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1. Multivariate time series models
Let

X (t) =
(
X1 (t) , X2 (t) , . . . , Xm (t)

)′
, t ∈ Z (1.1)

a vector of real-valued time series. By convention,

Xt ≡ X (t) , Xit ≡ Xi (t) .

1.1 Definition MULTIVARIATE STRICT STATIONARITY. X (t) is strictly stationary iff
(
X (t1)

′ , X (t2)
′ , . . . , X (tk)

′ )′

∼ (
X (t1 + `)′ , X (t2 + `)′ , . . . , X (tk + `)′

)′

for all t1, t2, . . . , tk ∈ Z, k ≥ 1, ` ≥ 0.

1.2 Definition L2 VECTOR. A random vector X = (X, . . . , Xm)′ is in L2 iff each one
of its components is in L2, i.e.,

E
(
X2

i

)
< ∞, i = 1, . . . , m.

1.3 Definition L2 VECTOR PROCESS. The stochastic process {X (t) : t ∈ Z} is in L2

iff each one of the vectors X (t) , t ∈ Z, is in L2.

1.4 Definition MULTIVARIATE WEAK STATIONARITY. X (t) is second-order stationary
(or weakly stationary) iff

(a) E
[
Xi (t)

2] < ∞, i = 1, . . . , m, ∀t;
(b) E [X (t)] = µ , ∀t;
(c) E

[
(X (t)− µ) (X (t + k)− µ)′

]
= Γk, ∀t, for all k ∈ Z.

1.5 Notation
Γk ≡ Γ (k) =

[
γij (k)

]
i, j=1, ... , m

(1.2)

is an m×m matrix whose elements are

γij (k) = Cov (Xi (t) , Xj (t + k)) . (1.3)

In general,

γij (k) = Cov (Xi (t) , Xj (t + k))

6= Cov (Xj (t) , Xi (t + k))
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= γji (k) for i 6= j (1.4)

so that
Γk 6= Γ

′
k. (1.5)

But

γij (k) = Cov (Xi (t) , Xj (t + k))

= Cov (Xj (t + k) , Xi (t))

= Cov (Xj (t) , Xi (t− k))

= γji (−k) (1.6)

so that
Γk = Γ

′
−k (1.7)

and (usually)
Γ−k = Γ

′
k 6= Γk . (1.8)

1.6 Definition MULTIVARIATE WHITE NOISE. An m-dimensional process
{a (t) : t ∈ Z} is a white noise if it satisfies the following properties:

(a) E
[
ai (t)

2] < ∞, i = 1, . . . , m, ∀t;
(b) E [a (t)] = 0, ∀t;
(c) E

[
a (s) a (t)′

]
= Σ, if s = t
= 0, if s 6= t.

1.7 Definition MEAN SQUARE CONVERGENCE FOR VECTORS. Let {Xn : n ≥ 1} be
a sequence of m × 1 random vectors in L2, and let X be another m × 1 random vector in
L2. Then we say Xn converges to X in mean square as n → ∞ (

Xn
2−→

n→∞
X

)
iff each

component of Xn converges to the corresponding component of X in mean square, i.e.,

E
[
(Xin −Xi)

2] −→
n→∞

0, i = 1, . . . , m , (1.9)

where
Xn =

(
X1n, . . . , Xmn

)′
, X =

(
X1, . . . , Xm

)′
.

Consider a process of the form

X (t) = µ +
∞∑

k=0

ψka (t− k) , t ∈ Z (1.10)
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where {a (t) : t ∈ Z} is an m-dimensional white noise and {ψk : k ≥ 0} is a sequence of
m×m fixed matrices such that

∞∑

k=0

tr
(
ψkψ

′
k

)
< ∞ . (1.11)

Then the series
∑∞

k=0 ψka (t− k) converges in mean square and the process X (t) is
second-order stationary. X (t) is a vector MA (∞) process. When a process has a rep-
resentation of the form (1.10) where the vectors a (t) , t ∈ Z, are i.i.d., we say X (t) is a
linear process.

The MA (∞) model can also be written

X (t) = µ + ψ (B) a (t) (1.12)

where

ψ (B) =
∞∑

k=0

ψkB
k. (1.13)

1.8 Theorem MULTIVARIATE WOLD THEOREM. Let {X (t) : t ∈ Z} be an m-
dimensional second-order stationary process. Then X (t) can be written in the form

X (t) = µ +
∞∑

k=0

ψka (t− k) + v (t) , t ∈ Z , (1.14)

where a (t) ≡ (a1 (t) , . . . , am (t))′ is a white noise process, {ψk : k ≥ 0} is a sequence
of fixed m×m matrices such that the series

∑∞
k=0 ψka (t− k) converges in mean square,

and v (t) is a deterministic process which is uncorrelated with a (t− j) , j ≥ 0. Further,
we can choose a (t) and the ψk’s such that

ψ0 = Im

and
a (t) = X (t)− PL [X (t) | X (t− j) , j ≥ 1] .

1.9 Remark If v (t) = 0, ∀t, we say the process X (t) is strictly indeterministic.

1.10 Definition MULTIVARIATE AR(p) PROCESS. An m-dimensional vector process
{X (t) : t ∈ Z} follows an AR (p) model [or a VAR (p) model] if it satisfies an equation
of the form :

X (t) = µ +

p∑

k=1

ΦkX (t− k) + a (t) , ∀t (1.15)
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where Φ1, . . . , Φp are m×m fixed matrices and {a (t) : t ∈ Z} is a white noise process.

1.11 Definition MULTIVARIATE ARMA(p, q). An m-dimensional vector process
{X (t) : t ∈ Z} follows an ARMA(p, q) model [or a VARMA(p, q) model] if it satisfies
an equation of the form

Φp (B) X (t) = µ̄ + Θq (B) a (t) (1.16)

where µ̄ is a fixed vector,

Φp (B) = Im − Φ1B − · · · − ΦpB
p ,

Θq (B) = Im −Θ1B − · · · −ΘqB
q ,

Φ, . . . , Φp, Θ, . . . , Θq are fixed m × m matrices, and {a (t) : t ∈ Z} is a white noise
process.

The VARMA(p, q) model has a stationary solution which is causal in a (t) if all the
roots of the determinantal equation

det [Φp (z)] = 0 (1.17)

are outside the unit circle. In other words, we must find the roots of the polynomial

det [Im − Φ1z − · · · − Φpz
p]

and check whether their moduli are greater than one.
A stationary VARMA(p, q) model has a MA(∞) representation of the form

X (t) = µ + ψ (B) a (t) (1.18)

where

ψ (B) = Φp (B)−1 Θq (B) , (1.19)
µ = Φp (B)−1 µ̄ = [I − Φ1 − · · · − Φp]

−1 µ̄.

The VARMA(p, q) model is invertible, i.e., X (t) can be written in an autoregressive form

Π (B) X (t) = a (t)

where

Π (B) = Im −Π1B −Π2B
2 − · · ·
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= Im −
∞∑

k=1

ΠkB
k

and Πk, k = 1, 2, . . . are m×m fixed matrices, when the roots of the equation

det [Θq (z)] = 0

are all outside the unit circle. In this case, the operator Π (B) is given by

Π (B) = Θq (B)−1 Φp (B) .

2. Alternative representations

2.1. Processes of individual components
Given a stationary model

Φp (B) X (t) = µ̄ + Θq (B) a (t) , (2.1)

we can write
X (t) = µ + Φp (B)−1 Θq (B) a (t) (2.2)

where
Φp (B)−1 =

1

det [Φp (B)]
Φ∗p (B) ,

Φ∗p (B) is the adjoint matrix of Φp (B) and det [Φp (B)] is a polynomial in B. If all the
elements of Φp (B) are polynomials in B, all the elements of Φ∗p (B) are also polynomials.
On multiplying both sides of (2.1) by Φ∗p (B), we get :

det [Φp (B)] X (t) = µ̃ + Φ∗p (B) Θq (B) a (t)

and
det [Φp (B)] X (t) = µ̃ + θ̄ (B) a (t) (2.3)

where µ̃ = Φ∗p (B) µ̄.
Now consider separately each row of the vector det [Φp (B)] X (t) :

det [Φp (B)] Xi (t) = µ̃i + θ̄i· (B) a (t) , i = 1, . . . , m ,

where θ̄i· (B) is the i-th row of θ̄ (B). It is easy to see that :

det [Φp (B)] is a polynomial in B of degree mp (or less) (2.4)
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and

the elements of the matrix θ̄ (B)

are all polynomials of degree q + (m− 1) p. (2.5)

Since a (t) is a white noise process, θ̄i (B) a (t) is a moving average of order q+(m− 1) p,
so each component of X (t) follows an ARMA(mp, q + (m− 1) p) model.

2.1 Remark If X (t) satisfies a V AR (p) model, its components do not usually follow
AR processes.

2.2. Transfer functions
The matrix Φp (B) has the form

Φp (B) = [Φpij (B)] (2.6)

where

Φpij (B) ≡ δij −
p∑

k=1

ϕijkB
k

δij = 1 , if i = j

= 0 , if i 6= j.

Now, consider the m×m diagonal matrix

∆ (B) = diag [Φpii (B)]i=1, ... , m

and multiply both sides of (2.1) by ∆−1 :

∆ (B)−1 Φp (B) X (t) =
=
µ + ∆ (B)−1 Θq (B) a (t) (2.7)

where

∆ (B)−1 Φp (B) =

[
Φpij (B)

Φpii (B)

]

i, j≡1, ... , m

has all its diagonal elements equal to 1. From (2.7), we then see that

Xi (t) +
m∑

k=1
k 6=i

Φpik (B)

Φpii (B)
Xk (t) =

=
µi + εi (t) , i = 1, . . . , m , (2.8)

6



where

εi (t) =
m∑

k=1

Θqik (B)

Φpii (B)
ak (t) , i = 1, . . . , m.

Further, εi (t) can be shown to have an ARMA representation, i.e.,

εi (t) =
θi (B)

ϕi (B)
ηi (t) , i = 1, . . . , m , (2.9)

where ηi (t) is a white noise process. On simplifying the polynomial ratios
Φpi (B) /Φpii (B) , we obtain a representation of the form :

Xi (t) =
=
µi +

m∑

k=1
k 6=i

ωik (B)

δik (B)
Xk (t) +

θi (B)

ϕi (B)
ηi (t) , i = 1, . . . , m . (2.10)

This is called a transfer function. It relates each variable of the system to current and past
values of the other variables and to an autocorrelated noise.

3. VAR models
A VAR(p) model is a model of the form

X (t) = µ̄ +

p∑

k=1

ΦkX (t− k) + a (t) (3.11)

where a (t) is a white noise process such that

a (t)⊥{X (t− k) , k ≥ 1}

and
V [a (t)] = Σ, det (Σ) 6= 0.

We can also write the model

Φ (B) X (t) = µ̄ + a (t)

where
Φ (B) = I − Φ1B − · · · − ΦkB

k.
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Let also

ψ (B) = Φ (B)−1 =
∞∑

k=0

ψkB
k,

the matrix defined by the equation

Φ (B) ψ (B) = Im

where
ψ0 = Im.

Suppose the polynomial Φ (z) satisfies the stationarity condition so that model (3.11)
has a stationary solution of the form :

X (t) = µ + ψ (B) a (t)

= µ +
∞∑

k=0

ψka (t− k) . (3.12)

From the latter, we see that

V [X (t)] =
∞∑

k=0

ψkΣψ
′
k. (3.13)

The coefficients of the ψk matrices are called the impulse response coefficients associated
with the innovations a (t) . If a (t) is interpreted as a vector of “shocks”, the elements of ψk

can be interpreted as the “effects” of these shocks on X (t).
Further, (3.13) provides a decomposition of the covariance matrix of X (t) in terms of

shocks at different lags. Let

ψk =
[
ψkij

]
i, j=1, ... , m

=




ψk1·
ψk2·
...
ψkm·




Then we can write

Xi (t) = µi +
∞∑

k=0

ψki·a (t− k)

= µi +
∞∑

k=0

(
m∑

`=1

ψki`a` (t− k)

)
(3.14)
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and

V [Xi (t)] =
∞∑

k=0

ψki·Σψ
′
ki· .

ψki·Σψ
′
ki· is the contribution of a (t− k) to the variance of Xi (t) : a proportion

vik = ψki·Σψ
′
ki·/V [Xi (t)]

of the variance V [Xi (t)] is accounted for by a (t− k) .
However, since the elements of a (t) may be correlated (Σ is not generally a diagonal

matrix), the MA representation does not allow one to separate the effects of different in-
novations. Since Σ is a positive definite matrix, we can find a non-singular matrix P such
that

PΣP ′ = Im

hence

X (t) = µ +
∞∑

k=0

ψkP
−1Pa (t− k)

= µ +
∞∑

k=0

ψ̄k ε (t− k) (3.15)

where

ψ̄k = ψkP
−1 ,

ε (t) = Pa (t) ,

V [ε (t)] = PΣP ′ = Im .

Since the components of ε (t) are uncorrelated, we have

V [X (t)] =
∞∑

k=0

ψ̄kψ̄
′
k . (3.16)

Then we can write

Xi (t) = µi +
∞∑

k=0

ψ̄ki·ε (t− k)

= µi +
∞∑

k=0

(
m∑

`=1

ψ̄ki`ε` (t− k)

)
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= µi +
m∑

`=1

( ∞∑

k=0

ψ̄ki`ε` (t− k)

)
(3.17)

where
ψ̄ki· =

(
ψ̄ki1, ψ̄ki2, . . . , ψ̄kim

)′

hence

V [Xi (t)] =
m∑

`=1

V

[ ∞∑

k=0

ψ̄ki`ε` (t− k)

]

=
m∑

`=1

( ∞∑

k=0

ψ̄
2
ki`

)
. (3.18)

A proportion

pi` =

( ∞∑

k=0

ψ̄
2
ki`

)
/ V [Xi (t)] (3.19)

of the variance of Xi (t) can be attributed to the “shocks”

ε` (t− k) , k ≥ 0 .

There is an infinity of ways of orthogonalizing the innovations of a VAR model. The
most common one consists in using the Choleski decomposition. In other words, we choose

P = T

where T is a lower-triangular matrix :

T =




T11 0 0 · · · 0
T12 T22 0 · · · 0
T31 T32 T33 · · · 0

...
...

Tm1 Tm2 Tm3 · · · Tmm




.

In other words, the matrix Σ is orthogonalized by using the Gram-Schmidt method.
Instead of decomposing the total variance V [X (t)], it is also possible to look at similar

decompositions for forecast errors. Let

I (t) = {X (s) : s ≤ t} .
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Then it is easy to see that

PL [X (t + h) | I (t)] = µ +
∞∑

k=h

ψk a (t + h− k)

where h ≥ 0, and

a(h) (t) ≡ X (t + h)− PL [X (t + h) | I (t)]

= µ +
∞∑

k=0

ψk a (t + h− k)− µ−
∞∑

k=h

ψk a (t + h− k)

=
h−1∑

k=0

ψk a (t + h− k) ,

so that

V
[
a(h) (t)

]
=

h−1∑

k=0

ψkΣψ
′
k −→

h→∞
V [X (t)]

and

V
[
a

(h)
i (t)

]
=

h−1∑

k=0

ψki·Σψ
′
ki· −→

h→∞
V [Xi (t)] .

The proportion of the h-step ahead prediction error due to a (t + h− k), where 0 ≤ k ≤
h− 1, is

v
(h)
ik = ψki·Σψ

′
ki· / V

[
a

(h)
i (h)

]
−→
h→∞

vik.

Similarly, we can rewrite a(h) (t) in terms of orthogonalized innovations :

a(h) (t) =
h−1∑

k=0

ψ̄k ε (t + h− k) ,

a
(h)
i (t) =

h−1∑

k=0

ψ̄ki· ε (t + h− k) =
m∑

`=1

(
h−1∑

k=0

ψ̄ki` ε` (t− k)

)
,

hence

V
[
a(h) (t)

]
=

h−1∑

k=0

ψ̄kψ̄
′

k
−−−→
h→∞ V [X (t)] , (3.20)
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V
[
a

(h)
i (t)

]
=

m∑

`=1

V

[
h−1∑

k=0

ψ̄ki` ε` (t− k)

]

=
m∑

`=1

(
h−1∑

k=0

ψ̄
2
ki`

)
−−−→
h→∞ V

[
a

(h)
i (t)

]
.

A proportion

p
(h)
i` =

(
h−1∑

k=0

ψ̄
2
ki`

)
/ V

[
a

(h)
i (t)

]

of the variance of a
(h)
i (t) can be attributed to the shocks

ε` (t− k) , k ≥ 0.

4. Bibliographic notes
To get more details on VAR and VARMA models, the reader may consult: Mills (1990,
Chap. 13-14), Brockwell and Davis (1991, Sections 11.1-11.5, 13.1), Lütkepohl (1991),
Hamilton (1994, Chap. 9, 18, 19, 20), Gouriéroux and Monfort (1997, Chap. VII, VIII, IX,
X, XI, XIII) and Reinsel (1997). On VARMA models, see also Tiao and Box (1981) and
Tiao and Box (1981).
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