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1. Coefficient of determination: R2

Let y = Xβ + ε be a model that satisfies the assumptions of the classical linear
model, wherey and ε are T × 1 vectors,X is a T × k matrix andβ is k × 1
coefficient vector. We wish to characterize to which extent thevariables included
in X (excluding the constant, if there is one) explainy.

A first method consists in computingR2, the “coefficient of determination”, or
R =

√
R2, the “coefficient of multiple correlation”. Let

ŷ = X β̂ , ε̂ = y− ŷ , y =
T

∑
t=1

yt/T = i′y/T , (1.1)

i = (1,1, . . . , 1)′ the unit vector of dimensionT , (1.2)

SST =
T

∑
t=1

(yt − y)2 = (y− iy)′ (y− iy) , (total sum of squares) (1.3)

SSR =
T

∑
t=1

(ŷt − y)2 = (ŷ− iy)′ (ŷ− iy) , (regression sum of squares) (1.4)

SSE =
T

∑
t=1

(yt − ŷt)
2 = (y− ŷ)′ (y− ŷ) = ε̂ ′ε̂ , (error sum of squares). (1.5)

We can then define “variance estimators” as follows:

V̂ (y) = SST/T , (1.6)

V̂ (ŷ) = SSR/T , (1.7)

V̂ (ε) = SSE/T . (1.8)

1.1 Definition R2 = 1−
(
V̂ (ε)/V̂ (y)

)
= 1− (SSE/SST ) .

1.2 PropositionR2 ≤ 1 .

PROOF This result is immediate on observing thatSSE/SST ≥ 0.
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1.3 Lemmay′y = ŷ′ŷ+ ε̂ ′ε̂ .

PROOF We have
y = ŷ+ ε̂ andŷ′ε̂ = ε̂ ′ŷ = 0, (1.9)

hence
y′y = (ŷ+ ε̂)′ (ŷ+ ε̂) = ŷ′ŷ+ ŷ′ε̂ + ε̂ ′ŷ+ ε̂ ′ε̂ = ŷ′ŷ+ ε̂ ′ε̂ .

1.4 Proposition If one of the regressors is a constant, then

SST = SSR+SSE,

V̂ (y) = V̂ (ŷ)+V̂ (ε) .

PROOF Let A = IT − i(i′i)−1 i′ = IT − 1
T ii′ . Then,A′A = A and

Ay =

[
IT −

1
T

ii′
]

y = y− iy.

If one of the regressors is a constant, we have

i′ε̂ =
T

∑
t=1

ε̂ t = 0

hence

1
T

T

∑
t=1

ŷt =
1
T

i′ŷ =
1
T

i′ (y− ε̂) =
1
T

i′y = y ,

Aε̂ = ε̂ − 1
T

ii′ε̂ = ε̂ ,

Aŷ = ŷ− 1
T

ii′ŷ = ŷ− iy ,
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and, using the fact thatAε̂ = ε̂ andŷ′ε̂ = 0,

SST = (y− iy)′ (y− iy) = y′A′Ay = y′Ay

= (ŷ+ ε̂)′A(ŷ+ ε̂)

= ŷ′Aŷ+ ŷ′Aε̂ + ŷ′Aε̂ + ε̂ ′Aε̂
= ŷ′Aŷ+ ε̂ ′ε̂
= (Aŷ)′ (Aŷ)+ ε̂ ′ε̂ = SSR+SSE .

1.5 Proposition If one of the regressors is a constant,

R2 =
V̂ (ŷ)

V̂ (y)
=

SSR
SST

and 0≤ R2 ≤ 1 .

PROOF By the definition ofR2, we haveR2 ≤ 1 and

R2 = 1− V̂ (ε)

V̂ (y)
=

V̂ (y)−V̂ (ε)

V̂ (y)
=

V̂ (ŷ)

V̂ (y)
=

SSR
SST

henceR2 ≥ 0.

1.6 Proposition If one of the regressors is a constant, the empirical correlation
betweeny andŷ is non-negative and equal to

√
R2.

PROOF The empirical correlation betweeny andŷ is defined by

ρ̂(y, ŷ) =
Ĉ (y, ŷ)

[
V̂ (y)V̂ (ŷ)

]1/2

where

Ĉ (y, ŷ) =
1
T

T

∑
t=1

(yt − y)(ŷt − y) =
1
T

(Ay)′ (Aŷ)
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andA = IT − 1
T ii′. Since one of the regressors is a constant,

Aε̂ = ε̂ , Ay = Aŷ+ ε̂ , ε̂ ′ (Aŷ) = ε̂ ′ŷ = 0

and

Ĉ (y, ŷ) =
1
T

(Aŷ+ ε̂)′ (Aŷ) =
1
T

(Aŷ)′ (Aŷ) = V̂ (ŷ) ,

ρ̂(y, ŷ) =
V̂ (ŷ)

[
V̂ (y)V̂ (ŷ)

]1/2
=

[
V̂ (ŷ)

V̂ (y)

]1/2

=
√

R2 ≥ 0 .
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2. Significance tests andR2

2.1. Relation ofR2 with a Fisher statistic

R2 is descriptive statistic which measures the proportion of the “variance” of the
dependent variabley explained by suggested explanatory variables (excluding the
constant). However,R2 can be related to a significance test (under the assumptions
of the Gaussian classical linear model).

Consider the model

yt = β 1+β 2Xt2+ · · ·+β kXtk + ε t , t = 1, . . . , T.

We wish to test the hypothesis that none of these variables (excluding the constant)
should appear in the equation:

H0 : β 2 = β 3 = · · · = β k = 0 .

The Fisher statistic forH0 is

F =
(Sω −SΩ)/q
SΩ/(T − k)

∼ F (q,T − k)

whereq = k−1, SΩ is the error sum of squares from the estimation of the uncon-
strained model

Ω : y = Xβ + ε ,

whereX = [i,X2, . . . , Xk] andSω s the error sum of squares from the estimation of
the constrained model

ω : y = iβ 1+ ε ,

wherei = (1,1, . . . , 1)′ . We see easily that

SΩ =
(

y−X β̂
)′(

y−X β̂
)

= SSE ,

β̂ 1 = (i′i)−1 i′y =
1
T

T

∑
t=1

yt = y , (underω)
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Sω = (y− iy)′ (y− iy) = SST

and

F =
(SST −SSE)/(k−1)

SSE/(T − k)
=

[
1− SSE

SST

]
/(k−1)

SSE
SST /(T − k)

=
R2/(k−1)

(1−R2)/(T − k)
∼ F (k−1,T − k) .

As R2 increases,F increases.
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2.2. General relation betweenR2 and Fisher tests

Consider the general linear hypothesis

H0 : Cβ = r

whereC : q× k, β : k × 1, r : q× 1 and rank(C) = q. The values ofR2 for the
constrained and unconstrained models are respectively:

R2
0 = 1− Sω

SST
, R2

1 = 1− SΩ

SST
,

hence
Sω =

(
1−R2

0

)
SST , SΩ =

(
1−R2

1

)
SST .

The Fisher statistic for testingH0 may thus be written

F =
(Sω −SΩ)/q
SΩ/(T − k)

=

(
R2

1−R2
0

)
/q(

1−R2
1

)
/(T − k)

=

(
T − k

q

)
R2

1−R2
0

1−R2
1

.

If R2
1−R2

0 is large, we tend to rejectH0. If H0 : β 2 = β 3 = · · · = β k = 0, then

q = k−1 , Sω = SST , R2
0 = 0

and the formula forF above gets reduced of the one given in section 2.1.
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3. Uncentered coefficient of determination:R̃2

SinceR2 can take negative values when the model does not contain a constant,R2

has little meaning in this case. In such situations, we can instead use a coefficient
where the values ofyt are not centered around the mean.

3.1 Definition R̃2 = 1−
(
ε̂ ′ε̂/y′y

)
.

R̃2 is called the “uncentered coefficient of determination” on “uncenteredR2”
andR̃ =

√
R̃2 the “uncentered coefficient of multiple correlation”.

3.2 Proposition 0≤ R̃2 ≤ 1 .

PROOF This follows directly from Lemma1.3: y′y = ŷ′ŷ+ ε̂ ′ε̂ .
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4. Adjusted coefficient of determination:R2

4.1. Definition and basic properties

An unattractive property of theR2 coefficient comes form the fact thatR2 cannot
decrease when explanatory variables are added to the model, evenif these have no
relevance. Consequently, choosing to maximizeR2 can be misleading. It seems
desirable to penalize models that contain too many variables.

Since

R2 = 1− V̂ (ε)

V̂ (y)
,

where

V̂ (ε) =
SSE

T
=

1
T

T

∑
t=1

ε̂2
t , V̂ (y) =

SST
T

=
1
T

T

∑
t=1

(yt − y)2 ,

Theil (1961, p. 213) suggested to replaceV̂ (ε) andV̂ (y) by “unbiased estima-
tors”:

s2 =
SSE
T − k

=
1

T − k

T

∑
t=1

ε̂2
t ,

s2
y =

SST
T −1

=
1

T −1

T

∑
t=1

(yt − y)2 .

4.1 Definition R2 adjusted for degrees of freedom is defined by

R
2
= 1− s2

s2
y

= 1− T −1
T − k

(
SSE
SST

)
.

4.2 Proposition R
2

= 1− T−1
T−k

(
1−R2

)
= R2− k−1

T−k

(
1−R2

)
.

PROOF

R
2

= 1− T −1
T − k

(
SSE
SST

)
= 1− T −1

T − k

(
1−R2

)
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= 1− T − k + k−1
T − k

(
1−R2

)
= 1−

(
1+

k−1
T − k

)(
1−R2

)

= 1−
(
1−R2

)
− k−1

T − k

(
1−R2

)
= R2− k−1

T − k

(
1−R2

)
. Q.E.D.

4.3 Proposition R
2 ≤ R2 ≤ 1.

PROOF The result follows from the fact that 1−R2 ≥ 0 and (4.2).

4.4 Proposition R
2
= R2 iff (k = 1 or R2 = 1) .

4.5 Proposition R
2 ≤ 0 iff R2 ≤ k−1

T−1 .

R
2

can be negative even ifR2 ≥ 0. If the number of explanatory variables is
increased,R2 andk both increase, so thatR

2
can increase or decrease.

4.6 Remark When several models are compared on the basis ofR2 or R
2
, it is

important to have the same dependent variable. When the dependent variable(y)
is the same, maximizingR

2
is equivalent to minimizing the standard error of the

regression

s =

[
1

T − k

T

∑
t=1

ε̂2
t

]1/2

.

4.2. Criterion for R
2 increase through the omission of an explanatory variable

Consider the two models:

yt = β 1Xt1+ · · ·+β k−1Xt(k−1) + ε t , t = 1, . . . , T, (4.1)
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yt = β 1Xt1,+ · · ·+β k−1Xt(k−1) +β kXtk + ε t , t = 1, . . . , T. (4.2)

We can then show that the value ofR
2

associated with the restricted model (4.1)
is larger than the one of model (4.2) if thet statistic for testingβ k = 0 is smaller
than 1 (in absolute value).

4.7 Proposition If R
2
k−1 andR

2
k are the values ofR

2
for models(4.1) and(4.2),

then

R
2
k −R

2
k−1 =

(
1−R

2
k

)

(T − k +1)

(
t2
k −1

)
(4.3)

wheretk is the Studentt statistic for testingβ k = 0 in model(4.2), and

R
2
k ≤ R

2
k−1 iff t2

k ≤ 1 iff |tk| ≤ 1 .

If furthermoreR
2
k < 1, then

R
2
k S R

2
k−1 iff |tk| S 1 .

PROOF By definition,

R
2
k = 1− s2

k

s2
y

and R
2
k−1 = 1− s2

k−1

s2
y

wheres2
k = SSk/(T − k) and s2

k−1 = SSk−1/(T − k +1) . SSk andSSk−1 are the
sums of squared errors for the models withk and k − 1 explanatory variables.
Sincet2

k is the Fisher statistic for testingβ k = 0, we have

t2
k =

(SSk−1−SSk)

SSk/(T − k)

=

[
(T − k +1)s2

k−1− (T − k)s2
k

]

s2
k

11



=
(T − k +1)

(
1−R

2
k−1

)
− (T − k)

(
1−R

2
k

)

1−R
2
k

= (T − k +1)

(
1−R

2
k−1

1−R
2
k

)
− (T − k)

for s2
k−1 = s2

y

(
1−R

2
k−1

)
and s2

k = s2
y

(
1−R

2
k

)
. Consequently,

1−R
2
k−1 =

(
1−R

2
k

) [t2
k +(T − k)

]

T − k +1

and

R
2
k −R

2
k−1 =

(
1−R

2
k−1

)
−
(

1−R
2
k

)

=
(

1−R
2
k

)[t2
k +(T − k)
T − k +1

−1

]

=
(

1−R
2
k

)[ t2
k −1

T − k +1

]
.

4.3. Generalized criterion forR
2 increase through the imposition of linear constraints

We will now study when the imposition ofq linearly independent constraints

H0 : Cβ = r

will raise or decreaseR
2

, whereC : q× k, r : q× 1 and rank(C) = q. Let R
2
H0

andR
2

be the values ofR
2

for the constrained (byH0) and unconstrained models,
similarly, s2

0 ands2 are the values of the corresponding unbiased estimators of the
error variance.
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4.8 PropositionLet F be the Fisher statistic for testingH0. Then

s2
0− s2 =

qs2

T − k +q
(F −1)

and
s2

0 S s2 iff F S 1 .

PROOF If SS0 andSS are the sum of squared errors for the constrained and un-
constrained models, we have:

s2
0 =

SS0

T − k +q
and s2 =

SS
T − k

.

TheF statistic may then be written

F =
(SS0−SS)/q
SS/(T − k)

=

[
(T − k +q)s2

0− (T − k)s2
]

qs2
=

T − k +q
q

(
s2

0

s2

)
− T − k

q

hence

s2
0 = s2[qF +(T − k)]

(T − k)+q
,

s2
0− s2 = s2 q(F −1)

(T − k)+q
,

and
s2

0 S s2 iff F S 1 .
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4.9 PropositionLet F be the Fisher statistic for testingH0. Then

R
2−R

2
H0

=
q
(

1−R
2
)

T − k +q
(F −1)

and
R

2
H0

T R
2

iff F S 1 .

PROOF By definition,

R
2
H0

= 1− s2
0

s2
y

, R
2
= 1− s2

s2
y

.

Thus,

R
2−R

2
H0

=
s2− s2

0

s2
y

=
q

T − k +q

(
s2

s2
y

)
(F −1)

=
q
(

1−R
2
)

T − k +q
(F −1)

hence
R

2
H0

T R
2

iff F S 1 .

On takingq = 1, we get property (4.3). If we test an hypothesis of the type

H0 : β k = β k+1 = · · · = β k+l = 0 ,

it is possible thatF > 1, while all the statistics|ti| , i = k, . . . , k + l are smaller
than 1. This means thatR

2
increases when we omit one explanatory variable at a

time, but decreases when they are all excluded from the regression.Further, it is
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also possible thatF < 1, but|ti|> 1 for all i: R
2

increases when all the explanatory
variables are simultaneously excluded, but decreases when only one is excluded.
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5. Notes on bibliography

The notion ofR
2

was proposed by Theil (1961, p. 213). Several authors have
presented detailed discussions of the different concepts of multiple correlation:
for example, Theil (1971, Chap. 4), Schmidt (1976) and Maddala (1977, Sections
8.1, 8.2, 8.3, 8.9). TheR

2
concept is criticized by Pesaran (1974). The mean and

bias ofR2 were studied by Cramer (1987) in the Gaussian case, and by Srivastava,
Srivastava and Ullah (1995) in some non-Gaussian cases.
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6. Chronological list of references

1. Theil (1961, p. 213) _ TheR
2
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2

and partial correlation.

3. Pesaran (1974) _ Critique ofR
2
.

4. Schmidt (1976)

5. Maddala (1977, Sections 8.1, 8.2, 8.3, 8.9) _ Discussion ofR2andR
2
along

with their relation with hypothesis tests.

6. Hendry and Marshall (1983)

7. Cramer (1987)

8. Ohtani and Hasegawa (1993)

9. Srivastava et al. (1995)
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