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1. Coefficient of determination: R2

Lety = X[B + € be a model that satisfies the assumptions of the classiealrlin
model, wherey and € are T x 1 vectors,X is aT x k matrix andf is kx 1
coefficient vector. We wish to characterize to which extentvtrables included
in X (excluding the constant, if there is one) explgin

A first method consists in computirif, the “coefficient of determination”, or
R = VR2, the “coefficient of multiple correlation”. Let

A T
y=XB,E=y-9,y= Zlyt/T =iy/T, (1.1)
=

i = (1,1,...,1)" the unit vector of dimensio, (1.2)
T

SST = Z(yt—y)zz (y—iy)' (y—iy) , (total sum of squares) (1.3)
T

SR = Z()‘/t—y)zz (y—iy)' (§—1iy) , (regression sum of squares) (1.4)
=
T

SSE = Zl(yt_yt)zz (y—9) (y—9) = £&¢&, (error sum of squares). (1.5)

t=

We can then define “variance estimators” as follows:

(y) = SST/T, (1.6)
(y) = SSR/T, (1.7)
) = SSE/T. (1.8)

y > <O

~

(
1.1 Definition RZ = 1— (V (¢) /V(y)) = 1— (SSE/SST) .
1.2 PropositionR*> < 1.

PROOF This result is immediate on observing th&%E /SST > 0. []



1.3 Lemmayy=Yyy+£&'c.

PrROOF We have

hence

1.4 Proposition If one of the regressors is a constant, then
SST = SSR+SSE,
V() = V() +V(e) .
PROOF LetA= It —i(i'i) 'i’ = Iy — &ii’. Then,AA= Aand
1.. :
/W:[h—?miy:y—w.

If one of the regressors is a constant, we have

.
V&:Z&zo
=

hence
11 1.,. 1, " 1., _
— = —iV==1I'(y—§&)==1I'y=
1
A = e—_ii'le=¢
T Y
Ay = V 1ii’“—“ i
y =Y T y=y-l\y,

N

(1.9)



and, using the fact th#t¢ = € andy’e = 0,

SST = (y—iy)' (y—iy) = yAAy =y Ay
= (J+&)A(Y+8)
= YAY+VAE+YAE+EAE
= YAy+ &'
= (AY) (AY) + &8 = SSR+ SE.

1.5 Proposition If one of the regressors is a constant,
_ v (y) SR
V(y) SST

PROOF By the definition ofR?, we haveR? < 1 and
2_1 V(@) _ V-V _ V(@ _ SR
SST

and 0<R<1.

~

V) V() V (y)
henceR? > 0. ]

1.6 Proposition If one of the regressors is a constant, the empirical correlatior
betweery andy is non-negative and equal tOR2.

PROOF The empirical correlation betwegrandy’is defined by

~

Ao Clyy
pyg) = —0 )1/2

V)V ()]

where
(Ay)' (AY)
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andA= Iy — %ii’. Since one of the regressors is a constant,

~

AE—2. AY=AY+2, & (AY) =&9=0

and
C) = T (A+E) (A) = = (A (A) =V (9)
U 4 ) B 4/} =
p(Y.Y) = T i [V(y)] —VR2>0.



2. Significance tests andr?

2.1. Relation ofR? with a Fisher statistic

R’ is descriptive statistic which measures the proportion of tlagi&nce” of the
dependent variabkgexplained by suggested explanatory variables (excluding the
constant). HoweveR? can be related to a significance test (under the assumption
of the Gaussian classical linear model).

Consider the model

Vi =B+ B X2+ + B Xk+&,t=1...,T.

We wish to test the hypothesis that none of these variableBi@#rg the constant)
should appear in the equation:

HOBZZB?,::BKZO
The Fisher statistic foldg is

-_ (S—%0)/q

So/(T—-K)
whereq=k— 1, & is the error sum of squares from the estimation of the uncon:-
strained model

NF(an_k)

Q.y=XB+¢,
whereX = [i, Xo, ..., Xi] andS,, s the error sum of squares from the estimation of
the constrained model

W : y — IBl + € 9

wherei = (1,1,...,1)". We see easily that

S = (y—XB)/ (y—Xf?) = SSE,

B 1T
B, = (") ti'y==Y =V, (underw)
! T



Sw = (y—iy)' (y—iy) =SST

and
- _ (SST-s)/(k-1)  [1-5]/(k-1)
SSE/(T —k) =/(T-K
R/(k=1) ~F(k—1,T—K) .

T 1-RY)/(T—K

As R? increasesk increases.



2.2. General relation betweerR? and Fisher tests

Consider the general linear hypothesis
Ho : CB =TI

whereC:gxk, B:kx 1, r:qx1andrankC) = g. The values ofR? for the
constrained and unconstrained models are respectively:

1 g_q_
R(Z)_1_§7R]2__1 SSI—)
hence
So=(1-R)SST, Sp = (1-R}) SST .

The Fisher statistic for testingy may thus be written

(—-S2)/a  (R—R)/q

F = —
S/(T-K  (1-R})/(T-K
_ (T=K\R-RS
- ( q )1—R%'
If RZ — R3is large, we tend to rejetto. If Ho: B, = B;=--- =B, =0, then

q=k-1,8,=SST,Rs=0

and the formula foF above gets reduced of the one given in section 2.1.



3. Uncentered coefficient of determination:R2

SinceR? can take negative values when the model does not containstacmiR?
has little meaning in this case. In such situations, we caeaaisuse a coefficient
where the values of are not centered around the mean.

3.1 Definiton R2=1— (&'&/yy) .

R2 is called the “uncentered coefficient of determination” oncemteredR?”
andR = Vv R? the “uncentered coefficient of multiple correlation”.

3.2 Proposition 0<RZ<1.

PrROOF This follows directly from Lemmd.3 yy=yy+&'c . O



4. Adjusted coefficient of determination: R

4.1. Definition and basic properties

An unattractive property of the? coefficient comes form the fact thiat cannot
decrease when explanatory variables are added to the modeif #hase have no
relevance. Consequently, choosing to maxiniZe&an be misleading. It seems
desirable to penalize models that contain too many variables.

Since

-1 V)
V(y)
where . .
_SE 105 G ST 1l

Theil (1961, p. 213) suggested to replatés) andV (y) by “unbiased estima-
tors”:

SSE 1 L.,
52“T—k_T—kth“

SST 1 & N2
4.1 Definition R? adjusted for degrees of freedom is defined by
S T-1 (SSE)

2
—1->—=1—
L T —k \ SST

A

4.2 Propositon R =1— H1-R)=R-*=(1-R).

PROOF
_ T—1(SSE> T-1

y—?t?(l—R6

9



T—-k+k—-1 k—1
= 1-—=— (1-R) =1- (1+ﬁ> (1-R)
k—1
= 1-(1-R) —ﬁ(l R) = Rz—ﬁ(l—Rz) . Q.E.D.
[]
4.3 Proposition R<R<1.
ProOF The result follows from the fact that-1R*> > 0 and 4.2). []
4.4 Propositon R =R iff (k=1 or Re=1).

4.5 Proposition R <0 iff R2< Tfl

R’ can be negative even i > 0. If the number of explanatory variables is
increasedR? andk both increase, so thﬁ_l2 can increase or decrease.

4.6 Remark When several models are compared on the bask’ afr ﬁz, it is
important to have the same dependent variable. When the deperatiable(y)

is the same, maximizin@2 IS equivalent to minimizing the standard error of the
regression

4.2. Criterion for R increase through the omission of an explanatory variable

Consider the two models:
yt:B]_><t1+"'+ﬁk_]_xt(k—l)+8t 3 t:]-?"'aT) (41)

10



Yo = B Xer, + -+ B 1 Xy +BX+ &, t=1,...,T. (4.2)

We can then show that the valueRf associated with the restricted model (4.1)
is larger than the one of model (4.2) if thetatistic for testing3, = 0 is smaller
than 1 (in absolute value).

4.7 Proposition If ﬁkz_l andﬁk2 are the values d& for models(4.1) and(4.2),
then

o 1-R,

wheret is the Studerit statistic for testing3, = 0 in model(4.2), and
R<R. , iff t2<1 iff [t<1.
If furthermoreﬁk2 < 1, then

=52 < 52 . <
RkiRk—l iff |tk|§1.

PROOF By definition,

wheres; =SS/ (T —k) and s ;=SS 1/(T—k+1).SSandSS; are the
sums of squared errors for the models witland k — 1 explanatory variables.
Sincet? is the Fisher statistic for testing, = 0, we have

(SSc1—SX)

S5/ (T —K)

(T—k+1) ,—(T—k) <]
5

tZ =

11



forsc ;=5 (1—@2_0 and si=¢ (1—ﬁi) . Consequently,

and

o (1R S

ﬁkz_ﬁkz—l — (1__2—1) - (1_ﬁk2)
- () [
) 1]

4.3. Generalized criterion for R increase through the imposition of linear constraints

We will now study when the imposition @f linearly independent constraints

will raise or decreas® , whereC : gx k,r:gx1andrankC) = g. Let ﬁao

andR’ be the values dR for the constrained (bip) and unconstrained models,
similarly, S5 ands® are the values of the corresponding unbiased estimators of th
error variance.

Ho:CB:r

12



4.8 Proposition LetF be the Fisher statistic for testimty. Then

o
Sg_SZ_T——k—kq(F_l)

and
< : <
%;Sz Iff F;l.

PROOF If S5 andSS are the sum of squared errors for the constrained and un
constrained models, we have:

S SS
=7 kg M =7 ¢
TheF statistic may then be written
. (SH9-99/q
SS/(T-K)
_ [(T—k+q>s%—(T—k)sz}_T—k+q(§>_u<
B g’ g \# g
hence
_ 2lgF + (T —K)]
=5 (T—-k +q °’
_ 2 a(F-1)
-8 = S'Z(T—k)+q’
and

< . <
%;Sz Iff F;l.

13



4.9 Proposition LetF be the Fisher statistic for testimty. Then

T—-k+q
and , ,
S > = . <
OER Iff F;
PROOF By definition,
i 2 5 . &
RHOZJ.—%,R:].—%
Thus,
o o -2
R-R, =
I
tea(3)r
T—k+g\s
q(l—ﬁ?
= (F-1)
T-k+q¢
hence , ,
S > = <
OER lii F;l

[]

On takingq = 1, we get property (4.3). If we test an hypothesis of the type

HO:Bk:Bk+1:"':Bk+I:07

it is possible thaF > 1, while all the statisticst|, i =k, ..., k+ 1 are smaller
than 1 This means tha®~ increases when we omit one explanatory variable at a
time, but decreases when they are all excluded from the regre&sidher, it is

14



also possible thad < 1, but|t;| > 1 for alli: R’ increases when all the explanatory
variables are simultaneously excluded, but decreases whgooalis excluded.

15



5. Notes on bibliography

The notion ofR° was proposed by Theil (1961, p. 213). Several authors have
presented detailed discussions of the different concepts tifpheucorrelation:

for example, Theil (1971, Chap. 4), Schmidt (1976) and Maddala{,1Sections
8.1, 8.2, 8.3, 8.9). ThE concept is criticized by Pesaran (1974). The mean anc
bias ofR? were studied by Cramer (1987) in the Gaussian case, and by 8xigast
Srivastava and Ullah (1995) in some non-Gaussian cases.

16



© 00 N O

oA W N R

Chronological list of references

. Theil (1961, p. 213) _ ThE' nation was proposed in this book.

. Theil (1971, Chap. 4) _ Detailed discuss.iorR%;‘ﬁ2 and partial correlation.
. Pesaran (1974) _ Critique B

. Schmidt (1976)

Maddala (1977, Sections 8.1, 8.2, 8.3, 8.9) _ Discussidﬁzalhdﬁzalong
with their relation with hypothesis tests.

. Hendry and Marshall (1983)

. Cramer (1987)

. Ohtani and Hasegawa (1993)
. Srivastava et al. (1995)
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