 5.4 0.0

0.99999997 0.0001 0.0127 1.00E-09 0.99999 15.2 4.94 0.059 0.497 0.497 5.4 0.0 5.2 0.0 5.2 0.0 5.3 0.0 5.1 0.0 5.3 0.0

5-min 0.99115287 0.0005 0.0633 1.00E-08 0.50000 2.20 4.94 0.003 0.400 0.400 5.4 1.6 4.9 1.9 4.5 1.5 5.0 1.4 5.2 1.6 5.1 1.8

0.99347235 0.0005 0.0633 1.00E-08 0.60000 2.39 4.94 0.003 0.441 0.441 5.3 0.9 4.9 1.1 4.6 0.8 5.2 0.7 5.3 0.9 4.9 1.0

0.99543768 0.0005 0.0633 1.00E-08 0.70000 2.56 4.94 0.003 0.470 0.470 5.2 0.4 5.1 0.5 4.8 0.3 5.4 0.2 5.4 0.4 4.9 0.4

0.99714327 0.0005 0.0633 1.00E-08 0.80000 2.73 4.94 0.004 0.488 0.488 5.3 0.0 5.3 0.1 5.1 0.0 5.6 0.1 5.5 0.1 5.3 0.1

0.99865014 0.0005 0.0633 1.00E-08 0.90000 2.89 4.94 0.004 0.497 0.497 4.7 0.0 5.1 0.0 5.1 0.0 5.2 0.0 5.4 0.0 5.3 0.0

0.99999987 0.0005 0.0633 1.00E-08 0.99999 3.04 4.94 0.005 0.500 0.500 5.4 0.0 5.5 0.0 5.4 0.0 4.9 0.0 5.2 0.0 5.2 0.0

10-min 0.98238400 0.001 0.1266 1.00E-07 0.50000 1.11 4.93 0.003 0.400 0.400 5.0 1.5 5.0 1.9 4.8 1.6 5.2 1.4 5.0 1.5 5.0 1.6

0.98698731 0.001 0.1266 1.00E-07 0.60000 1.20 4.93 0.004 0.441 0.441 5.1 0.8 5.1 1.0 5.0 0.9 5.7 0.7 5.1 0.9 4.9 0.8

0.99089618 0.001 0.1266 1.00E-07 0.70000 1.29 4.93 0.004 0.470 0.470 5.5 0.4 5.5 0.4 4.9 0.4 5.9 0.2 5.0 0.4 5.0 0.4

0.99429471 0.001 0.1266 1.00E-07 0.80000 1.37 4.93 0.005 0.488 0.488 5.9 0.1 5.5 0.2 5.1 0.1 5.9 0.1 5.1 0.1 5.1 0.1

0.99730209 0.001 0.1266 1.00E-07 0.90000 1.45 4.93 0.005 0.497 0.497 5.5 0.0 5.6 0.0 5.3 0.0 5.7 0.0 5.3 0.0 5.1 0.0

0.99999974 0.001 0.1266 1.00E-07 0.99999 1.52 4.93 0.006 0.500 0.500 5.0 0.0 5.3 0.0 5.0 0.0 4.9 0.0 5.0 0.0 5.1 0.0

15-min 0.97369272 0.005 0.1900 1.00E-06 0.50000 2.47 4.94 0.010 0.399 0.399 4.7 1.6 4.7 1.7 4.9 1.7 5.1 1.4 4.9 1.8 4.9 1.7

0.98054461 0.005 0.1900 1.00E-06 0.60000 2.67 4.94 0.011 0.440 0.440 4.9 0.8 4.9 1.0 5.0 0.8 5.1 0.7 4.9 0.8 4.9 0.8

0.98637540 0.005 0.1900 1.00E-06 0.70000 2.86 4.94 0.013 0.469 0.469 5.2 0.5 4.8 0.4 5.1 0.4 5.2 0.2 5.0 0.4 5.0 0.4

0.99145428 0.005 0.1900 1.00E-06 0.80000 3.04 4.94 0.014 0.487 0.487 5.5 0.0 5.2 0.1 5.4 0.1 5.4 0.0 4.9 0.1 5.1 0.0

0.99595587 0.005 0.1900 1.00E-06 0.90000 3.21 4.94 0.016 0.496 0.496 5.3 0.0 5.2 0.0 5.4 0.0 5.0 0.0 4.8 0.0 5.0 0.0

0.99999962 0.005 0.1900 1.00E-06 0.99999 3.38 4.94 0.018 0.499 0.499 4.9 0.0 5.1 0.0 5.3 0.0 4.6 0.0 5.0 0.0 4.7 0.0

Panel B: Power (H0 : φ0 = 1,ρ = ρ0)

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

Freq. φh µh σ2
h,ǫ

σ2
h,v

φl µl σ2
l ,ǫ

σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

1-min 0.99822428 0.0001 0.0127 1.00E-09 0.50000 11.0 4.94 0.033 0.398 0.398 99.7 97.5 91.2 75.2 81.8 61.2 100.0 99.7 99.3 94.9 97.1 87.8

0.99869105 0.0001 0.0127 1.00E-09 0.60000 11.9 4.94 0.038 0.439 0.398 100.0 100.0 94.6 100.0 83.1 100.0 100.0 100.0 99.6 100.0 97.4 100.0

0.99908587 0.0001 0.0127 1.00E-09 0.70000 12.8 4.94 0.043 0.467 0.398 100.0 100.0 99.7 100.0 89.7 100.0 100.0 100.0 100.0 100.0 98.8 100.0

0.99942800 0.0001 0.0127 1.00E-09 0.80000 13.6 4.94 0.048 0.485 0.398 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.99972988 0.0001 0.0127 1.00E-09 0.90000 14.4 4.94 0.054 0.494 0.398 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.99999997 0.0001 0.0127 1.00E-09 0.99999 15.2 4.94 0.059 0.497 0.497 5.4 0.0 5.2 0.0 5.2 0.0 5.3 0.0 5.1 0.0 5.3 0.0

5-min 0.99115287 0.0005 0.0633 1.00E-08 0.50000 2.20 4.94 0.003 0.400 0.400 96.9 87.3 89.3 71.3 79.9 58.3 99.9 98.0 98.8 92.6 96.4 85.9

0.99347235 0.0005 0.0633 1.00E-08 0.60000 2.39 4.94 0.003 0.441 0.400 97.3 100.0 89.5 100.0 80.0 100.0 99.9 100.0 98.9 100.0 96.4 100.0

0.99543768 0.0005 0.0633 1.00E-08 0.70000 2.56 4.94 0.003 0.470 0.400 98.2 100.0 90.3 100.0 80.2 100.0 99.9 100.0 99.0 100.0 96.5 100.0

0.99714327 0.0005 0.0633 1.00E-08 0.80000 2.73 4.94 0.004 0.488 0.400 99.7 100.0 93.2 100.0 82.3 100.0 100.0 100.0 99.4 100.0 97.1 100.0

0.99865014 0.0005 0.0633 1.00E-08 0.90000 2.89 4.94 0.004 0.497 0.400 100.0 100.0 99.8 100.0 96.4 100.0 100.0 100.0 100.0 100.0 99.6 100.0

0.99999987 0.0005 0.0633 1.00E-08 0.99999 3.04 4.94 0.005 0.500 0.500 5.4 0.0 5.5 0.0 5.4 0.0 4.9 0.0 5.2 0.0 5.2 0.0

10-min 0.98238400 0.001 0.1266 1.00E-07 0.50000 1.11 4.93 0.003 0.400 0.400 96.9 85.6 88.2 69.1 78.5 56.5 99.8 97.7 98.7 92.0 95.8 84.5

0.98698731 0.001 0.1266 1.00E-07 0.60000 1.20 4.93 0.004 0.441 0.400 97.0 100.0 88.2 100.0 78.5 100.0 99.8 100.0 98.8 100.0 95.9 100.0

0.99089618 0.001 0.1266 1.00E-07 0.70000 1.29 4.93 0.004 0.470 0.400 97.3 100.0 88.5 100.0 78.6 100.0 99.8 100.0 98.8 100.0 95.9 100.0

0.99429471 0.001 0.1266 1.00E-07 0.80000 1.37 4.93 0.005 0.488 0.400 98.3 100.0 89.6 100.0 79.2 100.0 99.8 100.0 98.9 100.0 96.0 100.0

0.99730209 0.001 0.1266 1.00E-07 0.90000 1.45 4.93 0.005 0.497 0.400 99.7 100.0 91.8 100.0 80.9 100.0 100.0 100.0 99.1 100.0 96.4 100.0

0.99999974 0.001 0.1266 1.00E-07 0.99999 1.52 4.93 0.006 0.500 0.500 5.0 0.0 5.3 0.0 5.0 0.0 4.9 0.0 5.0 0.0 5.1 0.0

15-min 0.97369272 0.005 0.1900 1.00E-06 0.50000 2.47 4.94 0.010 0.399 0.399 96.3 84.5 86.1 66.3 76.0 53.7 99.7 97.0 97.9 90.5 95.0 82.4

0.98054461 0.005 0.1900 1.00E-06 0.60000 2.67 4.94 0.011 0.440 0.399 96.8 100.0 86.3 100.0 76.1 100.0 99.8 100.0 97.9 100.0 95.0 100.0

0.98637540 0.005 0.1900 1.00E-06 0.70000 2.86 4.94 0.013 0.469 0.399 98.1 100.0 87.5 100.0 76.5 100.0 99.9 100.0 98.4 100.0 95.1 100.0

0.99145428 0.005 0.1900 1.00E-06 0.80000 3.04 4.94 0.014 0.487 0.399 99.7 100.0 92.1 100.0 79.5 100.0 100.0 100.0 99.2 100.0 95.9 100.0

0.99595587 0.005 0.1900 1.00E-06 0.90000 3.21 4.94 0.016 0.496 0.399 100.0 100.0 100.0 100.0 97.4 100.0 100.0 100.0 100.0 100.0 99.8 100.0

0.99999962 0.005 0.1900 1.00E-06 0.99999 3.38 4.94 0.018 0.499 0.499 4.9 0.0 5.1 0.0 5.3 0.0 4.6 0.0 5.0 0.0 4.7 0.0
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Table A7. Size and power comparison of joint tests under M6 with high-frequency instruments, nominal level: 5%

Panel A: Size

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

Freq. φh µh σ2
h,ǫ

σ2
h,v

φl µl σ2
l ,ǫ

σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

1-min 0.9982 0.0001 4.93 1.00E-07 0.50 10.98 1923.558 3.35 0.399 0.399 5.0 1.5 5.1 1.8 5.0 1.6 5.6 1.5 5.0 1.7 5.2 1.5

0.9987 0.0001 4.93 1.00E-07 0.60 11.92 1923.57 3.80 0.441 0.441 5.0 0.7 5.1 0.7 5.0 0.8 5.2 0.7 4.9 0.8 5.3 0.8

0.9991 0.0001 4.93 1.00E-07 0.70 12.80 1923.577 4.29 0.469 0.469 5.1 0.3 4.9 0.3 4.9 0.2 5.0 0.2 4.8 0.2 5.1 0.3

0.9994 0.0001 4.93 1.00E-07 0.80 13.64 1923.581 4.81 0.487 0.487 4.8 0.1 5.0 0.1 4.7 0.1 4.8 0.0 5.0 0.0 4.9 0.1

0.9997 0.0001 4.93 1.00E-07 0.90 14.44 1923.583 5.35 0.496 0.496 4.7 0.0 5.1 0.0 4.8 0.0 4.8 0.0 4.9 0.0 5.1 0.0

1.0000 0.0001 4.93 1.00E-07 1.00 15.21 1923.584 5.93 0.499 0.499 5.0 0.0 5.3 0.0 5.3 0.0 5.4 0.0 5.4 0.0 5.3 0.0

5-min 0.9912 0.0005 4.93 1.00E-07 0.50 2.20 384.9064 0.03 0.400 0.400 5.1 1.6 5.5 1.8 5.0 1.5 5.1 1.5 5.2 1.5 4.9 1.7

0.9935 0.0005 4.93 1.00E-07 0.60 2.39 384.9065 0.03 0.441 0.441 5.0 0.8 5.4 1.0 5.0 0.8 5.1 0.7 5.1 0.7 5.0 0.9

0.9954 0.0005 4.93 1.00E-07 0.70 2.56 384.9066 0.03 0.470 0.470 5.2 0.3 5.4 0.5 5.1 0.4 5.4 0.2 5.1 0.3 5.1 0.3

0.9971 0.0005 4.93 1.00E-07 0.80 2.73 384.9066 0.04 0.488 0.488 5.3 0.2 5.4 0.1 5.3 0.1 5.7 0.0 5.1 0.0 5.1 0.1

0.9987 0.0005 4.93 1.00E-07 0.90 2.89 384.9066 0.04 0.497 0.497 5.8 0.0 5.4 0.0 5.4 0.0 5.8 0.0 5.4 0.0 5.1 0.0

1.0000 0.0005 4.93 1.00E-07 1.00 3.04 384.9067 0.05 0.500 0.500 5.2 0.0 5.4 0.0 5.4 0.0 5.2 0.0 5.6 0.0 5.2 0.0

10-min 0.9824 0.001 4.93 1.00E-07 0.50 1.11 192.4563 0.00 0.400 0.400 5.1 1.6 4.7 1.7 4.5 1.5 4.9 1.4 5.4 2.0 5.2 1.8

0.9870 0.001 4.93 1.00E-07 0.60 1.20 192.4563 0.00 0.441 0.441 5.2 0.8 4.8 0.7 4.7 0.7 4.9 0.8 5.6 1.0 5.2 0.8

0.9909 0.001 4.93 1.00E-07 0.70 1.29 192.4563 0.00 0.470 0.470 5.3 0.3 4.9 0.3 4.8 0.3 5.0 0.3 5.5 0.3 5.1 0.3

0.9943 0.001 4.93 1.00E-07 0.80 1.37 192.4563 0.00 0.488 0.488 5.3 0.1 4.9 0.1 4.9 0.1 5.2 0.1 5.5 0.1 5.1 0.1

0.9973 0.001 4.93 1.00E-07 0.90 1.45 192.4563 0.01 0.497 0.497 5.6 0.0 5.3 0.0 5.0 0.0 5.4 0.0 5.7 0.0 5.4 0.0

1.0000 0.001 4.93 1.00E-07 1.00 1.52 192.4563 0.01 0.500 0.500 4.8 0.0 4.9 0.0 5.0 0.0 5.1 0.0 5.1 0.0 5.1 0.0

15-min 0.9737 0.005 4.93 1.00E-07 0.50 2.47 128.3045 0.00 0.400 0.400 5.0 1.6 5.3 1.8 5.1 1.6 4.9 1.5 5.2 1.7 5.0 1.7

0.9805 0.005 4.93 1.00E-07 0.60 2.67 128.3046 0.00 0.441 0.441 5.2 0.7 5.1 1.0 5.2 0.9 5.0 0.7 5.1 0.9 5.0 0.9

0.9864 0.005 4.93 1.00E-07 0.70 2.86 128.3046 0.00 0.470 0.470 5.3 0.3 5.3 0.3 5.4 0.3 5.2 0.3 5.1 0.3 4.9 0.3

0.9915 0.005 4.93 1.00E-07 0.80 3.04 128.3046 0.00 0.488 0.488 5.4 0.1 5.6 0.1 5.6 0.1 5.1 0.1 5.1 0.1 5.0 0.0

0.9960 0.005 4.93 1.00E-07 0.90 3.21 128.3046 0.00 0.497 0.497 5.6 0.0 5.6 0.0 5.6 0.0 5.1 0.0 5.1 0.0 5.1 0.0

1.0000 0.005 4.93 1.00E-07 1.00 3.38 128.3046 0.00 0.500 0.500 4.6 0.0 4.7 0.0 5.4 0.0 5.0 0.0 5.3 0.0 5.1 0.0

Panel B: Power (H0 : φ0 = 1,ρ = ρ0)
T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

Freq. φh µh σ2
h,ǫ

σ2
h,v

φl µl σ2
l ,ǫ

σ2
l ,v

ρl ρ0 AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗ AR AR∗

1-min 0.9982 0.0001 4.93 1.00E-07 0.50 10.98 1923.558 3.35 0.399 0.399 65.0 36.7 41.4 22.1 32.5 16.2 84.2 60.1 64.5 40.4 52.4 30.5

0.9987 0.0001 4.93 1.00E-07 0.60 11.92 1923.57 3.80 0.441 0.399 65.2 100.0 41.5 100.0 32.5 100.0 84.4 100.0 64.7 100.0 52.5 100.0

0.9991 0.0001 4.93 1.00E-07 0.70 12.80 1923.577 4.29 0.469 0.399 65.8 100.0 41.3 100.0 32.4 100.0 84.7 100.0 64.7 100.0 52.3 100.0

0.9994 0.0001 4.93 1.00E-07 0.80 13.64 1923.581 4.81 0.487 0.399 66.5 100.0 41.1 100.0 32.2 100.0 85.5 100.0 64.4 100.0 51.9 100.0

0.9997 0.0001 4.93 1.00E-07 0.90 14.44 1923.583 5.35 0.496 0.399 63.5 100.0 37.3 100.0 30.3 100.0 85.2 100.0 59.7 100.0 49.1 100.0

1.0000 0.0001 4.93 1.00E-07 1.00 15.21 1923.584 5.93 0.499 0.499 5.0 0.0 5.3 0.0 5.3 0.0 5.4 0.0 5.4 0.0 5.3 0.0

5-min 0.9912 0.0005 4.93 1.00E-07 0.50 2.20 384.9064 0.03 0.400 0.400 64.9 37.1 42.3 22.5 32.9 16.1 84.7 59.8 65.0 40.7 52.8 30.3

0.9935 0.0005 4.93 1.00E-07 0.60 2.39 384.9065 0.03 0.441 0.400 65.0 100.0 42.3 100.0 32.9 100.0 84.7 100.0 65.0 100.0 52.7 100.0

0.9954 0.0005 4.93 1.00E-07 0.70 2.56 384.9066 0.03 0.470 0.400 65.3 100.0 42.3 100.0 32.9 100.0 84.8 100.0 65.1 100.0 52.7 100.0

0.9971 0.0005 4.93 1.00E-07 0.80 2.73 384.9066 0.04 0.488 0.400 65.3 100.0 42.4 100.0 33.0 100.0 84.8 100.0 65.0 100.0 52.8 100.0

0.9987 0.0005 4.93 1.00E-07 0.90 2.89 384.9066 0.04 0.497 0.400 62.8 100.0 39.9 100.0 31.7 100.0 84.0 100.0 62.8 100.0 51.4 100.0

1.0000 0.0005 4.93 1.00E-07 1.00 3.04 384.9067 0.05 0.500 0.500 5.2 0.0 5.4 0.0 5.4 0.0 5.2 0.0 5.6 0.0 5.2 0.0

10-min 0.9824 0.001 4.93 1.00E-07 0.50 1.11 192.4563 0.00 0.400 0.400 65.5 37.7 42.4 22.2 32.8 15.9 85.0 61.4 65.8 41.7 53.6 30.9

0.9870 0.001 4.93 1.00E-07 0.60 1.20 192.4563 0.00 0.441 0.400 65.6 100.0 42.5 100.0 32.9 100.0 85.0 100.0 65.8 100.0 53.6 100.0

0.9909 0.001 4.93 1.00E-07 0.70 1.29 192.4563 0.00 0.470 0.400 65.7 100.0 42.6 100.0 32.8 100.0 85.0 100.0 65.8 100.0 53.6 100.0

0.9943 0.001 4.93 1.00E-07 0.80 1.37 192.4563 0.00 0.488 0.400 65.7 100.0 42.7 100.0 32.7 100.0 85.1 100.0 66.0 100.0 53.6 100.0

0.9973 0.001 4.93 1.00E-07 0.90 1.45 192.4563 0.01 0.497 0.400 64.4 100.0 41.1 100.0 32.1 100.0 84.5 100.0 64.7 100.0 52.7 100.0

1.0000 0.001 4.93 1.00E-07 1.00 1.52 192.4563 0.01 0.500 0.500 4.8 0.0 4.9 0.0 5.0 0.0 5.1 0.0 5.1 0.0 5.1 0.0

15-min 0.9737 0.005 4.93 1.00E-07 0.50 2.47 128.3045 0.00 0.400 0.400 66.5 38.6 43.8 22.7 34.1 16.7 85.5 62.2 65.7 42.3 54.4 31.5

0.9805 0.005 4.93 1.00E-07 0.60 2.67 128.3046 0.00 0.441 0.400 66.7 100.0 43.9 100.0 34.0 100.0 85.5 100.0 65.8 100.0 54.5 100.0

0.9864 0.005 4.93 1.00E-07 0.70 2.86 128.3046 0.00 0.470 0.400 67.1 100.0 43.9 100.0 34.1 100.0 85.8 100.0 65.9 100.0 54.4 100.0

0.9915 0.005 4.93 1.00E-07 0.80 3.04 128.3046 0.00 0.488 0.400 68.1 100.0 44.0 100.0 34.1 100.0 86.5 100.0 66.1 100.0 54.5 100.0

0.9960 0.005 4.93 1.00E-07 0.90 3.21 128.3046 0.00 0.497 0.400 64.6 100.0 39.8 100.0 32.2 100.0 85.9 100.0 63.1 100.0 52.3 100.0

1.0000 0.005 4.93 1.00E-07 1.00 3.38 128.3046 0.00 0.500 0.500 4.6 0.0 4.7 0.0 5.4 0.0 5.0 0.0 5.3 0.0 5.1 0.0
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I Additional simulation results
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Table A8. Size comparison of joint tests (H0 : φ=φ0,ρ = ρ0) under M1 with weak instruments, nominal level: 5%

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 5.1 5.1 0.00 4.8 4.6 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.3 5.0 0.00 5.1 4.9
2.21 1.010 0.5 0.11 5.1 5.3 0.06 4.9 4.7 0.05 4.8 4.7 0.09 5.1 4.9 0.05 5.2 5.0 0.04 5.0 4.9
2.21 1.010 5.0 0.35 5.5 5.3 0.20 5.4 5.1 0.16 4.9 5.0 0.29 5.3 5.3 0.17 5.4 5.0 0.13 5.2 5.1

0.2 3.82 0.338 0.0 0.00 5.2 5.0 0.00 4.9 4.8 0.00 4.9 4.8 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.2 5.0
3.82 0.338 0.5 0.11 5.2 5.1 0.06 4.9 4.9 0.05 4.9 5.0 0.09 4.9 4.5 0.05 4.9 4.8 0.04 5.1 5.0
3.82 0.338 5.0 0.35 5.3 5.3 0.20 5.1 5.0 0.16 4.9 5.1 0.29 5.2 5.0 0.17 5.1 5.0 0.13 5.5 5.1

0.3 4.92 0.204 0.0 0.00 5.3 5.0 0.00 5.1 4.9 0.00 4.7 4.7 0.00 4.8 4.8 0.00 5.1 4.9 0.00 5.1 4.9
4.92 0.204 0.5 0.11 5.0 5.1 0.06 5.2 5.0 0.05 4.6 4.7 0.09 4.8 4.6 0.05 5.0 4.8 0.04 5.1 4.9
4.92 0.204 5.0 0.35 5.2 5.1 0.20 5.2 5.1 0.16 4.8 5.0 0.29 5.1 5.2 0.17 5.1 4.9 0.13 5.4 5.1

0.4 5.81 0.146 0.0 0.00 5.4 5.1 0.00 5.1 5.1 0.00 4.9 4.8 0.00 4.8 4.7 0.00 5.0 4.9 0.00 5.1 5.0
5.81 0.146 0.5 0.11 5.1 5.0 0.06 5.0 5.0 0.05 4.8 4.9 0.09 4.8 4.6 0.05 5.1 4.9 0.04 5.0 4.9
5.81 0.146 5.0 0.35 5.1 5.1 0.20 5.2 5.1 0.16 4.8 5.0 0.29 5.1 5.1 0.17 5.2 4.9 0.13 5.3 5.0

0.5 6.57 0.114 0.0 0.00 5.3 5.1 0.00 5.2 5.2 0.00 4.9 4.8 0.00 4.8 4.6 0.00 5.1 5.0 0.00 5.0 5.0
6.57 0.114 0.5 0.11 5.1 5.0 0.06 5.1 5.0 0.05 4.9 4.9 0.09 4.8 4.6 0.05 5.2 4.9 0.04 5.0 4.9
6.57 0.114 5.0 0.35 5.0 4.8 0.20 5.1 5.0 0.16 4.9 4.9 0.29 5.0 5.1 0.17 5.1 5.0 0.13 5.2 4.9

0.6 7.25 0.094 0.0 0.00 5.3 5.1 0.00 5.2 5.2 0.00 5.0 4.8 0.00 4.7 4.6 0.00 5.1 5.0 0.00 5.1 4.9
7.25 0.094 0.5 0.11 5.1 5.0 0.06 5.1 5.0 0.05 4.9 4.7 0.09 4.8 4.6 0.05 5.1 5.0 0.04 5.0 4.9
7.25 0.094 5.0 0.35 4.9 4.8 0.20 5.2 5.0 0.16 4.9 4.8 0.29 5.0 4.9 0.17 5.1 4.9 0.13 5.0 4.9

0.7 7.86 0.080 0.0 0.00 5.2 5.0 0.00 5.1 5.1 0.00 5.0 4.8 0.00 4.8 4.6 0.00 5.1 5.0 0.00 5.0 4.8
7.86 0.080 0.5 0.11 5.0 5.0 0.06 5.1 5.0 0.05 4.9 4.7 0.09 4.8 4.5 0.05 5.1 5.0 0.04 5.0 4.8
7.86 0.080 5.0 0.35 4.9 4.8 0.20 5.2 5.0 0.16 4.9 4.9 0.29 5.0 4.6 0.17 5.0 4.9 0.13 5.0 4.9

0.8 8.42 0.070 0.0 0.00 5.2 5.0 0.00 5.1 5.1 0.00 5.0 4.8 0.00 4.7 4.6 0.00 5.1 5.0 0.00 5.0 4.8
8.42 0.070 0.5 0.11 5.0 5.0 0.06 5.1 5.0 0.05 5.0 4.8 0.09 4.7 4.5 0.05 5.0 4.9 0.04 5.0 4.8
8.42 0.070 5.0 0.35 4.9 4.7 0.20 5.1 4.8 0.16 4.9 4.8 0.29 4.8 4.6 0.17 4.9 4.9 0.13 5.0 4.9

0.9 8.94 0.062 0.0 0.00 5.2 5.0 0.00 5.0 5.1 0.00 5.1 4.8 0.00 4.8 4.6 0.00 5.1 5.0 0.00 5.0 4.8
8.94 0.062 0.5 0.11 5.1 5.1 0.06 5.1 4.9 0.05 5.0 4.8 0.09 4.7 4.7 0.05 5.1 4.9 0.04 5.0 4.7
8.94 0.062 5.0 0.35 4.8 4.7 0.20 5.0 4.8 0.16 4.9 4.9 0.29 4.7 4.5 0.17 4.8 4.8 0.13 4.9 4.8

1.0 9.42 0.056 0.0 0.00 5.3 5.0 0.00 4.9 5.1 0.00 5.1 4.9 0.00 5.1 5.0 0.00 5.2 5.0 0.00 4.8 4.7
9.42 0.056 0.5 0.11 5.3 5.1 0.06 5.0 4.9 0.05 4.9 4.9 0.09 5.2 5.1 0.05 5.2 5.2 0.04 4.7 4.8
9.42 0.056 5.0 0.35 5.5 5.1 0.20 5.1 4.9 0.16 5.2 4.9 0.29 5.1 5.1 0.17 5.1 5.0 0.13 4.9 4.7

0.10 0.2 2.18 1.042 0.0 0.00 5.1 4.9 0.00 4.7 4.4 0.00 4.7 4.4 0.00 4.9 4.6 0.00 5.1 4.8 0.00 5.1 4.6
2.18 1.042 0.5 0.11 5.3 5.0 0.06 4.9 4.5 0.05 4.7 4.4 0.09 5.1 4.6 0.05 5.2 4.7 0.04 5.1 4.6
2.18 1.042 5.0 0.35 6.4 5.9 0.20 5.4 5.2 0.16 5.2 5.0 0.29 6.1 5.8 0.17 5.6 5.1 0.13 5.4 4.9

0.3 3.07 0.524 0.0 0.00 5.1 4.8 0.00 4.9 4.5 0.00 4.7 4.6 0.00 4.8 4.5 0.00 4.9 4.6 0.00 5.2 4.5
3.07 0.524 0.5 0.11 5.2 5.1 0.06 5.1 4.6 0.05 4.8 4.6 0.09 5.0 4.6 0.05 5.0 4.7 0.04 5.2 4.5
3.07 0.524 5.0 0.35 6.4 6.0 0.20 5.6 5.1 0.16 5.1 5.0 0.29 6.2 5.9 0.17 5.6 5.2 0.13 5.6 5.0

0.4 3.74 0.352 0.0 0.00 5.2 4.8 0.00 5.1 4.7 0.00 4.8 4.5 0.00 4.8 4.4 0.00 4.9 4.6 0.00 5.2 4.5
3.74 0.352 0.5 0.11 5.1 5.1 0.06 5.2 4.8 0.05 4.9 4.6 0.09 4.9 4.5 0.05 5.1 4.7 0.04 5.2 4.5
3.74 0.352 5.0 0.35 6.3 5.7 0.20 5.7 5.3 0.16 5.1 4.9 0.29 6.3 5.9 0.17 5.6 5.2 0.13 5.7 5.0

0.5 4.30 0.267 0.0 0.00 5.2 4.8 0.00 5.2 4.7 0.00 4.7 4.4 0.00 4.9 4.4 0.00 4.9 4.6 0.00 5.1 4.5
4.30 0.267 0.5 0.11 5.1 4.9 0.06 5.3 4.8 0.05 4.8 4.6 0.09 4.9 4.4 0.05 5.0 4.7 0.04 5.2 4.5
4.30 0.267 5.0 0.35 5.9 5.6 0.20 5.7 5.3 0.16 5.3 4.8 0.29 6.0 5.8 0.17 5.5 5.1 0.13 5.6 4.9

0.6 4.79 0.216 0.0 0.00 5.3 4.8 0.00 5.1 4.8 0.00 4.9 4.5 0.00 4.8 4.5 0.00 5.1 4.6 0.00 5.0 4.4
4.79 0.216 0.5 0.11 5.0 4.8 0.06 5.2 4.8 0.05 4.8 4.5 0.09 4.8 4.4 0.05 5.1 4.6 0.04 5.1 4.4
4.79 0.216 5.0 0.35 5.7 5.3 0.20 5.5 5.2 0.16 5.2 4.8 0.29 5.8 5.4 0.17 5.4 5.0 0.13 5.4 4.7

0.7 5.21 0.181 0.0 0.00 5.3 4.8 0.00 5.1 4.8 0.00 4.8 4.4 0.00 4.7 4.4 0.00 5.1 4.6 0.00 4.9 4.4
5.21 0.181 0.5 0.11 5.1 4.8 0.06 5.1 4.9 0.05 4.8 4.5 0.09 4.8 4.4 0.05 5.1 4.6 0.04 5.0 4.4
5.21 0.181 5.0 0.35 5.4 5.1 0.20 5.3 4.9 0.16 5.1 4.7 0.29 5.4 5.0 0.17 5.3 4.7 0.13 5.3 4.6

0.8 5.60 0.157 0.0 0.00 5.3 4.8 0.00 5.1 4.8 0.00 5.0 4.5 0.00 4.7 4.4 0.00 5.0 4.6 0.00 4.8 4.4
5.60 0.157 0.5 0.11 5.1 4.7 0.06 5.2 4.9 0.05 4.9 4.5 0.09 4.8 4.4 0.05 5.0 4.6 0.04 4.9 4.4
5.60 0.157 5.0 0.35 5.1 4.7 0.20 5.1 4.6 0.16 4.9 4.7 0.29 5.1 4.6 0.17 5.1 4.6 0.13 5.0 4.6

0.9 5.96 0.139 0.0 0.00 5.2 4.8 0.00 5.1 4.9 0.00 5.0 4.6 0.00 4.7 4.5 0.00 5.0 4.7 0.00 4.9 4.3
5.96 0.139 0.5 0.11 5.0 4.7 0.06 5.2 4.9 0.05 4.9 4.6 0.09 4.6 4.4 0.05 5.0 4.6 0.04 4.9 4.3
5.96 0.139 5.0 0.35 4.7 4.3 0.20 5.1 4.6 0.16 4.8 4.4 0.29 4.6 4.3 0.17 4.9 4.6 0.13 5.0 4.4

1.0 6.28 0.125 0.0 0.00 5.2 4.8 0.00 5.1 4.9 0.00 4.9 4.5 0.00 5.1 4.8 0.00 5.2 4.9 0.00 4.8 4.5
6.28 0.125 0.5 0.11 5.2 4.9 0.06 5.1 4.7 0.05 4.9 4.5 0.09 4.9 4.8 0.05 5.2 4.9 0.04 4.7 4.5
6.28 0.125 5.0 0.35 5.2 4.5 0.20 5.1 4.5 0.16 5.0 4.5 0.29 5.1 4.6 0.17 5.1 4.7 0.13 4.7 4.3

A
–

2
4



Table A9. Power comparison of joint tests (H0 : φ= 1,ρ = 0.05) under M1 with weak instruments, nominal level: 5%

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.5 4.3 0.00 4.3 4.3 0.00 4.4 4.3 0.00 4.5 4.4 0.00 4.4 4.3 0.00 4.3 4.0
2.21 1.010 0.5 0.11 10.3 9.8 0.06 7.2 6.9 0.05 6.7 6.4 0.09 10.1 9.9 0.05 7.3 7.0 0.04 6.1 6.2
2.21 1.010 5.0 0.35 61.5 60.3 0.20 40.9 39.8 0.16 31.1 30.4 0.29 62.1 60.5 0.17 40.5 39.5 0.13 32.0 30.8

0.2 3.82 0.338 0.0 0.00 4.7 4.6 0.00 4.2 4.4 0.00 4.5 4.5 0.00 4.6 4.5 0.00 4.3 4.5 0.00 4.4 4.1
3.82 0.338 0.5 0.11 12.7 12.1 0.06 8.3 8.2 0.05 7.6 7.1 0.09 12.2 11.9 0.05 8.0 7.8 0.04 7.2 6.8
3.82 0.338 5.0 0.35 75.3 73.8 0.20 53.6 51.9 0.16 42.5 41.1 0.29 76.0 73.9 0.17 54.7 53.3 0.13 44.1 42.5

0.3 4.92 0.204 0.0 0.00 4.9 4.6 0.00 4.5 4.5 0.00 4.6 4.5 0.00 4.4 4.4 0.00 4.4 4.5 0.00 4.5 4.3
4.92 0.204 0.5 0.11 12.4 11.9 0.06 8.0 7.9 0.05 7.5 7.2 0.09 12.0 11.9 0.05 8.0 7.7 0.04 7.1 6.9
4.92 0.204 5.0 0.35 74.6 72.9 0.20 52.5 50.8 0.16 41.6 40.5 0.29 75.1 73.2 0.17 53.8 52.1 0.13 43.6 42.0

0.4 5.81 0.146 0.0 0.00 4.9 4.8 0.00 4.4 4.6 0.00 4.5 4.5 0.00 4.4 4.4 0.00 4.6 4.5 0.00 4.5 4.3
5.81 0.146 0.5 0.11 11.5 11.0 0.06 7.8 7.6 0.05 7.3 6.9 0.09 11.4 11.3 0.05 7.6 7.4 0.04 7.0 6.7
5.81 0.146 5.0 0.35 70.1 68.2 0.20 47.8 46.1 0.16 37.9 36.5 0.29 70.4 68.4 0.17 49.1 47.2 0.13 39.3 37.8

0.5 6.57 0.114 0.0 0.00 4.9 4.8 0.00 4.4 4.6 0.00 4.5 4.4 0.00 4.4 4.5 0.00 4.6 4.6 0.00 4.6 4.5
6.57 0.114 0.5 0.11 10.5 10.1 0.06 7.4 7.3 0.05 6.7 6.5 0.09 10.4 10.4 0.05 7.4 7.1 0.04 6.5 6.3
6.57 0.114 5.0 0.35 63.5 61.7 0.20 41.5 39.8 0.16 32.3 31.5 0.29 63.8 61.6 0.17 42.4 40.8 0.13 33.6 32.2

0.6 7.25 0.094 0.0 0.00 5.0 5.0 0.00 4.4 4.6 0.00 4.5 4.5 0.00 4.4 4.3 0.00 4.5 4.6 0.00 4.6 4.5
7.25 0.094 0.5 0.11 9.7 9.3 0.06 7.1 6.8 0.05 6.4 6.3 0.09 9.2 9.1 0.05 6.7 6.6 0.04 6.2 5.9
7.25 0.094 5.0 0.35 54.8 52.7 0.20 34.3 32.9 0.16 26.3 25.5 0.29 54.9 53.2 0.17 35.0 33.6 0.13 27.1 25.8

0.7 7.86 0.080 0.0 0.00 5.2 5.0 0.00 4.6 4.8 0.00 4.6 4.5 0.00 4.3 4.2 0.00 4.8 4.6 0.00 4.6 4.5
7.86 0.080 0.5 0.11 8.5 8.3 0.06 6.4 6.3 0.05 6.0 5.9 0.09 8.1 8.1 0.05 6.2 6.1 0.04 5.8 5.8
7.86 0.080 5.0 0.35 44.1 42.9 0.20 27.0 25.8 0.16 20.4 19.8 0.29 44.4 43.0 0.17 27.3 26.0 0.13 20.9 20.0

0.8 8.42 0.070 0.0 0.00 5.1 4.8 0.00 4.6 4.8 0.00 4.8 4.8 0.00 4.3 4.3 0.00 4.8 4.8 0.00 4.9 4.7
8.42 0.070 0.5 0.11 7.5 7.4 0.06 5.8 5.7 0.05 5.7 5.6 0.09 7.0 6.8 0.05 5.7 5.7 0.04 5.7 5.5
8.42 0.070 5.0 0.35 32.2 30.5 0.20 19.4 18.3 0.16 14.7 14.3 0.29 32.1 30.4 0.17 18.7 18.3 0.13 15.0 14.4

0.9 8.94 0.062 0.0 0.00 5.0 4.9 0.00 4.9 5.1 0.00 5.0 4.7 0.00 4.4 4.4 0.00 4.9 4.9 0.00 4.9 4.7
8.94 0.062 0.5 0.11 6.3 6.1 0.06 5.4 5.4 0.05 5.4 5.1 0.09 5.7 5.6 0.05 5.5 5.4 0.04 5.4 5.2
8.94 0.062 5.0 0.35 18.9 18.1 0.20 11.9 11.3 0.16 9.7 9.4 0.29 19.0 18.0 0.17 11.6 11.2 0.13 9.8 9.3

1.0 9.42 0.056 0.0 0.00 5.3 5.0 0.00 4.9 5.1 0.00 5.1 4.9 0.00 5.1 5.0 0.00 5.2 5.0 0.00 4.8 4.7
9.42 0.056 0.5 0.11 5.3 5.1 0.06 5.0 4.9 0.05 4.9 4.9 0.09 5.2 5.1 0.05 5.2 5.2 0.04 4.7 4.8
9.42 0.056 5.0 0.35 5.5 5.1 0.20 5.1 4.9 0.16 5.2 4.9 0.29 5.1 5.1 0.17 5.1 5.0 0.13 4.9 4.7

0.10 0.2 2.18 1.042 0.0 0.00 4.5 100.0 0.00 4.4 95.7 0.00 4.5 75.2 0.00 4.6 100.0 0.00 4.4 100.0 0.00 4.3 99.7
2.18 1.042 0.5 0.11 9.6 100.0 0.06 6.8 96.2 0.05 6.4 78.1 0.09 9.4 100.0 0.05 7.0 100.0 0.04 5.9 99.7
2.18 1.042 5.0 0.35 54.1 100.0 0.20 34.3 99.0 0.16 26.0 92.2 0.29 54.5 100.0 0.17 34.4 100.0 0.13 26.9 99.9

0.3 3.07 0.524 0.0 0.00 4.7 99.9 0.00 4.4 88.9 0.00 4.6 63.7 0.00 4.6 100.0 0.00 4.4 100.0 0.00 4.4 98.1
3.07 0.524 0.5 0.11 10.4 99.9 0.06 7.2 90.5 0.05 6.9 68.1 0.09 10.3 100.0 0.05 7.3 100.0 0.04 6.3 98.4
3.07 0.524 5.0 0.35 61.7 100.0 0.20 40.5 97.6 0.16 31.2 89.6 0.29 61.7 100.0 0.17 40.6 100.0 0.13 31.6 99.6

0.4 3.74 0.352 0.0 0.00 4.8 99.3 0.00 4.5 77.8 0.00 4.6 52.0 0.00 4.3 100.0 0.00 4.4 99.4 0.00 4.4 92.9
3.74 0.352 0.5 0.11 10.3 99.5 0.06 7.1 80.4 0.05 6.7 56.8 0.09 10.2 100.0 0.05 7.1 99.5 0.04 6.3 93.8
3.74 0.352 5.0 0.35 60.5 99.9 0.20 39.1 94.6 0.16 30.1 83.5 0.29 60.3 100.0 0.17 39.7 99.8 0.13 30.8 98.4

0.5 4.30 0.267 0.0 0.00 4.9 96.9 0.00 4.5 62.5 0.00 4.6 41.4 0.00 4.4 100.0 0.00 4.5 96.3 0.00 4.4 81.8
4.30 0.267 0.5 0.11 9.6 97.1 0.06 7.0 66.4 0.05 6.4 45.9 0.09 9.5 100.0 0.05 6.8 96.7 0.04 6.1 83.8
4.30 0.267 5.0 0.35 55.4 99.3 0.20 35.2 88.3 0.16 26.6 74.1 0.29 55.6 100.0 0.17 35.7 99.0 0.13 27.6 94.6

0.6 4.79 0.216 0.0 0.00 4.9 89.1 0.00 4.5 46.3 0.00 4.5 32.2 0.00 4.5 99.4 0.00 4.6 86.6 0.00 4.5 65.2
4.79 0.216 0.5 0.11 8.9 89.9 0.06 6.7 51.9 0.05 6.1 35.8 0.09 8.5 99.5 0.05 6.3 87.9 0.04 5.9 68.7
4.79 0.216 5.0 0.35 48.2 96.6 0.20 29.7 77.4 0.16 22.4 61.8 0.29 48.4 99.9 0.17 30.2 95.5 0.13 22.9 85.6

0.7 5.21 0.181 0.0 0.00 4.9 72.3 0.00 4.6 34.0 0.00 4.6 24.2 0.00 4.4 95.5 0.00 4.7 68.5 0.00 4.4 47.4
5.21 0.181 0.5 0.11 8.1 75.0 0.06 6.2 37.8 0.05 5.8 26.9 0.09 7.5 95.8 0.05 6.0 70.9 0.04 5.7 50.6
5.21 0.181 5.0 0.35 39.1 88.6 0.20 23.3 61.4 0.16 17.8 47.8 0.29 39.8 98.3 0.17 23.5 85.0 0.13 18.1 70.9

0.8 5.60 0.157 0.0 0.00 4.9 51.1 0.00 4.6 24.0 0.00 4.6 18.0 0.00 4.4 80.8 0.00 4.7 46.9 0.00 4.6 32.4
5.60 0.157 0.5 0.11 7.2 53.5 0.06 5.6 26.0 0.05 5.5 19.5 0.09 6.7 82.1 0.05 5.6 49.1 0.04 5.4 34.5
5.60 0.157 5.0 0.35 28.6 71.0 0.20 17.0 43.5 0.16 13.1 32.8 0.29 28.5 89.8 0.17 16.8 65.3 0.13 13.4 50.2

0.9 5.96 0.139 0.0 0.00 4.9 30.3 0.00 4.9 15.9 0.00 5.0 13.2 0.00 4.4 54.2 0.00 4.7 28.2 0.00 4.7 21.1
5.96 0.139 0.5 0.11 6.1 31.8 0.06 5.5 17.3 0.05 5.3 13.9 0.09 5.8 55.3 0.05 5.1 29.2 0.04 5.2 21.7
5.96 0.139 5.0 0.35 17.4 45.2 0.20 10.9 26.0 0.16 9.0 20.2 0.29 16.9 65.5 0.17 10.5 39.0 0.13 8.7 29.0

1.0 6.28 0.125 0.0 0.00 5.0 17.3 0.00 4.9 11.0 0.00 4.7 9.6 0.00 4.9 29.8 0.00 5.1 16.6 0.00 4.6 13.5
6.28 0.125 0.5 0.11 5.1 17.2 0.06 5.0 11.1 0.05 4.7 9.8 0.09 4.9 30.0 0.05 5.1 16.7 0.04 4.6 13.4
6.28 0.125 5.0 0.35 5.0 17.1 0.20 4.9 11.1 0.16 4.8 9.6 0.29 4.9 29.4 0.17 5.0 16.6 0.13 4.5 13.6
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Table A10. Size comparison of joint tests (H0 : φ=φ0,ρ = ρ0) under M2 with weak instruments, nominal level: 5%

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.8 4.7 0.00 5.0 4.8 0.00 5.2 5.0 0.00 4.8 4.9 0.00 5.0 4.9 0.00 5.1 4.9
2.21 1.010 0.5 0.11 4.7 4.8 0.06 4.8 4.8 0.05 5.2 5.0 0.09 4.8 4.7 0.05 4.9 5.1 0.04 5.2 4.9
2.21 1.010 5.0 0.35 5.0 4.9 0.20 4.9 5.1 0.16 5.2 5.2 0.29 5.0 5.1 0.17 5.2 5.2 0.13 5.2 5.1

0.2 3.82 0.338 0.0 0.00 4.8 5.0 0.00 5.0 4.8 0.00 5.2 5.0 0.00 4.8 4.6 0.00 4.9 4.9 0.00 5.3 5.1
3.82 0.338 0.5 0.11 4.8 4.9 0.06 5.0 4.9 0.05 5.1 4.9 0.09 4.8 4.6 0.05 4.9 4.9 0.04 5.2 5.2
3.82 0.338 5.0 0.35 5.0 5.0 0.20 5.1 4.9 0.16 5.1 5.0 0.29 4.9 4.9 0.17 5.1 5.0 0.13 5.5 5.4

0.3 4.92 0.204 0.0 0.00 4.8 5.1 0.00 5.0 5.0 0.00 5.3 5.1 0.00 4.7 4.7 0.00 4.9 4.8 0.00 5.2 5.1
4.92 0.204 0.5 0.11 5.0 5.0 0.06 5.0 4.9 0.05 5.2 5.0 0.09 4.7 4.7 0.05 4.9 4.9 0.04 5.3 5.2
4.92 0.204 5.0 0.35 5.0 5.1 0.20 5.1 5.1 0.16 5.1 5.2 0.29 4.9 4.9 0.17 5.1 4.9 0.13 5.5 5.4

0.4 5.81 0.146 0.0 0.00 5.0 5.2 0.00 5.2 5.1 0.00 5.3 5.1 0.00 4.7 4.6 0.00 5.0 4.9 0.00 5.1 5.1
5.81 0.146 0.5 0.11 4.9 5.1 0.06 5.1 4.9 0.05 5.2 5.2 0.09 4.8 4.6 0.05 5.0 5.0 0.04 5.2 5.1
5.81 0.146 5.0 0.35 4.9 5.1 0.20 5.1 5.0 0.16 5.1 5.3 0.29 4.8 4.9 0.17 5.0 4.9 0.13 5.3 5.3

0.5 6.57 0.114 0.0 0.00 5.0 5.3 0.00 5.3 5.1 0.00 5.3 5.1 0.00 4.7 4.6 0.00 5.0 5.0 0.00 5.2 5.0
6.57 0.114 0.5 0.11 5.0 5.2 0.06 5.2 5.0 0.05 5.3 5.1 0.09 4.9 4.6 0.05 5.0 5.0 0.04 5.1 5.1
6.57 0.114 5.0 0.35 4.9 4.9 0.20 5.0 4.9 0.16 5.1 5.1 0.29 4.9 4.8 0.17 5.0 4.9 0.13 5.3 5.1

0.6 7.25 0.094 0.0 0.00 5.0 5.3 0.00 5.3 5.1 0.00 5.4 5.1 0.00 4.8 4.7 0.00 5.1 5.0 0.00 5.2 5.0
7.25 0.094 0.5 0.11 5.0 5.1 0.06 5.2 5.1 0.05 5.3 5.1 0.09 4.8 4.6 0.05 5.1 5.0 0.04 5.1 5.0
7.25 0.094 5.0 0.35 4.8 4.7 0.20 5.0 4.8 0.16 5.1 5.1 0.29 4.8 4.6 0.17 5.1 4.9 0.13 5.4 5.2

0.7 7.86 0.080 0.0 0.00 5.0 5.4 0.00 5.3 5.0 0.00 5.3 5.1 0.00 4.9 4.7 0.00 5.1 5.0 0.00 5.2 5.0
7.86 0.080 0.5 0.11 5.0 5.2 0.06 5.2 5.0 0.05 5.3 5.1 0.09 4.8 4.6 0.05 5.1 5.0 0.04 5.2 5.0
7.86 0.080 5.0 0.35 4.7 4.6 0.20 5.0 4.9 0.16 5.2 5.0 0.29 4.7 4.5 0.17 5.1 4.9 0.13 5.3 5.2

0.8 8.42 0.070 0.0 0.00 5.1 5.3 0.00 5.4 5.1 0.00 5.3 5.0 0.00 4.9 4.7 0.00 5.1 5.0 0.00 5.1 5.0
8.42 0.070 0.5 0.11 5.1 5.3 0.06 5.2 5.0 0.05 5.3 5.1 0.09 4.8 4.6 0.05 5.1 4.9 0.04 5.2 4.9
8.42 0.070 5.0 0.35 4.6 4.7 0.20 5.0 4.8 0.16 5.1 5.0 0.29 4.7 4.3 0.17 5.0 4.8 0.13 5.2 5.0

0.9 8.94 0.062 0.0 0.00 5.1 5.3 0.00 5.4 5.1 0.00 5.4 5.1 0.00 4.9 4.7 0.00 5.1 5.0 0.00 5.1 5.0
8.94 0.062 0.5 0.11 5.2 5.2 0.06 5.3 5.1 0.05 5.4 5.1 0.09 4.9 4.7 0.05 5.1 5.0 0.04 5.0 5.0
8.94 0.062 5.0 0.35 4.9 4.8 0.20 5.0 4.9 0.16 5.1 5.0 0.29 4.6 4.4 0.17 4.9 4.9 0.13 5.0 4.9

1.0 9.42 0.056 0.0 0.00 5.1 5.2 0.00 5.2 5.0 0.00 5.3 5.0 0.00 5.3 5.3 0.00 5.2 5.1 0.00 4.9 4.8
9.42 0.056 0.5 0.11 5.2 5.1 0.06 5.2 5.1 0.05 5.3 5.0 0.09 5.2 5.2 0.05 5.1 5.0 0.04 4.9 4.7
9.42 0.056 5.0 0.35 5.5 5.4 0.20 5.4 5.2 0.16 5.3 5.0 0.29 5.2 5.1 0.17 5.2 5.0 0.13 4.9 4.8

0.10 0.2 2.18 1.042 0.0 0.00 4.7 4.6 0.00 4.9 4.6 0.00 5.1 4.8 0.00 4.8 4.6 0.00 5.0 4.8 0.00 5.2 4.6
2.18 1.042 0.5 0.11 4.8 4.7 0.06 4.8 4.6 0.05 5.2 4.9 0.09 5.0 4.6 0.05 5.0 4.9 0.04 5.2 4.7
2.18 1.042 5.0 0.35 6.0 5.6 0.20 5.4 5.0 0.16 5.5 5.1 0.29 5.9 5.7 0.17 5.7 5.4 0.13 5.7 5.3

0.3 3.07 0.524 0.0 0.00 4.6 4.7 0.00 4.9 4.6 0.00 5.3 4.8 0.00 4.7 4.4 0.00 5.1 4.9 0.00 5.2 4.6
3.07 0.524 0.5 0.11 4.8 4.8 0.06 5.1 4.7 0.05 5.3 4.9 0.09 4.9 4.4 0.05 5.2 4.9 0.04 5.2 4.7
3.07 0.524 5.0 0.35 6.2 5.7 0.20 5.4 5.0 0.16 5.5 5.3 0.29 6.1 5.8 0.17 5.8 5.6 0.13 5.9 5.2

0.4 3.74 0.352 0.0 0.00 4.7 4.8 0.00 5.1 4.7 0.00 5.2 4.8 0.00 4.8 4.4 0.00 5.0 4.7 0.00 5.2 4.7
3.74 0.352 0.5 0.11 4.9 4.8 0.06 5.1 4.6 0.05 5.2 4.8 0.09 4.8 4.4 0.05 5.1 4.9 0.04 5.4 4.8
3.74 0.352 5.0 0.35 6.1 5.6 0.20 5.5 5.0 0.16 5.4 5.2 0.29 6.0 5.6 0.17 5.8 5.5 0.13 5.9 5.3

0.5 4.30 0.267 0.0 0.00 4.9 4.8 0.00 5.2 4.8 0.00 5.3 4.9 0.00 4.7 4.4 0.00 4.8 4.7 0.00 5.2 4.8
4.30 0.267 0.5 0.11 5.0 4.8 0.06 5.1 4.7 0.05 5.2 4.9 0.09 4.7 4.4 0.05 5.0 4.8 0.04 5.2 4.9
4.30 0.267 5.0 0.35 6.1 5.6 0.20 5.5 4.9 0.16 5.4 5.2 0.29 5.9 5.4 0.17 5.7 5.4 0.13 5.9 5.3

0.6 4.79 0.216 0.0 0.00 4.9 4.9 0.00 5.3 4.8 0.00 5.4 5.0 0.00 4.6 4.5 0.00 5.0 4.8 0.00 5.1 4.8
4.79 0.216 0.5 0.11 5.0 4.8 0.06 5.1 4.7 0.05 5.3 4.9 0.09 4.7 4.4 0.05 5.0 4.9 0.04 5.2 4.8
4.79 0.216 5.0 0.35 5.9 5.3 0.20 5.3 4.8 0.16 5.4 5.1 0.29 5.7 5.3 0.17 5.4 5.2 0.13 5.7 5.1

0.7 5.21 0.181 0.0 0.00 5.0 5.0 0.00 5.3 4.9 0.00 5.4 4.8 0.00 4.8 4.6 0.00 5.0 4.9 0.00 5.2 4.7
5.21 0.181 0.5 0.11 5.0 4.9 0.06 5.1 4.8 0.05 5.4 4.8 0.09 4.7 4.4 0.05 5.1 5.0 0.04 5.2 4.9
5.21 0.181 5.0 0.35 5.6 5.1 0.20 5.2 4.7 0.16 5.3 4.9 0.29 5.4 4.9 0.17 5.4 4.9 0.13 5.5 5.0

0.8 5.60 0.157 0.0 0.00 4.9 5.1 0.00 5.3 4.9 0.00 5.5 4.8 0.00 4.8 4.6 0.00 5.1 4.8 0.00 5.1 4.7
5.60 0.157 0.5 0.11 5.1 4.9 0.06 5.2 4.7 0.05 5.4 4.8 0.09 4.6 4.4 0.05 5.1 4.9 0.04 5.2 4.8
5.60 0.157 5.0 0.35 5.1 4.8 0.20 5.2 4.7 0.16 5.2 4.9 0.29 5.0 4.6 0.17 5.3 4.8 0.13 5.4 4.8

0.9 5.96 0.139 0.0 0.00 5.0 5.1 0.00 5.3 4.9 0.00 5.5 4.8 0.00 4.9 4.6 0.00 5.0 4.8 0.00 5.1 4.7
5.96 0.139 0.5 0.11 5.1 5.0 0.06 5.2 4.8 0.05 5.4 4.8 0.09 4.7 4.4 0.05 5.1 4.8 0.04 5.0 4.6
5.96 0.139 5.0 0.35 4.7 4.3 0.20 5.0 4.6 0.16 5.2 4.7 0.29 4.6 4.2 0.17 5.0 4.7 0.13 5.0 4.5

1.0 6.28 0.125 0.0 0.00 5.1 5.1 0.00 5.2 4.8 0.00 5.4 4.9 0.00 5.2 4.9 0.00 5.2 5.0 0.00 5.0 4.7
6.28 0.125 0.5 0.11 5.2 5.0 0.06 5.2 4.7 0.05 5.4 4.8 0.09 5.2 4.8 0.05 5.1 5.0 0.04 5.0 4.5
6.28 0.125 5.0 0.35 5.2 4.7 0.20 5.1 4.9 0.16 5.3 4.8 0.29 5.1 4.9 0.17 5.1 4.8 0.13 4.9 4.5
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Table A11. Power comparison of joint tests (H0 : φ= 1,ρ = 0.05) under M2 with weak instruments, nominal level: 5%

T = 200 T = 300

l = 1 l = 3 l = 5 l = 1 l = 3 l = 5

ρ φ σv λ CP π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗ π̄1 AR AR∗

0.05 0.1 2.21 1.010 0.0 0.00 4.4 4.5 0.00 4.4 4.2 0.00 4.1 4.0 0.00 4.3 4.2 0.00 4.4 4.1 0.00 4.4 4.2
2.21 1.010 0.5 0.11 10.0 10.0 0.06 7.0 7.1 0.05 6.4 6.1 0.09 10.3 9.7 0.05 7.0 6.9 0.04 6.1 6.0
2.21 1.010 5.0 0.35 62.2 60.0 0.20 39.2 38.2 0.16 30.6 29.7 0.29 62.3 60.6 0.17 41.4 40.2 0.13 33.0 31.8

0.2 3.82 0.338 0.0 0.00 4.7 4.6 0.00 4.5 4.5 0.00 4.4 4.4 0.00 4.2 4.1 0.00 4.4 4.0 0.00 4.3 4.3
3.82 0.338 0.5 0.11 12.2 11.9 0.06 8.0 8.1 0.05 7.3 7.0 0.09 12.4 12.0 0.05 7.9 7.7 0.04 6.9 6.5
3.82 0.338 5.0 0.35 75.6 73.7 0.20 52.9 51.2 0.16 42.6 40.6 0.29 76.1 74.1 0.17 54.3 53.0 0.13 44.2 42.5

0.3 4.92 0.204 0.0 0.00 4.7 4.6 0.00 4.5 4.6 0.00 4.6 4.5 0.00 4.2 4.1 0.00 4.5 4.2 0.00 4.4 4.4
4.92 0.204 0.5 0.11 12.5 11.7 0.06 8.0 8.1 0.05 7.3 7.0 0.09 12.1 11.7 0.05 7.7 7.5 0.04 7.0 6.7
4.92 0.204 5.0 0.35 74.6 72.8 0.20 52.0 50.4 0.16 41.6 40.1 0.29 75.5 73.4 0.17 53.5 51.9 0.13 43.4 42.0

0.4 5.81 0.146 0.0 0.00 4.7 4.5 0.00 4.4 4.7 0.00 4.6 4.6 0.00 4.3 4.2 0.00 4.5 4.3 0.00 4.6 4.4
5.81 0.146 0.5 0.11 11.3 11.0 0.06 7.5 7.7 0.05 7.0 6.8 0.09 11.3 11.2 0.05 7.5 7.2 0.04 6.7 6.7
5.81 0.146 5.0 0.35 70.3 68.1 0.20 47.3 46.0 0.16 37.5 36.1 0.29 71.0 68.9 0.17 49.2 47.6 0.13 39.5 37.9

0.5 6.57 0.114 0.0 0.00 4.7 4.6 0.00 4.3 4.6 0.00 4.6 4.6 0.00 4.3 4.2 0.00 4.7 4.4 0.00 4.6 4.5
6.57 0.114 0.5 0.11 10.6 10.2 0.06 7.1 7.3 0.05 6.7 6.4 0.09 10.3 10.4 0.05 7.0 6.9 0.04 6.6 6.2
6.57 0.114 5.0 0.35 63.6 61.4 0.20 41.6 40.1 0.16 32.1 31.0 0.29 63.9 61.8 0.17 43.0 41.7 0.13 34.1 32.9

0.6 7.25 0.094 0.0 0.00 4.8 4.7 0.00 4.5 4.7 0.00 4.6 4.6 0.00 4.3 4.2 0.00 4.7 4.5 0.00 4.6 4.4
7.25 0.094 0.5 0.11 9.7 9.3 0.06 6.8 6.9 0.05 6.4 6.2 0.09 9.6 9.3 0.05 6.6 6.5 0.04 6.3 6.1
7.25 0.094 5.0 0.35 54.7 52.7 0.20 34.2 33.1 0.16 26.6 25.4 0.29 55.3 52.9 0.17 35.5 34.4 0.13 27.9 26.5

0.7 7.86 0.080 0.0 0.00 4.9 5.0 0.00 4.7 4.9 0.00 4.7 4.7 0.00 4.1 4.3 0.00 4.6 4.6 0.00 4.8 4.6
7.86 0.080 0.5 0.11 8.5 8.1 0.06 6.5 6.4 0.05 6.1 5.9 0.09 8.5 8.0 0.05 6.4 6.2 0.04 6.0 6.0
7.86 0.080 5.0 0.35 44.4 42.5 0.20 26.8 25.7 0.16 20.4 19.7 0.29 43.8 42.8 0.17 27.3 26.5 0.13 21.7 20.9

0.8 8.42 0.070 0.0 0.00 5.0 5.0 0.00 4.9 4.9 0.00 4.9 4.8 0.00 4.3 4.3 0.00 4.7 4.7 0.00 4.8 4.8
8.42 0.070 0.5 0.11 7.2 6.9 0.06 6.1 6.0 0.05 5.6 5.6 0.09 7.3 7.0 0.05 5.9 5.7 0.04 5.8 5.6
8.42 0.070 5.0 0.35 31.8 30.0 0.20 18.8 17.9 0.16 14.7 14.2 0.29 31.9 30.4 0.17 19.6 18.7 0.13 15.3 14.8

0.9 8.94 0.062 0.0 0.00 5.0 5.2 0.00 5.0 5.1 0.00 5.2 5.0 0.00 4.6 4.5 0.00 4.8 4.8 0.00 4.8 4.8
8.94 0.062 0.5 0.11 6.1 6.1 0.06 5.7 5.6 0.05 5.6 5.4 0.09 6.1 5.8 0.05 5.5 5.3 0.04 5.4 5.4
8.94 0.062 5.0 0.35 19.1 18.3 0.20 11.4 11.2 0.16 9.6 9.2 0.29 18.7 17.9 0.17 11.9 11.3 0.13 9.7 9.4

1.0 9.42 0.056 0.0 0.00 5.1 5.2 0.00 5.2 5.0 0.00 5.3 5.0 0.00 5.3 5.3 0.00 5.2 5.1 0.00 4.9 4.8
9.42 0.056 0.5 0.11 5.2 5.1 0.06 5.2 5.1 0.05 5.3 5.0 0.09 5.2 5.2 0.05 5.1 5.0 0.04 4.9 4.7
9.42 0.056 5.0 0.35 5.5 5.4 0.20 5.4 5.2 0.16 5.3 5.0 0.29 5.2 5.1 0.17 5.2 5.0 0.13 4.9 4.8

0.10 0.2 2.18 1.042 0.0 0.00 4.4 100.0 0.00 4.5 95.6 0.00 4.2 75.6 0.00 4.2 100.0 0.00 4.3 100.0 0.00 4.4 99.7
2.18 1.042 0.5 0.11 8.9 100.0 0.06 6.5 95.9 0.05 6.1 78.1 0.09 9.4 100.0 0.05 6.7 100.0 0.04 5.9 99.7
2.18 1.042 5.0 0.35 54.4 100.0 0.20 33.0 99.0 0.16 25.5 91.9 0.29 54.7 100.0 0.17 35.1 100.0 0.13 27.5 99.9

0.3 3.07 0.524 0.0 0.00 4.6 99.9 0.00 4.5 88.5 0.00 4.3 64.1 0.00 4.3 100.0 0.00 4.4 100.0 0.00 4.5 98.1
3.07 0.524 0.5 0.11 9.9 99.9 0.06 6.7 90.1 0.05 6.4 68.0 0.09 10.2 100.0 0.05 7.0 100.0 0.04 6.1 98.3
3.07 0.524 5.0 0.35 62.0 100.0 0.20 39.3 97.8 0.16 30.4 88.8 0.29 62.2 100.0 0.17 41.2 100.0 0.13 32.6 99.5

0.4 3.74 0.352 0.0 0.00 4.8 99.3 0.00 4.6 77.7 0.00 4.4 52.1 0.00 4.3 100.0 0.00 4.4 99.5 0.00 4.5 92.8
3.74 0.352 0.5 0.11 9.8 99.5 0.06 6.8 80.1 0.05 6.4 57.0 0.09 10.0 100.0 0.05 7.0 99.6 0.04 6.1 93.8
3.74 0.352 5.0 0.35 60.8 99.9 0.20 38.2 94.4 0.16 29.5 82.9 0.29 61.0 100.0 0.17 40.1 99.9 0.13 31.8 98.2

0.5 4.30 0.267 0.0 0.00 4.8 96.6 0.00 4.5 62.4 0.00 4.6 40.9 0.00 4.4 100.0 0.00 4.4 96.4 0.00 4.6 82.0
4.30 0.267 0.5 0.11 9.4 97.3 0.06 6.6 66.9 0.05 6.2 45.3 0.09 9.3 100.0 0.05 6.7 96.9 0.04 5.9 84.2
4.30 0.267 5.0 0.35 55.7 99.3 0.20 34.4 88.1 0.16 26.3 73.7 0.29 55.7 100.0 0.17 35.9 99.1 0.13 28.8 94.5

0.6 4.79 0.216 0.0 0.00 4.8 88.7 0.00 4.5 47.3 0.00 4.6 31.6 0.00 4.4 99.5 0.00 4.6 86.8 0.00 4.7 65.6
4.79 0.216 0.5 0.11 8.7 90.1 0.06 6.5 51.8 0.05 6.1 35.3 0.09 8.5 99.6 0.05 6.4 87.9 0.04 5.8 68.9
4.79 0.216 5.0 0.35 48.4 96.8 0.20 29.2 76.9 0.16 22.2 61.8 0.29 48.6 99.9 0.17 30.3 95.7 0.13 24.0 85.8

0.7 5.21 0.181 0.0 0.00 4.7 72.1 0.00 4.6 34.0 0.00 4.7 23.6 0.00 4.4 95.6 0.00 4.7 69.1 0.00 4.8 48.6
5.21 0.181 0.5 0.11 7.9 74.9 0.06 6.2 37.2 0.05 5.9 26.3 0.09 7.9 95.9 0.05 6.0 71.4 0.04 5.8 51.5
5.21 0.181 5.0 0.35 39.2 88.9 0.20 23.2 61.5 0.16 17.7 47.4 0.29 39.2 98.4 0.17 24.0 84.8 0.13 18.8 70.3

0.8 5.60 0.157 0.0 0.00 4.9 50.3 0.00 4.8 23.6 0.00 5.0 17.5 0.00 4.4 80.8 0.00 4.6 47.4 0.00 4.8 33.0
5.60 0.157 0.5 0.11 6.9 53.3 0.06 5.8 25.6 0.05 5.6 19.0 0.09 6.9 82.1 0.05 5.7 49.6 0.04 5.5 35.2
5.60 0.157 5.0 0.35 28.5 71.1 0.20 16.4 43.4 0.16 13.3 32.3 0.29 28.6 90.1 0.17 17.4 65.3 0.13 13.5 50.3

0.9 5.96 0.139 0.0 0.00 5.0 30.2 0.00 4.9 15.9 0.00 5.1 12.8 0.00 4.5 54.0 0.00 4.9 28.8 0.00 4.8 21.4
5.96 0.139 0.5 0.11 6.0 31.8 0.06 5.5 16.8 0.05 5.4 13.4 0.09 6.1 54.8 0.05 5.3 30.3 0.04 5.4 22.5
5.96 0.139 5.0 0.35 16.9 45.1 0.20 10.5 25.1 0.16 8.9 19.5 0.29 17.2 65.3 0.17 11.1 39.6 0.13 9.1 30.2

1.0 6.28 0.125 0.0 0.00 5.1 17.7 0.00 5.2 11.3 0.00 5.1 9.7 0.00 5.2 29.8 0.00 5.2 17.1 0.00 4.9 14.2
6.28 0.125 0.5 0.11 5.0 17.5 0.06 5.0 11.4 0.05 5.1 9.7 0.09 5.0 29.9 0.05 5.2 17.1 0.04 4.8 14.0
6.28 0.125 5.0 0.35 5.0 16.9 0.20 5.0 11.1 0.16 5.1 9.5 0.29 4.9 29.2 0.17 5.1 16.8 0.13 4.6 13.9
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J Different classes of high-frequency instruments

J.1 Classes of realized measures not robust to jumps

These classes of realized measures have been proposed to provide robustness to various types of market

microstructure effects (bid-ask bounce, stale quotes, misreported prices) and improve the efficiency of

volatility estimates. We consider five broad classes of realized measures, all of which are consistent esti-

mators of the quadratic variation (QV) in the absence of jumps. It is important to note that when jumps

are absent, the QV corresponds to the integrated volatility (IVol).

1. Realized volatility (RV): RV is defined as the sum of squared intraday returns. By dividing an interval

of time, e.g., [T0,T1], into n subintervals, T0 = t0,n < t1,n < ·· · < tn,n = T1, we can define intraday

returns, ri ,n = pti ,n
−pti−1,n

, and then RVt =
∑n

i=1
r 2

i ,n
. Andersen et al. (2001) showed that the RV is a

consistent estimator for the QV:

RVt
p

−→ IV olt =
∫t

0
σ2

s d s. (J.8)

2. RV with optimal sampling (RVbr): A standard RV estimator with optimal sampling is proposed by

Bandi and Russell (2008), where the optimal sampling frequency is calculated using estimates of in-

tegrated quarticity and variance of the microstructure noise. This bias-corrected estimator removes

the estimated impact of market microstructure noise. In the empirical applications below, we com-

pute RVbr with an estimated optimal sampling frequency, which is the key feature of this estimator.

3. Multi-scales RV (MSRV): The multi-scales RV by Zhang (2006) uses a combination of several high

and lower frequencies to remove the noise and estimate the volatility. It is a generalization of two-

scales RV [Zhang et al. (2005)] and can be defined as:

MSRVt = [r,r ](K )
t −

n̄K

n̄ J
[r,r ](J )

t

p
−→ IV olt , 1 ≤ J < K ≤ n , (J.9)

where J and K are the time scales and n̄i = (n − i +1)/i with i = J ,K .

4. Realized kernels (RK): The realized kernel by Barndorff-Nielsen et al. (2008) is a robust measure of

volatility, which ensures consistency and positive semi-definiteness. Several generalizations to han-

dle more lags and various shapes of autocorrelation function are derived in Barndorff-Nielsen et al.

(2011). In this paper, we use the latter variant, which is given by

RK =
H∑

h=−H

k

(
h

H +1

)

γh (J.10)

where k(x) is the kernel function and γh =
∑n

i=|h|+1
ri ,nri−h,n . We consider four types of ker-

nel functions: (1) Bartlett kernel [RKbart: k(x) = 1 − x, flat-top, n1/6 rate]; (2) Cubic ker-

nel [RKcub: k(x) = 1 − 3x2 + 2x3, flat-top, n1/4 rate]; (3) Parzen kernel [RKnfp: k(x) =
{

1−6x2 +6x3 if 0 ≤ x ≤ 1/2 ,2(1−x)3 if 1/2 ≤ x ≤ 1
}

, non-flat-top, n1/5 rate]; (4) Tukey-Hanning ker-

nel with power 2 [RKth2: k(x) = sin2{π/2(1−x)2}, flat-top, n1/4 rate].

5. Realized range RV (RRV): The realized range RV [Christensen and Podolskij (2007)] uses sums of

normalized squared high-low ranges for intra-daily periods rather than sums of squared returns.

As a result, it is based on extremes from the entire price path and provides more information than

returns sampled at fixed time intervals. Decomposing the daily time interval into K non-overlapping

A–28



intervals of size mK , the estimator is given by:

RRV (mK ,K ) =
1

λ2,mK

K∑

i=1

s
(mK )2

i

p
−→ IV ol (J.11)

where the range of the price process over the i th interval is given by s
(mK )
i

= max 0≤h,l≤mK

(

p i−1+h/mK
K

−
p i−1+l/mK

K

)

, i = 1, . . . , K , and λ2,mK
= E [max 0≤h,l≤mK

(Wh/mK
−Wl /mK

)2] is the second moment of the

range of a standard Brownian motion over the unit interval with mK observed increments.

J.2 Classes of realized measures robust to jumps

In the presence of jumps, the RV is a consistent estimator of the QV [see Andersen and Bollerslev (1998),

Andersen et al. (2001), Barndorff-Nielsen et al. (2002)], which is a combination of IVol and jump variation

(JV):

RVt
p

−→
∫t

0
σ2

s d s

︸ ︷︷ ︸

IV olt

+
∑

0<s≤t

κ2
s

︸ ︷︷ ︸

JVt

. (J.12)

We consider two classes of jump-robust realized measures:

1. Bipower variation (BV): The most widely used estimator of IVol in the presence of jumps is the

Bipower variation of Barndorff-Nielsen and Shephard (2004). It is the sum of adjacent absolute re-

turns:

BVt :=
π

2

n∑

i=2

|ri−1,n ||ri ,n |
p

−→ IV olt =
∫t

0
σ2

s d s. (J.13)

2. Nearest neighbor truncated RV: Andersen et al. (2012) used nearest neighbor truncation approach

to estimate the integrated volatility, where the median RV (MedRV) and minimum RV (MinRV) esti-

mators use min or median of blocks of returns (MinRV with blocks of two returns and MedRV with

blocks of three returns). The proposed estimators are:

Mi nRVn =
π

π−2

(
n

n −1

)n−1∑

i=1

[min(|ri ,n |, |ri+1,n |)]2, (J.14)

MedRVn =
π

6−4
p

3+π

(
n

n −2

)n−2∑

i=2

[med(|ri−1,n |, |ri ,n |, |ri+1,n |)]2. (J.15)

J.3 Additional HF measures and jump variations

We also consider realized semivariance (RSV), JV, and signed JV (SJV) and squared logarithms of the latter

(JV, SJV):

1. Jump variation Combining the results in equations (J.12) and (J.13), the contribution of the JV in

the QV can be consistently estimated by

JVt := RVt −BVt
p

−→
∑

0<s≤t

κ2
s ; (J.16)

see Barndorff-Nielsen and Shephard (2006).

2. Realized semivariance Barndorff-Nielsen et al. (2010) proposed RSV estimators which can capture

the variation only due to negative or positive returns. These estimators are defined as:
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RSV +
t :=

n∑

j=1

r 2
t j

1{rt j
>0}

p
−→

1

2

∫t

0
σ2

s d s +
∑

0≤s≤t

κ2
s 1{κs>0}, (J.17)

RSV −
t :=

n∑

j=1

r 2
t j

1{rt j
<0}

p
−→

1

2

∫t

0
σ2

s d s +
∑

0≤s≤t

κ2
s 1{κs<0}, (J.18)

where the first term in the limit of both RSV + and RSV − is one-half of the integrated variance.

These estimators provide a complete decomposition of RV, in the sense that RV = RSV ++RSV −.

3. Signed jump variation The variation due to the continuous component can be removed by sub-

tracting one RSV from the other without estimating it separately. The remaining part is defined as

the signed jump variation:

S JVt := lim
n→∞

(RSV +
t −RSV −

t ) =
∑

0≤s≤t

κ2
s 1{κs>0} −

∑

0≤s≤t

κ2
s 1{κs<0}. (J.19)

A–30



K Description of instruments

A–31



Table A12. Description of instruments

No Classes of instruments Subclasses

HF realized measures not robust to jumps

1-13 RV Realized volatility 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss

14-24 RVbr Realized volatility with optimal sampling 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

25-35 MSRV Multi-scales realized volatility 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

36-40 Rkcub Realized Kernel with fat-top cubic kernel 1t, 5t, 10t, 20t, 50t

41-45 Rkbart Realized Kernel with fat-top Bartlett kernel 1t, 5t, 10t, 20t, 50t

46-50 RKth2 Realized Kernel with fat-top Tukey-Hanning kernel (power 2) 1t, 5t, 10t, 20t, 50t

51-55 RKnfp Realized Kernel with non-fat-top Parzen kernel 1t, 5t, 10t, 20t, 50t

56-58 RRV Realized range volatility 1m, 5m, 10m

HF realized measures robust to jumps

59-71 BV Bipower variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss

72-77 MedRV Nearest neighbor truncated median RV 1s, 5s, 30s, 1m, 5m, 10m

78-83 MinRV Nearest neighbor truncated minimum RV 1s, 5s, 30s, 1m, 5m, 10m

Aditional HF measures and jump variations

84-96 RSVN Realized semivariance due to negative returns 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss

97-109 RSVP Realized semivariance due to positive returns 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss

110-120 JV Jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

121-131 SJV Signed jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

132-142 LJV Log squared jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

143-153 LSJV Log squared signed jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t

154-156 PCF HF principal component factor 1, 2, 3

Other instruments

157-162 ImV-C Implied volatility (call option) mean, min, max, q1, q2, q3

163-168 ImV-P Implied volatility (put option) mean, min, max, q1, q2, q3

169-174 ImV-A Implied volatility (both call and put option) mean, min, max, q1, q2, q3

175 1-day Daily realized volatility

Notes:

1. Sampling frequencies are tick, second and minute, e.g., 1t stands for 1-tick, 1s stands for 1-second and 1m stands for

1-minute.

2. The use of 1-minute subsamples in the calculation of realized measures is denoted by ss.

3. Three principal component factors are extracted from HF instruments (1-109). PCF-1 stands for the largest factor.

4. Implied volatilities (ImV) are calculated from American options. We consider three classes: (1) only call options, (2) only

put options, and (3) both call and put options. For each class, we use all implied volatilities at a given date to construct

six ImV subclasses, which are mean, min, max, and three quantiles (q1, q2, q3).

A–32



Table A13. Strength comparison with daily past lags as instruments

(F -statistics from first-stage regression)

January 2009 - December 2013, T = 1258

# of instruments

Ticker 1 2 3 4 5 6 7

GE 23.64 25.00 21.10 20.73 18.46 16.85 14.81

IBM 9.22 10.08 10.08 9.72 8.63 7.73 6.87

JPM 41.08 38.42 34.99 28.34 24.71 23.22 20.79

KO 6.19 10.24 8.82 9.00 8.31 7.08 7.00

PFE 14.99 11.17 7.53 7.43 7.41 7.45 7.06

PG 3.57 4.28 5.38 4.88 5.76 5.14 6.56

T 5.36 13.65 9.62 7.04 6.76 6.07 5.37

WMT 15.24 11.01 7.71 6.10 5.45 5.36 5.63

XOM 9.48 7.80 7.87 6.97 5.86 6.08 5.69

CV _Si ze(0.10) 16.38 19.93 22.30 24.58 26.87 29.18 31.50

Notes:

1. The critical value (CV) is a function of one endogenous regressor, the number of instrumental variables, and the desired

10% maximal size of a 5% Wald test of φ=φ0, for further details, see Table 5.2 of Stock and Yogo (2005).

2. Instruments are deemed weak if the first-stage F -statistic is less than the CV associated with the corresponding column.

L Strength of IVs using F -statistic

In this section, we examine the strength of IVs using F -statistic. We investigate the strength of daily IVs

since a pressing concern with an IV approach is the possible use of weak IVs, which can produce bi-

ased estimators [bias towards OLS estimates] and hypothesis tests with large size distortion. The existing

econometric literature defines weak IVs based on the strength of the first-stage equation [Bekker (1994),

Dufour (2003), Staiger and Stock (1997), and Stock and Yogo (2005)]. Following Stock and Yogo (2005), we

employ the first-stage F -statistic to detect whether IVs are weak or not.

F -statistics for testing whether daily IVs [past lags of the endogenous variable] all have zero coefficients

are reported in Table A13 with corresponding critical values associated with the desired maximum level of

size distortion. From the table, we can see that many F -statistics are less than the corresponding critical

value associated with the maximum asymptotic size of a Wald test [these critical values are obtained using

weak-IV asymptotic distributions]. These results suggest that IV estimates are biased towards OLS esti-

mates, and we need to use weak instrument robust inference methods: see Dufour (1997) for more details

about the Wald test.

Now, we wish to check if the HF and other IVs are weak or not. We consider IBM stock and different

classes of IVs. Results with other stocks are qualitatively similar and omitted to conserve space. Table A14

reports the first-stage F -statistics of all IVs. From the results, we can draw several conclusions: (1) most

of the HF IVs are strong for IBM, but exceptions are JV and SJV HF classes, ImV-mean subclass, and daily

IVs; (2) if we consider multiple IVs, then Wald-type tests fail to control the level in many cases; (3) in most

cases, the value of F -statistic (which measures the strength of IVs) is maximum, when we consider only

one instrument irrespective of it is weak or strong.
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Table A14. Strength comparison of all IVs

(F -statistics from first-stage regression)

Ticker: IBM, January 2009 - December 2013, T = 1258

No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5

1 RV-1s 70.4 29.2 17.5 45 RKbart-50t 139.0 46.3 27.7 89 RSVN-10m 79.3 31.7 19.3 133 LJV-5s 46.2 23.4 13.9

2 RV-5s 69.3 29.9 17.7 46 RKth2-1t 132.5 46.6 27.9 90 RSVN-1t 99.3 34.2 20.7 134 LJV-30s 9.4 8.3 6.0

3 RV-30s 95.7 34.1 20.5 47 RKth2-5t 139.7 46.3 27.9 91 RSVN-5t 103.6 34.9 21.4 135 LJV-1m 24.2 13.4 9.0

4 RV-1m 99.4 35.0 21.1 48 RKth2-10t 142.7 47.3 28.3 92 RSVN-10t 106.1 37.2 22.7 136 LJV-5m 16.2 12.5 8.3

5 RV-5m 96.8 34.5 21.6 49 RKth2-20t 143.5 47.7 28.6 93 RSVN-20t 122.0 42.4 26.3 137 LJV-10m 23.2 11.8 8.8

6 RV-10m 92.0 33.0 20.4 50 RKth2-50t 138.8 46.1 27.7 94 RSVN-50t 110.3 40.0 24.1 138 LJV-1t 92.5 32.1 19.2

7 RV-1t 99.9 34.5 20.8 51 RKnfp-1t 142.3 47.4 28.3 95 RSVN-5m-ss 93.6 35.2 21.2 139 LJV-5t 62.8 22.0 13.8

8 RV-5t 106.3 35.6 21.9 52 RKnfp-5t 139.7 47.0 28.0 96 RSVN-10m-ss 89.6 34.3 20.6 140 LJV-10t 71.8 27.5 17.7

9 RV-10t 110.7 38.5 23.5 53 RKnfp-10t 136.7 46.0 27.4 97 RSVP-1s 70.0 28.9 17.3 141 LJV-20t 44.1 19.6 14.4

10 RV-20t 128.3 43.6 27.3 54 RKnfp-20t 139.6 46.4 27.7 98 RSVP-5s 68.7 29.3 17.4 142 LJV-50t 90.1 30.6 19.9

11 RV-50t 117.5 40.9 24.7 55 RKnfp-50t 135.4 45.1 27.0 99 RSVP-30s 93.4 33.0 19.8 143 LSJV-1s 24.0 13.8 11.6

12 RV-5m-ss 104.8 36.4 22.0 56 RRV-1m 96.6 34.4 20.7 100 RSVP-1m 95.4 33.2 19.9 144 LSJV-5s 10.4 16.2 11.7

13 RV-10m-ss 101.4 35.4 21.3 57 RRV-5m 85.3 33.5 20.5 101 RSVP-5m 81.5 29.8 18.6 145 LSJV-30s 19.7 17.7 13.7

14 RVbr-1s 84.5 31.0 19.1 58 RRV-10m 80.5 32.6 20.1 102 RSVP-10m 69.1 26.4 16.6 146 LSJV-1m 16.5 13.7 9.4

15 RVbr-5s 81.0 29.8 18.5 59 BV-1s 80.2 30.2 18.3 103 RSVP-1t 99.7 34.6 20.8 147 LSJV-5m 22.6 14.3 10.1

16 RVbr-30s 71.5 27.4 17.5 60 BV-5s 71.6 29.2 17.8 104 RSVP-5t 106.1 35.6 22.0 148 LSJV-10m 13.4 12.3 9.7

17 RVbr-1m 76.5 29.5 18.4 61 BV-30s 97.6 34.5 20.8 105 RSVP-10t 109.6 38.2 23.4 149 LSJV-1t 40.1 17.0 11.8

18 RVbr-5m 87.7 35.1 21.9 62 BV-1m 100.5 35.1 21.1 106 RSVP-20t 125.3 42.5 26.9 150 LSJV-5t 35.4 14.6 10.1

19 RVbr-10m 61.8 27.7 17.3 63 BV-5m 95.5 34.5 21.2 107 RSVP-50t 111.9 38.6 23.5 151 LSJV-10t 38.1 20.6 13.6

20 RVbr-1t 99.4 36.4 21.7 64 BV-10m 87.6 31.3 19.3 108 RSVP-5m-ss 94.2 33.5 20.3 152 LSJV-20t 33.5 12.7 8.3

21 RVbr-5t 93.0 33.8 20.2 65 BV-1t 99.8 34.4 20.9 109 RSVP-10m-ss 82.5 30.6 18.5 153 LSJV-50t 37.3 16.5 10.9

22 RVbr-10t 93.8 34.2 21.5 66 BV-5t 106.8 35.8 22.1 110 JV-1s 0.6 0.5 0.8 154 PCF-1 102.7 35.3 21.4

23 RVbr-20t 95.0 34.1 20.6 67 BV-10t 105.3 36.9 22.4 111 JV-5s 0.7 0.5 0.7 155 PCF-2 98.5 34.1 20.6

24 RVbr-50t 92.3 33.2 20.7 68 BV-20t 129.0 43.8 27.4 112 JV-30s 0.0 2.3 2.2 156 PCF-3 67.4 24.8 15.8

25 MSRV-1s 99.6 34.6 21.2 69 BV-50t 120.6 42.1 25.6 113 JV-1m 2.9 5.7 4.2 157 ImV-C-mean 23.4 18.3 12.3

26 MSRV-5s 92.9 32.3 20.4 70 BV-5m-ss 95.5 34.5 21.2 114 JV-5m 9.1 9.0 7.2 158 ImV-C-min 84.8 29.3 17.4

27 MSRV-30s 94.1 34.2 21.7 71 BV-10m-ss 95.5 34.5 21.2 115 JV-10m 15.4 10.8 6.9 159 ImV-C-max 1.3 1.3 0.9

28 MSRV-1m 98.0 36.1 22.4 72 MedRV-1s 72.5 29.6 17.9 116 JV-1t 0.5 0.9 1.2 160 ImV-C-q1 87.5 29.2 17.8

29 MSRV-5m 83.2 33.2 20.9 73 MedRV-5s 62.9 28.4 16.9 117 JV-5t 0.6 1.2 1.3 161 ImV-C-q2 80.5 29.6 17.6

30 MSRV-10m 81.4 30.6 18.6 74 MedRV-30s 94.0 33.6 20.2 118 JV-10t 0.3 0.7 1.0 162 ImV-C-q3 25.1 18.1 12.1

31 MSRV-1t 123.9 43.2 25.9 75 MedRV-1m 97.6 34.3 20.8 119 JV-20t 0.1 3.6 2.5 163 ImV-P-mean 27.5 12.4 9.2

32 MSRV-5t 123.2 43.7 26.0 76 MedRV-5m 95.9 34.6 21.1 120 JV-50t 0.6 1.3 1.3 164 ImV-P-min 63.1 21.1 13.1

33 MSRV-10t 128.3 44.1 26.3 77 MedRV-10m 91.3 32.5 20.1 121 SJV-1s 0.9 1.3 0.8 165 ImV-P-max 0.2 1.0 1.0

34 MSRV-20t 126.0 42.8 26.3 78 MinRV-1s 74.3 29.1 17.8 122 SJV-5s 0.2 0.7 1.4 166 ImV-P-q1 72.4 27.4 16.6

35 MSRV-50t 142.3 47.3 28.9 79 MinRV-5s 62.1 26.8 16.3 123 SJV-30s 0.8 1.6 3.4 167 ImV-P-q2 71.4 25.4 15.4

36 RKcub-1t 102.8 40.2 24.4 80 MinRV-30s 93.9 33.6 20.2 124 SJV-1m 0.5 2.0 2.5 168 ImV-P-q3 44.0 15.9 10.6

37 RKcub-5t 127.7 42.7 25.6 81 MinRV-1m 97.2 34.1 20.6 125 SJV-5m 0.2 1.9 2.8 169 ImV-A-mean 35.1 17.9 12.0

38 RKcub-10t 145.2 48.2 28.9 82 MinRV-5m 92.1 34.2 20.9 126 SJV-10m 0.4 1.8 2.0 170 ImV-A-min 68.8 22.7 13.7

39 RKcub-20t 136.4 45.5 27.2 83 MinRV-10m 79.7 29.2 18.0 127 SJV-1t 0.7 11.6 7.1 171 ImV-A-max 1.1 1.6 1.1

40 RKcub-50t 134.3 44.8 26.8 84 RSVN-1s 70.5 29.5 17.6 128 SJV-5t 0.0 1.4 1.3 172 ImV-A-q1 83.8 31.3 19.1

41 RKbart-1t 133.9 45.2 27.0 85 RSVN-5s 69.3 30.3 18.0 129 SJV-10t 0.4 0.7 0.9 173 ImV-A-q2 82.3 28.0 17.0

42 RKbart-5t 139.9 46.3 27.9 86 RSVN-30s 92.9 34.2 20.5 130 SJV-20t 0.0 0.7 0.7 174 ImV-A-q3 51.7 21.8 13.5

43 RKbart-10t 141.9 47.0 28.2 87 RSVN-1m 95.0 35.2 21.2 131 SJV-50t 0.0 0.5 0.6 175 1-day 9.2 10.1 8.6

44 RKbart-20t 143.8 47.8 28.6 88 RSVN-5m 88.1 35.1 21.6 132 LJV-1s 56.7 26.6 15.9 CVSi ze,0.10 16.4 22.3 26.9

Notes:

1. The critical value (CV) is a function of one endogenous regressor, the number of instrumental variables, and the desired

10% maximal size of a 5% Wald test of φ=φ0, for further details, see Table 5.2 of Stock and Yogo (2005).

2. We use logarithms of RV-RSVP and PCF classes of instruments given in Table A12.

3. Instruments are deemed weak if the first-stage F -statistic is less than the CV associated with the corresponding column.
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M Complementary empirical results
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Table A15. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Strong instruments

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A

No Instruments d̄i ,s AR AR∗

1 RSVN-5m-ss 0.8860 [0.950, 1.000] [0.866, 1.000]

2 RSVN-5m 0.8855 [0.948, 1.000] [0.864, 1.000]

3 RSVN-1m 0.8848 [0.947, 1.000] [0.856, 1.000]

4 ImV-C-mean 0.8830 [0.964, 1.000] [0.852, 1.000]

5 MinRV-5m 0.8828 [0.945, 1.000] [0.867, 1.000]

6 RV-5m-ss 0.8825 [0.946, 1.000] [0.863, 1.000]

7 BV-5m 0.8823 [0.945, 1.000] [0.865, 1.000]

8 BV-5m-ss 0.8823 [0.945, 1.000] [0.865, 1.000]

9 BV-10m-ss 0.8823 [0.945, 1.000] [0.865, 1.000]

10 MedRV-5m 0.8823 [0.945, 1.000] [0.866, 1.000]

Panel B

No Instruments d̄i ,s AR AR∗

11 ImV-C-q3 0.8805 [0.964, 1.000] [0.843, 1.000]

12 RV-1m 0.8800 [0.944, 1.000] [0.857, 1.000]

13 ImV-C-q2 0.8795 [0.958, 1.000] [0.860, 1.000]

14 RRV-1m 0.8790 [0.945, 1.000] [0.858, 1.000]

15 MedRV-1m 0.8785 [0.944, 1.000] [0.857, 1.000]

16 RV-5m 0.8783 [0.943, 1.000] [0.858, 1.000]

17 BV-1m 0.8775 [0.944, 1.000] [0.857, 1.000]

18 RSVN-10m-ss 0.8775 [0.949, 1.000] [0.858, 1.000]

19 RSVN-10m 0.8760 [0.946, 1.000] [0.861, 1.000]

20 RV-10m-ss 0.8758 [0.944, 1.000] [0.857, 1.000]

Panel C

No Instruments d̄i ,s AR AR∗

21 RSVN-30s 0.8753 [0.944, 1.000] [0.848, 1.000]

22 RRV-5m 0.8750 [0.946, 1.000] [0.855, 1.000]

23 MinRV-1m 0.8745 [0.943, 1.000] [0.855, 1.000]

24 ImV-C-min 0.8743 [0.952, 1.000] [0.834, 1.000]

25 MSRV-1m 0.8723 [0.939, 1.000] [0.862, 1.000]

26 RSVP-1m 0.8715 [0.942, 1.000] [0.852, 1.000]

27 RV-30s 0.8713 [0.942, 1.000] [0.847, 1.000]

28 BV-30s 0.8713 [0.943, 1.000] [0.847, 1.000]

29 ImV-C-q1 0.8710 [0.952, 1.000] [0.840, 1.000]

30 MSRV-30s 0.8698 [0.935, 1.000] [0.858, 1.000]

Notes: The instrument set consists of a constant and a lag of an instrument, l = 1. We use logarithms of RV-RSVP and PCF classes

of instruments given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test

statistics are given in equations (3.12) and (3.15). The confidence intervals are constructed by projection technique described

in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂= 47.548 and

SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision of an instrument set

i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of identification-robust

inference methods.
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Table A16. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Weak instruments

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A

No Instruments d̄i ,s AR AR∗

1 JV-1s 0.0000 [0.000, 1.000] [0.000, 1.000]

2 JV-5s 0.0000 [0.000, 1.000] [0.000, 1.000]

3 JV-30s 0.0000 [0.000, 1.000] [0.000, 1.000]

4 JV-1t 0.0000 [0.000, 1.000] [0.000, 1.000]

5 SJV-1s 0.0000 [0.000, 1.000] [0.000, 1.000]

6 SJV-5s 0.0000 [0.000, 1.000] [0.000, 1.000]

7 SJV-10t 0.0000 [0.000, 1.000] [0.000, 1.000]

8 SJV-20t 0.0000 [0.000, 1.000] [0.000, 1.000]

9 SJV-50t 0.0000 [0.000, 1.000] [0.000, 1.000]

10 ImV-C-max 0.0000 [0.000, 1.000] [0.000, 1.000]

11 ImV-P-max 0.0000 [0.000, 1.000] [0.000, 1.000]

12 ImV-A-max 0.0000 [0.000, 1.000] [0.000, 1.000]

Panel B

No Instruments d̄i ,s AR AR∗

13 JV-20t 0.0038 [0.000, 1.000] [0.000, 1.000]

14 SJV-5t 0.1875 [0.500, 1.000] [0.250, 1.000]

Panel C

No Instruments d̄i ,s AR AR∗

15 JV-10t 0.3130 [0.000, 1.000] [0.000, 1.000]

16 JV-50t 0.3283 [0.000, 1.000] [0.000, 1.000]

17 JV-5t 0.3308 [0.000, 1.000] [0.000, 1.000]

18 SJV-30s 0.3400 [0.000, 1.000] [0.000, 1.000]

19 SJV-1m 0.3845 [0.000, 1.000] [0.000, 1.000]

20 SJV-10m 0.3975 [0.000, 1.000] [0.000, 1.000]

21 SJV-5m 0.3998 [0.000, 1.000] [0.000, 1.000]

22 JV-1m 0.4028 [0.911, 1.000] [0.700, 1.000]

23 JV-10m 0.4075 [0.890, 1.000] [0.740, 1.000]

24 LSJV-20t 0.4108 [0.883, 0.992] [0.750, 1.000]

25 LSJV-5t 0.4208 [0.913, 1.000] [0.770, 1.000]

26 1-day 0.4255 [0.870, 0.965] [0.750, 1.000]

27 LJV-30s 0.4268 [0.927, 1.000] [0.780, 1.000]

28 LJV-1m 0.4373 [0.933, 1.000] [0.816, 1.000]

29 SJV-1t 0.6795 [0.810, 0.992] [0.700, 1.000]

30 LJV-10m 0.7465 [0.905, 0.998] [0.750, 1.000]

Notes: The instrument set consists of a constant and a lag of an instrument, l = 1. We use logarithms of RV-RSVP and PCF classes

of instruments given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test

statistics are given in equations (3.12) and (3.15). The confidence intervals are constructed by projection technique described

in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂= 47.548 and

SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision of an instrument set

i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of identification-robust

inference methods.
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Table A17. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Realized volatility vs. Bipower variation

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A: Realized volatility

Instruments d̄i ,s AR AR∗

RV-1s 0.8590 [0.938, 1.000] [0.836, 1.000]

RV-5s 0.8615 [0.938, 1.000] [0.834, 1.000]

RV-30s 0.8713 [0.942, 1.000] [0.847, 1.000]

RV-1m 0.8800 [0.944, 1.000] [0.857, 1.000]

RV-5m 0.8783 [0.943, 1.000] [0.858, 1.000]

RV-10m 0.8640 [0.939, 1.000] [0.855, 1.000]

RV-1t 0.8415 [0.919, 0.997] [0.831, 1.000]

RV-5t 0.8460 [0.922, 0.999] [0.837, 1.000]

RV-10t 0.8495 [0.927, 1.000] [0.850, 1.000]

RV-20t 0.8450 [0.928, 0.999] [0.848, 1.000]

RV-50t 0.8498 [0.929, 1.000] [0.844, 1.000]

RV-5m-ss 0.8825 [0.946, 1.000] [0.863, 1.000]

RV-10m-ss 0.8758 [0.944, 1.000] [0.857, 1.000]

Panel B: Bipower variation

BV-1s 0.8670 [0.942, 1.000] [0.858, 1.000]

BV-5s 0.8630 [0.939, 1.000] [0.841, 1.000]

BV-30s 0.8713 [0.943, 1.000] [0.847, 1.000]

BV-1m 0.8775 [0.944, 1.000] [0.857, 1.000]

BV-5m 0.8823 [0.945, 1.000] [0.865, 1.000]

BV-10m 0.8653 [0.941, 1.000] [0.856, 1.000]

BV-1t 0.8460 [0.920, 0.996] [0.832, 1.000]

BV-5t 0.8523 [0.924, 1.000] [0.838, 1.000]

BV-10t 0.8520 [0.927, 1.000] [0.850, 1.000]

BV-20t 0.8493 [0.929, 1.000] [0.851, 1.000]

BV-50t 0.8560 [0.932, 1.000] [0.848, 1.000]

BV-5m-ss 0.8823 [0.945, 1.000] [0.865, 1.000]

BV-10m-ss 0.8823 [0.945, 1.000] [0.865, 1.000]

Notes: The instrument set consists of a constant and a lag of an instrument, l = 1. We use logarithms of RV-RSVP and PCF classes

of instruments given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test

statistics are given in equations (3.12) and (3.15). The confidence intervals are constructed by projection technique described

in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂= 47.548 and

SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision of an instrument set

i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of identification-robust

inference methods.
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Table A18. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Strong instruments (Several lags)

Ticker: IBM, January 2009 - December 2013, T = 1258

l = 1 l = 3 l = 5

Instruments d̄i ,s AR AR∗ d̄i ,s AR AR∗ d̄i ,s AR AR∗

RSVN-5m-ss 0.8860 [0.950, 1.0] [0.866, 1.0] 0.8618 [0.949, 1.0] [0.838, 1.0] 0.8603 [0.941, 1.0] [0.845, 1.0]

RSVN-5m 0.8855 [0.948, 1.0] [0.864, 1.0] 0.8668 [0.955, 1.0] [0.845, 1.0] 0.8695 [0.960, 1.0] [0.856, 1.0]

RSVN-1m 0.8848 [0.947, 1.0] [0.856, 1.0] 0.8570 [0.951, 1.0] [0.851, 1.0] 0.8555 [0.946, 1.0] [0.845, 1.0]

ImV-C-mean 0.8830 [0.964, 1.0] [0.852, 1.0] 0.8218 [0.970, 1.0] [0.828, 1.0] 0.8078 [0.950, 1.0] [0.813, 1.0]

MinRV-5m 0.8828 [0.945, 1.0] [0.867, 1.0] 0.8493 [0.935, 1.0] [0.837, 1.0] 0.8465 [0.928, 1.0] [0.825, 1.0]

RV-5m-ss 0.8825 [0.946, 1.0] [0.863, 1.0] 0.8560 [0.939, 1.0] [0.837, 1.0] 0.8523 [0.932, 1.0] [0.840, 1.0]

BV-5m 0.8823 [0.945, 1.0] [0.865, 1.0] 0.8508 [0.935, 1.0] [0.835, 1.0] 0.8500 [0.932, 1.0] [0.827, 1.0]

BV-5m-ss 0.8823 [0.945, 1.0] [0.865, 1.0] 0.8508 [0.935, 1.0] [0.835, 1.0] 0.8500 [0.932, 1.0] [0.827, 1.0]

BV-10m-ss 0.8823 [0.945, 1.0] [0.865, 1.0] 0.8508 [0.935, 1.0] [0.835, 1.0] 0.8500 [0.932, 1.0] [0.827, 1.0]

MedRV-5m 0.8823 [0.945, 1.0] [0.866, 1.0] 0.8493 [0.936, 1.0] [0.833, 1.0] 0.8515 [0.930, 1.0] [0.826, 1.0]

1-day 0.4255 [0.870, 0.965] [0.750, 1.0] 0.7490 [0.855, 0.974] [0.760, 1.0] 0.7485 [0.838, 0.979] [0.770, 1.0]

Notes: The instrument set consists of a constant and different lags of an instrument: l = 1,3,5. We use logarithms of RV-RSVP and PCF classes of instruments given in Table

A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test statistics are given in equations (3.12) and (3.15). The confidence intervals

are constructed by projection technique described in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂ = 47.548

and SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision of an instrument set i over the proposed inference methods is

measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of identification-robust inference methods.
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Table A19. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Different combinations of strong instruments

Ticker: IBM, January 2009 - December 2013, T = 1258

Instrument set d̄i ,s # of Instruments AR AR∗

RV-5m-ss, ImV-C-q3 0.8748 2 [0.954, 1.000] [0.848, 1.000]

BV-5m-ss, ImV-C-q3 0.8775 2 [0.954, 1.000] [0.850, 1.000]

RSVN-5m, ImV-C-q3 0.8820 2 [0.953, 1.000] [0.857, 1.000]

RKcub-10t, ImV-C-q3 0.8583 2 [0.958, 0.995] [0.854, 1.000]

BV-5m-ss, LJV-5s 0.8650 2 [0.936, 1.000] [0.841, 1.000]

RKcub-10t, PCF-1, ImV-C-q3 0.8555 3 [0.967, 0.991] [0.842, 1.000]

BV-5m-ss, LJV-5s, ImV-C-q3 0.8645 3 [0.946, 1.000] [0.838, 1.000]

BV-5m-ss, LJV-5s, PCF-1 0.8568 3 [0.960, 0.999] [0.844, 1.000]

BV-5m-ss, LJV-5s, PCF-1, ImV-C-q3 0.8553 4 [0.966, 0.996] [0.829, 1.000]

BV-5m-ss, LJV-5s, LSJV-10t, PCF-1, ImV-C-q3 0.8493 5 [0.959, 0.997] [0.820, 1.000]

Notes: The instrument set consists of a constant and various combinations of strong instruments. We use logarithms of RV-

RSVP and PCF classes of instruments given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2

and corresponding test statistics are given in equations (3.12) and (3.15). The confidence intervals are constructed by projection

technique described in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154]

with λ̂= 47.548 and SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision

of an instrument set i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of

identification-robust inference methods.
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Table A20. Projection-based 90% confidence intervals for the volatility persistence parameter φ

Jump variation vs. log squared jump variation

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A: Jump variation

Instruments d̄i ,s AR AR∗

JV-1s 0.0000 [0.000, 1.000] [0.000, 1.000]

JV-5s 0.0000 [0.000, 1.000] [0.000, 1.000]

JV-30s 0.0000 [0.000, 1.000] [0.000, 1.000]

JV-1m 0.4028 [0.911, 1.000] [0.700, 1.000]

JV-5m 0.7823 [0.925, 1.000] [0.770, 1.000]

JV-10m 0.4075 [0.890, 1.000] [0.740, 1.000]

JV-1t 0.0000 [0.000, 1.000] [0.000, 1.000]

JV-5t 0.3308 [0.000, 1.000] [0.000, 1.000]

JV-10t 0.3130 [0.000, 1.000] [0.000, 1.000]

JV-20t 0.0038 [0.000, 1.000] [0.000, 1.000]

JV-50t 0.3283 [0.000, 1.000] [0.000, 1.000]

Panel B: Log squared jump variation

LJV-1s 0.8573 [0.937, 1.000] [0.830, 1.000]

LJV-5s 0.8635 [0.937, 1.000] [0.815, 1.000]

LJV-30s 0.4268 [0.927, 1.000] [0.780, 1.000]

LJV-1m 0.4373 [0.933, 1.000] [0.816, 1.000]

LJV-5m 0.8175 [0.932, 1.000] [0.800, 1.000]

LJV-10m 0.7465 [0.905, 0.998] [0.750, 1.000]

LJV-1t 0.8275 [0.914, 0.997] [0.827, 1.000]

LJV-5t 0.7940 [0.905, 0.996] [0.806, 1.000]

LJV-10t 0.8193 [0.920, 1.000] [0.838, 1.000]

LJV-20t 0.8080 [0.917, 0.997] [0.811, 1.000]

LJV-50t 0.8393 [0.918, 0.999] [0.833, 1.000]

Notes: The instrument set consists of a constant and a lag of an instrument, l = 1. We use logarithms of RV-RSVP and PCF classes

of instruments given in Table A12. The inference procedures [AR, AR∗] are proposed in Sections 3.1-3.2 and corresponding test

statistics are given in equations (3.12) and (3.15). The confidence intervals are constructed by projection technique described

in Section 3.3. The corresponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂= 47.548 and

SE(λ̂) = 6.935. We use 99 Monte Carlo replications for point-optimal type procedures. The average precision of an instrument set

i over the proposed inference methods is measured by d̄i ,s := S−1 ∑S
i=1

di , where s ∈ S and S is the set of identification-robust

inference methods.
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