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ABSTRACT

We test for the presence of time-varying parameters in long-run real energy prices as suggested in

the class of models proposed by Pindyck (1999). These modelspostulate mean-reverting prices

with continuous and random changes in their level and trend,and are estimated using Kalman

filtering techniques. Since the latter contain boundary as well as possibly unidentified parameters

when there is no parameter variation, the test statistics have non-standard distributions and involve

nuisance parameters. To solve the statistical difficultiesassociated with this problem, we use a

simulation-based method, calledmaximized Monte Carlo tests [Dufour (2006)], which can yield

provably exact tests for highly irregular problems even in small samples. Significant parameter

variation is detected for both oil and natural gas prices, but not for coal price. Contrary to Slade

(1982) who used a deterministic trend model, we find no evidence of U-shaped trend for oil or coal

prices; there is almost no upward trend either. In contrast,the natural gas price trend has an upward

U-shaped form.

Keywords : structural change; time varying parameter; energy prices;coal; gas; crude oil; uniden-

tified nuisance parameter; exact test; Monte Carlo test; Kalman filter.

Journal of Economic Literature classification: C22, C52, C53, Q40.
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RÉSUMÉ

Nous testons la présence de paramètres variables dans les équations suggérées par Pindyck (1999)

afin de modéliser les prix à long terme de l’énergie. Ces modèles postulent des processus de re-

tour à la moyenne avec des changements continus et aléatoires des coefficients de la tendance, et

sont estimés en utilisant des techniques de filtrage de Kalman. Comme ces derniers comprennent

des paramètres sur la frontière d’admissibilité ou non-identifiés en l’absence de changement struc-

turel, les distributions des statistiques de test correspondantes sont typiquement non-standards et

dépendent de paramètres de nuisance. Pour résoudre les difficultés statistiques associées à ces prob-

lèmes, nous appliquons une procédure basée sur des simulations, la méthode des tests de Monte

Carlo maximisés [Dufour (2006)], laquelle fournit des tests dont le niveau est contrôlé pour des

problèmes hautement irréguliers, même sur de petits échantillons. Nous détectons des paramètres

variables dans le cas du pétrole brut et du gaz naturel, mais pas pour le charbon.

Mots clés : changement structurel ; prix de l’énergie; charbon; gaz naturel; pétrole brut; retour

à la moyenne; test exact; test de Monte Carlo; test de Monte Carlo maximisé; bootstrap; filtre de

Kalman.

Classification du Journal of Economic Literature : C22, C52, C53, Q40.
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1. Introduction

It is widely recognized that fluctuations in energy prices have important and lasting effects on the

economies of industrialized countries. As a recent example, Hamilton (2003) found a strongly

significant nonlinear relationship between changes in oil prices and GDP growth. Similarly, for

small open economies, Amano and van Norden (1998) found long-run links between oil prices

and real exchange rates. Enduring price movements in energycommodities can also cause relative

price changes among a wide range of products in the economy, which can then influence the rate of

inflation over an extended period.1

Interpreting and predicting the behavior of energy prices have proved to be quite challenging.

In addition to supply and demand conditions – both domestic and international – a complete model

also needs to take into account market regulations, technological advances, and geopolitical consid-

erations. These non-market-related aspects present the biggest challenges. For that reason, a fully

articulated structural model may be quite difficult to buildand unreliable, and Pindyck (1999) has

suggested that a more practical approach for long-run forecasting may consist in building simple

flexible dynamic models which incorporate implicitly the role played by demand shifts, technolog-

ical change and depletion. These models are more general than models with deterministic trends

as used by Slade (1982) to analyze the long-term behavior of depletable resource prices. Although

the latter are special cases of the former, standard statistical tests can be misleading because of

boundary nesting and the application of appropriate tests is a contribution of this paper.

We reconsider the class of trend models with time varying parameters (TVP) proposed by

Pindyck (1999) for that purpose. Despite their simplicity,these models are quite flexible, allow-

ing both random walks with drift and/or changing trend lineswhere prices revert to a possibly

moving mean. An important feature of the proposed models is the inclusion of time varying trend

parameters. Different forms of the model may reflect alternative assumptions on resource depletion

and technological change. For example, a form of energy which is produced and sold competitively

should have its price reverting to a long-run marginal cost which itself can change over time. Using

a simple Hotelling model, Pindyck showed that long-run energy prices should revert to anunob-

servable trending long-run marginal cost, with continuous random changes in the level and slope of

the trend. A family of econometric models for these prices which integrate desired features (discrete

versions of multivariate Ornstein-Uhlenbeck processes) was also suggested for energy prices. Alter-

native versions of these models were estimated using Kalmanfilter techniques, and out-of-sample

forecasts were computed. The forecast exercises conductedby Pindyck yield mixed results, but

overall the class of models considered appears to be quite promising.

Pindyck (1999) did not, however, provide statistical testsfor the proposed class of models. In

particular, the time varying parameter specification was not tested statistically. Yet, the decision to

1There is no unanimity about the interpretation of the recenthistory in this respect. For a critical review, see Barsky
and Kilian (2004).
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use a TVP model (as opposed to a more common autoregressive orfixed coefficient trend model)

may have non-negligible statistical consequences.

An important difficulty here comes from the fact that TVP models contain boundary as well as

unidentified parameters, especially when there is no parameter variation, so that test statistics have

non-standard distributions and involve nuisance parameters. Usual chi-square critical points can

easily lead to spurious rejections even with fairly large data sets, because the regularity conditions

underlying classical asymptotics fail.2 Another problem is the fact that likelihood functions tend

to beill-behaved for empirically relevant parameter values. Thus, althoughsophisticated numerical

recipes and global maximizers are readily available, it is well known that perfect maximization is

not granted in this context.

Here, we complement Pindyck’s (1999) study by conducting tests for continuous and random

shifts in real energy prices. We are thus able to select, within the suggested family of models, spec-

ifications that are statistically justified for crude oil, coal, and natural gas prices. Our methodology

relies on exact simulation-based test procedures, applicable – even with small samples – to highly

irregular problems for which standard techniques are not valid.

The merit of simulation-based procedures was recently demonstrated in a related framework,

namely for the presence of jumps in the context of jump diffusions; see Dufour and Khalaf (2001),

Khalaf, Saphores and Bilodeau (2003), and Saphores, Khalafand Pelletier (2002). Those studies

circumvent the unidentified nuisance-parameter problem through bounds Monte Carlo tests. These

involve simulation-based cut-off points (orp-values) based on conservative bounds. The approach

used in the present paper is related to the latter in the sensethat it is also bounds-based. However,

here, anoptimal (i.e., tightest) bound is provided. Specifically, we apply themaximized Monte Carlo

(MMC) test technique [Dufour (2006)], which is based on comparing the maximalp-value of the test

(over the nuisance parameters, obtained by simulation) with the significance level. Consequently,

(i) level control is ensured by construction, and (ii) the tightest cut-off point is obtained numerically.

For further applications of the MC method in the context of energy markets, see Bernard, Idoudi,

Khalaf and Yelou (2006).3

Our findings indicate significant TVP effects in two of the three energy-price series examined,

which supports Pindyck’s proposed class of models. Indeed,we find significant parameter variation

in the natural gas and oil series. Our results suggest a slow reverting process of log price to a fast

adjusting random mean and a very slow adjusting trend. We findno evidence of U-shaped trend

with the logs of oil and coal prices. There is almost no upwardtrend over 120 years.

In Section 2, we describe the class of proposed models and thetest method used. Section 3

documents and discusses our empirical results. We concludein Section 4.

2See Hansen (1996), Dufour (1997, 2003) and Andrews (2000, 2001).
3For further discussion of Monte Carlo test method in econometrics, see, for example, Dufour and Kiviet (1996, 1998),

Kiviet and Dufour (1997), Dufour, Farhat, Gardiol and Khalaf (1998), Dufour and Khalaf (2001, 2002a, 2002b), Khalaf
and Kichian (2002, 2004, 2005), Dufour, Khalaf, Bernard andGenest (2004).
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2. Model and test method

Pindyck (1999) considers a basic Hotelling model for a depletable resource produced in a compet-

itive market. With constant marginal cost of extractionc and an isoelastic demand function with

unitary elasticity, the price level is given by

Pt = c + [(cert/(ercR0/A − 1)] (2.1)

whereR0 is the initial stock of the depletable resource,A is a demand shifter, andr is the interest

rate. This implies that the slope of the price trajectory is given by

dPt/dt = rcert/(ercR0/A − 1) , (2.2)

so that changes in demand, extraction costs, and reserves all affect this slope. For example, an

increase inA causes the slope to increase, while increases inc or R0 reduce the slope. In addition,

increases inc or A cause the price level to increase, whereas an increase inR0 leads to a decrease

in this level. If, as Pindyck (1999) argues, these factors fluctuate in a continuous and unpredictable

manner over time, then long-run energy prices should revertto a trend which itself fluctuates in the

same fashion.

A class of models which integrates the above features is the generalized Ornstein-Uhlenbeck

process. Pindyck (1999) proposes a discretized version of this model as a suitable econometric

framework for analyzing long-run energy prices. This leadsto the following AR(1)-type dynamic

model:

Pt = c1 + φ1t + φ2tt + c2Pt−1 + ǫt , t = 1, . . . , T , (2.3)

wherePt refers to the logarithm of the real price of an energy productand the coefficientsφ1t and

φ2t, follow the stochastic processes

φ1t = c3φ1,t−1 + v1t , (2.4)

φ2t = c4φ2,t−1 + v2t . (2.5)

The processes forφ1t andφ2t are unobservable, continuously evolving parameters whichreflect

long-run marginal costs including scarcity rent, in the underlying structural model.

For tractability purposes, we estimate and test this model separately for each price series consid-

ered. Clearly, a multivariate analysis (i.e. joint estimation) may be preferable, at least in principle,

since energy sources are substitutes in the long run. Yet given sample size limitations, the numer-

ical burden (pointed out by Pindyck) may outweigh efficiencygains for this particular application.
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Further, modelling jointly all the equations involves additional specification choices that may be

questionable.

For similar considerations, we also impose the following distributional assumptions on the uni-

variate process (2.3). The underlying error termsǫt, v1t, andv2t, t = 1, . . . , T, are assumed to be

independently and identically normally distributed with zero means and covariances, and variances

σ2
ǫ , σ2

v1
, andσ2

v2
, respectively. Stationarity constraints (onc2, c3 andc4) are (at least in principle)

not necessary. The lag structure, reliance on linear trendsand on uncorrelated unobservable com-

ponents, is dictated, as argued by Pindyck (1999), by the length of the available sample; see section

3, for a description of the (yearly) data considered for the study. It is worth noting that, despite

the latter simplifying hypotheses, the statistical framework remains non-regular, as we will explain

below.

Assuming normality ofǫt, v1t, andv2t, Pindyck proposes that Kalman filtering be applied to

obtain paths for the state variablesφ1t andφ2t. This means that, starting with initial values for model

parameters and state variables, the filter computes at each period new values for the state variables

to reflect new information on the observable series. Once thefull paths of the state variables are

determined, the model can be estimated by maximum likelihood. Details of the Kalman filtering

procedure are described in Appendix B. In view of assessing the statistical significance of TVP

effects, the null hypothesis of interest is a simple mean-reverting model around a fixed trend line

[the trending Ornstein-Uhlenbeck process given by equation (24) in Pindyck (1999)],i.e.,

Pt = c1 + φ1 + φ2t + c2Pt−1 + ǫt , t = 1, . . . , T . (2.6)

It is clear that the models to be compared statistically are nested at the boundaries of certain para-

meters; formally,

model (2.6)⊆ model (2.3) whenσ2
v1

→ 0, σ2
v2

→ 0, andc3 = c4 = 1 . (2.7)

Further, it is easy to see that some parameters may not be identifiable under certain parameter

configurations: for example, the constant term is not identified whenc3 = 1 andσ2
v1

= 0, and it is

“poorly” identified when we are close to these values.

In this context, one cannot rely on estimated standard errors and standard limiting distribu-

tions, since their use for building tests and confidence setsis not justified even asymptotically. In

particular, the distributions of some widely used test statistics, such ast-type and more generally

Wald-type statistics, may be difficult (if not impossible) to bound under various null hypotheses,

so that controlling the level of such tests may not be feasible. By contrast, the distributions of

likelihood-ratio-type statistics appear to be more stable, so such tests provide a more appropriate

basis for statistical inference; see Dufour (1997, 2003) and Stock, Wright and Yogo (2002).
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Taking into account these observations and the potential computational cost of maximum likeli-

hood (ML) estimation of TVP models, we focus here on a quasi-likelihood-ratio (QLR) statistic of

the form:

QLR(J) = 2[LTV P (J) − LFCM ] (2.8)

whereLTV P (J) and LFCM are, respectively, the maximum of the log-likelihood functions as-

sociated with (2.3) and (2.6),J is the maximum number of iterations allowed in the numerical

maximization exercise under (2.3), and the subscript FCM stands for the fixed-coefficient model.J

is explicitly spelled out to take into account the fact that the number of iterations has an influence

on the finite-sample distribution of the test statistic: depending on the number of iterations (along

with a convergence criterion), one really considers different test statistics.4

In view of the boundary and identification difficulties mentioned above, it would be wrong to

compare the QLR statistic with standard tabulated values from aχ2 table. Both the finite-sample

and asymptotic distributions of the QLR statistic may be affected by the irregularities inherent to

the problem studied here.5 We need a procedure that can take these features into consideration.

To test the hypotheses of interest in this context, we therefore resort to maximized Monte Carlo

(MMC) tests [Dufour (2006)], which we apply to the QLR statistic. Let us denote the vector of

nuisance parameters that appear under the null hypothesis as:

θ =
{

λ, φ2, c2, σ2
ǫ

}

, λ = c1 + φ1 . (2.9)

In Appendix A, we provide a more detailed exposition of the MMC test method for a general test

statistic whose null distribution can be simulated given a vector of nuisance parametersθ. Herein,

we will summarize the technique as it applies to our specific problem, whereθ is given by (2.9).

In our test procedure, all that is needed to obtain draws fromthe null data-generating process is to

set a value forθ; the unidentified nuisance parameters (for example,c3 andc4 under the constant

coefficient model) simply do not appear in the distribution.More precisely, we proceed as follows.

(i) We calculate the likelihood ratio statistic (2.8) usingthe maximized likelihood value of the

TVP model (2.3) – thealternative model – and the one of the constant-coefficient model

(2.6) – the null model. In the process, we save the quasi-maximum-likelihood estimate of

θ imposing (2.6) and the observed value ofQLR(J). We denote these valueŝθFCM and

QLR0(J) respectively.

(ii) We generate data from the null model by drawing from the normal distribution and by set-

ting θ equal to its estimated valuêθFCM , reestimate the restricted and the alternative mod-

els from these simulated data, and compute the corresponding test statisticQLR(J ; θ̂FCM )

4For further discussion of this issue, see Robinson (1988).
5See Andrews (2000, 2001), Dufour (1997, 2003) and Stock et al. (2002).
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where the presence ofθ̂FCM indicates thatQLR(J ; θ̂FCM ) depends on data simulated after

settingθ = θ̂FCM . This process is repeatedN times, yieldingN simulated test statistics

from a data generating process (DGP) that satisfies the null hypothesis:QLRi(J ; θ̂FCM),

i = 1, . . . , N.

(iii) QLR0(J) is compared with this distribution and ap-value is calculated based on the rank

of QLR0(J) relative to its simulated counterparts; see equations (A.2), (A.3), and (A.4) in

Appendix A. We will call the number so obtained thelocal Monte Carlo (LMC) p-value.

The MMC technique involves repeating step (ii) above, sweeping over combinations of ad-

missible values ofθ instead ofθ̂FCM . This can be viewed as a Monte Carlo implementation of

the standard definition of the level of a test in the presence of nuisance parameters: when a test

is nuisance-parameter dependent, anα level is achieved by comparing the largestp-value over all

nuisance parameters consistent with the null hypothesis toα [see Lehmann (1986)]. The MMC

method, by construction, works exactly in this way. Thus, weobtain a MCp-value for each value

of θ. The MMC p-value is then the highest MCp-value so obtained. Since the maximizedp-value

function is a non-differentiable step function, we use simulated annealing (a global non-gradient-

based algorithm) to obtain the maxima [see Goffe, Ferrier and Rogers (1994)]. This provides, by

construction, the tightest boundp-value. The MMC test is significant at levelα if the MMC p-value

(saypMMC) is less than or equal toα :

pMMC ≤ α . (2.10)

Of course, if the MCp-value obtained in step (ii) withθ = θ̂FCM exceedsα (e.g., 10 per cent), there

is no need to proceed with the maximization; this saves execution time. Test results are reported in

Section 3.

If the MC p-value is computed using a single (consistent) parameter estimate of the nuisance

parameters, we get alocal MC (LMC) test or, equivalently, a parametric bootstrap test. Bootstrap

procedures tend to be considerably more reliable than procedures based on asymptotic critical val-

ues. In the context of our problem, however, where the asymptotic distribution may depend in a

discontinuous way on nuisance parameters, it is well known that bootstrap procedures may also

fail even asymptotically.6 By contrast, the MMC procedure is immune to such failures [see Dufour

(2006)]. In the following section, we report LMC tests alongwith MMC test results.

6See Athreya (1987), Basawa, Mallik, McCormick, Reeves and Taylor (1991), Sriram (1994), Andrews (2000), Inoue
and Kilian (2002, 2003).

6



3. Empirical results

We consider the annual data set analyzed by Pindyck (1999).7 The series for crude oil and bi-

tuminous coal extend from 1870 to 1996, while, for natural gas, the data cover 1919 to 1996.

The nominal price series up to 1973 are from Manthy (1978) andthe U.S. Bureau of the Census

(1975). Pindyck (1999) updated this series through 1995 using data from the U.S. Energy Informa-

tion Agency and, for 1996, theWall Street Journal. The series are deflated using the U.S. wholesale

price index until 1970, and the producers price index thereafter. Estimation is conducted on the

logarithm of real prices.

First, we test the constant coefficient model against Pindyck’s general TVP specification for

each energy product. In other words, we compute the QLR statistic for testing the fixed coefficient

model (2.6) against the TVP model (2.3) imposing only stability restrictions:

HTV P : |c2| < 1, 0 < c3 < 1, 0 < c4 < 1 . (3.1)

Such restrictions as in (3.1) are not necessary for the validity of our test procedure. Yet, for this

particular application, we have observed that stability constrains did enhance convergence and avoid

corner solutions. Maximization is typically difficult to achieve in TVP contexts, and the numerical

burden tends to be relatively heavy. Indeed, to obtain the MCp-values [see step (ii) in the previous

section], we run numerical nonlinear optimization algorithms 200 times [once with observed data

(to derive the observed test statistic) and 199 times with simulated data (to derive the simulated

test statistics)]for each admissible values of θ. Furthermore, the underlying simulated samples are

generated under the null (constant coefficient) model; so inthis case, the maximization problem is

by construction, ill-conditioned.

To circumvent these difficulties, we applied the following numerical improvements. First, max-

ima results obtained by gradient-based algorithms are validated using global maximizers. For that

purpose, we usedsimulated annealing [see Goffe et al. (1994)], particularly with the observed sam-

ples. Second, following a “normal convergence” output, theassociated QLR statistics are checked

for positivity. Indeed, if a negative QLR is obtained which signals non-convergence, the maximiza-

tion algorithm is re-initiated using the “imperfect” solution as a starting value, until positivity is

secured.

The results obtained are reported in Table 1, where LMC refers to local MC (parametric boot-

strap)p-values and MMC to maximizedp-values.8 The maximal number of iterations allowed

7The data were generously provided by Pindyck.
8For the regression coefficients, the values ofθ explored are determined by taking5 standard errors on both sides

of each componentθi of θ (θ̂iF CM ± 5SEi). This is indeed quite wide (10 standard errors). Given that the estimators
of the constant coefficient model converge at a rate at least as large asT 1/2, the box so obtained can be interpreted as
a “consistent set estimator” of the relevant parameters [see Dufour (2006)]. For the error variances, we used the fixed
interval [0.0001, 2], where the upper bound is well over all the estimates of these parameters.
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Table 1. Tests of constant parameter model and Pindyck’s specifications

Model tested(H0) : Pt = c1 + φ1 + φ2t + c2Pt−1 + ǫt

Alternative model(H1) Energy type LR LMC MMC

Pt = c1 + c2Pt−1 + φ1t
+ φ2t

t + ǫt Oil 14.7973 .005 .010

φ1t
= c3φ1t−1 + v1t Coal 2.5973 .195 -

φ
2t

= c4φ2t−1
+ v2t Gas 35.0205 .005 .005

Note – The table reportsp-values. LMC refers to the local MC (or parametric bootstrap) p-value
and MMC to the maximized Monte Carlo p-value. The number of replications used for the MC tests
is N = 199. Since the MMCp-value must be larger than the LMCp-value, it is not necessary to
report the MMCp-value if the former is larger than the level of the test (in this case,0.05).

before the estimation process stops isJ = 120.9 All the MC tests are implemented usingN = 199

replications and the algorithm that maximizes thep-value function (in terms ofθ) is initialized at

the value used for the LMC test.

We see from the results in Table 1 that the constant coefficient model is rejected (by MMC tests)

against the general TVP model for gas and oil prices at conventional significance levels, but not for

coal prices (by the LMC procedure, hence also by the MMC procedure). Parameter estimates are

reported in Table 2. We observe a slow adjustment process forall price series (estimates ofc2 exceed

.5) which reverts to a fast adjusting random mean (estimatesof c3 are less than .5) and a random

trend which has a very slow adjustment coefficients particularly for gas (estimates ofc4 exceed .8).

These results indicate good overall statistical support for Pindyck’s proposed class of models: there

are significant TVP effects in two of the three price series examined. Our test conclusions may also

explain why Pindyck’s estimation results signal a poor fit for the coal price series.

Figure 1 shows our estimated price trends [formally, the estimatedφ2tt term from (2.3)] over

the sample period. The trend functions spike at the wake of the late seventies fuel-price shocks;

yet, following their impact, all three revert (slowly) to their respective long-run mean. Interestingly,

the latter is flat for both oil and coal prices, and slopes upward for natural gas. These results may

be contrasted with Slade (1982)’s U-shaped curves, except for gas where in our case a U-shaped

form is visible albeit less markedly than in Slade (1982). Recall however that the series analyzed

by Slade ends in 1978; differing results may thus be driven bythe post 1985 data.

One may note that estimates reported by Pindyck (1999, Table2) signal “corner solution” values

(duly discussed in the paper):ĉ3 = 1.0009 for oil,ĉ4 is set to1 for coal, and the time-varying drift

is omitted for gas in which case the estimated value ofc4 is close to unity. Since we focus on (2.3)

[with (3.1)] for all price series, our estimation results differ numerically from the ones reported by

Pindyck. Differences may also reflect the sensitivity of Kalman filter estimates to filter initializations

9Typically, in the examples considered here, convergence was achieved with much less than 80 iterations.
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Table 2. Parameter estimates for the considered energy price models

Model Type c1 c3 c2 c4 σv1
σv2

σε

Pt= c1+c2Pt−1+φ
1t

+φ
2t

t + ǫt Oil .3508 .4799 .7415 .8898 6.3E-5 .0206 .4031
φ1t

= c3φ1t−1 + v1t Coal .3437 .1150 .8004 .9297 .2814 .0140 .0193
φ2t

= c4φ2t−1 + v2t Gas 2.7144 .0833 .5247 .9613 .1766 .0383 .0080

Model Type λ c2 φ2 σε

Pt= λ + φ2t + c2Pt−1+ǫt Oil .1894 .7869 .0016 .1944
λ = c1 + φ1 Coal .1288 .8976 .0006 .0861

Gas .0035 .9717 .0011 .1194

(a point raised by Pindyck).

Our statistical analysis underscores the merit of the TVP model, and motivates further improve-

ments, for example via multivariate approaches. Such specifications may also prove to be quite

useful to model long-run components of two-factor short-run long-run models for resource prices.10

4. Conclusion

This paper has tested the statistical significance of Pindyck’s (1999) suggested class of econometric

models for the behavior of long-run real energy prices. These postulate mean-reverting prices with

continuous and random changes in their level and trend, using Kalman filtering for the estimation.

In such contexts, the distributions of the test statistics are typically non-standard and depend on nui-

sance parameters. Exploiting simulation-based procedures to address this issue, we have reported

results for both a standard Monte Carlo test and a maximized Monte Carlo test. Our findings lend

support to the proposed TVP class of energy models against the null hypothesis of fixed-coefficient

mean-reverting equations. That is, we have found statistically significant instabilities for oil and

natural gas prices, but not for coal prices.

Our main finding is that there is little evidence in favour of an increasing trend in the price of

oil from 1890 to 1996, although OPEC decisions did leave an imprint in the late seventies. The

same observations apply to the price of coal. However, the natural gas price series which started in

1919 displays a U-shaped trend which clearly slopes upward.Our results regarding the oil price

trend agrees with the long held view of Adelman (2004): the estimated oil price trends shows no

indication of impending scarcity but bears the marks of the OPEC decisions in the post 1973 era.

10Seee.g. Schwartz and Smith (2000), Schwartz (1997), Cortazar and Schwartz (2003), and Bernard, Khalaf, Kichian
and McMahon (2005).
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Figure 1. Estimated price trends

10



Appendix

A. Maximized Monte Carlo tests

Consider a (continuous) test statistic,S, whose distribution under the null hypothesis can be simu-

lated once a finite set of nuisance parameters are specified. Conforming with the notational frame-

work of Section 2, let us denote the nuisance parameter vector θ ∈ Ω, and letΩ0 refer to the

nuisance parameter subspace compatible with the null hypothesisH0 under test.

Denote byS0 the observed value ofS and letSj, j = 1 , . . . , N refer toN i.i.d. random

draws from the null distribution of the statistic (given theparameter valueθ). A maximized Monte

Carlo (MMC) test is defined by the critical region

sup
θ ∈ Ω0

[p̂N (S0 | θ)] ≤ α (A.1)

where

p̂N (S0 | θ) =
NĜN (S0 | θ) + 1

N + 1
, (A.2)

ĜN (S0 | θ) =
1

N

N
∑

i=1

1[0,∞)(Si − S0) , (A.3)

1A(x) =

{

1, if x ∈ A ,

0, if x /∈ A .

Note thatNĜN (S0 | θ) is the number of simulated values of the test statistic not smaller thanS0.

The formula forp̂N (S0 | θ) gives a anempirical p-value for a given parameter vectorθ. Then we

can show the MMC test based on (A.1) has levelα [see Dufour (2006)]:

P

[

sup
θ ∈ Ω0

[p̂N (S0 | θ)] ≤ α
]

≤ α underH0.

The only condition needed to implement this procedure is thepossibility of simulating the relevant

test statistic under the null hypothesis.11 The values ofN andT (neither the number of replications

nor the sample size) are taken as given, and no asymptotic argument is needed.

11For example, forα = 0.05, N can be as low as19. Although, in principle, raisingN will typically increase the
test power and decrease its sensitivity to the underlying randomization, the simulation results reported in Dufour and
Kiviet (1996, 1998), Dufour et al. (1998), Dufour and Khalaf(2001, 2002a, 2002b), and Dufour et al. (2004), suggest
that increasingN beyond 99 has only a small effect on power.
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In this context, given any consistent estimate ofθ that satisfiesH0 (denotedθ̂), a parametric

bootstrap-type critical region can be obtained as:

p̂N (S0 | θ̂) ≤ α . (A.4)

In general, however, nothing guarantees that the level property

P [p̂N (S0|θ) ≤ α] ≤ α underH0

holds. Under specific regularity conditions, the bootstrapp-value may be valid asymptotically in

the sense that

lim
T→∞

{

P[p̂N (S0|θ̂) ≤ α] − P[p̂N (S0|θ0) ≤ α]
}

= 0 (A.5)

wherep̂N (S0|θ0) is the empiricalp-value that one would obtain for the “true” (unknown) nuisance

parameters values. Generic conditions for (A.5) to apply are given in Dufour (2006).

Unfortunately, in the context of the TVP models, (A.5) may easily not hold, for example because

of identification problems [see Dufour (1997, 2003)]. In practice, this means that, if a test based on

(A.4) rejects, this result may be spuriouseven in large samples. Yet bootstrap non-rejections are not

subject to the same limitations: if the bootstrap-type testis not significant, then we can be sure that

the exact MMC test is not significant at levelα. Indeed,

p̂N (S0|θ̂) > α ⇒ sup
θ ∈ Ω0

[p̂N (S0|θ)] > α .

It is thus a good strategy to start the MMC sup-p-value step using a commonly used (e.g., a con-

strained QMLE) estimate ofθ.

B. Kalman Filtering and time varying parameters

This appendix draws heavily on Kim and Nelson (1999, Chapter3). Consider the TVP model (2.3),

which we rewrite for convenience in matrix notation as:

yt = Htβt + Azt + ǫt , (B.1)

βt = Fβt−1 + ηt, t = 1, . . . , T , (B.2)

ǫt
i.i.d.
∼ N[0, R] , (B.3)

ηt
i.i.d.
∼ N[0, Q] , (B.4)
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where

yt = Pt , Ht =
[

1 t
]

, A =
[

c1 c2

]

, (B.5)

βt =

[

φ1t

φ2t

]

, zt =

[

1

Pt−1

]

, zt =

[

1

Pt−1

]

, ηt =

[

v1t

v2t

]

, (B.6)

F =

[

c3 0

0 c4

]

, Q =

[

σ2
v1

0

0 σ2
v2

]

. (B.7)

The prediction equations in the Kalman filter algorithm are given by:

βt|t−1 = Fβt−1|t−1 , (B.8)

St|t−1 = FSt−1|t−1F
′ + Q , (B.9)

whereβt|t−1 is the forecast value ofβt on the basis of information available through datet− 1, and

St|t−1 is its conditional variance. The conditional forecast error and its conditional variance can be

obtained as:

et|t−1 = yt − Htβt|t−1 − Azt , (B.10)

ft|t−1 = HtSt|t−1H
′
t + R . (B.11)

These expressions can be used in the updating equations of the algorithm according to

βt|t = βt|t−1 + Ktet|t−1, (B.12)

St|t = St|t−1 − KtHtSt|t−1 , (B.13)

where the Kalman gain term isKt = St−1|t−1H
′
tf

−1
t|t−1.

If, in addition to the error termsǫt andηit, the initial value ofβ is Gaussian, then the distribution

of yt conditional on information available through timet−1 is also Gaussian, and its log-likelihood

function is:

ln(L) = −(1/2)

T
∑

t=1

ln(2πft|t−1) − (1/2)

T
∑

t=1

e′t|t−1ft|t−1et|t−1. (B.14)

Therefore, given initial values for model parameters and state variables, the log-likelihood function

can be maximized over the sample to yield maximum-likelihood parameter estimates. See Kim and

Nelson (1999) for additional details.
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