Finite-sample multivariate tests of asset pricing modets w

coskewness
Marie-Claude Beauliet ~ Jean-Marie Dufouf Lynda Khalaf®
Université Laval McGill University Carleton University

First version: July 2002
Revised: July 2002, April 2004, April 2005, September 2007
This version: February 2008
Compiled: March 16, 2008, 9:44pm

This paper is forthcoming in theomputational Statistics and Data Analysis

* The authors thank the Editor David Belsley, two anonymoterees, Raja Velu, Craig MacKinlay, participants
at the 2005 Finite Sample Inference in Finance I, the 200@®E@an Meetings of the Econometric Society, the 2006
New York Econometrics Camp, and the 2007 International slwok on Computational and Financial Econometrics
conferences, for several useful comments. This work wapastgd by the William Dow Chair in Political Economy
(McGill University), the Canada Research Chair ProgramafCim Econometrics, Université de Montréal), the Bank
of Canada (Research Fellowship), a Guggenheim Fellowatpnrad-Adenauer Fellowship (Alexander-von-Humboldt
Foundation, Germany), the Institut de finance mathématitguslontréal (IFM2), the Canadian Network of Centres of
Excellence [program olklathematics of Information Technology and Complex SysteHTACS)], the Natural Sciences
and Engineering Research Council of Canada, the Sociai@send Humanities Research Council of Canada, the Fonds
de recherche sur la société et la culture (Québec), the Rind=cherche sur la nature et les technologies (Québec), the
Chaire RBC en innovations financieres (Université Lavailjl NATECH (Government of Québec).

T RBC Chair in Financial Innovations and Département de fimagtcassurance, Université Laval, CIRANO, and
Centre Interuniversitaire sur le risque, les politiquesneeniques et I'emploi (CIRPEE). Mailing address: Dépagatm
de finance et assurance, Pavillon Palasis-Prince, Unigdraval, Québec, Québec G1K 7P4, Canada. TEL: 1 (418)
656-2926, FAX: 1 (418) 656-2624; e-mail: Marie-Claude @leu@fas.ulaval.ca

¥ William Dow Professor of Economics, McGill University, Ctea interuniversitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaireeftherche en économie quantitative (CIREQ). Mailing askire
Department of Economics, McGill University, Leacock Biuilg, Room 519, 855 Sherbrooke Street West, Montréal,
Québec H3A 2T7, Canada. TEL: (1) 514 398 8879; FAX: (1) 5144383; e-mail: jean-marie.dufour@mcgill.ca . Web
page: http://www.jeanmariedufour.com

§ Canada Research Chair in Environmental and Financial Eoetric Analysis (Université Laval), Economics De-
partment, Carleton University, CIREQ, and Groupe de ratteeen économie de I'énergie, de I'environnement et des
ressources naturelles (GREEN), Université Laval. Maikwigiress: Economics Department, Carleton University, Loeb
Building 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, @da. TEL: 1 (613) 520 2600 ext. 8697; FAX: 1 (613)
520 3906; e-mail: Lynda_Khalaf@carleton.ca



ABSTRACT

Finite-sample inference methods are proposed for ass@gmodels with unobservable risk-free
rates and coskewness, specifically, for ¢fuadratic market modglQMM) which incorporates the
effect of asymmetry of return distribution on asset valuati In this context, exact tests are ap-
pealing for several reasons: (i) the increasing populafityuch models in finance, (ii) the fact that
traditional market models (which assume that asset retaove proportionally to the market) have
not fared well in empirical tests, (iii) finite-sample te$ts the QMM are unavailable even with
Gaussian errors. Empirical models are considered wherprteedure to assess the significance
of coskewness preference is LR-based, and relates to tisisth and econometric literature on
dimensionality tests which are interesting in their owrhtigexact versions of these tests are ob-
tained, allowing for non-normality of fundamentals. A silation study documents the size and
power properties of asymptotic and finite-sample tests. iEoapresults with well known data sets
reveal temporal instabilities over the full sampling pdriaamely 1961-2000, though tests fail to

reject the QMM restrictions over 5-year subperiods.

Key words: capital asset pricing model; CAPM; quadratic market mp@VM; Black; mean-
variance efficiency; non-normality; weak identificationyltivariate linear regression; uniform lin-
ear hypothesis; exact test; Monte Carlo test; bootstrafsanae parameters; specification test;

diagnostics; GARCH; variance ratio test.
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1. Introduction

The traditional market model, which supposes that expea$seét returns move proportionally to
their market beta risk, has not fared well in empirical testee.g. Campbell (2003). These failures
have spurred studies on possible nonlinearities and asjmesme the dependence between asset
and market returns. In particular, the quadratic market eh@@MM) was proposed to extend
the standard CAPM framework to incorporate the effect aimetistribution asymmetry on asset
valuation; see Kraus and Litzenberger (1976). A number df kvewn empirical studies [e.g.
Dittmar (2002), Harvey and Siddique (2000), Simaan (19B3ypne-Adesi (1985), Barone-Adesi,
Gagliardini and Urga (20@&4 2004), Smith (2007)] have attempted to assess such asset pricing
models; yet these studies are only asymptotically justifiedact QMM tests seem lacking even
with Gaussian errors.

We consider empirical settings based on multivariate timegressions (MLR), as in Barone-
Adesi (1985) and Barone-Adesi, Gagliardini and Urga (2002004€). These studies model
coskewness preference via an Arbitrage Pricing Theory (jAfRamework, leading to nonlinear
cross-equation constraints on an MLR-based QMM. The assatMLR includes the expected re-
turn in excess of the zero-beta portfolio (assumed unknavdndenotedy) and an extra regressor:
the expected excess returns on a portfolio perfectly aedlwith the squared market returns; the
latter parameter (denoté) is also unobservable and should be estimated in empindications.
This formulation is interesting because it nests Blackisdamental model [Black (1972), Gibbons
(1982), Shanken (1996)] theoretically and statistically.

Empirical tests of several well known asset pricing modske[Shanken (1996), Campbell,
Lo and MacKinlay (1997), Dufour and Khalaf (2002) and Beawi Dufour and Khalaf (2007)]
are often conducted within the MLR framework. In this conteawever, and as may be checked
from the above-cited references, discrepancies betwsenpdstic and finite-sample distributions
are documented and are usually ascribed to the curse of gdiomatity: as the number of equations
increases, the number of error cross-correlations gropidiyawhich leads to reductions in degrees
of freedom and to test size distortions. In the QMM case, tloelehfurther involves nonlinear

restrictions whose identification raises serious nonlegiies: v andd are not identified over the



whole parameter space, which can strongly affect the bigtdns of estimators and test statistics,
leading to the failure of standard asymptotics. For refegsron weak-identification problems, see
e.g. Dufour (1997, 2003), Stock, Wright and Yogo (2002), Dufondaraamouti (2005, 2007),
Joseph and Kiviet (2005), Khalaf and Kichian (2005), Kiaatl Niemczyk (2007), Bolduc, Khalaf
and Moyneur (2008), and the references therein. We propargedxact likelihood ratio (LR) type
tests immune to such difficulties.

To obtain an exact version of the QMM test under considematie formulate the problem as a
dimensionality test on the parameters of a MLR, and derigeed-form analytical expressions for
estimates and test statistics. Exact dimensionality testavailable under Gaussian fundamentals
[seee.g. Zhou (1991), Zhou (1995) and Velu and Zhou (1999) who poirtreterences to the
statistical literature], yet these procedures have nat beplied to the QMM framework. Of course,
empirical evidence on non-normalities of financial retummesy lead one to question the usefulness
of Gaussian based exact tests. The results of Beaulieu,ubaftd Khalaf (2005, 2006, 2007)
related to the standard CAPM confirm this issue: despitiredanormality (using provably exact
non-Gaussian tests), the linear CAPM is still rejected éuesal subperiods. We thus propose to
extend the statistical framework of Beaulieu et al. (200the QMM case.

The paper is organized as follows. Section 2 sets the framkev8ection 3 presents estimates
and test statistics. Distributional results are discugssdctions 4 and 5. In Section 6, we study the
problem of testing the homogeneity hypothesis. In sectiowe/report a simulation study which
assesses the finite-sample performance of available astiongtsts as well as the power properties

of our proposed exact tests. Section 8 reports our empiesalts and section 9 concludes.

2. Framework

Let Ry, 7 = 1, ..., n, be returns om securities for period, ¢t = 1, ... , T and Ry, the returns
on a market portfolio under consideration. Kraus and Litezger (1976)'s quadratic market model

(QMM) takes the following form:

Rit:ai"i'biRMt_"ciR%/lt_Fuit» izl»"'vnvt:L"'aTv (21)



where theu;; are random disturbances. Our main statistical resultsinedfoat the vector$; =

(uig, .., upg), t=1, ..., T, satisfy the following distributional assumption:
Vi=JW,, t=1,..., T, (2.2)

whereJ is an unknown nonsingular x n matrix and the distribution ofy = vec(W) with W =
[Wh, ..., Wp|'is: either (i) fully specified, or (ii) specified up to a nuisanparameter. We will
treat first the case whereis known; the case of unknownis discussed in section 5. We also study

the special cases where the errorsiam. following: (i) a multivariate Gaussian distributioie.,
Wi, ..., Wr ~ N[0, I,,] (2.3)
or (ii) a multivariate Student-distribution with degrees-of-freedom i.e.,
Wi = Zii/(Zos ) 5)V2, (2.4)

whereZy; ~ N0, I,] and Zy, is ax?(x) variate independent fro; ;.
Using Ross’ Arbitrage Pricing Theory, Barone-Adesi (1988)ived a model of equilibrium

based on (2.1), which entails the following restrictions:
Ho:ai+v(bi—1)+cf=0, i=1,...,n, forsomeyandd. (2.5)

Hg is nonlinear since andd are unknown. Clearlyy may be weakly identified if thg; coefficients
are close td, andd may be weakly identified if the; coefficients are close ta

For any specified valueg, andfy, the hypothesis
HQ(’YO,H()) L a; —I—’)/O(bi — 1) + ¢80 = 0,:=1, ..., n, (26)

is linear. This observation underlies our exact bound testqulure; we can also use pivotal statistics

associated with the latter hypothesis as in Beaulieu, Dudmd Khalaf (2006) to obtain a joint



confidence set foy andé.

To simplify the presentation, let us transform the modelddisws:
Rit_RMt =a; + (b; — I)RMt—i-CiR%M—i-uit, t=1,...,T,i=1,...,n. 2.7

The above model is a special case of the following MLR:

Y =XB+U, (2.8)
whereY = [Y1, ..., Y, ] isT x n matrix, X isT x k matrix with rankk and is assumed fixed, and
U=1[Uy, ..., U)=[W, ..., Vp|istheT x n matrix of error terms. In most cases of interest,

we also haven > k. Clearly, (2.7) corresponds to the case where:

Y =[Ry — Rw, ..., R, — Rn|, X =[ir, Ru,R¥], (2.9)

Ri = (R, ..., Rri)', Rwm = (Rim, ..., Rrm)', Ry =(R%y, ..., R2y)',  (2.10)
ar - a,

B=|b—-1 - b,—1 |- (2.11)
o e

In this context, the (Gaussian) quasi likelihood ratio (QIcRterion for testing (2.5) is:
LRq =Tn(|Zql/|21) (2.12)

whereX is the unrestricted (Gaussian) quasi maximum likelihodiinegor (QMLE) of & andﬁQ
is the restricted QMLE of’ underH . Note that

~

Y=U0U/T=Y'MY)T,U=Y -XB, B=(X'X)"'X'Y, M =1 - X(X'X)"'X".
(2.13)
Conformably, leta;, Ei and¢; refer to the QMLEs ofy;, b; and¢;. Barone-Adesi (1985) imple-

ments a linearization procedure as in Gibbons (1982) tooxipate the latter statistic; in a related



framework which corresponds to a knownBarone-Adesi, Gagliardini and Urga (20f)bbtains
a test statistic of this form using iterative numerical nmaiziation. In what follows, we propose: (i)
simple eigenvalue-based non-iterative formula to der®/&2), (ii) exact bounds op-values and,
(iii) bootstrap-type cut-ofp-values.

Our analysis reveals similarities with the statisticalrfdations of MLR-based tests of Black’s
version of the CAPM. Indeed, #; = 0,7 = 1, ... , n, the above model nests Black’s model.
The statistical results we provide here thus extend Shafil@86), Zhou (1991) and Velu and Zhou
(1999) to the three-moment CAPM case. Some results from Zh@@b6) are also relevant for the
Gaussian case, although Zhou (1995) did not study the thaaent CAPM.

Alternative formulations of the three moment CAPM allow #otess restrictive nonlinear hy-

pothesis [see Barone-Adesi, Gagliardini and Urga (20j04s follows:
Ho:a;+v(bi—1)+c0=¢,i=1,...,n, forsomey, §andg, (2.14)

whereg is the same across portfolios. We will consider this hypsitha section 6.

3. Constrained estimation and test statistics

In this section, we provide convenient non-iterative folaeufor computing QMLE-based test sta-

tistics forHg (g, 0o) andHg.

3.1. Linear case

HypothesisH g (g, 0o) in (2.6) is a special case of
H(Cy) : CoB =0, (3.1)

whereCy € M(k —r, k),0 < k —r < kandM(my, mz) denotes the set of full-ranke; x mo

matrices with real elements. In this case, the constrairdtE¥ are:

B(Co) = B—(X'X)"'cylCo (x'X) "yl o, (3.2)



S(Co) = L4+ BCHCo(X'X) ) CoB = Y M(Cy)Y (3.3)

M(Co) = M+ X(X'X)1CHCo(X'X)71CH) 1 Co(X'X) 71X/, (3.4)

where)M is defined in (2.13). Furthermore, the standard LR and Waliksts for testing(Cy) —
denoted respectivelf R(Cy) andW(Cyp) — can be expressed in terms of the eigenvalugs’,) >
fin(Co) > -+ > 1, (Co) of the matrix X (Co) 1 [£(Cp) — 2):
) A A l
LR(Co) = =T (|I—£(Co) '[E(Co) = X)) = =T [l — ,(Co)] ,  (35)
=1
r
f1;(Co)

= race (5715 ~3]) = 1—;(Co)
WG] = Tirace (MRG0 =2 =T 2 725y

(3.6)

wherel = min{k — r, n} is the rank of$(Cy)~'[£(Cp) — . If k < n, we havel = k —r .
Applying these expressions to t&st) (v, fo) leads to the following constrained QMLEs:

B(vp, 00) = B(Co),  X(70, 00) = 2(Co),  M(vq, 80) = M(Cy), (3.7)

where B(Cy), %(Cy) and M (Cy) obtain from (3.2) - (3.4) withX andY as defined in (2.9)
and Cy = [1, v, 6o]. In this case,l = rank(Cy) = k —r = 1, so that the matrix
270, 00) "X (70, 00) — %] has only one non-zero root which we dengte/,, f), and the LR

and Wald test statistics are thus monotonic transformatidreach other given by:

[ 0
LR(30,00) = ~Thil = i 60)l,  Wiro.b0) =T (202 - (3

3.2. Nonlinear case
For tests on the rank of a matrix, Gouriéroux, Monfort and &#n(1993, 1995) provide the fol-

lowing formulae to test hypotheses of the form

Hnp : CB =0, forsomeC € M(k —r, k), (3.9)



in the context of the MLR (2.8). The LR and Wald statistics rbaywritten as:

k
LR, = in LR(C)=-T In(1 — \;), 3.10
N pein  LR(C) ;1 n(1—A) (3.10)
W, = in WC)=T U 3.11
i e Bin  W(O) Z;l T (3.11)

whereLR(C), W(C) are as defined in (3.5)-(3.6) angd > X\, > --- > ), are the eigenvalues of

Rxy = (X'X)"'X'YY'Y)"'Y'X. (3.12)

Leteéy, és, ..., é denote the eigenvectors associated With\, ... , A, normalized so that
ity s 1) (X' X) [6rgt, .0y 6] = 1. (3.13)
ThenCyr = [é41, - .. » &) (X'X) gives the QMLE ofC. Note thatH, is equivalent taB =

0 for somed, wheres isr x n andé is ak x r matrix of rankr which are linked ta” through the

condition

C6 = 0. (3.14)

In the same vein, whefy is a knownk x r matrix of rankr such thatCdy = 0, then

H(Cp) & B =00f3. (3.15)
Consider the transformed regression= X (9)3 + U and associated OLS estimafé(’) where
B6) = [X(G)X(®)] ' X()Y. (3.16)
Thend provides a QMLE fow, and QMLEs ofB and X (denotedBy ;. and Xy ) obtain as

A A A A

By =06p(8), ZnL=UE@)U®)/T, U©0)=Y - XB(). (3.17)



asy

Under standard regularity assumptiods?,,, ‘< x?((n—r)(k—r)) andW,,, < x?((n—r)(k—
r)); see Gouriéroux, Monfort and Renault (1993, 1995).

The QMM restrictionsH in (2.5) are a special case of (3.9) with= [1, v, §]. Sincek = 3
andk—r = 1, we haver = 2. The fact that one element 6fis equal to one implies a normalization
that does not alter the formulae for the test statistics. Xt > Ag2 > A3o andégi, éga, €03
denote the the eigenvalues of (3.12) [therefare 3 non-zero roots] and associated eigenvectors

[normalized as in (3.13)] wher& andY are as in (2.9), and define

oo = [éq1, égr] - (3.18)
Then the associated LR and Wald statistics are monotomisfosemations of each other given by:

LR = inf{LR(v, 0)} = —T'In(1— 5\@3), Wq = inf {W(v,0)} = T)\iQf)’ , (3.19)
'Yve ’Yve (1 - )\Qg)
whereLR(v, ) andW(~, 6) are as defined in (3.8). By (3.17), constrained QMLEs can littanr

as:

A A A

Bg =008(5), Lo=U(0g)'U(5g)/T, U(dq) =Y — XB(dq), (3.20)

where X () and3(3) correspond to (3.16) replacirgwith 4. QMLES fory and [denotedy,,
andéQ] may be obtained from (3.18) using the orthogonality cdodif(3.14). To the best of our
knowledge, the latter formulae for Barone-Adesi (1985)@del have not been applied to date. The
original application in Barone-Adesi (1985) relied on a&lnized version of the model and a pre-set
estimator ford which is not the QMLE; while Barone-Adesi et al. (2@04£2004) do tackle the
nonlinear problem, they follow a standard iterative basaerical MLE.

Under strong-identification regularity assumptioh®,, < x* (n — 2) andW,, %' x?(n—2).
However, it is well known that the latter approximations) gerform poorly in finite samples,
particularly if n is large relative tdl’, and (ii) may lead to severe size distortions, because the
underlying asymptotics are not corrected for weak-idexdifon; see Dufour and Khalaf (2002) and

Dufour (1997, 2003).



4. Exact distributional results

In Dufour and Khalaf (2002), we have recently derived sdvexact distributional results regard-
ing the QLR criteria discussed in the previous section foedr and nonlinear hypotheses. The

following results are relevant to the problem under consitien.

4.1. Tests on QMM parameters

Let us first consider results relevant to the hypothesig.(Zis result is a special case of Theorem

3.1 in Dufour and Khalaf (2002).

Theorem 4.1 DISTRIBUTION OF TESTS FOR UNIFORM LINEAR HYPOTHESES Under (2.2),

(2.8) and(3.1), LR(Cp) andW(Cy) [defined in(3.5)-(3.6)] are respectively distributed like

l l

5 5 1i(Co)
LR(Co) = TS In[l—u,(Co)], W(Cy)=TY L2 4.1
(Co) z; [1 = i (Co)] (Co) 2T 4 (Co) (4.1)
wherep; (Cy) > puy(Co) > -+ > 1 (Cp) are the eigenvalues of the matrix
Fr(Co) = [W'M(Co)W]| HW' M(Co)W — W MW], (4.2)

M and M (C)) are defined in(2.13) and (3.4) andW = [W1, ... , Wy|" is defined by2.2).

In view of (3.15), the constrained projection matrix carodie calculated as
M(Co) = M(69) = I — X (50) (X (50) X (50)) ' X (d0), X(do) =Xo.  (4.3)

For certain values ok — r and normal errors, the null distribution in question redut®the I’

distribution. For instance, & — r = 1, then

T—(k—1)—n

n

[(1Z(Co)l/|Z]) = 1] ~ F(n, T — (k—1) - n). (4.4)



These results may be applied to the problem at hand for imfer@n~ and 6. It will be

convenient to study first the problem of testing hypotheselseoform ¢ (v, 6o).

Theorem 4.2 DISTRIBUTION OF LINEAR QMM TEST STATISTICS Under(2.2) and(2.6) - (2.9),
LR(~vg, 6p) andW(v,, 0p) [defined in(3.8)] are respectively distributed like

_ — 0
LR(30,00) = ~Tnl1 = g, )l Wiro, b0) =T 20200 (as)

whereu(v,, 6p) is the non-zero eigenvalue of the matrix
FL.(%o, B0) = [W'M (o, 60) W]~ WM (o, o)W — W MW], (4.6)

with M, M (v, 0o) andW as defined in2.13), (3.7) and(2.2), respectively.

In this case, the tests based o (v,, 6o) and W(~,, 6y) are equivalent because they are
monotonic transformations of each other. The latter thmosbows that the exact distributions
of LR(vy, 0p) andW(v,, 0p) do not depend on any unknown nuisance parameter as soon as the
distribution of W is completely specified. In particular, the valuegbénd.J are irrelevant, though
it depends in general upaX, v, andd,. Although possibly non standard, the relevant distribigion
may easily be simulated. For generality and further refegemve present a generic algorithm to
obtain a MCp-value based on a pivotal statistic of the fosiy, X), that can be written as a

pivotal function of W (in (2.2)) knowing.X, formally
S(y, X) =85 (W, X), (4.7)

where the distribution underlying/ is fully specified or is specified up to the parametgin which

case the following conditions an

1. LetSy denote the test statistic calculated from the observedsgdta

2. For a given numbelN of replications, drawl/’/ = [Wf, e Wﬂ;],j =1,..., N, as
in (2.2), conditional onv when relevant. Correspondingly obtatd = S(W/, X), j =

10



1, ..., N. Forinstance, in the case of the QLR statistic underlyingaram 4.1), use the

pivotal expressio R(v,, fo) as defined by (4.5)-(4.6) f& (W, X).
3. Given the series of simulated statistiss ..., Sy, compute

A NGn(So) +1
PMC(SO): N( 0)

where NGy (So) is the number of simulated values which are greater thanwaleqS;. If
step 2 conditions ol, we propose to modify notation to emphasize this fact;ﬁ]%/yc(so)
is replaced byt ¢ (Sp|v). We use the superscript “PMC” to emphasize thatthalue is

based on a proper pivot.

4. The MC critical region is
M9 (So) <a, 0<a<l. (4.9)

If (N + 1) is an integer, then under the null hypothets[pi ¢ (Sy) < a] = a and

P [p5MC (Solv) < a] = a for knownw.

The latter algorithm applies to the statisfid?(v,, o) [we focus on the latter rather than on
W(7v,, 00) to compare our results with published works and in view oirthumctional equivalence]

using (4.5). For further reference, we call the M®alue so obtained
PN 0, 00,v] = DM CILR(7g, 60) ] (4.10)

where N is the number of MC replications, the superscripd/C emphasizes the fact that the
simulated statistic is a proper pivot andefers to the parameter of the error distribution.

Since the procedure just described allows one to test angthggis of the fornt{g (v, o),
which sets the values of bothand6, we can build a confidence set foy, 6), by considering all

pairs(vy, 0o) which are not rejected.e. such thapi M [LR(v,, 6o)|v] >

Cla; 7, 0) = {(70, o) : BN [LR(7q, 00)|v] > a}. (4.11)

11



By construction, we have:
P[(77 9) € C(a; s 9)] >1l—-o. (412)

In the special case where the errors are@. Gaussian as in (2.3), the null distribution of
LR(~,, o) takes a simpler form. Sinaenk(Cy) = k — r = 1, we have:

(T —2—n)

(120, 60)|/1Z]) = 1] ~ F(n, T =2~ n). (4.13)

In this case, the distribution dfR(~y,, 6) does not depend oK, -y, or 6. This convenient feature
is, however, specific to the Gaussian error distributiomutih we cannot exclude the possibility

that it holds for other distributions).

4.2. Tests for QMM

Let us now consider the problem of testikg, in (2.5). We propose a number of possible avenues
in order to deal with the nonlinear nature of the problem.

For that purpose, we start from the confidenceCset -, 6) for (v, 6). Under the assumption
Hg, C(w; 7, 0) contains the true parameter vectgr ¢) with probability at least — «, in which
case the set(«; v, 6) is obviously not empty. By contrast,’ ¢ does not hold, no vectdry,, 6)
does satisfyH, : if the test is powerful enough, all proposed values will gected, in which case

C(a; v, 0) is empty. The size condition (4.12) entails the followinggerty: undefH,
PlC(a; v, 0) =0] < . (4.14)
Thus, by checking whether we hagéx; v, 6) = 0, i.e.
{(0, 00) : N [LR (70, 0o)lv] > o} =0, (4.15)

we get a critical region with level for H,.
In view of the fact that the se&t(«; v, 6) only involves two parameters, it can be established

fairly easily by numerical methods. But it would be usefuthié conditionC(«; v, ) = 0 could

12



be checked in an even simpler way. To do this, we shall dewmts on the distribution af 2,
andW,, . This is done in the two following theorems. In the first onehwege, we consider tests for

general (nonlinear) restrictions of the fofiy, in (3.9).

Theorem 4.3 A GENERAL BOUND ON THE NULL DISTRIBUTION OF WALD AND LR NON-
LINEAR TEST STATISTICS Under (2.2), (2.8) and (3.9), the distributions ofLR,, and W, ,
[defined in(3.10) - (3.11)] may be bounded as follows: for &lB, .J),

l
P, LRy > 2] < sup P p[—TY W[l —pu(Co) > =], Va, (4.16)

(B, JYEH(Cy) —
P Wnr 2> x| < sup P T > x|, VY, (4.17)
. | B, Neh©cy) ol Z 1 - Mz )

whereP g ;) represents the distribution df when the parameters até3, J), H(Co) = {(B, J) :
2

CoB =0},Co € M(k —r, k), l = min{k —r, n}, and u;(Co) > p5(Co) - >, (Cp) are

the eigenvalues of the matrix
Fr(Co) = [W'M(Co)W] ™ {W'M(Co)W — W MW], (4.18)
with M, M (Cy) and W as defined ir{2.13), (3.4) and (2.2), respectively.
PROOF. LetHyy = {(B, J): CB = 0forsomeC € M(k —r, k)}. Itis clear that
Hyp = U H(Cy). 4.19
NL= ot (Co) (4.19)
From Gouriéroux, Monfort and Renault (1993, 1995), we have:
L = inf L = inf
B Coe Mk, k) R(Co)s Wi CoeM(k—r, k)W(C)’

which implies thatL R, < LR(Cp) andW,,, < W(Cy), for anyCy € M(k —r, k). This entails

13



that, for eachiCy € M(k —r, k) and for all(B, J) € H(Cy),

P, nlLRNL

Pio.yWne > 1] < P [W(Co) > 2], Va. (4.21)

v

] < Pip,p)[LR(Co) > ], Va, (4.20)

Furthermore, from Theorerd1, we see that, under the null hypothesis;;,, LR(Cy) andW(Cy)

are distributed (respectively) like the variabled” S°!_ In(1 — p;(Cp)) and T 3"}, 152(3230)
where 111 (Cy) > ps(Co) > -+ > u,(Cy) are the eigenvalues underlying (4.18) ahd=
min{k — r, n}. From there on, (4.16)-(4.17) follow straightforwardly. O

Theorem4.3 shows that the distribution af Ry ;, can be bounded by the distributions of the
test statisticd. R(Cy) [refer to (4.1)-(4.2)] over the set of possible valuesdgr In particular, if the
distribution of LR(C)) is the same for aly, this yields a single bounding distribution. The latter
situation obtains in the Gaussian case (2.3), wherE-gistribution can be used. Whén—r =1,

Theoremd.4and (4.4) yield the following probability inequality:
P([T — (k—1) —n]/n) (LRy, — 1) > 2] <P[F(n, T — (k—1)—n) >z], V. (4.22)

Applying these distributional results to the problem atdhbeads to the following theorem.

Theorem 4.4 A GENERAL BOUND ON THE NULL DISTRIBUTIONS OFQMM NON-LINEAR TEST
STATISTICS. Under(2.2), (2.5) and(2.7) - (2.9), the null distribution ofL. R andW,, [defined by
(3.19] may be bounded as follows: for &lB, .J)

P,nllRg > z]< sup P, 5 [ —T1n[1 — pu(vyg, 60)] > x], Vr, (4.23)
(BvJ)EH('YngO)

M(’YOv 90)
P Wo > 2] < sup P AN VA B 4.24
5.0V | (B, J)eH (v, 00) BT (70, 0o) (4.24)

where P g ;) represents the distribution df when the parameters areB3, J), H (v, o) =
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{(B, J) : [1, 7q, O] B =0}, andu(~,, 6o) is the non-zero eigenvalue of the matrix
FL(v0, 60) = WM (o, 60) W]~ [W'M (5o, 60)W = W' MW], (4.25)

whereM, M (v,, 8o) andW are given by(2.13), (3.7) and (2.2), respectively.

Theoremd.4 shows that the distribution df Ry can be bounded by the distributions of the test
statisticsSL R(v,, 6o) [refer to (4.5)-(4.6)] over the set of possible valesg, 6,). A single bound-
ing distribution obtains if the distribution af R(vy,, 6p) is the same for allv,, 6); in particular,

for the Gaussian case, (4.22) yields the following inedyali
P([T —2—n]/n) (LRg —1) > z] <P[F(n,T —2—n) > a], Vz. (4.26)

For non-Gaussian error distributions, the situation isemmymplex. Again, if the bounding
test statisticsL R(~y,, 0o) have the same distribution [undefy (v, fo)] irrespective of(,, 0o),
we can obtain a level correct MC bound test by simulating tis&ridution of LR(~,, 6p). For
generality and further reference, we show here how the gealgorithm associated with a statistic
of the general fornt(y, X) [refer to (4.7)] presented in section 4.1 above can be addptgield
a bound MC test. So suppose now tl§&y, X) is not pivotal but is bounded by a pivotal quantity

and (4.7) no longer holds, however
S(y, X) <S(W, X).

Repeat steps 1-4 above, so the teii/’/, X) are now draws from the bounding distribution;
to emphasize this distinction (relative to the pivotalistats case), we refer to the bound baged
value in step 3 agZM ¢ (Sy) or pEMC (S, |v) when relevant; the corresponding bound critical region
from (4.9) is level correct, in the sense that under the nggiotthesisP [p5¢(S) < a] < avand
P [pEMC(So|v) < @] < a for knownw.

This algorithm can be applied bR, using the pivotal expression fdrR(v,, fo) from (4.5).
We denote the associated boupdalue p5MC(LRg|v,0,v) where: (i) the superscripBMC
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[rather thanPM C as in (4.10)] indicates that the Mg:value is bound-based, (ii) refers to the
parameter of the error distribution which is for the momemtsidered known, and (iii) conditioning
on~ and# identifies the specific choice for andd underlying the bound. This emphasizes that
invariance of the bounding distributions generated B¥(~,, o) may not necessarily hold. In this
case, numerical methods may be needed to evaluate the biou@d23)-(4.24). So it is not clear
that this is any simpler than drawing the sgtv; v, 6) using numerical methods. However, even
then, a useful bound may still be obtained by consideringsthrailated distribution obtained on
replacing(vy,, fo) by their QMLE estimates ik R(v,, o), where the estimates are treated as fixed

known parameters. This yields the following boysngalue:

P (g 0q,v) = M (LRl g, 0o, v). (4.27)
Then, we have the following implication:
PN (LRlAq, 0, v) > a = Py [LR(v,, bo)lv] > a, for some(yg, 6p).  (4.28)

In other words, i(p5 ¢ (LRg|%¢, g, v) > a, we can be sure thal(«; v, §) is not emptyso that

Hq is not rejected by the test in (4.14).

4.3. A bootstrap-type LR test

With NV draws from the distribution dfi’y, ... , Wy, N simulated samples can be constructed con-
formably with (2.7)-(2.9) (2.2) under the null hypothesis (2.5), given any value{fBr, X'} € ¥
wherey, refers to the parameter space compatible with the null ingsig7. Applying (3.19)

to each of these samples yieldé simulated statistics from the null data generating pracess
Count the number of simulated statisties{observed. Rq} and replace this number fa¥ y (.)

in (4.8); this provides a M(-value conditional on the choice fd8 and X' which we denote
PXMC(LRg|B, X, v) where the symbol LMC stands fdrocal MC to emphasize that it is esti-

mated given a specific nuisance parameter value. In patjdtiis natural to consider the QMLE
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estimatesB and X defined in (3.20) which yields
pkMC (Bg, Yq,v) = p5MY(LRg|Bg, Yo, v). (4.29)

This bootstrap-typep-value differs from the bound-basegvalue p5¢(LRg|%,0q,v) from
(4.27), although both use QMLE estimates. Indeed, as a qoesee of Theorem.4, it is straight-
forward to see that¥"“ (LRq|4q, 0, v) > p¥MC(LRg|Bg, Yo, v). Relying on the latter will

not necessarily yield a level correct test in finite samptémwever, since

ﬁ]LVMC(LRQ\BQ,ZA’Q,V) >a= sup pLM (LRpcapm|B, X, v) >«
{B,x}ewg
where B, X refer to the parameter space compatible with the null hygsish So a non-rejection

based ok (LRg|Bg, ¥q,v) can be considered conclusive from an exact test perspective

5. The case of error distributions with unknown parameters

We will now extend the above results to the unknown distiimal parameter case for the error
families of particular interest, namely (2.2). To do thisjsi helpful to first revisit the generic
algorithm and its modification presented in sections 4.148dabove. The outcome of the both
algorithms, namely the-valuespi € (Sy|v) andpEMC (Sp|v) are valid ifv is known. Wherv is
unknown, we can apply the method of maximized Monte Carlo @)Nests [see Dufour (2006)] to
obtain tests that satisfy the level constraint even in fisgi@ples: given a set of nuisance parameters

@ consistent with the null hypothesis of interest, the aitiegions

sup [Py (Solv)] < e, sup PR (Solv)] < e, (5.1)
v E Dy v e Po

have levela. This suggests to maximize the Mgvalues presented in sections 4.1, 4.2 and 4.3
above. Rather than consideribg as a search set, we focus on a set estimate fsee e.g. Dufour

and Kiviet (1996) and Beaulieu, Dufour and Khalaf (2005, €0B007)] to ensure that the error
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distributions retained are empirically relevant. Foryalle consider the following critical regions:

QBMC( s ) S a9, QBMC(’YQ70Q) < a9, (52)
QM (3g.0q) = sup pRMC(LRolg,00,v), (5.3)
vecCy)
Qf,MC(BQ, ﬁ’Q) = sg%)y)ﬁ%Mc(LRQ |BQ, ﬁ’Q, v) (5.4)
ve

wherepRMC (LRg|4q, 0o, v) [defined in (4.27)] is the specific bound based on QMLE estmat
of v and 8, p5MC(LRg|Bg, Yo, v) [defined in (4.29)] is the LMC bootstrap-tygevalue, and
C(Y)is an(1-a1) level confidence set far [described below]. Non-rejections [refer to sections 4.2
and 4.3] based on (5.2) are exact atéhet a4 level. In section 8, we use; = as = a/2.

To obtainC(Y"), we “invert” a test for hypothesis (2.2) where= v, and knowrv. Inverting an
a1 level test involves collecting the valuesaf not rejected by this test at level . We consider a
test which assesses lack-of-fit of the hypothesized digtdb. In what follows, we briefly describe
this test; for more complete algorithms, proofs and refegsnsee Dufour, Khalaf and Beaulieu

(2003) and Beaulieu et al. (2007). We consider

ESK(vo) = [SK —SK(vo)], EKU(rg) = [KU=KU(vo)],

(5.5)

whereSK andKU are the multivariate skewness and kurtosis criteria
1 T T
_ 33
I Z% 55)
t=1 =1

d;; are the elements of the matix(U’U) 10", andSK(v) andKU(v) are simulation-based es-
timates of the expecteflK andKU given (2.2). These are obtained, givef) by drawing samples
conformable with (2.2) then computing the correspondingrage measures of skewness and kur-
tosis. The MC test technique may be applied to obtain exaellues forESK () andEKU(v)

as follows. Conditional on the san$&(v) and KU(v), generate, imposing = vy, replica-

tions of the excess skewness and excess kurtosis statisbext Monte Carlg-values [denoted
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p(ESKo |vg) andp(EKUj |vg)] for each test statistic can be calculated from the rank efdb-
servedESK(vg) andEKU(v) relative to the simulated ones. The generic algorithm prteskin
section 4.1 also applies here, where the relevant pivotalacterizations can be found in Dufour

et al. (2003). To obtain a joint test based<i§ andKU, we consider the joint criterion:
CSK =1 — min {ﬁ(ESKO ‘Vo),ﬁ(EKUO |V0)} . (57)

The MC test technique is once again applied to obtain a sizea®-value for the combined test.

6. A less restricted model

We now turn to the general hypothesis (2.14). Let us first mlesthat the hypothesis may be re-
written in matrix formHaoaas : [1, 7, 6] B = ¢, wherey,, is ann-dimensional vector of ones.
If ¢ is known, then it is possible to use the above eigenvalueptesedure to derive its associated

LR statistic. One mag.g.consider the MLR:
Ri—Rwi—¢=a;+ (b — DRw + Ry, +uig, t=1,..., T, i=1,...,n. (6.8)
In this context, testing{zgaras corresponds to assessing
@ +yb; —1)+c0=0, i=1, ..., n, (6.9)

which leads to the above framework. This also suggests desjpnpcedure to derive the LR statistic
to testHaoam v and the associated MLE estimate @f Indeed, one may minimize, over, the
eigenvalue based criterion associated with (6.8)-(6l83;rhay be conducted numerically (yet since
the argument of the underlying minimization is scalar, #igproach is numerically much more
tractable than the iterative maximization applied by Baréwesi et al. (2004)). The statistical
solutions we derived above also hold in this framework: @djebounding cut-off points can be
obtained using the null distribution of the test statistliat fixese to a known value. Note however

that we have shown in Dufour and Khalaf (2002) that the latistribution does not depend @n
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which will lead one to the same bound whetlteis zero or not. Tighter bounds can be obtained

under normality; see Velu and Zhou (1999) or Zhou (1995).

7. Simulation study

We now present a small-scale simulation experiment to asseperformance of the proposed tests.
We focus orH¢ [hypothesis (2.5)] in the context of (2.1). The design iskrated to match our
empirical analysis (see section 8) which relies on montatyms of 25 value-weighted portfolios
from Fama and French’s data base, for 1961-2000. Since wesad® model over 5-year intervals
(as well as over the whole sample), we consider (2.1) witk 25 equations an@ = 60, which
reflect our subperiod analysiéMt, t =1,...,T are fixed to the returns on the market portfolio from
the aforementioned data set for the 1996-2000 time peribd.cbefficients of this regressor and its
square, namely; ande;, ¢ = 1, ... , n, in (2.1), are fixed to their observed counterparts, namely,
b; andé;, i = 1, ... , n, corresponding to the unconstrained OLS regression oeet286-2000

sample period; from this same regression, we also retgithdilargest intercept estimate
a=max{a;}, i=1,...,n, (7.1)
(2

to set the scale for the power study (see below), and (ii) stienated variance-covariance error
matrix, to generate model shocks; formally, we use (2.2f58tuiting the Cholesky factor of the
variance-covariance estimate in question for.fhaatrix.

We study normal and-errors with unknown degrees-of-freedom, so the randomoreii;,
t=1,..,71in(2.2) are generated as in (2.3) and (2.4), respectivel{hé latter case, the degrees-
of-freedom parametet is fixed to8. This choice is also motivated by our empirical applicatias
may be checked from Table 4 in section 8, the average lowdrdifthe confidence set for over
the eight 5-year subperiods analyzed is around 8. The M€ &stapplied imposing and ignoring
information onk, which allows to document the cost of estimating this patam&Vhenx is taken
as unknown, MMGCp-values are calculated over the spdce « < 13. A wider range is allowed

in our empirical application; in the case of the simulatitedy, this restriction is adopted to keep
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execution time manageable.

Several choices for the key parameterandf are evaluated, particularly to assess the size of
asymptotic tests. Again, we rely on the data set analyzdteinéxt section, as follows. We consider,
in turn, the QMLE estimates of and# from each of the eight 5-year sub-samples analyzed; we
also consider an alternative design settingndd to the average of their estimates over the eight
5-year subperiods. The latter design is used for the powdygsee below).

We study the LR statistic defined in the previous section#h) g asymptoticy? p-value, its
QMLE-based boung-value and its QMLE-based bootstrap typealue.

The model intercepts are set as follows. For the size stddyjhypothesis (2.5)] is imposed so
a;, 1 =1, ..., n, are obtained given the choices fgrandc;, and~ andé described above. For

the power study, intercepts are generated such that
ai:—'y(bi—l)—ci9+A5, 1=1, ..., n, (7.2)

wherea is defined in (7.1) and\ is a scalar ranging from.25 to 2.5 which controls the extent of
departure frontH; clearly, A = 0 yields H¢. Here again, the constamtaims at calibrating the
design to our empirical application, for empirical relegampurposes.

In all designs,N = 99 replications are used to implement MC tests [we used 999areth-
pirical application]. The literature on MC testing [seq). Dufour and Kiviet (1996), Dufour and
Khalaf (2002) or Dufour, Khalaf, Bernard and Genest (200H)$trates reliability withN = 99
in simulation studies. In each experiment, the number otitions is 1000; we report empirical
rejections for a nominal level G%.

Results reveal that thg? asymptotic test is oversized for all designs consideredeed, em-
pirical sizes range from a minimum of 25.8% to 32.3%. Sincehaee attempted to calibrate
simulation designs to the empirical study, these resultsico our reliance on MC alternatives to
the usual asymptotic cut-off points. It is worth noting tlaer-rejections with normal errors are
almost as severe as with the Studemiase. To interpret the bootstrap results in Table 1, recall
that for the Student-distribution, the degrees-of-freedom are assumed knows gssumption is

relaxed in Table 2), whereas all remaining nuisance paemhate estimated consistently under the
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Table 1. Size of asymptotic and parametric bootstrap QMR tes

B @& 6 @4 6 6 O ©

Normal Asy 287 .291 .279 .295 296 .275 .258 .287
LMC .062 .062 .051 .087 .072 .039 .029 .077
Studentt Asy 314 313 317 .300 .314 .323 .288 .319

LMC [ k known] .073 .074 .069 .087 .077 .062 .029 .109

Note — Numbers shown are empirical rejections for propossts ofH ¢, [hypothesis (2.5) in the context of (2.1)]. The
statistic considered is the quasi-LR statistic (3.19)peisgedp-values rely on, respectively, the asymptoto(n — 2)
distribution and the LMG-values assuming the error distribution is known, whichresponds to a parametric bootstrap.
Columns (1) - (8) refer to the choices for the parameteasdd underlying the various simulation designs considered.
These parameters are fixed, in turn, to their QMLE counté&sdzased on the data set analyzed in section 8, over each
of the eight 5-year subperiods under study, so column (Erseb parameters estimated using the 1961-65 subsample,
column (2) to the 1966-70 subsample, etc.

null hypothesis. Bootstrapping reduces over-rejectiangsts based on LM@-values deviate only
moderately from their nominal size: rejection probalabtirange from 2.9% to 8.7% with normal
errors and from 2.9% to 10.9% with Studergfrors.

Results of the power study reported in Table 2 show that this teave a good power perfor-
mance. Observe that empirical rejections associated vith 0 in columns (1) and (4) of Table
2 convey a misleading assessment of power, since the uirdpy-based tests are severely over-
sized. In such cases, a size-correction scheme is reqtorédstance, one may compute an artificial
size-correct cut-off point from the quantiles of the simethstatistics conditional on each design.
Since the bootstrap-type correction seems to work, at leeatly, for the design under study, we
prefer to analyze the bootstrap version of the tests ratlaar tesorting to another artificial size
correction. Indeed, whereas bootstrap-based size comscire empirically applicable, a local cor-
rection corresponds to a practically infeasible test. Timosimulation results generally depend on

the designs considered, the following findings summarized are worth noting.

1. Estimation costs for the degrees-of-freedom parameteiStudentt errors are unnoticeable.
Indeed, the empirical rejections based BA C p-values are identical whetheris treated
as a known or as an unknown scalar. The bootstrap fyp&C' tests are affected albeit

moderately from estimating.

22



Table 2. Size and power of QMM tests

Normal Student-
@ @ ® @ 6 (6) Q) 8
A Asy BMC LMC asy x known x unknown

BMC LMC BMC LMC

0 .288 .025 052 .320 .044 .069 .044 .065
25 571 109 184 533 .097 .140 .097 134
50 915 444 562 .840 .261 .385 .261 377
75 977 718 812 .949 418 .606 418 591
1.0 .987 .807 .881 971 .508 711 .508 .701
15 .995 .848 916 .981 .581 .795 .581 .784
20 .997 .862 925 .983 .608 .808 .608 .796
25 997 .866 924 983 .618 .821 .618 811

Note — Numbers shown are empirical rejections for propossts ofH ¢, [hypothesis (2.5) in the context of (2.1)]. The
null hypothesis corresponds 18 = 0. The statistic considered is the quasi-LR statistics fradg3.19)]; associated
p-values rely on, respectively, the asymptogfan — 2) distribution [columns (1) and (4)], the BMC and LM@values
assuming the error distribution is known [columns (2,3) €é»8)], and the BMC and LM®@-values imposing multivariate
t(x) errors with unknowrxk [columns (7,8)]; the lattep-values are the largest over the degrees-of-freedom p&eame
within the specified search set.

2. Size-correct tests seem to perform well for the consilaiternative [see (7.2)], which fo-
cuses on homogenous deviations frafg. Such alternatives may be harder to detect relative
to the nonhomogeneous case; our findings thus provide atieappraisal of power given a

possibly less favorable (though empirically relevantysc.

3. Tests based ohM C p-values outperform bound tests basedibi/ C cutoffs. We observe
power differences averaging around 20% with normal eri@88p with Student-errors and
known degrees-of-freedom, and 37% with Studestrors and unknown degrees-of-freedom.
The BMC test is however not utterly conservative. Taken colletij\&ze and power rank-
ings emerging from this study illustrate the reliability @dir proposed test strategy which

relies on theBM C' in conjunction with thel. M C' p-values.

4. Controlling for nuisance parameter effects, it seemskbgosis in the data reduces power.
Two issues need to be raised in this regard. First, recalltibth LMC and BMC' p-
values are obtained using the Gaussian QMLE estimatesaofd ¢ and both LA C and
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BMC procedures are not invariant to the latter. In addition, tés# statistic is based on
Gaussian-QMLE, although we have corrected its criticaioredor departures from normal-
ity. Gaussian-QMLE coincides with least squares in this ehagihd least-squares-based sta-
tistics are valid (although possibly not optimal) in norrmal settings, at least in principle.
We view our results as a motivation for research on finitepgamobust test procedures in

MLR models.

8. Empirical analysis

For our empirical analysis, we use Fama and French’s da&a s produce results for monthly
returns of 25 value-weighted portfolios from 1961-2000e Plartfolios which are constructed at the
end of June, are the intersections of five portfolios formedine (market equity) and five portfolios
formed on the ratio of book equity to market equity. The sigeakpoints for yeag are the New
York Stock Exchange (NYSE) market equity quintiles at thd ehJune of yeas. The ratio of
book equity to market equity for June of yesis the book equity for the last fiscal year endin 1
divided by market equity for December of year 1. The ratio of book equity to market equity are
NYSE quintiles. The portfolios for July of yearto June of yeas + 1 include all NYSE, AMEX,
NASDAQ stocks for which we have market equity data for Decendf years — 1 and June of year
s, and (positive) book equity data fer— 1. All MC tests where applied with 999 replications, and
multivariate normal and multivariate Studengrrors; formally, as in (2.3) and (2.4) respectively.

Table 3 reports tests 6{¢ [hypothesis (2.5) in the context of (2.1)] and7@f;g 1 [hypothesis
(2.14) in the context of (2.1)], over intervals of 5 years aver the whole sample. Subperiod
analysis is usual in this literature [segy.the surveys of Black (1993) or Fama and French (2004)],
and is mainly motivated by structural stability argume@sir previous and ongoing work on related
asset pricing applications [Beaulieu, Dufour and Khal&f0&, 2006, 2007), Dufour, Khalaf and
Beaulieu (2008)] have revealed significant temporal inlitiéls which support subperiod analysis
even in conditional models which allow for time varyibgtas

To validate our statistical setting, companion diagno&sts are run and are reported in Table

4. These include: (i) goodness of fit tests associated withnilitional hypotheses (2.3) and (2.4);
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Table 3. QMM and GQMM tests

Tests ofHg Tests ofHaoamm
1) 2 3) 4 G) (®) () 8) 9 (10
Sample Asy ﬁffMC ij\[MC ﬁtBMC ﬁf,JWC Asy ﬁff]ﬂ(}' ij\[MC ﬁtBJWC ptLMC

1961-1965 .078 .586 .405 .596 414 099 .666 468 .678 A74
1966-1970 .008 .246 134 .255 143 217 813 .646 .828 .652
1971-1975 .054 515 341 .529 367 227  .815 .664 .828 .674
1976-1980 .000 .006 .002 .015 .006 .215 .793 .670 .810 .679
1981-1985 .001 .081 .022 .093 .033 .002 .133 .061 176 .085
1986-1990 .003 .163 .074 193 .091 .029  .448 .283 467 .295
1991-1995 .001 .114 .055 .148 .076 .002 .163 .071 196 .096
1996-2000 .073  .543 .386 591 420 229  .803 .665 .830 677

1961-2000 .000 .001 .001 .002 .002 .003 .011 .015 .002 .005

Note — Columns (1)-(5) pertain to testsidf, [hypothesis (2.5) in the context of (2.1)]; columns (6)) fp@rtain to tests of
Heaomum [hypothesis (2.14) in the context of (2.1)]. Numbers shovapavalues, associated with the quasi-LR statistics
[refer to (3.19)], relying on, respectively, the asymptotf (n — 2) distribution [columns (1) and (6)], the Gaussian based
BMC and LMC p-values [columns (2)-(3) and (7)-(8)], and the BMC and LM&@alues imposing multivariaté(x)
errors [columns (4)-(5) and (9)-(10)]. M@ values fort(x) errors are the largest over the degrees-of-freedom pagamet
x within the specified confidence sets; the latter is repori@biumn 6 of Table 4. January and October 1987 returns are
excluded from the dataset.

(ii) tests for departure from the maintained errad. hypothesis, and (iii) tests for exogeneity of
the market factors.

The goodness-of-fit tests rely on the multivariate skewskestosis criteria described in section

5. For the normal distribution, we apply the pivotal MC prdeee to the omnibus statistic:

T T KU —n(n + 2)]?
MN = G SK 4= P (8.1)

For the Student-distribution, we report the confidence set for the degrédseedom parameter
which inverts the combined skewness-kurtosis statistic) (5

Serial dependence tests [from Dufour et al. (2008) and Bmaet al. (2007)] are summarized
here for convenience. In particular, we apply the LM-GAR@4ttstatistic [Engle (1982)] and

the variance ratio statistic which assesses linear sezf@mbence [Lo and MacKinlay (1988)], to
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standardized residuals, namé%, the elements of the matrix
W=USs.", (8.2)

where Sy, is the Cholesky factor ot/'U . So the modified GARCH test statistic for equatign
denotedF;, is given byT x (the coefficient of determination in the regression of thaatigpn’s
squared OLS residual$’? on a constant antzf/(%fj)i ,i=1, ..., q) wheregis the ARCH order

against which the test is designed. The modified variané isagiven by:

K . T Wi W,
~ I\ R § t=j+1 wtVVait—yj
VRZ‘:1+2§ 1— 2L Diis Dii = = . (8.3)
j=1 ( K) ’ ’ Zt:l " t%

12 lags are used for both procedures. We combine inferemossaequation via the joint statistics:

E=1- min [p(E)], VR=1- min [p(VR;)], (8.9)

1<i<n 1<i<n

wherep(E;) andp(V R;) refer top-values, obtained using the?(¢) and N1, 2(2K — 1)(K —
1)/(3K)] respectively. In Dufour et al. (2008), we show that undeR)2lV has a distribution
which depends only oR, so the MC test technique can be applied to obtain a sizeatgrnealue
for E andV R. To deal with an unknowr, we apply an MMC test procedure following the same
technique proposed for tests @ty. Specifically, we use the same confidence setfoof level

(1 — a1); we maximize the-value function associated withh andV R over all values ofs in the
latter confidence set; we then refer the latter maxipahlue toa, wherea = a3 + as. Power
properties of these tests are analyzed in Dufour et al. (2808 suggest a good performance for
sample sizes compatible with our subperiod analysis.

We also apply the Wu-Hausman test to assess the potentiageneity of our regressors. It
consists in appending, to each equation, the residuals d&r€inst stage regression of returns on a
constant and the instruments, and testing for the exclusidhese residuals using the usual OLS
basedr-statistic [see Hausman (1978), Dufour (1987)]. This testin, in turn, for each equation,

with one lag ofRM, REA and R;, i = 1,25 as instruments. Numbers shown are the minimum
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p-values over all equations. The ustabasedp-value is computed for the normal case; for the
Studentt, we compute MMG-values, as follows. In each equation, and ignoring contgangeous
correlation of the error term, thié-statistic in question is location-scale invariant and easily
be simulated to derive a M@-value given draws from a Studentdistribution, conditional on
its degrees-of-freedom. We maximize thealue so obtained ovet in the same confidence set
used for all other tests as described above; we then refdattiee maximalp-value toas where

a = ag + «ag. For presentation clarity, we report the minimysvalue in each case, over all
equations.

For all confidence set based MMC tests under the Stuteypothesis, we consider, = 2.5%
so, in interpreting the»-values reported in following tables for the Studertase,a; must be
subtracted from the adopted significance level; for instate obtain &% test, reporteg-values
should be referred to 2% as a cut-off.

From Table 3, we see that, when assessed using the wholeesdopig andHagara are
soundly rejected, using asymptotic or M&alues, the confidence sets on the degrees-of-freedom
parameter is quite tight and suggests high kurtosis, anchaldy is definitely rejected. Unfortu-
nately, the diagnostic tests (Table 4) reveal significapiadeires from the statistical foundations
underlying the latter tests (even when allowing for nonamair errors); temporal instabilities thus
cast doubt on the full sample analysis.

Results over subperiods can be summarized as follows. \Wtilite normality is rejected in
many subperiods and provides us with a reason to investiga&ther test results shown under
multivariate normality are still prevalent once we use $titd distributions. Hg is rejected at
the 5% level in five subperiods out of eight using asymptgtiwalues. Using finite-sample tests
under multivariate normality reveals thafy is rejected at thé% level in only one subperiod,
namely 1976-1980. The LM@-value confirms all these non-rejections but one. Using #mes
approach under the multivariate Studewulistribution leads to the same conclusiGicgasar is not
rejected in any subperiod allowing foerrors, although the normal LMg value is less thaf% for
1986-90, and asymptotie-values are highly significant for three subperiods spana®81-1995.

Diagnostic tests allowing for errors reveal significant (at tHé% level) departures from thiei.d.
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Table 4. Multivariate diagnostics

Time Dependence Goodness-of-fit Exogeneity
E VR MN  CS(k) Wu-Hausman
1) 2 3) 4 ®) (6) () 8)
Sample Normal Studeit Normal Student Normal Student Normal Student

1961-1965 718 .769 117 135 026 >38 214 .235
1966-1970 .258 314 .954 .996 .044 >38 .079 .100
1971-1975 .215 .266 .253 .260 015 >7 .018 .026
1976-1980 .001 .004 .502 .516 .004 >6 .003 .005
1981-1985 .222 237 131 .148 .001 >5 143 161
1986-1990 .544 .559 .056 .070 401 > 12 .042 .053
1991-1995 .150 .166 142 .149 176 > 9 .259 .285
1996-2000 .010 .049 .847 .849 .001 3-11 194 .189
1961-2000 .001 .001 .002 .007 .001 5-8 .000 .001

Note — Numbers shown in columns (1)-(5) and (7)-(10) pnealues associated with the combined test statistics
[columns (1) and (2)]V' R [columns (3) and (4)]M N [column (5)] andW H [columns (7)-(10)].E, defined by (8.4),
is a multivariate extension of Engle’s GARCH test statistiéR, defined by (8.4), is a multivariate extension of Lo
and MacKinlay’s variance ratio testM N is a MC version of the multivariate combined skewness andokis test
based on (8.1). The Wu-Hausman test is applied with one ldevofR and R;, ¢ = 1,25 as instruments. Numbers
shown are the minimurp-values over all equations; the usi&basedp-value is computed for the normal case; for
the Student; we compute MMCp-values. Both normal and Studenp-values for this test are univariate. In columns
(1), (3), (5) and (7), the Gaussianvalues are MC pivotal statistics basegyalues in columns (2), (4), (6) and (8)
are MMC confidence set based; the relevaaf2confidence set for the nuisance parameters is reportedumeoo(6).
Specifically,C'S(x) corresponds to the confidence set estimate of [@v&l% for the degrees-of-freedom parameter of
the multivariate Studertterror distribution; this set is obtained by inverting thedoness-of-fit statistic (5.7).

hypothesis in the 1976-1980 subperiod and not elsewherealRbat in this same subperiod, our
QLR tests reject at the5% level.

We conclude by underlying the evidence that contrary to Hsetapricing evidence in the lit-
erature, this version of the CAPM is generally not rejectgdobr tests, even when controlling
for finite-sample inference. Compared to the results of BeauDufour and Khalaf (2005, 2006,
2007), we see that the QMM model is not rejected using ous,tegiereas both Black’s version of
the CAPM, or the CAPM with observed risk-free rate are regdaising related test methods. This
observation must be qualified since the diagnostic testéeap the overall sample are significant

at conventional levels revealing temporal instabiliti€are must be exercised in interpreting our
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generalized Wu-Hausman test results. Indeed, recalllieaeporteg-values are the smallest over
all equations, and thg-values (including the simulated ones), are univariat¢hénsense that con-
temporaneous correlation of shocks is ignored. If we camsidBonferroni approach to obtain a
valid joint test, which involves dividing the adopted testel by 25 here, we see that for the full
sample, the test remains significant even with such a coases\correction. This result may be

viewed as a motivation for conditional three-moment basedeting.

9. Conclusion

In this paper, we consider the quadratic market model whitdnels the standard CAPM framework
to incorporate the effect of asymmetry of return distribnton asset valuation. The development
of exact tests of the QMM is an appealing research objedativen: (i) the increasing popularity of
this model in finance, (ii) the fact that traditional markebatels (which suppose that asset returns
move proportionally to the market) have not fared well in @roal tests, (iii) available related
studies are only asymptotic (exact tests are unavailalgle with normal errors). We have proposed
exacts tests of the QMM allowing for non-normal distribagoexactly. The underlying statistical
challenges relate to dimensionality tests which are istarg in their own right. Our results show
that although asymptotic tests are significant in severapariods, exact tests fail to reject this
model with Fama-French data. Temporal instabilities aredver evident, and motivate exploring

conditional three-moment based models.

29



References

Barone-Adesi, G. (1985), ‘Arbitrage equilibrium with skesvasset returnsJournal of Financial

and Quantitative AnalysigQ(3), 299-313.

Barone-Adesi, G., Gagliardini, P. and Urga, G. (2804 test of the homogeneity hypothesis on
asset pricing model# E. Jurczenko and B. Maillett, eds, ‘Multi-Moment CAPM and#&ted

Topics’, Springer-Verlag, Berlin.

Barone-Adesi, G., Gagliardini, P. and Urga, G. (2004Testing asset pricing models with coskew-

ness’,Journal of Business and Economic StatisBe4), 474—-485.

Beaulieu, M.-C., Dufour, J.-M. and Khalaf, L. (2005), Examtltivariate tests of asset pricing
models with stable asymmetric distributioms M. Breton and H. Ben Ameur, eds, ‘Numerical

Methods in Finance’, Kluwer/Springer-Verlag, New Yorkagiter 9, pp. 173-191.

Beaulieu, M.-C., Dufour, J.-M. and Khalaf, L. (2006), TestiBlack's CAPM with possibly non-
gaussian errors: An exact identification-robust simutebased approach, Technical report,

CIREQ, Université de Montréal and Université Laval.

Beaulieu, M.-C., Dufour, J.-M. and Khalaf, L. (2007), ‘Mnfriate tests of mean-variance effi-
ciency with possibly non-Gaussian errors: An exact sinmtabased approachdournal of

Business and Economic Statist®¥4), 398-410.

Black, F. (1972), ‘Capital market equilibrium with rested borrowing’, Journal of Business

45, 444-454,
Black, F. (1993), ‘Beta and returnJpurnal of Portfolio Managemerg0(1), 8-17.

Bolduc, D., Khalaf, L. and Moyneur, E. (2008), ‘Identificatirobust simulation-based inference
in joint discrete/continuous models for energy marke@dmputational Statistics and Data

Analysisforthcoming.

Campbell, J. Y. (2003), ‘Asset pricing at the millenniurdgurnal of Financeb5, 1515-1567.

30



Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. (1997)he Econometrics of Financial Markets

Princeton University Press, New Jersey.

Dittmar, R. (2002), ‘Nonlinear pricing kernels, kurtosieferences and the cross-section of equity

returns’,Journal of Finance7, 369-403.

Dufour, J.-M. (1987), Linear Wald methods for inference omariances and weak exogeneity tests
in structural equationsn I. B. MacNeill and G. J. Umphrey, eds, ‘Advances in the Stiati
Sciences: Festschrift in Honour of Professor V.M. Josh@ghBirthday. Volume 1lI, Time

Series and Econometric Modelling’, D. Reidel, Dordrechie Netherlands, pp. 317-338.

Dufour, J.-M. (1997), ‘Some impossibility theorems in ecoretrics, with applications to structural

and dynamic modelsEconometrica65, 1365—-1389.

Dufour, J.-M. (2003), ‘Identification, weak instrumentsdastatistical inference in econometrics’,

Canadian Journal of Economi&5(4), 767—808.

Dufour, J.-M. (2006), ‘Monte Carlo tests with nuisance paeters: A general approach to finite-
sample inference and nonstandard asymptotics in ecornicgietiournal of Econometrics
1332), 443-4717.

Dufour, J.-M. and Khalaf, L. (2002), ‘Simulation based #n#nd large sample tests in multivariate

regressions’Journal of Econometric§11(2), 303-322.

Dufour, J.-M., Khalaf, L. and Beaulieu, M.-C. (2003), ‘Exakewness-kurtosis tests for multivari-
ate normality and goodness-of-fit in multivariate regre@ssiwith application to asset pricing

models’,Oxford Bulletin of Economics and Statistigs, 891-906.

Dufour, J.-M., Khalaf, L. and Beaulieu, M.-C. (2008), ‘Mutriate residual-based finite-sample
tests for serial dependence and GARCH with applicationssetgpricing modelsJournal of

Applied Econometrickorthcoming.

Dufour, J.-M., Khalaf, L., Bernard, J.-T. and Genest, 1.G2)) ‘Simulation-based finite-sample tests

for heteroskedasticity and ARCH effectdqurnal of Econometric§222), 317-347.

31



Dufour, J.-M. and Kiviet, J. F. (1996), ‘Exact tests for stural change in first-order dynamic

models’,Journal of Econometricg0, 39—-68.

Dufour, J.-M. and Taamouti, M. (2005), ‘Projection-bas¢atistical inference in linear structural

models with possibly weak instrument&conometricas3(4), 1351-1365.

Dufour, J.-M. and Taamouti, M. (2007), ‘Further results oajection-based inference in IV regres-

sions with weak, collinear or missing instrument®urnal of Econometric&391), 133-153.

Engle, R. F. (1982), ‘Autoregressive conditional heteeotssticity with estimates of the variance of

United Kingdom inflation’ Econometriceb0(4), 987—-1008.

Fama, E. F. and French, K. R. (2004), ‘The Capital Asset Rgidflodel: Theory and evidence’,
The Journal of Economic Perspectivei(3), 25—-46.

Gibbons, M. R. (1982), ‘Multivariate tests of financial méieA new approach’Journal of Finan-

cial EconomicslO, 3-27.

Gouriéroux, C., Monfort, A. and Renault, E. (1993), ‘Tedts k& noyau, I'image et le rang de la
matrice des coefficients d’'un modéle linéaire multivaréinales d’Economie et de Statistique

11, 81-111.

Gouriéroux, C., Monfort, A. and Renault, E. (1995), Infarerin factor modelsin G. S. Mad-
dala, P. C. B. Phillips and T. N. Srinivasan, eds, ‘AdvanceEéonometrics and Quantitative

Economics’, Blackwell, Oxford, U.K., chapter 13, pp. 31533

Harvey, C. R. and Siddique, A. (2000), ‘Conditional skevenesasset pricing testsThe Journal

of Financebb5, 1263-1295.
Hausman, J. (1978), ‘Specification tests in econometriesinometricad6, 1251-1272.

Joseph, A. S. and Kiviet, J. F. (2005), ‘Viewing the relateféiciency of IV estimators in mod-
els with lagged and instantaneous feedback®mputational Statistics and Data Analysis

49, 417-444.

32



Khalaf, L. and Kichian, M. (2005), ‘Exact tests of the stépibf the Phillips curve: The Canadian
case.’,Computational Statistics and Data Analydd 445-460.

Kiviet, J. F. and Niemczyk, J. (2007), ‘The asymptotic andtdisample distributions of OLS and
simple IV in simultaneous equations€Zomputational Statistics and Data Analy&is 3296—

3318.

Kraus, A. and Litzenberger, R. (1976), ‘Skewness prefexemz the valuation of risk asset3gur-
nal of Finance31, 1085—-1100.

Lo, A. and MacKinlay, C. (1988), ‘Stock prices do not follo@rndom walks: Evidence from a

simple specification testReview of Financial Studiels 41-66.

Shanken, J. (1986), ‘Testing portfolio efficiency when tleeozbeta rate is unknown: A note’,

Journal of Financetl, 269-276.

Shanken, J. (1996), Statistical methods in tests of partifficiency: A synthesisin G. S. Mad-
dala and C. R. Rao, eds, ‘Handbook of Statistics 14: Stediskilethods in Finance’, North-
Holland, Amsterdam, pp. 693-711.

Simaan, Y. (1993), ‘Portfolio selection and asset pricimgé parameter framework¥lanagement

Scienceb, 568-577.

Smith, D. R. (2007), ‘Conditional coskewness and asseingficJournal of Empirical Finance

41, 91-1109.

Stock, J. H., Wright, J. H. and Yogo, M. (2002), ‘A survey ofakeinstruments and weak iden-
tification in generalized method of momentdjurnal of Business and Economic Statistics

20(4), 518-529.

Velu, R. and Zhou, G. (1999), ‘Testing multi-beta assetipganodels’,Journal of Empirical Fi-
nanceo, 219-241.

Zhou, G. (1991), ‘Small sample tests of portfolio efficiencyournal of Financial Economics

30, 165-191.

33



Zhou, G. (1995), ‘Small sample rank tests with applicatitmasset pricing’Journal of Empirical

Finance2, 71-93.

34



