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1. Coefficient of determination; R?

Lety = XB + € be a model that satisfies the assumptions of the classical linear model,ydrede
g areT x 1 vectorsX is aT x k matrix andf is k x 1 coefficient vector. We wish to characterize to
which extent the variables includedX(excluding the constant, if there is one) explgin

A first method consists in computir@?, the “coefficient of determination”, dR = V'R?, the
“coefficient of multiple correlation”. Let

R T
y = XB,Szyﬂ?aV:zlyt/T:i’y/T’ (1.1)
t=
i = (1,1,...,1) the unit vector of dimensioff, (1.2)
T
SST = Zl(yt —y)z = (y—iy)’ (y—iy) , (total sum of squares) (1.3)
t=
T
SR = Z()‘/t —y)z = (§—iy)’ (§—iy) , (regression sum of squares) (1.4)
t=
T
SSE = Z(yt —)?=(y—y) (y—y) = &€, (error sum of squares). (1.5)
t=

We can then define “variance estimators” as follows:

V(y) = SST/T, (1.6)
V() = SR/T, (1.7)
V() = SSE/T. (1.8)

~

1.1 Definition R? =1— (V (¢) /V(y)) = 1— (SSE/SST) .

1.2 Proposition R? < 1.

PROOF This result is immediate on observing th&8E /SST > 0. O
1.3Lemmayy=yy+£&'c.

PrRoOF We have
y=y+&andyé=£y=0, (1.9)

hence
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1.4 Proposition If one of the regressors is a constant, then
SST = SSR+ SSE,
Viy) = V) +V(e).
PROOF LetA= It —i(i'i) 'i' = It — Lii’. Then, A/A=Aand
1. o
Ay = [IT — TII'] y=y—iy.

If one of the regressors is a constant, we have

.
i'e=5 &=0
t=
hence
1l i, 1, .. 1,
= = ZIy==I'(y—§€&)==1I'y=
PR TyT(y)Tyy,
1
A = eg—Ziile=¢
T I
A = 1ii“—” [
y = y-Fiy=y-1y,

and, using the fact th#¢ = £ andy’¢ = 0,

SST = (y—iy) (y—iy) =yYAAy =y Ay
= (J+&)'A@[Y+8)
= YAY+VAELYAE+EAE
= YAy+E&'E
= (AY) (AY)+&'&=SR+SE.

1.5 Proposition If one of the regressors is a constant,

_ V() SR
RZ_V(y)_SST and O<RP<1.
PROOF By the definition ofR?, we haveR? < 1 and
R2 1_\:/(5)_\7(2—\7():\:/(9)259?
V(y V(y) V(y) SST



henceR? > 0. O

1.6 Proposition If one of the regressors is a constant, the empirical correlation belyvaedy is
non-negative and equal toR2.

PrROOF The empirical correlation betwegrandy'is defined by

I Cy,
PY,Y) = ———"—7
v (y)V ()]

<

where .
C9) = 3005 5 -9) = 1 (A9 (49)
t=

andA= It — %ii’. Since one of the regressors is a constant,

and

Cyd) = TA+E)(A)= 1 (A) (A) =V ().

.y = n

2. Significance tests andr?

2.1. Relation ofR? with a Fisher statistic

R? is descriptive statistic which measures the proportion of the “variance’salé¢pendent variable
y explained by suggested explanatory variables (excluding the condtamtiver, R? can be related
to a significance test (under the assumptions of the Gaussian classicahiveel).

Consider the model

Vi =B+ BoXo++ B Kk+ & ,t=1...,T.

We wish to test the hypothesis that none of these variables (excludingriktant) should appear

in the equation:
H0B2:B3::Bk:0



The Fisher statistic foHg is

(Sw—Se)/d
F=-——"""—"~F(qT-k
S/l T @TH
whereq=k—1, S, is the error sum of squares from the estimation of the unconstrained model
Q:y=XB+¢,
whereX = [i, X, ..., X] andS,, s the error sum of squares from the estimation of the constrained
model
- |B1+ & 3

wherei = (1,1,...,1)". We see easily that

So = (y—XB)' (y—XB) s,

B, = [ Tzly Yy, (underw)
S = (y-iy) (y—iy) =SSt
and
e (sSTosE)/(k-1) [1-F]/K-1)
SSE/(T - k) &/ (T—K)
_ _R/k-y) ~F(k-1T-Kk).

(1-R?) /(T —K)

As R? increasesF increases.

2.2. General relation betweerR? and Fisher tests

Consider the general linear hypothesis
Ho:CB=r

whereC : g xk, B:kx1 r:qx1and rankC) = g. The values ofR? for the constrained and
unconstrained models are respectively:

hence



The Fisher statistic for testingg may thus be written

(Sv—S0)/q _ (RR-Rj)/q

F —
So/(T-k)  (1-R&)/(T—-k)
_ (T-K\R-R§
B ( g >1—R%'
If R2 — RZis large, we tend to reje¢to. If Ho: B, = B3 = - = B =0, then

q=k-1,S,=SST,R5=0

and the formula foF above gets reduced of the one given in section 2.1.

3. Uncentered coefficient of determination:R2

SinceR? can take negative values when the model does not contain a coRétaas little meaning
in this case. In such situations, we can instead use a coefficient whevaltles ofy; are not
centered around the mean.

3.1 Definiton R2=1-(&'2/yy) .

R? is called the “uncentered coefficient of determination” on “uncent&&eénd R = v'R2 the
“uncentered coefficient of multiple correlation”.

3.2 Propositon 0<R2<1.

PrROOF This follows directly from Lemmd.3 yy=yy+ &£ . O

4. Adjusted coefficient of determination: R

4.1. Definition and basic properties

An unattractive property of the? coefficient comes form the fact thef cannot decrease when
explanatory variables are added to the model, even if these have noede@onsequently, choos-
ing to maximizeR? can be misleading. It seems desirable to penalize models that contain too many
variables.

Since

<
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where

N 17T
82 _= o2
V( = Tzlt,v = T Tt;(Yt y) )
Theil (1961, p. 213) suggested to replatges) andV (y) by “unbiased estimators”:
SSE 1 L.,
S = T ToRAE

1 T 2
% - T1° 7.1 Zi(yt y)©.
4.1 Definition R? adjusted for degrees of freedom is defined by

e g TH(E)

= Tk \ SST
4.2 Proposition R =1-I=L(1-R) =R — K1 (1-R}) .

ProOF

R = 1—T_1<SSE>=1—T_1(1—R2)

T—k \ SST T-k
= 1- %(1 R) = 1+T__i) (1-R)
~ 1RSI a-R=R-LT1-R). QED
O
4.3 Proposition R<R<1.
PROOF The result follows from the fact that1R? > 0 and ¢.2). O

4.4 Proposition R =R iff (k=1 or Re=1).

" 2 k-1
4.5 Proposition R <0 ffRe< ﬁ .

R’ can be negative evenfi® > 0. If the number of explanatory variables is increag®dandk
both increase, so th& can increase or decrease.



4.6 Remark When several models are compared on the bag8 ofﬁz, it is important to have the

same dependent variable. When the dependent vafighiethe same, maximizinE2 is equivalent
to minimizing the standard error of the regression

1 L,
5= T—kt;'s‘

4.2. Criterion for R increase through the omission of an explanatory variable

1/2

Consider the two models:
Yo =B Xa+  + B Xk t+E& s t=1...T, (4.1)

Vi = BoXa, + -+ B X1 + BX+ & L t=1...,T. (4.2)

We can then show that the valueR¥ associated with the restricted model (4.1) is larger than the
one of model (4.2) if the statistic for testing3, = 0 is smaller than 1 (in absolute value).

4.7 Proposition If ﬁi_l andﬁi are the values & for models(4.1) and(4.2), then

Ro-Rea= m (%-1) (4.3)

wherety is the Student statistic for testing3, = 0 in model(4.2), and
R<R., iff 2<1 iff |t|<1.

If furthermoreﬁi < 1, then
RER, it =1

PrROOF By definition,

R —1—25 and Rﬁl—l—S;1
wheres? =SS/ (T —k) and £ ;=SS 1/(T —k+1). S§ andSS_; are the sums of squared
errors for the models witkandk — 1 explanatory variables. Sinqieis the Fisher statistic for testing
By =0, we have

2 (SS-1—5)
K T ss/(T-kK)



(T—k+1) (1-Ry) - (T-K (1-F)

_ T 1-Re1) 1
- (T kH)(l—Rﬁ) (T-K

forsf ;=5 (1—?&70 and =5 (1—?&) . Consequently,

_ . 2 —k
1R (/) Y

and
R-R. - (1-R.)-(1-R)
- e[

- (o) 5]

4.3. Generalized criterion for R increase through the imposition of linear con-
straints
We will now study when the imposition af linearly independent constraints
Ho:CB=r

will raise or decreas® , whereC : gxk,r:gx1andrankC)=q. Let ﬁﬁo andR be the values

of R for the constrained (b¥o) and unconstrained models, similar§g, ands? are the values of
the corresponding unbiased estimators of the error variance.

4.8 Proposition LetF be the Fisher statistic for testiity. Then




and
< ; <
$=¢ iff F=1.
PrROOF If S5 andSSare the sum of squared errors for the constrained and unconstraouils,
we have:

_ S _ S5
=T kpq M =T
TheF statistic may then be written
. _ (SH-9/q
SS/(T—K)
_ [(T—k+Q)3%—(T—k)52]_T—k+q(%)T—k
a s g & q
hence
_ 2lgF+ (T -k
S (T-K+a ’
_ 2 aF-1)
$-5 = Sz(T—k)Jrq’
and

< . <
$=¢ iff F1.

4.9 Proposition LetF be the Fisher statistic for testimty. Then

(1)

R-Re=7Tirq

(F-1)

and o -
Rﬁosz iff F;l.

PrRooOF By definition,

Thus,




q 1-R
T<—k+q> (F=1

hence
= > = . <
R, =R iff F=1.

O
On takingg = 1, we get property (4.3). If we test an hypothesis of the type
it is possible thaF > 1, while all the statisticgi|, i =k, ..., k-+1 are smaller than.IThis means

that R increases when we omit one explanatory variable at a time, but decrehsashey are
all excluded from the regression. Further, it is also possibleRhat1, but|ti| > 1 for all i: R
increases when all the explanatory variables are simultaneously exchudatbcreases when only
one is excluded.

5. Notes on bibliography

The notion ofR® was proposed by Theil (1961, p. 213). Several authors havemtezs detailed
discussions of the different concepts of multiple correlation: for exanifieil (1971, Chap. 4),
Schmidt (1976) and Maddala (1977, Sections 8.1, 8.2, 8.3, 8.9).ﬁ%hmncept is criticized by
Pesaran (1974). The mean and biaRdfvere studied by Cramer (1987) in the Gaussian case, and
by Srivastava, Srivastava and Ullah (1995) in some non-Gaussiag.cas
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