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ABSTRACT

In this paper, we propose finite and large sample likelihood based test procedures for possibly non-
linear hypotheses on the coefficients of SURE systems. Two complementary approaches are de-
scribed. First, we propose an exact Monte Carlo bounds test based on the standard likelihood
ratio criterion. Second, we consider alternative Monte Carlo tests which can be run whenever the
bounds are not conclusive. These include, in particular, quasi-likelihood ratio criteria based on non-
maximum-likelihood estimators. Illustrative Monte Carlo experiments show that: (i) the bounds
are sufficiently tight to yield conclusive results in a large proportion of cases, and (ii) the random-
ized procedures correct all the usual size distortions in such contexts. The procedures proposed are
finally applied to test restrictions on a factor demand model.

Key words: multivariate linear regression; seemingly unrelated regressions; Monte Carlo test;
bounds test; nonlinear hypothesis; finite-sample test; exact test; bootstrap; factor demand; cost
function.

Journal of Economic Literature classification: C3; C12; C33; C15 O4; O5.
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1. Introduction

In this paper, we study the problem of testing general, possibly nonlinear constraints on the coef-
ficients of the seemingly unrelated regressions (SURE) model introduced by Zellner (1962). The
SURE model may be cast as a system of regression equations with contemporaneously correlated
disturbances, where the regressors may differ across equations. For a detailed review, the reader
may consult Srivastava and Giles (1987).

In connection with the SURE model, very few analytical finite-sample results are available. A
rare exception is provided by Harvey and Phillips (1982, Section 3) who derived independence tests
between the disturbances of an equation and those of the other equations of a SURE model. The
tests involve conventional F -statistics and are based on the residuals obtained from regressing each
dependent variable on all the independent variables of the system. Of course this problem is a very
special one. In a different vein, Phillips (1985) derived the exact distribution of a two-stage SURE
estimator using a fractional matrix calculus. However, the analytical expressions obtained are very
complex and, more importantly, involve unknown nuisance parameters, namely the elements of the
error covariance matrix. The latter fact makes the application of Phillips’ distributional results to
practical hypothesis testing problematic.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are available and commonly
employed in empirical applications of the SURE model; see, for example, Breusch (1979) or Sri-
vastava and Giles (1987). It has been shown however that, in finite samples, the asymptotic criteria
are seriously biased towards overrejection, with the problem getting worse as the number of equa-
tions grows relative to the sample size; see, for example, Laitinen (1978), Meisner (1979), Bera,
Byron and Jarque (1981), Theil and Fiebig (1985), and Dufour and Khalaf (1998b). Attempts to
improve standard asymptotic tests include, in particular: (i) Bartlett-type corrections, and (ii) boot-
strap and simulation-based methods. See, for example, Rocke (1989), Rayner (1990), Rilstone and
Veall (1996), Theil, Shonkwiler and Taylor (1985), Theil, Taylor and Shonkwiler (1986), Taylor,
Shonkwiler and Theil (1986), and Theil and Fiebig (1985).

Further results relevant to the SURE model can be found in the statistics and econometrics liter-
ature on multivariate linear regressions (MLR). These are relevant because the MLR model can be
viewed as a special case of the SURE model where the regressor matrices for the different equations
are identical. For reviews and further references on exact and asymptotic inference in MLR models,
the reader may consult Rao (1973, Chapter 8), Anderson (1984, chapters 8 and 13), Kariya (1985),
Stewart (1997) and Dufour and Khalaf (1998b). In particular, besides showing the inadequacy of
various size-correction procedures (including Bartlett corrections) through simulation, we derived
in Dufour and Khalaf (1998b) exact bounds on the null distribution of LR test statistics for possibly
non-linear hypotheses on regression coefficients in MLR models. Even though computing analyti-
cally these bounds may be difficult, they can easily be evaluated by simulation and implemented as
finite-sample bounds Monte Carlo tests. The implications for hypothesis testing are two-fold. First,
the finite-sample bounds on the LR criterion easily yield conservative tests, for both linear and non-
linear hypotheses. Second, Monte Carlo test methods can lead to tests with correct levels. This is
related to the fact that LR statistics are pivotal or boundedly pivotal for quite general hypotheses in
the MLR model [see the discussion in Dufour (1997) on boundedly pivotal statistics].
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In this paper, we extend the results presented in Dufour and Khalaf (1998b) to the case of SURE
systems, under both gaussian and non-gaussian disturbance distributions. Indeed the model consid-
ered here is an extension of the standard gaussian SURE model that allows for both gaussian and
non-gaussian disturbance distribution, as long the latter is specified up an unknown linear trans-
formation (or contemporaneous covariance matrix). In particular, we discuss two approaches that
can be applied on their own or sequentially, namely: (i) a bounds procedure, and (ii) Monte Carlo
tests. Practical implementation of both techniques is simple. To obtain the bounds, we exploit the
fact that the SURE specification can be viewed as a special case of a properly chosen MLR model
constrained by regressor exclusion restrictions on the different equations.

To be more specific, we give at this point a preliminary discussion of the proposed conservative
bound, which can be viewed as an extension of an approach described earlier in Dufour (1989) and
Dufour and Kiviet (1998). First, we reconsider the testing problem within the framework of an
appropriate MLR model, namely the MLR setup of which the model on hand is a restricted form.
As pointed out above, this setup allows for gaussian and non-gaussian error distributions, provided
the latter can be simulated. Second, we introduce, in the relevant MLR framework, a “uniform
linear (UL) hypothesis” [Berndt and Savin (1977)] which is a special case of the set of restrictions
specified by the null hypothesis. The intuition behind this suggestion follows from the fact that
exact nuisance-parameter free critical values for the LR criterion are available when the null is UL
within a MLR. Indeed, it turns out that the LR criterion for testing the suggested UL hypothesis
conveniently bounds the LR statistic for testing the general constraints.

In addition, we propose alternative Monte Carlo (MC) tests [see Dwass (1957), Barnard (1963),
Jöckel (1986) or Dufour (1998)] that can be run whenever the bounds tests are not conclusive. We
consider: (i) an asymptotically valid procedure that may be interpreted as a parametric bootstrap,
and (ii) a method which is exact for any sample size, following Dufour (1998). Further, in situa-
tions where maximum likelihood (ML) methods may be computationally expensive, we introduce
LR-type test criteria based on non-ML estimators. In particular, we consider two-stage statistics
or estimators at any step of the process by which the likelihood is maximized iteratively. We em-
phasize that parametric bootstrap and bounds tests should be viewed as complementary rather than
alternative procedures.

The paper is organized as follows. In Section 2, we present the model studied and define the test
statistics which will be considered. In Section 3, we describe the proposed bounds and Monte Carlo
est procedures. Simulation results are reported in Section 4. Section 5 illustrates the procedures
proposed by applying them to test restrictions on a factor demand model. We conclude in Section
6.

2. Framework

We consider here a p−equation SURE system of the form:

Yj = Xjβj + uj , j = 1, . . . , p , (2.1)
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where Yj is a vector of n observations on a dependent variable, Xj is a full-column rank n × kj

matrix of regressors, βj = (β0j , β1j , . . . , βkj−1,j)′ is a vector of kj unknown coefficients, and
uj = (u1j , u2j, . . . , unj)′ is a n × 1 vector of random disturbances. The system (2.1) can be
rewritten in the stacked form

y = Xβ + u (2.2)

where

y =

⎡⎢⎢⎢⎣
Y1

Y2
...

Yp

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xp

⎤⎥⎥⎥⎦ , β =

⎡⎢⎢⎢⎣
β1

β2
...

βp

⎤⎥⎥⎥⎦ , u =

⎡⎢⎢⎢⎣
u1

u2
...

up

⎤⎥⎥⎥⎦ , (2.3)

so X is a (np)× k matrix, y and u each have dimension (np)× 1 and β has dimension k × 1, with
k =

∑p
j=1 kj . Let us also set:

U =
[

u1 , u2 , . . . , up

]
=

⎡⎢⎢⎢⎣
U ′

1·
U ′

2·
...

U ′
n·

⎤⎥⎥⎥⎦ (2.4)

where Ut· = (ut1, ut2, . . . , utp)′ is the disturbance vector for the t-th observation.
In the sequel, we shall also use, when required, some or all of the following assumptions and

notations:
Ut· = JWt , t = 1, . . . , n , (2.5)

where J is a fixed lower triangular p × p matrix such that

Σ ≡ JJ ′ =
[
σij

]
i,j=1, ... ,p

is nonsingular, (2.6)

W1, . . . , Wn are p × 1 random vectors
whose joint distribution is completely specified,

(2.7)

and
u is independent of X . (2.8)

Assumption (2.8) is a strict exogeneity assumption, which clearly holds when X is fixed. The
assumptions (2.5) - (2.7) mean that the disturbance distribution is completely specified up to an
unknown linear transformation that can modify the scaling and dependence properties of the distur-
bances in the different equations. Note (2.5) - (2.7) do not necessarily entail that Σ is the covariance
matrix of Ut·, because the distribution of W1, . . . , Wn is not restricted (e.g., it may not have finite
second moments). However, if we make the additional assumption that

W1, . . . , Wn are uncorrelated with
E(Wt) = 0 , E(WtW

′
t) = Ip , t = 1, . . . , n ,

(2.9)
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or the stronger assumption

W1, . . . , Wn
i.i.d.∼ N [0, Ip] , (2.10)

we have E
(
Ut·U ′

t·
)

= Σ , t = 1, . . . , n , and

E(uu′) = Σ ⊗ Ip . (2.11)

Assumption (2.10) yields the gaussian SURE model. For further reference, we shall write

W = [W1, . . . , Wn]′ = UJ−1. (2.12)

In this paper, we consider the problem of testing general hypotheses of the form:

H0 : Aβ ∈ Δ0 (2.13)

where A is a full row-rank v0 × k matrix and Δ0 is a non-empty subset of R
v0 .

For our subsequent arguments, it will be important to spell out the relation between SURE and
MLR models. The MLR model may be defined as a SURE model where the regressors in all the
equations are the same (X1 = X2 = · · · = Xp). Conversely, a SURE model can be viewed as a
restricted MLR system. To be more specific, for each 1 ≤ j ≤ p in the context of (2.1), let Xj be
any matrix such that the columns of [Xj , Xj] are linearly independent and span the same space as
the columns of the matrix [X1, X2, . . . , Xp]. In most practical situations, Xj will simply contain
the regressors from the matrices Xk, k �= j, which are excluded from the j-th equation. Further,
let X∗ be any full-column rank n × k∗ matrix whose columns span the same space as those of
[X1, X2, . . . , Xp], i.e.

sp(X∗) = sp([X1, X2, . . . , Xp]) , det(X ′
∗X∗) �= 0 , rank(X∗) = k∗ , (2.14)

where, for any matrix Z, sp(Z) represents the vector space spanned by the columns of Z. Then, for
each j, we can find matrices Sj and Sj of dimensions k∗ × kj and k∗ × (k∗ − kj) respectively such
that X∗Sj = Xj , X∗Sj = Xj and the matrix Tj = [Sj , Sj ] is invertible. Consequently, (2.1) may
be rewritten as

Yj = X∗Sjβj + X∗Sjβj + uj = X∗β∗j + uj , j = 1, . . . , p , (2.15)

where β∗j = Sjβj + Sjβj = Tj(β′
j, β

′
j)

′, with the restrictions

βj = 0, j = 1, . . . , p . (2.16)

The latter restrictions may also be expressed in implicit form on β∗j, j = 1, . . . , p, as:

M(Sj)β∗j = 0, j = 1, . . . , p , (2.17)

where M(Sj) = [Ik∗ − Sj(S′
jSj)−1S′

j]. Clearly (2.15) - (2.16) define a constrained MLR model.
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On relaxing the SURE restrictions (2.17), this MLR model can be put in the stacked form:

y = (Ip ⊗ X∗)β∗ + u = X∗β∗ + u (2.18)

where X∗ = Ip ⊗ X∗ and β∗ =
(
β′
∗1, β′

∗2, . . . , β′
∗p

)′
, or equivalently,

Y = X∗B∗ + U (2.19)

where Y = [Y1, Y2, . . . , Yp] and B∗ = [β∗1, β∗2, . . . , β∗p]. We shall call the unrestricted
MLR model (2.18) [or (2.19)] an embedding MLR model for the SURE model (2.1). It is clear any
hypothesis on β can be expressed equivalently in terms of β∗ within the corresponding embedding
MLR model.

In this paper, we shall emphasize LR-type tests of H0 derived under the gaussian distributional
assumptions (2.5) - (2.10). In this case, the log-likelihood function associated with the SURE model
(2.2) has the form:

L(β, Σ) = −np

2
ln(2π) − n

2
ln(|Σ|) − 1

2
(y − Xβ)′(In ⊗ Σ)−1(y − Xβ) . (2.20)

Then, provided the relevant optima do exist and are unique, the “unconstrained” maximized value
of L(β, Σ) can be written

L(HS) = sup{L(β, Σ) : β ∈ R
k and Σ is p.d.} = − np

2
[ln(2π) + 1] − n

2
ln

(
|Σ̂S |

)
, (2.21)

while its constrained maximized value subject to H0 is

L(H0) = sup{L(β, Σ) : Aβ ∈ Δ0 and Σ is p.d.} = − np

2
[ln(2π) + 1] − n

2
ln

(
|Σ̂0|

)
(2.22)

where Σ̂0 and Σ̂S are the restricted and unrestricted ML estimates of Σ, assuming Σ is positive
definite (p.d.). Thus, the gaussian LR statistic for testing H0 against the unrestricted SURE model
[or, equivalently, against the embedding MLR model (2.18) with the restrictions (2.17)] is given by:

LR(H0) = 2[L(HS) − L(H0)] = n ln(ΛS) , ΛS = |Σ̂0|/|Σ̂S | . (2.23)

Note the exclusion SURE restrictions are imposed under both the null and the alternative hypothe-
ses. In the statistics literature, Λ−1

S is known as the Wilks criterion.
Similarly, the log-likelihood function associated with the MLR model (2.18), taken jointly with

the gaussian distributional assumptions (2.5) - (2.10), is:

L∗(β∗, Σ) = −np

2
ln(2π) − n

2
ln(|Σ|) − 1

2
(y − X∗β∗)

′(In ⊗ Σ)−1(y − X∗β∗)

= −np

2
ln(2π) − n

2
ln(|Σ|) − 1

2
tr[Σ(Y − X∗B∗)(Y − X∗B∗)′] (2.24)
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where β∗ = vec(B∗). It is clear

L∗(β∗, Σ) = L(β, Σ) , when βj = 0, j = 1, . . . , p . (2.25)

Let

B̂∗ = (X ′
∗X∗)−1X ′

∗Y , Û = Y − X∗B̂∗ = M(X∗)U , Σ̂M =
1
n

Û ′Û , (2.26)

where M(X∗) ≡ In − X∗(X ′
∗X∗)X ′

∗. Then, provided Û has full column rank (which requires
n ≥ k∗+p), L∗(β∗, Σ) attains a unique (unconstrained) finite maximum at B∗ = B̂∗ and Σ = Σ̂M
[see Anderson (1984, Chapter 3)], yielding the maximal value:

L(HM) = sup{L∗(β∗, Σ) : β∗ ∈ R
k∗ and Σ is p.d.}

= − np

2
[ln(2π) + 1] − n

2
ln

(
|Σ̂M|

)
. (2.27)

Thus B̂∗ and Σ̂M are the ML estimators of the parameters of the unrestricted embedding MLR
model associated with the SURE model (2.2). Given the assumptions (2.5) - (2.10), a necessary and
sufficient condition for Û to have full column rank with probability one is:

P
[
rank [M(X∗)W ] = p

]
= 1 .

The latter will hold, for example, if rank(X∗) = k∗ ≤ n − p and vec(W ) follows an absolutely
continuous distribution on R

np. In view of the relation between the SURE model and an embed-
ding MLR model, we shall also consider the LR statistic for testing H0 against the completely
unrestricted MLR model [(2.18) without the SURE restrictions (2.17)]:

LRM(H0) = 2[L(HM) − L(H0)] = n ln(ΛM) , ΛM = |Σ̂0|/|Σ̂M| . (2.28)

3. Test procedures

We will now show how one can obtain finite-sample LR-based tests in the context of SURE models
as defined above. For that purpose, we shall exploit special features of so-called uniform linear
restrictions for which LR test statistics have nuisance-parameter null distributions in the context of
MLR models (which entails they are pivotal statistics under the null hypothesis). In the MLR case
(where X1 = · · · = Xp ≡ X∗ and k1 = · · · = kp ≡ k∗), the hypothesis H0 in (2.13) is uniform
linear if can be expressed in the form

HUL :
(
C ′ ⊗ R

)
β = vec(D0) (3.1)

or, equivalently,
HUL : RBC = D0 (3.2)
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where B is the k∗ × p matrix such that β = vec(B), R is a known r × k∗ matrix of rank r, C is
a known p × c matrix of rank c, and D0 is a known r × c matrix. In Dufour and Khalaf (1998b),
it is shown that the null distribution of the gaussian LR statistic [derived under the assumptions
(2.5) - (2.10)] for testing HUL (against the unrestricted MLR model) does not involve any nuisance
parameter under the weaker assumptions (2.1) - (2.8) _ which allow for non-normal disturbances _
and may easily be simulated. In particular, the parameters of the covariance matrix Σ = JJ ′ do
not appear in the distribution. Beyond this specific hypothesis class, it is well known that the LR
statistic is not pivotal, even if the null hypothesis is linear. For further discussion of uniform linear
hypotheses in MLR models, the reader may consult Berndt and Savin (1977), Stewart (1997) and
Dufour and Khalaf (1998b).

Let us now turn to the SURE model. In the context of the embedding MLR model (2.18), the
null hypothesis H0 in (2.13) is equivalent to the conjunction of Aβ ∈ Δ0 with the SURE restrictions
(2.16):

H∗
0 : AFβ∗ ∈ Δ0 and M(Sj)β∗j = 0, j = 1, . . . , p , (3.3)

where β∗, Sj , M(Sj) and k∗ are defined as in (2.14) - (2.18), and

F =

⎡⎢⎢⎢⎣
(S′

1S1)−1S′
1 0 · · · 0

0 (S′
2S2)−1S′

2 · · · 0
...

...
. . .

...
0 0 · · · (S′

pSp)−1S′
p

⎤⎥⎥⎥⎦ . (3.4)

It is clear we can find a full row-rank matrix A∗ of dimension v0∗ × (pk∗) such that H∗
0 can be

reexpressed in terms of β∗ according to a form similar to H0 in (2.13):

H∗
0 : A∗β∗ ∈ Δ0∗ (3.5)

where v0∗ ≥ v0 and Δ0∗ is a non-empty subset of R
v0∗ .

We now state our main result on the distribution of LR statistics in SURE models.

Theorem 3.1 BOUND ON LR STATISTICS IN SURE MODELS. Suppose the assumptions (2.1) −
(2.8) hold, with

P
[
rank [M(X∗)W ] = p

]
= 1 (3.6)

where X∗ is defined as in (2.14), and let H∗
UL : RB∗C = D0 be a set of uniform linear restrictions

on (2.19) such that H∗
UL entails H∗

0 , where the matrices R, B∗, C, D0 and the hypothesis H∗
0 are

defined as in (3.2) and (3.3). Then the following inequalities hold:

ΛS ≤ ΛM ≤ ΛUL (3.7)

where ΛS and ΛM are defined as in (2.23) and (2.28), ΛUL = |Σ̂UL|/|Σ̂M| and Σ̂UL is a ML
estimator of Σ obtained under the uniform linear restrictions H∗

UL. Furthermore, under H∗
UL, the

distribution of ΛUL (conditional on X) does not depend on the unknown parameter matrices B and
Σ nor on the values of the constants in D0.
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PROOF. The proof is based on observing that the hypotheses involved in the definitions of the sta-
tistics ΛS , ΛM and ΛUL can be viewed as special cases of the embedding MLR model (2.19). First
we note that, under the assumptions (2.1)-(2.8) and (3.6), the log-likelihood L∗(β∗, Σ) has (with
probability one) a unique maximum given by L(HM) in (2.27). This entails that the supremum
of L∗(β∗, Σ) under any set of restrictions on β∗ must be finite. In particular, the supremum (with
respect to β∗ and Σ) of L∗(β∗, Σ) under H∗

UL can be written

L(H∗
UL) = sup{L∗(β∗, Σ) : RB∗C = D0 and Σ is p.d.}

= − np

2
[ln(2π) + 1] − n

2
ln

(
|Σ̂UL|

)
(3.8)

where Σ̂UL is the ML estimator of Σ under H∗
UL. Thus the gaussian LR statistic for testing H∗

UL
against the embedding MLR model [i.e., (2.18) jointly with (2.5)-(2.10)] is:

LRM(H∗
UL) = 2[L(HM) − L(H∗

UL)] = n ln(ΛUL) , ΛUL = |Σ̂UL|/|Σ̂M| . (3.9)

From Theorem 3.1 in Dufour and Khalaf (1998b), the exact distribution of ΛUL under H∗
UL only

depends on the distribution of W and the known matrices X, R and C _ but not on D0 nor on the
otherwise unknown parameters in B∗ and Σ.

Now, by the definition of the embedding MLR model, (2.25) and the equivalence between
H0 and H∗

0 , we see that L(HS) and L(H0) in (2.21)-(2.22) can also be expressed in terms of
L∗(β∗, Σ) :

L(HS) = sup{L∗(β∗, Σ) : M(Sj)β∗j = 0, j = 1, . . . , p , and Σ is p.d.} , (3.10)

L(H0) = sup{L∗(β∗, Σ) : β∗ satisfies H∗
0 and Σ is p.d.} . (3.11)

Since H∗
UL entails H∗

0 , which in turn is a restricted form of the SURE model (HS), and since HS
can be obtained by imposing linear restrictions on the embedding MLR model (HM), it follows
that

L(H∗
UL) ≤ L(H0) ≤ L(HS) ≤ L(HM) , (3.12)

hence
L(HS) − L(H0) ≤ L(HM) − L(H0) ≤ L(HM) − L(H∗

UL) (3.13)

and
ΛS ≤ ΛM ≤ ΛUL . (3.14)

This completes the proof of the theorem.

It follows from the latter theorem that

P [ΛS ≥ λUL(α)] ≤ P [ΛM ≥ λUL(α)] ≤ α (3.15)

under H0, where λUL(α) is determined such that P [ΛUL ≥ λUL(α)] = α (or, at least, P [ΛUL ≥
λUL(α)] ≤ α) and 0 ≤ α ≤ 1. It is important to note here that the inequality (3.7) holds for any
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set of uniform linear restrictions which entails H0. In particular, on taking R = Ik∗, C = I and
D0 = B∗ (the true value of B∗), it is clear such a set of restrictions does always exist, although
other choices (for R, C and D0) may be available in view of the form of H0 and lead to a tighter
bound. Further, the distribution of ΛUL (when RB∗C = D0) only depends on X, R and C, but not
on D0, so one can use any possible value of D0 (such as D0 = 0) in order to compute or simulate
this distribution.

Using well known results from Anderson (1984) and Rao (1973) for gaussian MLR models, it is
also possible to show that the bounding statistic ΛUL is distributed like the product of the inverse of
p beta variables with degrees of freedom which depend only on r, c, p and k∗ [see Dufour (1997) and
Dufour and Khalaf (1998b)]. The latter result is, however, hardly useful for practical applications of
the proposed bound. Hence we do not restate our conclusions here for this specific gaussian case: it
is more convenient to derive λUL(α) by simulation as shown below and using Theorem 3.1, under
any distributional assumptions that satisfy (2.5) including the normal case. Finally, we note that
the same bound applies to both criteria ΛS and ΛM. Since ΛM ≥ ΛS , it will thus be preferable to
apply the bound to ΛU rather than ΛS , since this will yield a more powerful test.

Theorem 3.1 has further implications for LR-based hypothesis tests. The fact that the null dis-
tribution of the LR statistic can be bounded (in a non trivial way) by a statistic whose distribution
can be simulated fairly easily entails that MC test techniques may be used to obtain finite-sample
p-values based on the LR-based statistics when the bounds test is not conclusive. In earlier work,
we have discussed in detail how such procedures can be implemented; see Dufour (1998), Dufour,
Farhat, Gardiol and Khalaf (1998), Dufour and Kiviet (1996, 1998), and Dufour and Khalaf (1998b,
2001). These include techniques for the construction of: (i) a (parametric) bootstrap-type p-value
which we denote a local Monte Carlo p-value (LMC) to account for the fact that the underlying
simulation routine is implemented given a specific nuisance parameter estimate, and (ii) an exact
randomized p-value which corresponds to the largest MC p-value over the relevant nuisance pa-
rameter space; conformably, we call the latter a maximized Monte Carlo (MMC) p-value [Dufour
(1998)]. Both procedures are summarize below. Although the LMC p-value is only valid asymptoti-
cally, non-rejections are conclusive from a finite-sample perspective, in the following sense. Indeed,
for all 0 ≤ α ≤ 1, if the LMC p-value exceeds α, we can be sure that the maximum p-value also
exceeds α. We emphasize the fact that the MMC test can be implemented in complementarity with
the above defined bounds tests. Indeed, if the BMC test rejects the null then the MMC test is cer-
tainly significant. For a more detailed discussion of the justification and implementation of such
simulation-based procedures, we refer the reader to the papers just cited.

To illustrate how the above results may be used in the context of a SURE model, we will now
discuss an illustrative example.

Example 3.2 THREE-EQUATION SURE MODEL. In the SURE model (2.1), with gaussian errors
and p = 3, ki = 2, Xi = [ιn, xi] where ιn denotes a vector of n 1’s, consider the problem of testing

H0 : β11 = β22 = β33 . (3.16)

We suppose also that the matrix X∗ = [ιn, x1, x2, x3] has full column rank k∗ = 4 ≤ n−3. Then,
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it is easy to see that this problem is equivalent to testing

H∗
0 : b11 = b22 = b33 and b12 = b13 = b21 = b23 = b31 = b32 = 0

in the framework of the MLR model

Y = X∗B∗ + U (3.17)

with Y = [Y1, Y2 , Y3], U = [U1, U2, U3], B∗ = [b1, b2, b3], and bj = (b0j , b1j , b2j , b3j),
j = 1, 2, 3. In order to use the above results on the conservative bound, we need to construct a set
of UL restrictions on the coefficients of the later MLR model that satisfy the hypothesis in question.
It is easy to see that constraints setting the values of the coefficients bij , i, j = 1 , . . . , 3 to specific
values (9 restrictions on 12 coefficients) meet this purpose:

H∗
UL :

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ B∗ = D0 . (3.18)

All that remains is to calculate the LR, as defined in (2.23), and use the critical value associated
with the uniform linear restriction (3.18).

A bounds MC test may then be applied as described in Dufour and Khalaf (1998b) for testing
general possibly non-linear restrictions in MLR models. The procedure can be described as follows
for the example just considered. For further reference, and conformably with Dufour and Khalaf
(1998b), we call the latter bounds test a BMC test.

1. Denote Λ(0) the observed test statistic, which could be the statistic ΛS in (2.23) or ΛM in
(2.28).

2. By Monte Carlo methods, draw N simulated samples (conditional on the right-hand-side
regressors) from model (2.18) in H∗

UL. For instance, in the above example 3.2, one way to do
this is to draw the simulated samples from the base model (3.17) with parameters set to their
constrained (imposing H∗

0 ) SURE estimates on which the additional restrictions underlying
H∗

UL have been imposed (simply setting to fixed values the relevant coefficients of B∗). To
be more specific, let us denote by b̃ij the SURE estimate of βij , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3,
several of which should be zero to account for the SURE exclusion restrictions). Then, if
we choose to draw from model (3.17) with coefficients b̃ij, i = 0, . . . , 3, j = 1 , . . . , 3,
and the conformable covariance matrix estimate, then H∗

UL could be of the form: bij = b̃ij ,
i, j = 1 , . . . , 3.1 Furthermore, any error distribution that satisfies (2.5)-(2.8) may be
considered.

1It is also possible _ and perhaps more efficient _ to rewrite the bounding LR statistic as a pivotal quantity, using the
results in Dufour and Khalaf (1998b). The procedure just presented exploits the pivotal property of the statistic implicitly.
Yet it is quite intuitive and relates to the familiar parametric bootstrap.
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3. From each simulated sample, compute the bounding statistic ΛUL which corresponds to the
LR-based statistic associated with H∗

UL : this yields Λ
(h)
UL, h = 1 , . . . , N. As emphasized

above, it is important to make sure that the regression coefficients selected to generate the
Monte Carlo drawings correspond to the restrictions implied by H∗

UL. In other words, the
simulated values of the bounding statistic should satisfy the null hypothesis.

4. Compute the simulated p−value p̂N (Λ(0)) where

p̂N (x) =

{
1 +

N∑
h=1

I[Λ(h)
UL − x]

}
/(N + 1) , (3.19)

I[z] = 1 if z ≥ 0 and I[z] = 0 if z < 0.

5. The procedure rejects at level α if p̂N (Λ(0)) ≤ α.

Using the same arguments as in Dufour (1998), Dufour and Kiviet (1996, 1998)and Dufour and
Khalaf (1998b), it is easy to see that

P
[
p̂N (Λ(0)) ≤ α

]
≤ α under H0 ,

so the critical region p̂N (Λ(0)) ≤ α has level α. If the above procedure is implemented replacing

Λ
(h)
UL, j = 1 , . . . , N with Λ̂(h), h = 1 , . . . , N, which refer to realized values of the LR criterion

associated with H∗
0 and the simulated samples, then (3.19) yields a parametric bootstrap or an LMC

p-value. In this case, the p-value in question depends on the choice of the intervening nuisance
parameters. The MMC p-value corresponds to the largest MC p-value overall nuisance parameters
compatible with the null hypothesis. A global optimizing algorithm is required to maximize the
MC p-value. In this paper, we used simulated annealing [see Goffe, Ferrier and Rogers (1994)].
The reader may consult Dufour (1998), Dufour et al. (1998), Dufour and Kiviet (1996, 1998), and
Dufour and Khalaf (2001) for further discussion of MC tests in econometrics.

4. Simulation study

In this section, we present simulation results illustrating the performance of the above proposed
procedures along with the one of more traditional asymptotically justified methods. In particular,
we examine the performance of BMC and MMC tests in SURE contexts. In the linear case, we also
consider LMC tests based on standard Wald-type criteria and several alternative statistics justified on
the basis of computational cost as opposed to those relying on full maximum likelihood estimation.

4.1. Design

We studied two gaussian SURE designs, similar to Example 3.2. In the first one (D1), we considered
the problem of testing linear cross-equation constraints, while in the second one (D2), we studied a
nonlinear constraint.
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D1. SURE system, cross-equation constraints
Model (2.1); kj = 2 , j = 1 , ... , p ; p = 3, 5 ; n = 25 ;
H0 : βjj = β11 , j = 2 , ... , p .

D2. SURE system, non-linear constraints
Model (2.1); kj = 3 , j = 1 , ... , p ; p = 7 ; n = 25 ;
the regressor which corresponds to β1j is common to all equations;
H0 : β1j = γβ2j , j = 1 , ... , p , γ unknown.

For each model, a constant regressor was included and the other regressors were independently
drawn (once) from a normal distribution; the errors were independently generated as i.i.d. N(0, Σ)
with Σ = JJ ′ and the elements of J drawn (once) from a normal distribution. The coefficients are
reported in Table 1.

The statistics examined for D1 include the relevant LR criteria defined by (2.23) and (2.28),
as well as three other types of statistics: (1) quasi-LR statistics based on incompletely maximized
likelihood functions; (2) test statistics similar to those suggested by Theil et al. (1985); (3) a number
of Wald-type criteria. To be more precise, the latter are defined as follows.

1. The quasi-LR (QLR) statistics are:

QLR(l) = n ln(Λ(l)) , Λ(l) = |Σ̃0(l)|/|Σ̃(l)| , (4.1)

where Σ̃0(l) and Σ̃(l) denote the constrained and unconstrained iterative estimators of Σ and
the subscript l refers to the number of iterations involved. Though we did not analytically
establish the asymptotic distribution of the latter criteria, we assessed their asymptotic signif-
icance using the χ2 reference distribution for the usual LR statistic. We append the subscript
LMC to the notation for the QLR test to refer to the corresponding LMC test.

2. The test statistics suggested by Theil et al. (1985) may be interpreted as unscaled Wald-type
statistics, whose level is controlled by a Monte Carlo (or bootstrap) method. We consider
these here mainly for historical reasons, because they are really the first simulation-based test
procedures proposed in the SURE setup. For the model with three equations, we considered:

μ31 = |β̂11 − β̂22| + |β̂22 − β̂33| ,

μ32 = |β̂11 − β̂33| + |β̂22 − β̂33| ,

μ33 = |β̂11 − β̂22| + |β̂11 − β̂33| .

In the five-equation case, the following were selected among many possible choices:

μ51 = |β̂11 − β̂22| + |β̂22 − β̂33| + |β̂33 − β̂44| + |β̂44 − β̂55| ,

μ52 = |β̂22 − β̂33| + |β̂33 − β̂44| + |β̂44 − β̂55| + |β̂55 − β̂11| ,

μ53 = |β̂33 − β̂44| + |β̂44 − β̂55| + |β̂55 − β̂11| + |β̂11 − β̂22| ,

μ54 = |β̂44 − β̂55| + |β̂55 − β̂11| + |β̂11 − β̂22| + |β̂22 − β̂33| ,

μ55 = |β̂55 − β̂11| + |β̂11 − β̂22| + |β̂22 − β̂33| + |β̂33 − β̂44| .
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For the purpose of this experiment, we used for β̂ the gaussian ML estimator of β.

3. The Wald-type criteria are based on feasible generalized least squares (GLS) parameter es-
timates. Specifically, we considered the statistic suggested in Srivastava and Giles (1987,
Chapter 10) for an hypothesis of the form Aβ − r = 0 :

W =
(

v1

v0

) (
Aβ̂ − r

)′[
A

(
X ′ (S−1 ⊗ In

)
X

)−1
A′]−1(

Aβ̂ − r
)

(y − Xβ̂)′ (S−1 ⊗ In) (y − Xβ̂)
(4.2)

where A is a ν0×k full-row rank fixed matrix, v1 = np−k, k =
∑p

j=1 kj , while S and β̂ are

feasible generalized least squares parameter estimates.2 Under the null hypothesis (and stan-
dard regularity conditions), v0W has a χ2(v0) asymptotic distribution. Theil (1971, Chapter
6) suggests that the F (v0, v1) distribution better captures the finite-sample distribution of the
statistics. Yet this claim is not supported by either analytical or simulation evidence. Maxi-
mum likelihood estimators may also be substituted for β̂ and S in the formulae for the Wald
criterion. Here we have considered both the standard feasible estimator of β [using the es-
timate of S based on least squares residuals applied to each one of the regressions in (2.1)]
as well as the ML estimators (iterated to convergence) of β and Σ. For further reference, the
GLS and ML based W tests will be denoted W[GLS, j] and W[ML, j] respectively, where
j ∈ {χ2 , F} indicates whether the critical value was obtained from the χ2 asymptotic distri-
bution or from the F (v0, v1) distribution. The local MC (parametric bootstrap) counterparts
will be denoted W[GLS, LMC] and W[ML, LMC].

In both D1 and D2, we computed empirical frequencies of type I errors, based on a nominal
size of 5% and 1000 replications. In D1, the powers of the tests were investigated by simulating the
model with the same parameter values except for β11 respectively.3 The LMC and BMC tests were
applied with 19 and 99 replications. Because of the computational cost involved, the MMC test was
only applied with p = 3 and N = 19. The BMC test was performed based on the bounding statistic
as described in Example 3.2. For each test statistic, the LMC randomized procedure was based on
simulations that use a restricted estimator similar to the estimator(s) involved in the corresponding
test statistic: a restricted ML (or quasi-ML) estimator for LR or Wald-type tests based on ML
(quasi-ML) estimators, restricted feasible GLS estimators for tests based on GLS estimators. All
the experiments were conducted using Gauss-386i VM version 3.1.

4.2. Results and discussion

The results of the limited size-study in D2 reveal the following: the observed empirical frequency
of type I errors for the LR statistic was 12.5% whereas the one of the bounds test (2.6%) satis-
fied the 5% level constraint. The results of experiment D1 are summarized in Tables 2 to 5. The
subscripts asy,BMC,LMC and MMC which appear in these tables refer respectively to the stan-
dard asymptotic tests, MC bounds tests, local MC tests (parametric bootstrap), and maximized MC

2The statistic W above corresponds to the z statistic in equation (10.11) of Srivastava and Giles (1987, Chapter 10).
3For the purpose of power comparisons, the asymptotic tests were size corrected using an independent simulation.
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tests. LR[asy], LR[BMC], LR[LMC] and LR[MMC] refer to the corresponding LR tests, and
similarly to LRM and QLR. Our results show the following.

1. The asymptotic criteria have an upward bias in size; as can be seen in Table 2, rejection of
the null is repeatedly many times larger than what it should be. The bias clearly worsens in the
5 equation example (5EQ). Across the cases examined, the Wald-type statistics have larger sizes
when based on their asymptotic χ2 critical values. Although the F approximation seems to correct
the problem in the 3EQ model, it clearly fails to do so in the 5EQ case. The non-linear LR test
examined in D2 is also over-sized.

2. The BMC test was found to be well behaved. Power gains are possible in other test problems
where a tighter critical bound is available. Indeed, we have observed reasonable power even if we
have experimented with the worst scenario, in the sense that bounding test statistics correspond to
a null hypothesis which fixes the values of all regression coefficients (except the intercept). Fur-
thermore, we found that the BMC and the MMC tests based on LRM yield equivalent decisions
for all cases examined; the MMC test based on LR performs marginally better. This illustrates the
value of the conservative bounds test as a tool to be used in conjunction with LMC test methods
and not necessarily as an alternative to those methods. As emphasized earlier, the bounds procedure
is computationally inexpensive and exact. In addition, whenever the bounds test rejects, inference
may be made without further appeal to randomized tests.

3. There is no indication of overrejection for the LMC tests considered. While the critical
values used, conditional on the particular choice of consistent estimator for the error covariance
matrix, are only asymptotically justified, the procedure was remarkably effective in correcting the
bias. Whether this conclusion would carry to larger systems remains an open question. In this
regard, note that available simulation evidence on the SURE model, specifically the experiment in
Rocke (1989) on large systems is limited to three equations at best.

4. While they did exhibit adequate sizes, the statistics inspired by Theil et al. (1985) did not fare
well in terms of power. For the 3EQ model, the performance was dramatically poor for μ32 and μ33

but less so in the case of μ31. Even then, as compared to the randomized LR, the performance is
less than satisfactory.

5. The LMC tests performed noticeably well in terms of power in all instances, even when
the number of replications was as low as 19. It is worth noting however that simulation evidence
does not favor the randomized usual LR tests over those based on Λ(l) typically involving fewer
iterations, although we are uncertain as to the asymptotic equivalence of both procedures. This
observation has an important bearing on empirical practice. The simplicity of the method based
on Λ(l) has much to recommend it for larger models in which statistics requiring full MLE may be
quite expensive to randomize.

5. Empirical illustration

In this section, we present an empirical application that illustrates the results presented in this paper.
We consider testing restrictions on the parameters of a generalized Leontief cost function. We used
the data from Berndt and Wood (1975) and the factor demand system from Berndt (1991, pp. 460-
462). The model imposes constant returns to scale and linear homogeneity in prices, and includes
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TABLE 1. COEFFICIENT VALUES USED IN THE SIMULATION EXPERIMENTS

D1. β(3EQ) = (1.2 , 0.1 , 0.8 , 0.1 , −1.1 , 0.1)′

β(5EQ) = (1.2 , 0.1 , 0.8 , 0.1 , −1.1 , 0.1 , 1.9 , 0.1 , −0.2 , 0.1)′

D2. γ = .009 and β0j , β2j, j = 1 , ... , p, drawn (once) as i.i.d. N(0, .16)

TABLE 2. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D1

Asymptotic tests MC tests
Test 3EQ 5EQ Test 3EQ 5EQ Test 3EQ 5EQ

W[GLS, χ2] .061 .130 W[GLSLMC ] .049 .047 μ31 .058 -
W[ML, χ2] .124 .254 W[MLLMC ] .047 .049 μ32 .051 -
W[GLS, F ] .052 .121 LR[LMC] .047 .043 μ33 .055 -
W[ML, F ] .111 .242 LR[MMC] .038 μ51 - .027
LR[asy] .094 .143 LRM[MMC] .036 μ52 - .026
QLR(0) .068 .077 LR[BMC] .036 .029 μ53 - .025
QLR(1) .088 .131 QLR(0)[LMC] .045 .052 μ54 - .011
QLR(2) .094 .143 QLR(1)[LMC] .048 .052 μ55 - .025

QLR(2)[LMC] .047 .044

TABLE 3. POWER OF THE BOUNDS TESTS: EXPERIMENT D1
H0 : β11 = .1

3 equations 5 equations
N β11 .3 .5 .7 .9 1 .3 .5 .7 .9 1.0
19 p1 .065 .383 .791 .963 .987 .082 .416 .792 .958 .995

p2 .171 .324 .171 .034 .013 .249 .497 .207 .042 .005
p3 .030 .021 .008 0.00 0.00 .038 .011 0.00 0.00 0.00
p4 .734 .272 .030 .003 0.00 .631 .076 .001 0.00 0.00

19 p1 .077 .434 .858 .986 .999 .075 .474 .877 .990 1.0
p2 .204 .372 .127 .014 .001 .256 .439 .122 .010 0.00
p3 .022 .007 .003 0.00 0.00 .035 .010 0.00 0.00 0.00
p4 .697 .187 .012 0.00 0.00 .634 .077 .001 0.00 0.00

Note: p1 is the empirical probability that LR[LMC] and LR[BMC] reject, p2 measures the prob-
ability that LR[BMC] fails to reject and LR[LMC] rejects, p3 measures the probability that
LR[BMC] rejects and LR[LMC] fails to reject and p4 is the empirical probability that both tests
fail to reject.
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TABLE 4. POWER OF VARIOUS TESTS: EXPERIMENT D1, 3 EQUATIONS

H0 : β11 = .1

19 replications 99 replications
β11 .3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0

W[GLS, χ2] .192 .647 .939 .993 .999 .192 .647 .939 .993 .999
W[ML, χ2] .264 .787 .984 1.0 1.0 .264 .787 .984 1.0 1.0
LR[asy] .281 .806 .985 1.0 1.0 .281 .806 .985 1.0 1.0
W[GLS, LMC] .185 .579 .884 .974 .986 .202 .640 .934 .990 .998
W[ML, LMC] .225 .704 .958 .997 1.00 .260 .774 .985 1.00 1.00
LR[LMC] .236 .707 .962 .997 1.00 .262 .779 .985 1.00 1.00
QLR(0) .227 .689 .950 .993 .988 .256 .762 .977 .997 .999
QLR(1) .238 .709 .961 .997 1.00 .259 .776 .986 1.00 1.00
QLR(2) .236 .707 .962 .997 1.00 .262 .776 .985 1.00 1.00
LRM [MMC] .095 .404 .799 .963 .987 .099 .441 .861 .986 .999
LR[MMC] .054 .388 .804 .978 .993 - - - - -
LR[BMC] .095 .404 .799 .963 .987 .099 .441 .861 .986 .999
μ31 .076 .108 .148 .216 .259 .064 .108 .165 .219 .268
μ32 .197 .552 .869 .974 .992 .210 .641 .935 .995 .998
μ33 .093 .183 .307 .432 .489 .088 .184 .328 .503 .601

TABLE 5. POWER OF VARIOUS TESTS: EXPERIMENT D1, 5 EQUATIONS

H0 : β11 = .1

19 replications 99 replications
β11 .3 .5 .7 .9 1.1 .3 .5 .7 .9 1.1

W[GLS, χ2] .200 .703 .961 .994 .999 .200 .703 .961 .994 .999
W[ML, χ2] .317 .918 1.0 1.0 1.0 .317 .918 1.0 1.0 1.0
LRasy .331 .913 .999 1.0 1.0 .331 .913 .999 1.0 1.0
W[GLS, LMC] .162 .619 .918 .982 .998 .186 .684 .946 .990 .999
W[ML, LMC] .265 .832 .991 .999 1.00 .297 .903 1.0 1.00 1.00
LR[LMC] .286 .841 .999 .999 1.00 .328 .908 .998 1.00 1.00
QLR(0) .265 .806 .971 .998 1.00 .316 .864 .983 .999 1.00
QLR(1) .290 .849 .988 .998 1.00 .334 .900 .997 1.00 1.00
QLR(2) .287 .842 .991 .999 1.00 .331 .908 .997 1.00 1.00
LR[BMC] .120 .427 .792 .958 .995 .110 .484 .877 .990 1.00
μ51 .029 .034 .038 .041 .048 .032 .036 .039 .041 .044
μ52 .031 .036 .039 .042 .045 .031 .034 .038 .040 .041
μ53 .042 .085 .154 .258 .359 .035 .077 .152 .241 .397
μ54 .023 .071 .159 .289 .456 .025 .067 .175 .302 .512
μ55 .031 .050 .071 .118 .170 .033 .056 .092 .128 .180
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four inputs: capital (K), labor (L), energy (E) and non-energy intermediate materials (M). If we
denote the output by Y and the input prices Pj , j = K, L, E, M, the stochastic cost minimizing
input-output KLEM equations are:

K/Y = dKK + dKL (PL/PK)
1/2 + dKE (PE/PK)

1/2 + dKM (PM/PK)
1/2 + eK , (5.1)

L/Y = dLL + dLK (PK/PL)
1/2 + dLE (PE/PL)

1/2 + dLM (PM/PL)
1/2 + eL , (5.2)

E/Y = dEE + dEK (PK/PE)
1/2 + dEL (PL/PE)

1/2 + dEM (PM/PE)
1/2 + eE , (5.3)

M/Y = dMM + dMK (PK/PM)
1/2 + dML (PL/PM)

1/2 + dME (PE/PM)
1/2 + eM , (5.4)

where the error terms eK, eL, eE, eM satisfy the distributional assumptions (2.10). We focus on
testing the symmetry restrictions entailed by microeconomic theory, i.e.

H01 :

⎧⎨⎩
dKL = dLK, dKM = dMK
dKE = dEK, dLM = dML
dLE = dEL, dEM = dME

as well as a subset of these constraints

H02 : dEM = dME, dKM = dMK .

Conforming with the procedures described above, we reconsider the testing problem in the context
of the MLR model of which the KLEM system is a restricted form. The individual equations of the
latter model include the 32 price ratios (Pi/Pj)1/2, i, j = K, L, E, M as regressors. The unrestricted
MLE SURE estimates using the data provided in Berndt (1991) on the manufacturing sector of
the U.S. economy over the period 1947-71 are given below (with asymptotic standard errors in
parentheses):

K/Y = .0263
(.0143)

+ .0036
(.0088)

(PL/PK)1/2 + .0649
(.0301)

(PE/PK)1/2 − .0443
(.0426)

(PM/PK)1/2 + êK , (5.5)

L/Y = −.0719
(.0157)

+ .0517
(.0245)

(PK/PL)
1/2 + .2200

(.0476)
(PE/PL)

1/2 + .0264
(.0676)

(PM/PL)
1/2 + êL , (5.6)

E/Y = .0403
(.0183)

− .0111
(.0088)

(PK/PE)
1/2 − .0048

(.0053)
(PL/PE)

1/2 + .0150
(.0259)

(PM/PE)
1/2 + êE , (5.7)

M/Y = .7401
(.1214)

− .0542
(.0420)

(PK/PM)
1/2 − .1374

(.0258)
(PL/PM)

1/2 + .0399
(.0855)

(PE/PM)
1/2 + êM . (5.8)

For both hypotheses, we computed the FGLS and ML-based Wald statistics (4.2), the LR and
LRM criteria as defined in (2.23) and (2.28) and the QLR statistics (4.1). In the case of the Wald
and QLR test, we obtained the asymptotic χ2 and LMC p-values using 19 and 99 simulated samples.
The exact BMC and MMC p-values were also obtained for the LR criteria. The bounding statistic
LRUL = n ln(ΛUL) corresponds to the UL hypothesis that sets all the coefficients of the MLR
model (except the intercepts) to specific values. As stated in Section 3, the BMC procedure based
on LRM yields tighter bounds [see inequality (3.14)]. Our results are summarized in Table 6.

From these results, we see that the symmetry hypothesis H01 is rejected using all asymptotic

17



TABLE 6A: GENERALIZED LEONTIEF FACTOR DEMANDS:

CROSS-EQUATION SYMMETRY TESTS

H01 :
{

dKL = dLK, dKM = dMK, dKE = dEK,
dLM = dML, dLE = dEL, dEM = dME

LRM LR QLR(0) QLR(1) QLR(2) Wald
GLS

Wald
ML

Statistic 176.582 74.159 75.545 75.140 74.911 239.597 238.777
Asymptotic p-value .000 .000 .000 .000 .000 .000 .000
Reps MC p-value
19 BMC .05 .70 - - - - -
99 .01 .67 - - - - -
19 MMC .05 05 - - - - -
99 .01 .01 - - - - -
19 LMC .05 .05 .05 .05 .05 .05 .05
99 .01 .01 .01 .01 .01 .01 .01

Note: Under H01, LRM
asy∼ χ2(42) while the other statistics have asymptotic χ2(6) distributions.

The LRM statistic tests the symmetry restrictions (6 constraints) jointly with the SURE exclusion
restrictions (36 constraints) _ a total of 42 restrictions _ against the unrestricted MLR model. Reps
stands for replications.

TABLE 6B: GENERALIZED LEONTIEF FACTOR DEMANDS:

PARTIAL CROSS-EQUATION SYMMETRY TESTS PARTIAL

H02 : dEM = dME, dKM = dMK
LRM LR QLR(0) QLR(1) QLR(2) Wald

GLS
Wald

ML

Statistic 102.574 .15179 .15180 .15179 .15179 .1283 .1279
Asymptotic p-value .000 .927 .927 .927 .927 .937 .938
Reps MC p-value
19 BMC .15 1.0 - - - - -
99 .17 1.0 - - - - -
19 MMC .05 1.0 - - - - -
99 .05 1.0 - - - - -
19 LMC .05 .90 90 90 90 90 90
99 .04 .94 .94 .94 .94 .94 .94

Note: Under H02, LRM
asy∼ χ2(38) while the other statistics have asymptotic χ2(2) distributions.

LRM tests a subset of symmetry restrictions (2 constraints) jointly with the SURE exclusion re-
strictions (36 constraints) _ 38 restrictions in all _ against the unrestricted MLR model.
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and exact tests. In the case of H02, all tests against the unconstrained SURE specification are
not significant. However, the asymptotic χ2 and LMC tests LRM are significant at the 5% level.
Although the bounds p-value is larger than 0.05, the MMC test is significant at the 5% level, even
with 19 simulated samples. It is worth noting that the QLR and the LR LMC tests yield equivalent
decisions for both testing problems. Moreover, all MC tests based on 19 and 99 replications also
yield similar decisions.

6. Conclusion

In this paper we have extended the MLR-based LR test procedure to the SURE framework. We
have combined the bounds and Monte Carlo test approaches to provide p-values for test statistics
that can yield provably exact tests in finite samples even for nonlinear hypothesis as well as more
reliable large sample tests. The feasibility of the test strategy was also illustrated with an extensive
Monte Carlo experiment and an empirical application. We have found that standard asymptotic tests
exhibit serious errors in level, particularly in larger systems. In contrast, the various tests we have
proposed displayed excellent size and power properties.
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