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Summary In the literature on tests of normality, much concern has been expressed over
the problems associated with residual-based procedures. Indeed, the specialized tables of
critical points which are needed to perform the tests have been derived for the location-scale
model; hence, reliance on available significance points in the context of regression models
may cause size distortions. We propose a general solution to the problem of controlling the
size of normality tests for the disturbances of standard linear regressions, which is based on
using the technigue of Monte Carlo tests. We study procedures based on 11 well-known test
statistics: the Kolmogorov—Smirnov, Anderson—Darling, Ceamon Mises, Shapiro-Wilk,
Jarque—Bera and D’Agostino criteria. Evidence from a simulation study is reported showing
that the usual critical values lead to severe size problems (over-rejections or under-rejections).
In contrast, we show that Monte Carlo tests achieve perfect size control for any design matrix
and have good power.

Keywords: Normality test; Linear regression; Exact test; Monte Carlo test; Bootstrap;
Kolmogorov—Smirnov; Anderson—Darling; Crémvon Mises; Shapiro-Wilk; Jarque—Bera;
D’Agostino.

1. INTRODUCTION

The problem of testing normality is fundamental in both theoretical and empirical research. In-
deed, the validity of parametric statistical inference procedures in finite samples (in the sense
that their size is controlled) depends crucially on the underlying distributional assumptions. Con-
sequently, there has been extensive focus on whether hypothesized distributions are compatible
with the data. Tests of normality are particularly prevalent because the assumption of normality
is quite often made in statistical analysis, e.g. in econometric studies. In this respect, the reviews
by Mardia (1980), D’Agostino and Stephens (1986, Ch. 9) and Baringéiaais (1989) report

nearly 40 different normality tests. For illustrative examples, see Fama (1976), Lee (1982}t Bera

al. (1984), Harris (1986), Afflecks-Graves and McDonald (1989), Hall (1990), Richardson and
Smith (1993), among others.
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This paper will emphasize procedures applicable in the linear regression framework. We
specifically address the problem of obtaining valid tests of disturbance normality based on sev-
eral statistics already proposed in the literature. Eleven of the leading statistics are considered:
(i) Kolmogorov—Smirnov, (ii) Anderson—Darling, (iii) Craen~von Mises, (iv) Shapiro-Wilk,

(v) Shapiro—Francia, (vi) Weisberg—Bingham, (vii) D’Agostino, (viii) Filliben, and (ix) Jarque—
Bera,; for a survey and references, see D'Agostino and Stephens (1986). These well-known tests
have non-standard null distributions. Thus, tables of approximate critical points are provided
for reference in practical applications. As most tables are derived from Monte Carlo calcula-
tions according to the location-scale model with independent and identically distrilbiggl (
observations, the problem of adequate use in regression contexts has long been recognized.

It was shown by Pierce and Kopecky (1979) that standard tests of normality (which account
for an unknown mean and variance) are asymptotically valid when computed from regression
residuals. These authors essentially studied the convergence of the empirical process of residuals.
Inlocation-scale contexts, the asymptotics of empirical processes and associated tests are well un-
derstood; see, for example, Durbin (1973a, b), Stephens (1976) and Pollard (1984). With respect
to the regression model, Pierce and Kopecky have proved that the limiting process is the same
for the least-squares residuals case as.fo observations. Consequently, statistics based on
the sample process of residuals have the same asymptotic null distribution as in the location-scale
model. Related findings were obtained independently by Loynes (1980) and Mukantseva (1977);
see also Meester and Lockhart (1988) for a discussion of the case of designs with many blocks.
These conclusions are based on finite dimensional asymptotics. In contrast, Mammen (1996)
reconsidered the limiting behavior of tests of fit and the underlying processes allowing the di-
mension of the model to increase with the sample size. This author showed that in such a setting,
residuals-based goodness-of-fit (GOF) procedures may break down in the following sense: even if
the null hypothesis is true, standard tests tend to reject with high probability. Further recent results
on empirical processes and associated tests in more general econometric models are available in
Andrews (1988a, b, 1994).

The finite sample performance of regression-based normality tests has also received attention
in the literature. From Monte Carlo experiments, Huang and Bolch (1974) and White and Mac-
Donald (1980) concluded that computation of normality tests from residuals does not invalidate
them. Yet Pierce and Gray (1982) and Weisberg (1980) have pointed out difficulties with the
representativeness of this result and recommend the use of considerable caution in practical ap-
plications. These authors emphasize that reported Monte Carlo results depend crucially on specific
experimental settings. The number of regressors, the sample size and the design matrix can all
affect the validity of residual-based tests, in the sense that size distortions are quite likely (see
the comments on the multiple regression case in D’Agostino and Stephens (1986, Section 9.6)).
Similar concerns about size control are expressed by Petradr(1986), Jarque and Bera (1987),
Pfaffenberger and Dielman (1991) and Anderson (1994). Indeed, to obtain a valid power study,
Pfaffenberger and Dielman derive size-corrected significance points from independent simulations
pertaining to the particular regressor data sets considered.

Given the above, it seems clear that for the regression model, commonly tabulated critical
points of standard normality tests can be quite misleading and should be improved. In this
paper, we re-emphasize this fact and propose the use of the Monte Carlo (MC) test technique
(Dwass, 1957; Barnard, 1963; Birnbaum, 197kEl, 1986; Dufour, 1995; Dufour and Kiviet,

1996, 1998; Kiviet and Dufour, 1997) in order to obtain finite sampl@lues. In particular,
we implement the procedures in Dufour (1995) relating to test statistics that are not necessarily
continuous. This technique allows one to obtain exact (randomized) tests, in the sense that the
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probability of a type | error is known, whenever the null distribution of a test statistic does not
depend on unknown parameters and can be simulated. Further, very small numbers of replications
of the test statistics are required for that purpose. On observing that all standard normality test
statistics are pivotal when applied to regression residuals, we suggest that MC testing provides
an attractive alternative to usual asymptotic approximations. Indeed, the latter become irrelevant.
Further, the proposed techniques can be extended easily to test other distributions (besides the
normal), but we shall not stress this possibility here.

These finite sample properties hold whenever the regressor matrix is fixed or is random but
independent of the disturbance vector (strict exogeneity). In the latter case, the results obtain
through conditioning upon the regressor matrix. Even though this setup extends considerably
earlier finite sample results in the area of testing normality (which are largely limited to testing
the normality ofi.i.d. observations), it is clear our regression model excludes many econometric
setups, such as models with lagged dependent variables (dynamic models), weakly exogenous
regressors or noii.d. disturbances (heteroskedasticity, serial correlation). However, it is worth-
while noting that the simulation-based procedure proposed here yield ‘asymptotically valid’ tests
whenever the test criterion used has a nuisance-parameter-free null distribution under a class of
data-generating processes which includes the (more restricted) ones considered here. For arelated
discussion, the reader may consult Dufour and Kiviet (1998).

MC tests are closely related to the parametric bootstrap, although with a fundamental differ-
ence. Whereas bootstrap tests are on the whole asymptotic (as the number of simulated samples
goes to infinity), MC test methods yield provably exact tests, in the sense that the number of
replications used is explicitly taken into account. Bootstrap methods have recently been sug-
gested for GOF problems; see, for example, S¢titd. (1993) and Henze (1996). These authors
present the bootstrap as an alternative asymptotic approach to treat empirical processes with es-
timated parameters. Monte Carlo studies were carried out for various parametric models with
the conclusions that bootstrap Kolmogorov—Smirnov and @rawon Mises tests achieve level
control. Although Stutet al. examined normality tests in the location-scale context as a special
case, the problem has not apparently been considered from a finite sample perspective. Several
authors have also advocated the use of the bootstrap for different (although related) specification
tests in non-linear contexts; see, for example, Andrews (1997), Beran and Miller (1989) and
Linton and Gozalo (1997). For further discussion of bootstrap methods, the reader may consult
Efron (1982), Efron and Tibshirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993)
and Shao and Tu (1995).

We also investigate the size and power of suggested tests in a Monte Carlo study across six
error distributions. We consider several choices for the sample size, the number of regressors and
the design matrix. In addition, we examine the effect on power of increasing the number of MC
replications. The results show that MC tests overcome the usual size problems and achieve good
power, even with small numbers of MC replications.

The paper is organized as follows. In Section 2, we set notation and review the test statistics
under consideration. In Section 3, we discuss the pivotal character of the test statistics and present
the MC test procedure. Section 4 reports the results of the simulation experiment. We conclude
in Section 5.

2. MODEL AND TEST STATISTICS
We consider normality tests in the context of the linear regression model:
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Y = X8 +u, 2.1)

whereY = (y1, ..., Yn)' is a vector of observations on the dependent variabis,the matrix of
n observations ok regressorsg is a vector of unknown coefficients ands ann-dimensional
vector ofi.i.d. disturbances; furtheiX is fixed or independent af. The problem is to test

Ho: f(u) =¢U;0,0),0 >0, (2.2)

wheref (u) is the unknown probability density function (p.d.f.) ap@i; «, o) isthe normal p.d.f.

with meanu and standard deviation. The assumption that has mean zero is not restrictive
when X includes a constant tereg = (1,...,1). WhenX =, the above regression model
reduces to the location-scale model. In this context, we shall consider normality tests based on
the least-squares residual vector

0=y— XB = Mxu, (2.3)

whereg = (X’X)"1X’y andMx = I, — X(X'X)"1X'. Letl, < Oy < --- < Opp denote the
order statistics of the residuals, and

n n
F=n-l Y6, §2=nty a2 2.4)
i=1 i=1

The tests we shall study can be grouped into three categories: empirical distribution function
(EDF) tests, moment tests and correlation tests.

2.1. EDF tests

EDF tests are based on a measure of discrepancy between the empirical and hypothesized distribu-
tions. The most familiar EDF tests are: the Kolmogorov—Smirro8)test (Kolmogorov, 1933;
Smirnov, 1939), the Craer=von Mises Y M) test (Cranef, 1928) and the Anderson—Darling
(AD) test (Anderson and Darling, 1954). The finite sample distributions ofAtbeand V M
statistics are quite complicated but an asymptotic theory is available. F&t $satistic, the
exact and limiting distributions are non-standard and even asymptotic points must be estimated;
this fact was first observed by Lilliefors (1967) who gave significance points by Monte Carlo cal-
culations. To improve performance in finite samples, Stephens (1974) has proposed modifying
the EDF statistics through multiplication by an appropriate correction factor; this author supplies
adjustment formulas and approximate critical points for use with modified criteria. Revised sig-
nificance points are also available in D’Agostino and Stephens (1986, Table 4.7). As pointed out
above these pertain to the location-scale model.

The statistics are defined as follows:

KS=maxD™", D7), (2.5)

whereD™ = maxi<j<n{(i/N) — 2} andD~ = maxi<i<n{Z — (i — 1)/n},
n
VM =)z — (2 — /2n}? + (1/12), (2.6)
i=1
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n
AD=-n—n"1>"2 - 1){InZ +In(1 - 20110}, (2.7)
i=1
wherez; = ®(Gip/s),i = 1,...,n, and®(.) denotes the cumulativi (0, 1) distribution func-

tion. In this article, we study both standard and modified (following Stephens) statistics; the
modified statistics will be denoteddl S;, V Mg and ADs.

2.2. Moment tests

Moment tests derive from the recognition that the third and fourth moments of tBel)
distribution are equal to 0 and 3, respectively. Hence, deviations from normality may be assessed
using the sample moments, i.e. the coefficients of skewrggsnd kurtosis K u):

n n
Sk=n"tY"0%/(6H¥2 Ku=n"1> "0l /(6% (2.8)
i=1 i=1

The literature on the null distributions of these statistics and their joint density is vast. Although
very few finite sample results are known, asymptotic theory is well developed and tables have
been available for some time (see D’Agostino and Stephens (1986, Ch. 6)). The skewness and
kurtosis tests may be implemented as two distinct tests. Procedures invBkarglK u jointly

are also in common use. One popular example is the Jarque-BBjddst (Jarque and Bera,
1980, 1987) based on a Lagrange multiplier criterion:

—nlYskze L iku 32
JB_n{G(Sk) + 5a(Ku 3)}. (2.9)

As pointed out by Jarque and Bera (1987, p. 165), their method was independently suggested
by Bowman and Shenton (1975) as an omnibus procedure combBiragd Ku in one test
statistic. Jarque and Bera have shown that the test derives from the LM principle in the context
of the Pearson family of probability density functions. Under the null and appropriate regularity
conditions, thel B statistic is asymptotically distributed a£(2). As is typically the case with

the various normality tests, the exact distribution is intractable. We have also considered moment
tests wheré? is replaced by?, which we denotéSk;, K uyx andJ By, respectively.

2.3. Correlation tests

Correlation tests are based on the ratio of two estimates of scale obtained from order statistics: a
weighted least-squares estimate given that the population is normally distributed and the unbiased
estimate of scale for any population, i.e. the sample variance. The weights originally proposed
for the Shapiro—Wilk §W) test (Shapiro and Wilk, 1965) are the optimal weights in the sense of
GLS estimation and are difficult to compute:

QL aitin? cv-1
SW=-=—=—_"a =(ay,..., = 2.10
(n —k)s? (8 %) (c'V—2c)l/2 (2.10)
wherec = (cy, ..., cy)’ andV are respectively the vector of expected values and the covariance

matrix of standard normal order statistics. Shapiro and Wilk (1965) supply a table of weights and
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significance points for location-scale models withe 50; these are reproduced in D’Agostino
and Stephens (1986, Tables 5.4 and 5.5). For large samples, Shapiro and Francia (1972) suggest
ignoring the covariance term in the formulae for deriving the weights; in other words, the Shapiro—
Francia GF) test treats the ordered observations as if they were independent:
(Zinzl bi ljin)z , c
SF= -l b= (b1,....by) = CoE

The SF statistic may also be interpreted as the correlation coefficient beteaad the order
statistics of the residuals. Shapiro and Francia supplied the weights and significance points for
location-scale models with < 100; D’Agostino and Stephens (1986, Table 5.2) provides the
critical values ofh(1 — SF) for location-scale models with < 1000. Royston (1982a, b, c) has
also published algorithms for computing the distribution of 8\& statistic, but these only apply
to simple location-scale models.

D’Agostino (1971) proposed considering a linear combination of the ordered observations that
does not require a table of weights. The D’Agostiiy) Etatistic may be computed as follows:

YL Gindi —(n+1)/2)
- n3/2{(n _ k)SZ}l/Z

D’Agostino (1971, 1972) provide significance points for location-scale modelsrwith?000;
these are reproduced in D’Agostino and Stephens (1986, Table 9.7). Several other n®#ified
statistics have been suggested. We consider the Weisberg-Bingt@&ntést (Weisberg and
Bingham, 1975) and the FilliberF@) test (Filliben, 1975). Th&V B statistic derives from the

SF statistic substituting the following far:

. ai-G®
G=9o {7n+(1/4)},|_1,...,n, (2.13)

where ®~1 refers to the inverse of the standard normal cumulative distribution function. The
critical values of the test are those of tBd- test. TheF B criterion may be viewed as the
correlation coefficient between the ordered residuals and the order statistics medians from the
standard normal distribution. Filliben produced weights and critical points for the location-scale
model withn < 100.

(2.11)

(2.12)

3. MONTE CARLO TESTS FOR NORMALITY

All of the existing tables of critical points described above were generally derived from Monte
Carlo simulations following thei.d. location-scale model. As an alternative to these, we shall
employ the technique of MC tests. To provide necessary background, we first discuss relevant
invariance properties of the statistics considered. The MC test procedure is described next.

3.1. Pivotal property of standardized residuals

From (2.5) to (2.12), we see that all the test statistics can be computed from the standardized
residual vectofi/s. Using (2.3), we can write:

A~

— u —
- (@a/(n—kpl2

Myxu _
(U/qu)l/Z -

My w

27

/s (n—k2 (3.14)
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where the components of = u/o arei.i.d. N(0, 1) whenu ~ N(O, 621,,), so that/s follows

a nuisance-parameter free distribution. The distribution of the scaled vetadlepends on the
(known) regressor matriX, but not on the regression parametgsndo. WhenX is fixed, this

entails thatli/s follows a nuisance-parameter-free distribution. Wieis viewed as random but
remains independent af the marginal distribution afi/s may depend on the parameters of the
distribution of X, but its conditional distribution giveX only depends orX. Consequently, in

both situations, residual-based test statistics are location and scale invariant, and their exact null
distributions can be simulated easily.

3.2. Monte Carlo test procedure

Let T be a real-valued test statistic such that a null hypothesis of inteligst.g. model (2.1)
with u ~ N(0, o2ly), is rejected whefl is large, i.e. whe > ¢, where the constamatdepends
on the level of the test, and suppo§eis pivotal. In other words, given a statistical model
(2, A, P) whereQ is a sample spaced is aoc —algebra of subsets @ andP is a family of
probability measures od which include the sePy C P of measures compatible witHp, we
assumel = T(w) is a mapping front2 to R (T : @ — R) such that the survival function
GXX) = P(T = x) = P[{lw € Q : T(w) > x}], or equivalently the distribution function
F(x) = P(T < x), isthe same for alP € P (so that the critical regioft > cis similar). Note
the functionG : R — [0, 1] does not depend emand must be viewed as fixed (hence independent
of any random variable defined @) in the present context. Theéh(c) = « is the size of the
critical regionT > c. Further, for any4-measurable random variablg = To(wo), wo € 2, the
transformed random variab@®(Tp) = G{To(wo)}, wo € R, satisfiesP{G(Ty) < o} = «a, where
P{G(Tp) < x} = Plwg € @ : G{T(wo)} < x] for anyx € R. Note the random variablé(Tp)
can be interpreted as the conditional probabiityT > To|To) whenT andTp arei.i.d. (defined
on the appropriate product measure space) each with the survival futon further, if Tg
denotes the test statistic computed from data (a random variable}yahe observed value of
To based on specific realized data (taken as given (fix&{)Jp) = P(T > To|To = 7o) is the
‘realized’ p-value of the test statisti€.

Now suppose we can generdteindependent realizationg, ..., Ty, from which we can
compute an empiricgb-value function:

A NGn(x) + 1
X)=——""— 3.15
PN (X) N1 (3.15)
where \
A 1 _ _JL xeA
Gn(X) = N ; 110,00) (Ti — %), 1a(X) = {0’ X¢A " (3.16)
The associated MC critical region is a randomized critical region defined as
PN (To) < @ (3.17)

where pn (Tp) may be interpreted as an estimate®fTp). When the distribution ofTp is
continuous, we have:

[ {a(N + 1)}

N1 ,for0<a <1, (3.18)

P{pn(To) <} =

(© Royal Economic Society 1998
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where | [x] denotes the largest integer less than or equal; teee Dufour (1995), Dufour and
Kiviet (1996, 1998) or Kiviet and Dufour (1997). Giveliy = 7o, the quantitypn (7o) may be
interpreted as a (randomized) ‘realizgdvalue associated wiffy. Thus, ifN is chosen such that
a(N+1)isaninteger, the critical region (3.17) has the same size as the critical @gloh < «.
The MC test so obtained is theoretically exact, irrespective of the nuMloéreplications used.

The above procedure is closely related to a parametric bootstrap, but with a fundamental
difference. Bootstrap tests are, in general, provably validNor oco. In contrast, we see
from (3.18) thatN is explicitly taken into consideration in establishing the validity of MC tests.
Although the value oN has no incidence on size control, it may have an impact on power which
typically increases withN.

Note that (3.18) holds for tests based on statistics with continuous distributions. In the case of
the K S criterion, ties have non-zero probability. Nevertheless, the technique of MC tests can be
adapted for discrete distributions by appeal to the following randomized tie-breaking procedure
(see Dufour (1995)).

Draw N + 1 uniformly distributed variatedlp, Wi, . .., Wy, independently ofj and arrange
the pairs(Tj, W) following the lexicographic order:

(Ti, W) = (Tj, Wj) < (T > Tj or (Tj = Tj andW > Wj)}. (3.19)

Then, proceed as in the continuous case and compute

- NGn(X) + 1
= = 3.20
P (X) N+l (3.20)
where
- 1y 1y
GNOO =1— 5> Loy X = T) + 5 - L0/(Ti =)o) (Wh —Wo).  (3.:21)
i=1 i=1

The resulting critical regiopn (Tp) < o has the same level as the regiGiTg) < «, again
providedo (N + 1) is an integer. More precisely,

[ {a(N + 1)}

,forO<a <1
N+ 1 =%=

P{Pn(To) < a} < P{Pn(To) <o} =

If To, T1, ..., Ty are all distinct,pn (To) = Pn(To).

The procedures discussed in this section can be readily extended to other GOF hypotheses.
Indeed, the central properties we have exploited here are the following: (i) the standardized error
vector has a known null distribution, and (ii) the test statistics depend only on the empirical
distribution function of residuals. These properties are preserved for: (i) all error distribution
functions which are completely specified up to a scale parameter, and (ii) any relevant GOF
criterion based on the empirical process of residuals. The latter generalization allows for a natural
class of GOF statistics, although others may be worth consideration. Of course, the choice of
which statistic to employ depends on the specific hypothesis at hand.

4. SIMULATION EXPERIMENT

The simulation experiment was performed as follows. The model used was (2.1). For each
disturbance distribution, the tests were applied to the residual vector, obtairied=adiyu.
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Table 1.1. List of abbreviations

Notation  Test Reference

KS Kolmogorov—Smirnov ~ Equation (2.5)

KS Modified KS D’Agostino and Stephens (1986, Table 4.7)
VM Cramgr—von Mises Equation (2.6)

V Ms Modified VM D’Agostino and Stephens (1986, Table 4.7)
AD Anderson-Darling Equation (2.7)

ADs Modified AD D’Agostino and Stephens (1986, Table 4.7)
JB Jarque—Bera Equations (2.9) and (2.4)

J By Jarque—Bera (usimg?) Equations (2.9) and (2.4)

SW Shapiro—-Wilk Equation (2.10)

SF Shapiro—Francia Equation (2.11)

WB Weisberg-Bingham Equations (2.11) and (2.13)

D D’Agostino Equation (2.12)

FB Filliben Filliben (1975)

Table 1.2. Critical points for standard normality tests

Test Reference Sample size

25 50 100 300
KS Lilliefors (1967) 0.173 0.886/n 0.8864/n  0.8864/n
VM D’Agostino and Stephens (1986, Table 4.10)  0.12125 0.1225 0.125 0.126
AD D’Agostino and Stephens (1986, Table 4.10) 0.71625 0.7285 0.742 0.752
KSs D’Agostino and Stephens (1986, Table 4.7)  0.895 0.895 0.895 0.895
VMs  D’'Agostino and Stephens (1986, Table 4.7)  0.126 0.126 0.126 0.126
ADsg D’'Agostino and Stephens (1986, Table 4.7)  0.752 0.752 0.752 0.752
SF D’Agostino and Stephens (1986, Table 5.2)  1.99 2.31 2.56 2.67
WB D’Agostino and Stephens (1986, Table 5.2)  1.99 2.31 2.56 2.67
SW D’Agostino and Stephens (1986, Table 5.5)  0.918 0.947 n.a. n.a.
D D’Agostino and Stephens (1986, Table 9.73-2.97 —2.74 —2.54 —2.316

0.74 1.06 1.31 1.528
FB Filliben (1975) 0.958 0.977 0.987 n.a.

In thedpresented table, asterisks indicate the highest computed power achieved in each column. The
modified EDF statisticK Ss, V Ms and ADs are monotonic transformations of the original critei&,

V M and AD, respectively, and so(}/ield the same M@alues. The result for tests based on standard
critical values may not be reported in a few cases ?lWand F B in Table 3) because the required

critical values have not apparently been tabulated for the regression design considered.

Hence, there was no need to specify the coefficient vegtdrhe matrixX included a constant
term, a set ok; dummy variables and a set of independent standard normal variates. Formally,

. . _ )k
X_{ m Xt X }’X(l) _{ On—ky k) } (4.22)
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Table 2. Empirical size and power of normality tests;d. observations

Standard Tests MC Tests
N B C r Ln t N B C r Ln t
n=25
KS 5.3 7.2 902 39.6 98.5 1438 52 7.3 90.0 38.5 98.4 14.6
KS 5.2 70 905 393 98.5 14.7 52 7.3 90.0 38.5 98.4 14.6
VM 5.6 87 936 516 99.7 18.6 51 8.3 93.0 49.4 99.6 17.2
VMs5.2 81 933 504 99.7 17.9 51 8.3 93.0 49.4 99.6 17.2
AD 5.6 9.1 937 575 99.9 20.2 5.2 8.6 93.0 54.8 99.8 19.2
ADs 5.1 83 934 558 999 194 5.2 8.6 93.0 54.8 99.8 19.2
JB 29 09 895 3738 959 21.2 5.2 2.1 91.4 47.8 97.5 26.3
JB¢ 1.8 04 872 316 941 174 5.2 3.0 91.0 51.2 98.2 25.6
SW 5.2 84 922 64.2 100 21.1 5.4 8.7 92.0 63.3 99.9¢° 213
SF 58 51 940 615 999 26.5 5.2 4.6 93.7 58.3 99.8 25.5
WB 5.7 51 940 615 999 264 5.3 4.7 93.7 58.4 99.8 25.1
D 54 71 934 331 97.3 224 5.2 7.0 92.6 30.7 96.5 21.3
FB 5.3 44 940 594 999 26.1 5.2 4.3 938.8 57.7 99.8 25.4
n=>50
KS 46 115 994 68.0 100 20.5 49 117 99.3 67.7 *100 20.8
KS 48 120 994 69.1 100 21.2 49 117 99.3 67.7 *100 20.8
VM 54 155 99.7 83.7 100 27.8 50 147 99.7 81.8 *100 26.8
VMs51 149 99.7 83.0 100 27.2 50 147 99.7 81.8 *100 26.8
AD 53 181 99.7 89.1 100 31.0 50 16.9 99.7 87.6 100 29.8
ADs 5.0 172 99.7 885 100 30.2 50 16.9 99.7 87.6  *100 29.8
JB 3.7 0.8 995 76.0 100 394 4.8 3.0 99.5 79.8 99 71.8
JB¢ 2.7 05 994 727 100 36.1 4.9 4.9 99.5 82.9 00 41.0
SW 43 262 994 9438 100 26.4 50 27.8 994 94.8<  100* 27.2
SF 51 103 99.8 919 100 41.3 50 10.0 99.8 90.9 99 40.5
WB 51 101 998 918 100 415 5.0 9.9 99.8 90.8 100 40.5
D 53 137 998 56.4 100 39.0 52 131 99.7 53.6  *100 36.9
FB 5.6 9.9 99.8 919 100 43.4 5.0 8.8 99.7 90.0 100 41.1

(cont.)

where @ j) denotes ari, j) matrix of zeros X, includesk — k; — 1 regressors drawn asd.
standard normal. Sample sizesof 25, 50, 100 (and 300 in certain cases) were usedas set

as the largest integer less than or equaftoandk; = 0, 2, 4, ..., k— 1. We have also examined

the cases where (X = «p, i.e. the location-scale model, and (X)includes a constant term and

k — 1 regressors drawn from a Cauchy distribution. As mentioned earlier, the regressors here are
treated as fixed across replications, which excludes many cases of interest in econometrics such
as lagged dependent variables (dynamic models).
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Table 2. Continued

Standard Tests MC Tests
N B C r Ln t N B C r Ln t
n =100
KS 50 235 100 954 100 335 48 227 100 94.5 106 319
KS 49 232 100 952 100 331 48 227 100 94.5 106 31.9
VM 48 320 100 99.1 100 428 49 314 100 99.0 106 421
VMs49 323 100 99.1 100 43.1 49 314 100 99.0 106 421
AD 5.0 40.7 100 99.8 100 48.1 48 39.1 100 99.7 106 47.1
ADs 49 40.0 100 99.8 100 479 48 39.1 100° 99.7 106 47.1
JB 3.9 47 100 99.1 100 62.8 50 126 100 98.6 106 63.8
JBx 3.4 52 100 99.0 100 60.2 49 192 100 99.1 106 62.9
SF 46 333 100 999 100 617 48 326 100 99.9¢ 1000 61.4
WB 4.7 324 100 999 100 622 48 314 100 99.9¢ 100 61.6
D 51 290 100 825 100 629 52 263 100 79.8 106 60.5
FB 49 291 100 999 100 63.1 48 28.0 100 99.9* 100* 62.1

The disturbances were generated from several distributions: standard normal, Cauchy, log-
normal, beta(2,3), gamma(2,1) (denotddC, LN, B, I' respectively) and Studemt5). We
assessed the performance of all the tests reviewed above at the nominal size of 5%. With the
exception of theD test, all were treated as one-sided tests; the relevant critical points for the
standard tests are given in Table 1.2. Tables 2 to 5 report the rejection percentages among 10 000
replications.

The MC procedures illustrated in Tables 2 to 4 are based on 99 simulated samples (79 in the
case of theD statistic). We have also examined the effect on power of increasing the number
of simulated samples. Results for these experiments are presented in Table 5 Nvkere
19,29,...,99 199 ...,499. For theD statistic, N was set to 3979, 199 and 399. In the
presented tables, asterisks indicate the highest computed power achieved in each column. The
modified EDF statisticK S;,V Ms and ADs are monotonic transformations of the original criteria
KS, VM andAD, respectively, and so yield the same M@alues. The results for tests based
on standard critical values may not be reported in a few cases$likeand FB in Table 3)
because the required critical values have not apparently been tabulated for the regression design
considered. More complete results (with graphs) are available in a technical report (Biéibur
1997). Our conclusions may be summarized as follows.

4.1. Test size

The location-scale model. For the simple location-scale model, all the tests exceptltBe
procedure control size reasonably well (see Table 2). The EDSYiand theD tests appear
adequate. While th& F, W B and F B tests tend to over-reject, the distortions are not severe.
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Table 3. Empirical size of normality tests based on regression residuals

n=25 k=5 n=>50 k=7
Standard tests MC tests Standard tests MC tests
kq: 0 2 4 0 2 4 0 2 4 6 0 2 4 6
KS 52 116 286 52 53 52 5.3 79 157 294 52 50 51 50
KS 50 114 282 52 53 52 5.5 81 163 301 52 50 51 50
VM 6.8 127 283 52 52 50 74 105 189 339 51 50 49 49
VMs 64 120 27.1 52 52 50 6.9 99 179 325 51 50 49 49
AD 6.4 105 22.0 52 52 53 7.2 95 159 269 52 50 48 438
ADs 57 9.7 20.7 52 52 53 6.7 89 149 257 52 50 48 438
SF 57 84 146 53 52 50 5.2 6.5 9.2 137 50 53 52 438
SW 51 6.2 10.2 55 53 52 4.2 4.1 5.0 6.9 49 50 50 48
WB 57 8.4 145 54 52 50 5.2 6.5 9.2 138 50 53 52 438
D 5.0 6.6 114 50 53 51 5.1 57 76 124 50 51 48 52
FB 5.2 79 139 54 51 51 5.7 73 103 153 51 53 52 47
JB 29 4.8 6.7 52 52 48 3.9 5.1 6.4 8.4 50 51 50 47
J By 0.1 0.2 0.4 51 50 51 0.3 0.5 0.8 1.0 48 51 49 50
n=100k=11
Standard tests MC tests

k1 0 2 4 6 8 10 0 2 4 6 8 10
KS 56 80 133 201 326 476 47 50 50 47 47 50
KS 55 7.9 131 19.7 322 472 47 50 50 47 47 50
VM 74 9.6 150 218 331 4838 49 48 48 49 48 50
VMs 76 9.7 151 222 334 493 49 48 48 49 48 50
AD 78 9.8 135 189 279 399 48 47 50 49 47 49
ADs 76 95 132 185 276 394 48 47 50 49 47 49
SF 48 5.1 6.6 86 112 154 50 45 49 50 46 438
WB 49 52 6.8 88 114 157 50 45 49 50 47 49
D 51 53 6.3 79 108 154 53 48 51 51 49 51
FB 49 53 7.0 90 119 16.2 50 45 49 51 47 48
JB 41 47 5.8 7.1 89 10.2 48 48 48 49 49 51
J By 21 16 15 1.4 1.3 15 52 47 50 50 48 47

(cont.)

However, thel B test substantially under-rejects. The sizes of all MC tests correspond closely to
the nominal value of 5%.

The regression model. From the results in Table 3, we can see that the test performances in
the regression context can be much worse than for the location-scale model. Although the tests
appear adequate when the explanatory variables are generated as standard normal, the sizes of all
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Table 3. Continued

n=300k=17 Cauchy regressors
Standard tests Standard tests; k) =

k1 0 2 4 6 8 10 12 14 16 (256) (50,8 (10011 (300,17
KS 6.7 81 99 12.7 16.6 21.8 279 352 439 10.9 11.3 111 10.7
KS 6.2 76 93 12.0 159 20.8 26.6 34.0 427 10.7 11.8 10.8 10.1
VM 70 83 103 129 16.1 205 26.9 335 423 14.8 15.3 14.7 125
VMs 7.0 89 104 13.0 16.2 206 271 336 424 13.8 14.5 14.5 125
AD 74 85 99 12.0 145 179 224 28.0 344 12.9 13.6 14.4 12.5
ADs 75 71 10.0 121 146 181 225 282 34.6 11.9 12.9 14.2 12.6
SF 6.3 7.3 7.2 8.3 84 10.1 118 135 16.2 10.3 9.1 7.9 8.8
SW _- = = — — — — — — 7.3 5.0 — —
WB 64 5.1 7.5 8.5 86 104 121 138 16.6 10.3 9.2 8.2 9.1
D 46 5.3 5.2 5.7 6.7 7.6 9.2 10.8 132 8.3 7.5 7.5 6.5
FB - = = — — — — — — 9.9 10.2 8.5 —
JB 45 51 5.5 5.8 6.5 7.1 8.2 8.8 9.8 6.1 7.3 7.8 7.6
JBc 80 71 6.0 53 49 4.5 4.1 3.8 3.7 0.3 0.8 1.5 51

tests vary substantially from the nominal 5% for all other designs, irrespective of the sample size.
More specifically, (i) the EDF tests consistently over-reject and the modified versions over-reject
by the same magnitude, (ii) the correlation tests over-reject but to a lesser extent, (iii) the moment
tests based omare severely undersized and, (iv) the moment tests basédioder-reject when

the number of dummy variables relative to normal regressors is small and over-reject otherwise.
In contrast, all MC tests achieve perfect size control for all sample sizes.

An interesting experiment that bears on this problem is reported in Weisberg (1980). Weisberg
had pointed out that in the context of normality tests, Monte Carlo results based on data sets
where all explanatory variables are drawn from the uniform or standard normal distribution are
not representative and that size problems may occur. He demonstrated this with a specific data set
for the SW test witm = 20. The analysis here extends this observation in two important ways.
First, we show that problems can occur &F conventional tests. Second, the design matrices
we consider involve samples as large as 100 and 300 and are quite likely to be encountered in
econometric practice. An intuitive explanation for the effect of dummy variables on test size is
the following. Residuals based on normal regressors may mimig.dn series ifk is small
enough, relative to. The appended indicator variables cakseesiduals to be zero, and these
should be excluded from the test procedure (but are not). This provides a simple example where
standard distributional theory fails, while our approach works without any difficulty. Regressors
drawn form a Cauchy distribution (see Table 3) provide another although less extreme example
of such situations. Note, finally, that in Table 3 the level does not appear to be better controlled
as the sample size increases. This is simply due to the fact that, in this experiment, the number
of regressors increases with sample size.
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Table 4. Empirical power of MC normality tests based on regression residuals

B C r Ln t B Cc r Ln t
KS n=25 4.5 74.3 22.6 79.8 127 n=25 3.6 80.8 24.6 84.1 14.9
VM k=5 4.2 81.0 28.6 87.4 152 k=5 2.9 86.6 28.4 910 18.1
AD kg =0 4.5 82.7 31.7 89.3 166 k1 =2 33 87.4 333 92.9 195

SF 3.8 83.7 34.9 90% 18.6 3.0 87.1 375 94.0 21.0
SwW 6.0 80.1 358 90.7 154 4.8 85.3 421 95 19.0
WB 3.8 83.7 34.9 907 185 3.0 87.1 37.6 94.0 21.0
D 5.3 81.3 19.9 814 15.3 6.4 84.0 21.4 84.2 16.2
FB 3.6 84.0 344 90.6 18.8 2.9 873 37.0 93.8 21.2
JB 2.5 83.5 32.3 88.8 199 2.1 85.2 34.0 90.2 21%6

J By 9.8 69.4 20.4 80.3 9.8 998 76.1 32.4 91.0 13.6

KS n=25 4.0 86.6 21.7 90.9 145
VM k=5 2.1 91.5 26.7 94.6 20.1
AD k=4 2.2 91.8 33.0 96.6 21.6

SF 2.4 915 40.5 97.7 23%6
Sw 3.6 91.0 464 987 222

WB 2.4 91.5 40.5 97.7 23.6
D 7.5 88.4 22.3 88.8 17.9
FB 2.2 91.86 39.9 97.6 23.6
JB 1.9 87.9 36.8 93.0 23.4
J By 9.0 827 43.5 97.8 18.1

KS n=>50 6.2 96.9  47.2 99.0 204 n=50 45 97.7 476 99.2 21.6
VM k=7 5.9 98.6 59.6 99.8 261 k=7 3.9 98.9 59.4  99.8 28.7
AD kg =0 6.7 98.8 659 99.8 289 k=2 4.6 99.1 67.1 999 314

SF 5.9 98.7 715 999 33.1 4.8 99.0 73.8 99%9 34.8
SW 15.2 97.0 732 99.9¢ 21.6 15.0 98.1 785 99.9° 25.1
WB 5.9 98.7 71.3 999 33.2 4.7 99.0 73.8 99%9 34.8
D 8.8 98.6 39.1 98.8 29.1 10.0 98.9 40.6 99.930.1
FB 5.3 98.& 70.7 99.9 337 4.3 99.1 73.0 99.9 351
JB 2.1 98.6 64.1 99.7 35%0 1.7 98.7 65.5 99.8 35'8
J By 18.3F 954 59.9 99.5 19.9 192 96.6 69.1 98.8 23.3
(cont.)

4.2. Test Power

The location-scale model. Itis evident from Table 2 that MC tests correct for size and achieve
good power. Overall, we do not observe any significant power loss for tests having comparable
size. When interpreting the power of the correlation tests, keep in mind that the st&igard
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Table 4. Continued

B c r Ln t B Cc r Ln t
KS n=50 4.5 98.2 48.9 99.6 20.8 n=50 5.2 98.9 52.8 99.8 20.0
VM k=7 2.8 99.3 56.2 99.8 312 k=7 21 99.6 53.8 100 324
AD Kk =4 3.5 99.4 65.8 99.9 340 k;=6 2.6 99.7 649 106 36.1

SF 3.6 99.4 75.9 99.9 38.0 2.8 99.6 775 100 40.6
Sw 12.8 98.9 831 100¢ 29.8 11.9 99.4 8713 100 334
WB 35 99.3 75.7 99.9 38.1 2.7 99.6 77.3 100 40.6
D 10.8 99.2 403 99.3 31.3 13.1 99.4  40.9 99.5 32.9
FB 3.1 99.4 749 999 384 2.6 99.6 76.4 100 40.8
JB 1.4 98.9 659 99.8 38.2 11 99.1 66.6 99.8 40.0
J By 18.6° 974 773 99.9 27.9 173 983 828 100 324

KS n=100 9.7 100 806 106 331 n=100 7.4 100 80.2 100 34.0
VM k=11 9.8 100 91.1 106 438 k=11 7.2 100 90.8 100 46.1

AD Kk =0 125 100 946 100 483 k= 10.0 100 94.6 100 50.7
SF 16.0 100 97.2* 100¢ 527 140 109 97.5* 100 55.4
WB 154 100 97.2* 100¢ 529 13.5 100 97.5* 100 55.5
D 17.1 100 66.6 100 50.7 195 100 67.2 100 51.9
FB 13.6 100 96.9 100 53.9 12.0 100 97.2 100 56.0
JB 6.7 100 94.1 100 553 46 100 939 100 57.0°
J By 42.1* 999 938 100 329 45.% 999 958 100 36.2

KS n=100 6.8 100 80.2 106 332 n=100 6.7 100 80.4 100 313
VM k=11 50 100 90.1 106 48.0 k=11 3.7 100 88.5 100 489

AD Kk =4 7.2 100 946 100 526 k= 55 100 943 100 53.9
SF 11.7 100 97.8° 100* 57.6 9.9 100 98.0 100 59.1
WB 11.3 100 97.8° 100¢ 57.8 9.6 100 98.0 100 59.3
D 21.0 100 679 100 52.8 22.7 100 67.7 100 54.2
FB 9.8 100 97.6 100 58.3 8.3 100 97.7 100 59.3
JB 3.0 100 93.8 100 58.4° 2.0 100 935 100 59.7
J By 46.8° 999 975 100 39.7 48.4 100 98.2 100 43.1

W B and theF B tests are slightly oversized. Note also that the modified EDF (i.e. size corrected
following Stephens (1974)) and the MC tests demonstrate similar power for all sample sizes
across all the distributions examined. Most important is the effect of the MC procedure on the
moment tests. Indeed, the effective power of &8 tests improves appreciably for < 100.
This is expected since the standdrB test is severely undersized.

The powers of the MC tests are broadly in the following order. $N&(when feasible) and
the SF approximations are among the most powerful against practically all alternative$V Bhe
seems a sensible choice for it does not rely on any table of weights. Howevee-f@b, theSF,
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Table 5. The effect of the number of Monte Carlo replications on power

Location-scale modeh = 25

MCreps. 19 39 59 79 99 199 299 399 499
KS B 7.2 7.3 7.4 7.4 7.3 7.3 7.2 7.2 7.2
C 88.1 893 898 900 905 905 905 90.6 90.6
r 340 369 374 382 385 387 390 392 392
Ln 968 979 981 983 984 985 985 986 985
t 136 144 145 146 146 148 147 147 148
VM B 8.2 8.2 8.3 8.2 8.3 8.3 8.2 8.4 8.4
91.7 926 930 930 930 932 932 933 933
r 447 476 484 491 494 498 489 501 501
Ln 991 995 995 996 99.6 99.7 99.7 99.7 99.7
t 163 171 171 173 172 174 178 178 17.7
AD B 8.7 8.5 8.7 8.6 8.6 8.7 8.6 8.7 8.7
91.8 925 93.0 931 930 934 933 934 934
r 499 529 540 547 548 555 558 56.0 559
Ln 995 998 998 99.8 99.8 998 999 99.9 999
t 178 188 19.0 19.2 19.2 195 196 19.7 19.7
SF B 5.0 4.9 4.7 4.7 4.6 4.5 4.6 4.6 4.7
923 933 935 936 937 937 938 938 938
r 529 559 573 579 583 595 595 59.7 59.8
Ln 994 997 998 99.8 99.9 999 999 99.9 999
t 23.0 243 247 249 251 253 255 257 257
WB B 5.0 4.9 4.7 4.7 4.7 4.6 4.6 4.6 4.7
924 932 935 936 937 937 938 938 938
r 53.0 56.0 574 580 584 595 595 598 599
Ln 994 997 998 998 99.8 999 999 99.9 999
t 229 242 246 249 251 253 254 256 257
D B — 6.7 — 7.0 — 6.9 — 7.1 —
— 91.7 — 92.6 — 930 — 93.2 —
r — 29.4 — 30.7 — 322 — 32.3 —
Ln — 95.6 — 96.5 — 970 — 97.2 —
t — 20.3 — 21.3 — 219 — 22.2 —
FB B 4.7 4.5 4.4 4.4 4.3 4.2 4.2 4.2 4.3
925 934 936 937 938 938 939 938 939
r 522 554 564 571 577 584 585 588 589
Ln 993 99.7 998 998 998 999 99.8 999 999
t 233 247 250 251 254 256 259 260 26.1
(cont.)
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Table 5. Continued

Location-scale modeh = 25
MCreps. 19 39 59 79 99 199 299 399 499
JB B 31 25 2.2 22 2.1 19 1.9 2.0 2.0
c 89.2 908 912 914 914 916 917 917 0917
r 432 456 46.6 474 478 485 486 486 4838
Ln 943 963 971 973 975 979 979 98.0 98.0
t 238 251 258 261 263 266 265 268 267
JBc B 4.5 3.8 3.2 3.1 3.0 2.6 2.6 2.6 25
888 903 90.7 90.8 910 913 913 913 914
r 455 488 50.0 50.6 512 520 522 524 524
Ln 949 970 977 980 982 987 988 988 99.0
t 228 242 250 254 256 26.0 260 26.2 26.1

(cont.)

W BandFB are biased in the case of the beta distribution. AlthougHthest typically shows

less power than the other tests in its class, it is not biased in small samples, unl&ke-tiipe
counterparts. ThéD outperforms all EDF statistics, compares favorably to the moment tests
and has no bias problems. While it is biased against the beta distribution=fo5, theJ B
almost achieves maximum power against the Cauchy, lognormal and St{(felhstribution; it

is outperformed by th& D statistic in the case of tHedistribution whem < 50. As expected, all

MC tests have very good power when the errors follow the Cauchy and the lognormal distribution
even in small samples. Finally, from Table 5, we observe that the number of replications beyond
99 has no significant effect on the power of MC tests.

The regression model. From the results in Table 4, it can be seen that the performance of the
regression-based tests can be greatly affected by the design matrix especially for samples of size
less than 100. However, it appears that the design matrix has little effect on the ranking of the tests.
Furthermore, the results on relative power across tests seem to agree with our findings regarding
the location-scale model. In general, tB®\-type criteria appear to be the best available;Ehe
statistic is on the whole less powerful than these but is consistently unbiased. The most powerful
EDF statistic is theAD; it performs well in comparison with the correlation statistics except
perhaps in thé (2, 1) case. Thel B-type tests based on eitheor 6 compare favorably to the
correlation tests. However, there is no clear indication as to which estimatslasuld be used

in practice. The MLE-based B criterion performs better against the Cauchy, lognormal and the

t (5) alternatives, while) B, appears better for other distributions and is consistently unbiased.
For the beta(2,3) alternative, thieB criterion is severely biased for all samples sizes, /Bt
performs best in comparison with all tests.
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5. CONCLUSION

In this paper, we have proposed simulation-based procedures to derive-egdoes for several
well-known normality tests in linear regression models. Most conventional test procedures were
derived in location-scale contexts yet remain asymptotically valid when computed from regression
residuals. Here, we have exploited the fact that standard test criteria are pivotal under the null,
which allows one to apply the technique of MC tests. The feasibility of the approach suggested
was illustrated through a simulation experiment. The results show that asymptotic normality tests
are indeed highly unreliable; in contrast MC tests achieve perfect size control and have good
power. It is important to emphasize that MC test procedures are not, with modern computer
facilities, computationally expensive.

The above findings mean that tables of critical points are no longer required to implement
normality tests. Much of the theoretical work in this context has focused on deriving these tables;
the reason is clearly the intractable nature of the relevant null distributions. Here we showed that
the technique of MC tests easily solves this problem and yields much more reliable procedures.
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