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ABSTRACT

We test for the presence of time-varying parameters in koimgreal energy prices as suggested in
the class of models proposed by Pindyck (1999). These mpadsisilate mean-reverting prices
with continuous and random changes in their level and tremd, are estimated using Kalman
filtering techniques. Since the latter contain boundary e & possibly unidentified parameters
when there is no parameter variation, the test statisties han-standard distributions and involve
nuisance parameters. To solve the statistical difficubiesociated with this problem, we use a
simulation-based method, calleshximized Monte Carlo tests [Dufour (2006)], which can yield

provably exact tests for highly irregular problems evenrimah samples. Significant parameter
variation is detected for both oil and natural gas prices,nmt for coal price. Contrary to Slade

(1982) who used a deterministic trend model, we find no evideri U-shaped trend for oil or coal

prices; there is almost no upward trend either. In contthstpatural gas price trend has an upward
U-shaped form.

Keywords : structural change; time varying parameter; energy pricest; gas; crude oil; uniden-
tified nuisance parameter; exact test; Monte Carlo testnéalfilter.

Journal of Economic Literature classification: C22, C52, C53, Q40.



RESUME

Nous testons la présence de paramétres variables dansibg®ég suggérées par Pindyck (1999)

afin de modéliser les prix a long terme de I'énergie. Ces nesdgbstulent des processus de re-
tour a la moyenne avec des changements continus et aléad@isecoefficients de la tendance, et

sont estimés en utilisant des techniques de filtrage de KallGamme ces derniers comprennent

des parameétres sur la frontiére d’admissibilité ou nomiifiés en I'absence de changement struc-
turel, les distributions des statistiques de test cormd@ates sont typiguement non-standards et
dépendent de paramétres de nuisance. Pour résoudre ladtdiffistatistiques associées a ces prob-
lemes, nous appliquons une procédure basée sur des songldth méthode des tests de Monte

Carlo maximisés [Dufour (2006)], laquelle fournit des sedbnt le niveau est contrdlé pour des

problémes hautement irréguliers, méme sur de petits ébast Nous détectons des parameétres
variables dans le cas du pétrole brut et du gaz naturel, raaipqur le charbon.

Mots clés : changement structurel ; prix de I'énergie; charbon; gamre§t pétrole brut; retour
a la moyenne; test exact; test de Monte Carlo; test de Montle Geximisé; bootstrap; filtre de

Kalman.
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1. Introduction

It is widely recognized that fluctuations in energy pricesehanportant and lasting effects on the
economies of industrialized countries. As a recent exajripimilton (2003) found a strongly
significant nonlinear relationship between changes in wdgs and GDP growth. Similarly, for
small open economies, Amano and van Norden (1998) foundramdinks between oil prices
and real exchange rates. Enduring price movements in egergynodities can also cause relative
price changes among a wide range of products in the econohighwan then influence the rate of
inflation over an extended peridd.

Interpreting and predicting the behavior of energy pricagehproved to be quite challenging.
In addition to supply and demand conditions — both domestitiaternational — a complete model
also needs to take into account market regulations, teogivall advances, and geopolitical consid-
erations. These non-market-related aspects presentgbedbichallenges. For that reason, a fully
articulated structural model may be quite difficult to bualdd unreliable, and Pindyck (1999) has
suggested that a more practical approach for long-run éstetry may consist in building simple
flexible dynamic models which incorporate implicitly thde@layed by demand shifts, technolog-
ical change and depletion. These models are more generahtbhdels with deterministic trends
as used by Slade (1982) to analyze the long-term behavicepméthble resource prices. Although
the latter are special cases of the former, standard 8tatis¢sts can be misleading because of
boundary nesting and the application of appropriate tesiscontribution of this paper.

We reconsider the class of trend models with time varyingapaters (TVP) proposed by
Pindyck (1999) for that purpose. Despite their simplicttygse models are quite flexible, allow-
ing both random walks with drift and/or changing trend lineisere prices revert to a possibly
moving mean. An important feature of the proposed modelsdsriclusion of time varying trend
parameters. Different forms of the model may reflect altraassumptions on resource depletion
and technological change. For example, a form of energymikiproduced and sold competitively
should have its price reverting to a long-run marginal cdsictvitself can change over time. Using
a simple Hotelling model, Pindyck showed that long-run gnegrices should revert to amob-
servable trending long-run marginal cost, with continuous randorarges in the level and slope of
the trend. A family of econometric models for these pricescivintegrate desired features (discrete
versions of multivariate Ornstein-Uhlenbeck processes also suggested for energy prices. Alter-
native versions of these models were estimated using Kafitantechniques, and out-of-sample
forecasts were computed. The forecast exercises condbygt®indyck yield mixed results, but
overall the class of models considered appears to be quiteiging.

Pindyck (1999) did not, however, provide statistical tdststhe proposed class of models. In
particular, the time varying parameter specification wadested statistically. Yet, the decision to

1There is no unanimity about the interpretation of the retéstory in this respect. For a critical review, see Barsky
and Kilian (2004).



use a TVP model (as opposed to a more common autoregresdixeacoefficient trend model)
may have non-negligible statistical consequences.

An important difficulty here comes from the fact that TVP misdsntain boundary as well as
unidentified parameters, especially when there is no pdesnaariation, so that test statistics have
non-standard distributions and involve nuisance parametdsual chi-square critical points can
easily lead to spurious rejections even with fairly largeadsets, because the regularity conditions
underlying classical asymptotics fail Another problem is the fact that likelihood functions tend
to beill-behaved for empirically relevant parameter values. Thus, althosgphisticated numerical
recipes and global maximizers are readily available, itedl Wnown that perfect maximization is
not granted in this context.

Here, we complement Pindyck’s (1999) study by conductirsgstéor continuous and random
shifts in real energy prices. We are thus able to select,jmilie suggested family of models, spec-
ifications that are statistically justified for crude oil,atoand natural gas prices. Our methodology
relies on exact simulation-based test procedures, apjgicaeven with small samples — to highly
irregular problems for which standard techniques are nial.va

The merit of simulation-based procedures was recently dstrated in a related framework,
namely for the presence of jumps in the context of jump diffas; see Dufour and Khalaf (2001),
Khalaf, Saphores and Bilodeau (2003), and Saphores, KhathPelletier (2002). Those studies
circumvent the unidentified nuisance-parameter probleoutih bounds Monte Carlo tests. These
involve simulation-based cut-off points (prvalues) based on conservative bounds. The approach
used in the present paper is related to the latter in the ¢basé is also bounds-based. However,
here, aroptimal (i.e., tightest) bound is provided. Specifically, we apply mheximized Monte Carlo
(MMC) test technique [Dufour (2006)], which is based on camipy the maximap-value of the test
(over the nuisance parameters, obtained by simulatiorh) thé significance level. Consequently,
(i) level control is ensured by construction, and (ii) thrghtiest cut-off point is obtained numerically.
For further applications of the MC method in the context ofrgly markets, see Bernard, Idoudi,
Khalaf and Yelou (2006J.

Our findings indicate significant TVP effects in two of theabrenergy-price series examined,
which supports Pindyck’s proposed class of models. Indeedind significant parameter variation
in the natural gas and oil series. Our results suggest a gesrting process of log price to a fast
adjusting random mean and a very slow adjusting trend. Werfindvidence of U-shaped trend
with the logs of oil and coal prices. There is almost no upwesdd over 120 years.

In Section 2, we describe the class of proposed models antkshenethod used. Section 3
documents and discusses our empirical results. We contiusiection 4.

2See Hansen (1996), Dufour (1997, 2003) and Andrews (200,)20

3For further discussion of Monte Carlo test method in ecortdo® see, for example, Dufour and Kiviet (1996, 1998),
Kiviet and Dufour (1997), Dufour, Farhat, Gardiol and KHgE998), Dufour and Khalaf (2001, 20822002), Khalaf
and Kichian (2002, 2004, 2005), Dufour, Khalaf, Bernard @whest (2004).



2. Model and test method

Pindyck (1999) considers a basic Hotelling model for a deple resource produced in a compet-
itive market. With constant marginal cost of extractioand an isoelastic demand function with
unitary elasticity, the price level is given by

P, =c+ [(ce™ /("o /A —1)] (2.1)

whereRj is the initial stock of the depletable resourckis a demand shifter, andis the interest
rate. This implies that the slope of the price trajectoryiigg by

dP,/dt = ree™ J(emFo/A _ 1) (2.2)

so that changes in demand, extraction costs, and reseivaffeal this slope. For example, an
increase ind causes the slope to increase, while increaseomR reduce the slope. In addition,
increases i or A cause the price level to increase, whereas an increakg lieads to a decrease
in this level. If, as Pindyck (1999) argues, these factorgtdiate in a continuous and unpredictable
manner over time, then long-run energy prices should réeexttrend which itself fluctuates in the
same fashion.

A class of models which integrates the above features is ¢nerglized Ornstein-Uhlenbeck
process. Pindyck (1999) proposes a discretized versiohi®fmodel as a suitable econometric
framework for analyzing long-run energy prices. This leadthe following AR(1)-type dynamic
model:

Pt:Cl+¢1t+¢2tt+02ptfl+€t7 t=1,...,T, (2.3)

where P, refers to the logarithm of the real price of an energy produnct the coefficients,, and
¢4, follow the stochastic processes

b1 = 3P141 V1, (2.4)
oy = cCaPoypq + v (2.5)

The processes fap,, and ¢,, are unobservable, continuously evolving parameters wiatlbct
long-run marginal costs including scarcity rent, in the emylng structural model.

For tractability purposes, we estimate and test this magfgsitely for each price series consid-
ered. Clearly, a multivariate analysise( joint estimation) may be preferable, at least in principle,
since energy sources are substitutes in the long run. Yehgample size limitations, the numer-
ical burden (pointed out by Pindyck) may outweigh efficiegeyns for this particular application.



Further, modelling jointly all the equations involves ddtfial specification choices that may be
guestionable.

For similar considerations, we also impose the followingfributional assumptions on the uni-
variate process (2.3). The underlying error teems1¢, andwvo, t = 1, ... , T, are assumed to be
independently and identically normally distributed witra means and covariances, and variances
o?, o2 ,ando?,, respectively. Stationarity constraints (o c3 andc,) are (at least in principle)
not necessary. The lag structure, reliance on linear trandson uncorrelated unobservable com-
ponents, is dictated, as argued by Pindyck (1999), by thutheof the available sample; see section
3, for a description of the (yearly) data considered for thugly It is worth noting that, despite
the latter simplifying hypotheses, the statistical fraragkwemains non-regular, as we will explain
below.

Assuming normality ok;, v1¢, and vy, Pindyck proposes that Kalman filtering be applied to
obtain paths for the state variablgs and¢,,. This means that, starting with initial values for model
parameters and state variables, the filter computes at esiciumew values for the state variables
to reflect new information on the observable series. Oncduth@aths of the state variables are
determined, the model can be estimated by maximum liketihddetails of the Kalman filtering
procedure are described in Appendix B. In view of assesdiagstatistical significance of TVP
effects, the null hypothesis of interest is a simple meaeftang model around a fixed trend line
[the trending Ornstein-Uhlenbeck process given by eqndfid) in Pindyck (1999)]i.e.,

Pt201+¢1+¢2t+62pt,1+6t, t=1,...,T. (2.6)

Itis clear that the models to be compared statistically astad at the boundaries of certain para-
meters; formally,

model (2.6)C model (2.3) whew> — 0, 02, — 0, andcz =c4 = 1. (2.7)

Further, it is easy to see that some parameters may not béfiglgle under certain parameter
configurations: for example, the constant term is not idieativhenc; = 1 ando? = 0, and itis
“poorly” identified when we are close to these values.

In this context, one cannot rely on estimated standard em@od standard limiting distribu-
tions, since their use for building tests and confidenceisaist justified even asymptotically. In
particular, the distributions of some widely used testistias, such asg-type and more generally
Wald-type statistics, may be difficult (if not impossibl@®) hound under various null hypotheses,
so that controlling the level of such tests may not be feasilBy contrast, the distributions of
likelihood-ratio-type statistics appear to be more stabtesuch tests provide a more appropriate
basis for statistical inference; see Dufour (1997, 2008) Stock, Wright and Yogo (2002).



Taking into account these observations and the potentiapatational cost of maximum likeli-
hood (ML) estimation of TVP models, we focus here on a gu&slihood-ratio (QLR) statistic of
the form:

QLR(J) =2[Lrvp(J) — Lrowm] (2.8)

where Ly p(J) and Lpcopy are, respectively, the maximum of the log-likelihood fuows as-
sociated with (2.3) and (2.6)] is the maximum number of iterations allowed in the numerical
maximization exercise under (2.3), and the subscript FGIvid# for the fixed-coefficient model.

is explicitly spelled out to take into account the fact the humber of iterations has an influence
on the finite-sample distribution of the test statistic: elggting on the number of iterations (along
with a convergence criterion), one really considers diffietest statistic$.

In view of the boundary and identification difficulties memted above, it would be wrong to
compare the QLR statistic with standard tabulated value® fax? table. Both the finite-sample
and asymptotic distributions of the QLR statistic may beettd by the irregularities inherent to
the problem studied hefeWe need a procedure that can take these features into craigide

To test the hypotheses of interest in this context, we tbegaiesort to maximized Monte Carlo
(MMC) tests [Dufour (2006)], which we apply to the QLR stétis Let us denote the vector of
nuisance parameters that appear under the null hypotteesis a

0= {Aa ¢27 C2, 03}7 A=c +¢1 . (29)

In Appendix A, we provide a more detailed exposition of the KINest method for a general test
statistic whose null distribution can be simulated givereetor of nuisance parametetsHerein,
we will summarize the technique as it applies to our specifoblem, where) is given by (2.9).

In our test procedure, all that is needed to obtain draws tl@mull data-generating process is to
set a value fop; the unidentified nuisance parameters (for examglegndc, under the constant
coefficient model) simply do not appear in the distributibfore precisely, we proceed as follows.

(i) We calculate the likelihood ratio statistic (2.8) usitige maximized likelihood value of the
TVP model (2.3) — thealternative model — and the one of the constant-coefficient model
(2.6) —the null model. In the process, we save the quasi-maximum-likelihoodredé of
6 imposing (2.6) and the observed value@f.R(.J). We denote these valuésc,; and
QLRy(J) respectively.

(i) We generate data from the null model by drawing from tloenmal distribution and by set-
ting 6 equal to its estimated vallﬁewCM, reestimate the restricted and the alternative mod-
els from these simulated data, and compute the corresppitesi statistic) L R(.J; ?)FCM)

“For further discussion of this issue, see Robinson (1988).
5See Andrews (2000, 2001), Dufour (1997, 2003) and Stock €2@D2).



where the presence éwaM indicates that) LR(J; éFCM) depends on data simulated after
settingd = Opcar. This process is repeatell times, yieldingN simulated test statistics
from a data generating process (DGP) that satisfies the ypéthesis:QLR;(J; éFCM),
i=1,..., N.

(iii) QLRy(J) is compared with this distribution andzavalue is calculated based on the rank
of QLRy(J) relative to its simulated counterparts; see equations)(A#23), and (A.4) in
Appendix A. We will call the number so obtained tleeal Monte Carlo (LMC) p-value.

The MMC technique involves repeating step (ii) above, svegpver combinations of ad-
missible values ob instead of@FCM. This can be viewed as a Monte Carlo implementation of
the standard definition of the level of a test in the preserfcausance parameters: when a test
is nuisance-parameter dependentodevel is achieved by comparing the largestalue over all
nuisance parameters consistent with the null hypothesis [see Lehmann (1986)]. The MMC
method, by construction, works exactly in this way. Thus,olbtain a MCp-value for each value
of §. The MMC p-value is then the highest Mg-value so obtained. Since the maximizegalue
function is a non-differentiable step function, we use dated annealing (a global non-gradient-
based algorithm) to obtain the maxima [see Goffe, FerrierRagers (1994)]. This provides, by
construction, the tightest boupdvalue. The MMC test is significant at lewelif the MMC p-value
(sayparac) is less than or equal @ :

pPMMC < o (2.10)

Of course, if the M(p-value obtained in step (ii) with = 0 exceedsy (e.g., 10 per cent), there
is no need to proceed with the maximization; this saves éxettime. Test results are reported in
Section 3.

If the MC p-value is computed using a single (consistent) parametenate of the nuisance
parameters, we getlacal MC (LMC) test or, equivalently, a parametric bootstrap tesboBtrap
procedures tend to be considerably more reliable than guwes based on asymptotic critical val-
ues. In the context of our problem, however, where the asytiepdistribution may depend in a
discontinuous way on nuisance parameters, it is well kndva bootstrap procedures may also
fail even asymptoticall§. By contrast, the MMC procedure is immune to such failures Bafour
(2006)]. In the following section, we report LMC tests alongh MMC test results.

6See Athreya (1987), Basawa, Mallik, McCormick, Reeves anddF (1991), Sriram (1994), Andrews (2000), Inoue
and Kilian (2002, 2003).



3. Empirical results

We consider the annual data set analyzed by Pindyck (1909Bhe series for crude oil and bi-
tuminous coal extend from 1870 to 1996, while, for naturas,ghe data cover 1919 to 1996.
The nominal price series up to 1973 are from Manthy (1978)thedJ.S. Bureau of the Census
(1975). Pindyck (1999) updated this series through 1995gusata from the U.S. Energy Informa-
tion Agency and, for 1996, théall Sreet Journal. The series are deflated using the U.S. wholesale
price index until 1970, and the producers price index thHfegeaEstimation is conducted on the
logarithm of real prices.

First, we test the constant coefficient model against Pikidygeneral TVP specification for
each energy product. In other words, we compute the QLRsstator testing the fixed coefficient
model (2.6) against the TVP model (2.3) imposing only siighikstrictions:

Hryp:lea] <1,0<e3<1, 0<eqg < 1. (3.1)

Such restrictions as in (3.1) are not necessary for theialid our test procedure. Yet, for this
particular application, we have observed that stabilitystrains did enhance convergence and avoid
corner solutions. Maximization is typically difficult to kieve in TVP contexts, and the numerical
burden tends to be relatively heavy. Indeed, to obtain thegM@lues [see step (i) in the previous
section], we run numerical nonlinear optimization alduoris 200 times [once with observed data
(to derive the observed test statistic) and 199 times witlukited data (to derive the simulated
test statistics)for each admissible values of 6. Furthermore, the underlying simulated samples are
generated under the null (constant coefficient) model; shitncase, the maximization problem is
by construction, ill-conditioned.

To circumvent these difficulties, we applied the followingnmerical improvements. First, max-
ima results obtained by gradient-based algorithms ardai@d using global maximizers. For that
purpose, we usesimulated annealing [see Goffe et al. (1994)], particularly with the observethsa
ples. Second, following a “normal convergence” output,dhsociated QLR statistics are checked
for positivity. Indeed, if a negative QLR is obtained whidfreals non-convergence, the maximiza-
tion algorithm is re-initiated using the “imperfect” sdln as a starting value, until positivity is
secured.

The results obtained are reported in Table 1, where LMC sdfetocal MC (parametric boot-
strap) p-values and MMC to maximizeg-values® The maximal number of iterations allowed

"The data were generously provided by Pindyck.

8For the regression coefficients, the valueg) afxplored are determined by takiigstandard errors on both sides
of each componert; of 6 (A;rcar + 5SE;). This is indeed quite wide (10 standard errors). Given thatettimators
of the constant coefficient model converge at a rate at leaktrge a<"'/2, the box so obtained can be interpreted as
a “consistent set estimator” of the relevant parameteres [aegfour (2006)]. For the error variances, we used the fixed

interval[0.0001, 2], where the upper bound is well over all the estimates of thasanpeters.



Table 1. Tests of constant parameter model and Pindycké&fegaions

Model tested Hy) : P = ¢1 + ¢1 + ¢t + caPi1 + €

Alternative model H;) Energy type LR LMC MMC
Pi=c1 4+ coPi1+ ¢ + oyt + €1 oil 14.7973| .005 .010
G1p = C3P14_1 + V1t Coal 2.5973| .195 -
Pop = Catpyy_q1 + Vou Gas 35.0205| .005 .005

Note — The table reportis-values. LMC refers to the local MC (or parametric bootsftraqvalue
and MMC to the maximized Monte Carlo p-value. The number plications used for the MC tests
is N = 199. Since the MMCp-value must be larger than the LMgvalue, it is not necessary to
report the MMCp-value if the former is larger than the level of the test (iis tase.05).

before the estimation process stopdis- 120.% All the MC tests are implemented usifg = 199
replications and the algorithm that maximizes thealue function (in terms of) is initialized at
the value used for the LMC test.

We see from the results in Table 1 that the constant coeffiniedel is rejected (by MMC tests)
against the general TVP model for gas and oil prices at cdioreai significance levels, but not for
coal prices (by the LMC procedure, hence also by the MMC o). Parameter estimates are
reported in Table 2. We observe a slow adjustment procesdl fmtice series (estimates of exceed
.5) which reverts to a fast adjusting random mean (estimaftes are less than .5) and a random
trend which has a very slow adjustment coefficients padityfor gas (estimates of; exceed .8).
These results indicate good overall statistical supporPiodyck’s proposed class of models: there
are significant TVP effects in two of the three price serieen@xed. Our test conclusions may also
explain why Pindyck’s estimation results signal a poor fittfee coal price series.

Figure 1 shows our estimated price trends [formally, thereged¢,,t term from (2.3)] over
the sample period. The trend functions spike at the wake eféte seventies fuel-price shocks;
yet, following their impact, all three revert (slowly) todin respective long-run mean. Interestingly,
the latter is flat for both oil and coal prices, and slopes upwar natural gas. These results may
be contrasted with Slade (1982)'s U-shaped curves, exoemals where in our case a U-shaped
form is visible albeit less markedly than in Slade (1982) c&lehowever that the series analyzed
by Slade ends in 1978; differing results may thus be drivethbypost 1985 data.

One may note that estimates reported by Pindyck (1999, Palsignal “corner solution” values
(duly discussed in the paper); = 1.0009 for oil,¢,4 is set tol for coal, and the time-varying drift
is omitted for gas in which case the estimated value,a$ close to unity. Since we focus on (2.3)
[with (3.1)] for all price series, our estimation resultéfeli numerically from the ones reported by
Pindyck. Differences may also reflect the sensitivity ofrah filter estimates to filter initializations

*Typically, in the examples considered here, convergenseashieved with much less than 80 iterations.



Table 2. Parameter estimates for the considered energy miocdels

Model Type | 1 c3 Co ca Oy Oy Oc
Pi=c1+caPi_1+¢, ¢4t + € | Oll .3508 .4799 .7415 .8898 6.3E-5 .0206 .4031
1y = C3014_1 + V11 Coal .3437 .1150 .8004 .9297 .2814 .0140 .0193
oy = Ca0gy_q1 + Voy Gas | 2.7144 .0833 .5247 .9613 .1766 .0383 .0080
Model Type A cao o Oc
Pi= A+ ¢ot + coPi_1+¢€; Qil .1894 .7869 .0016 .1944
A=c+ ¢ Coal .1288 .8976 .0006 .0861

Gas .0035 9717 .0011 1194

(a point raised by Pindyck).

Our statistical analysis underscores the merit of the TVEeh@nd motivates further improve-
ments, for example via multivariate approaches. Such fgeiions may also prove to be quite
useful to model long-run components of two-factor shortdang-run models for resource pricks.

4. Conclusion

This paper has tested the statistical significance of Pkisly£999) suggested class of econometric
models for the behavior of long-run real energy prices. €lmsstulate mean-reverting prices with
continuous and random changes in their level and trendgu&itiman filtering for the estimation.
In such contexts, the distributions of the test statistiesypically non-standard and depend on nui-
sance parameters. Exploiting simulation-based procedoraddress this issue, we have reported
results for both a standard Monte Carlo test and a maximizedt®Carlo test. Our findings lend
support to the proposed TVP class of energy models agamsiuthhypothesis of fixed-coefficient
mean-reverting equations. That is, we have found stalstisignificant instabilities for oil and
natural gas prices, but not for coal prices.

Our main finding is that there is little evidence in favour ofiacreasing trend in the price of
oil from 1890 to 1996, although OPEC decisions did leave gporimh in the late seventies. The
same observations apply to the price of coal. However, theralagas price series which started in
1919 displays a U-shaped trend which clearly slopes upw&dr results regarding the oil price
trend agrees with the long held view of Adelman (2004): theresed oil price trends shows no
indication of impending scarcity but bears the marks of tfRREQ decisions in the post 1973 era.

105eee.g. Schwartz and Smith (2000), Schwartz (1997), Cortazar ahev&tz (2003), and Bernard, Khalaf, Kichian
and McMahon (2005).
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Appendix

A. Maximized Monte Carlo tests

Consider a (continuous) test statistit;, whose distribution under the null hypothesis can be simu-
lated once a finite set of nuisance parameters are specif@doi@ing with the notational frame-
work of Section 2, let us denote the nuisance parameter vécto (2, and let(2, refer to the
nuisance parameter subspace compatible with the null hgpstH; under test.

Denote byS, the observed value & and letS;, j =1, ... , N refer toN i.i.d. random
draws from the null distribution of the statistic (given th@rameter valué). A maximized Monte
Carlo (MMC) test is defined by the critical region

sup [Pn(So]0)] < (A.1)
0 2

where

NGn(So|0) +1

On(So[0) = N1 ; (A.2)
| N
Gn(So0|0) = N Z [0,00) (S5 — S0) 5 (A.3)
1, ifzeA,
Lal®) = { 0, ifz¢gA.

Note thatN Gy (S | ) is the number of simulated values of the test statistic natllemthans.
The formula forpy (Sp | ) gives a arempirical p-value for a given parameter vectét Then we
can show the MMC test based on (A.1) has levgsee Dufour (2006)]:

Pl sup [pn(So]|0)] < Oé] < a underH.
0 € 2

The only condition needed to implement this procedure igthssibility of simulating the relevant
test statistic under the null hypothesisThe values ofV andT (neither the number of replications
nor the sample size) are taken as given, and no asymptotimarg is needed.

HFor example, folr = 0.05, N can be as low a$9. Although, in principle, raisingV will typically increase the
test power and decrease its sensitivity to the underlyimgloeization, the simulation results reported in Dufour and
Kiviet (1996, 1998), Dufour et al. (1998), Dufour and Kha{@b01, 2002, 2002), and Dufour et al. (2004), suggest
that increasingV beyond 99 has only a small effect on power.
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In this context, given any consistent estimateddhat satisfiesH,, (denotedd), a parametric
bootstrap-type critical region can be obtained as:

PN (So |9) <a. (A.4)
In general, however, nothing guarantees that the levelgotpp
P [pn(So|0) < a] < o underHy

holds. Under specific regularity conditions, the bootswamlue may be valid asymptotically in
the sense that
Jim {Pln (S0l0) < a] Pl (Solflo) < al} =0 (A5)

wherepy (Sp|6) is the empiricap-value that one would obtain for the “true” (unknown) nuisan
parameters values. Generic conditions for (A.5) to appdygaren in Dufour (2006).

Unfortunately, in the context of the TVP models, (A.5) magilyanot hold, for example because
of identification problems [see Dufour (1997, 2003)]. Ingtiee, this means that, if a test based on
(A.4) rejects, this result may be spurioa®n in large samples. Yet bootstrap non-rejections are not
subject to the same limitations: if the bootstrap-type iabt significant, then we can be sure that
the exact MMC test is not significant at level Indeed,

pn(Sold) > a = sup [pn(Sol0)] > a.
0 € 2

It is thus a good strategy to start the MMC spyalue step using a commonly useslg(, a con-
strained QMLE) estimate df.

B. Kalman Filtering and time varying parameters

This appendix draws heavily on Kim and Nelson (1999, Cha@te€onsider the TVP model (2.3),
which we rewrite for convenience in matrix notation as:

vy = HB+ Az + e, (B.1)
B, = FBy +m,t=1,...,T, (B.2)
e "X N[0, R] (B.3)
n, "= N[0, Q) (B.4)

12



where

y = By, Ht:{l t}, A:[cl CQ], (B.5)
B = [ z;z ] y At = Ptll y Rt = Ptll y My = [ Z; ] ) (B.6)
F= cg’ 21] Qzlagl 022]. (B.7)
The prediction equations in the Kalman filter algorithm aken by:
ﬂt|t71 = Fﬂt—l\t717 (B.8)
Ste-1 = FSt—l\t—lF/+Q> (B.9)

whereg,,_, is the forecast value ¢f, on the basis of information available through date1, and
Sy¢—1 is its conditional variance. The conditional forecast eand its conditional variance can be
obtained as:

ege—1 = Y — HeBy1 — Az, (B.10)
fig—1 = HiSy—1H, + R. (B.11)

These expressions can be used in the updating equations aigibrithm according to

B = Bye—1 + Keeyp, (B.12)
Sy = Spj—1 — KeH Sy, (B.13)

where the Kalman gain term is; = St,”t,lH{ft'*tl_l.

If, in addition to the error termg andn,,, the initial value of3 is Gaussian, then the distribution
of 4, conditional on information available through time 1 is also Gaussian, and its log-likelihood
function is:

S

T

In( —(1/2) Z 27Tft\t 1) (1/2)Zeé\t_1ft\tflet|t71' (B.14)

t=1 t=1

Therefore, given initial values for model parameters aatkestariables, the log-likelihood function
can be maximized over the sample to yield maximum-likelthparameter estimates. See Kim and
Nelson (1999) for additional details.
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