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1. Graphical examination of the OLS residuals
After estimating a model, it is usually important to examine the residuals
&, i=1...,T (1.1)

& is an estimator of;.
In principle, the residuals; should behave approximately like i.i.d. random variables.
One should notice:

a) “very large” residuals;
b) systematic relations between residuals and certain variables;
c) heteroskedasticity in the errors;

d) autocorrelation in the errors.



2. Properties and standardization of OLS residuals

2.1. Basic structure of the residuals
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g1, ..., &1 do not have the same variance and are not independent.
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Noteh; = h;; is thei-th diagonal element dfl, hence
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and the “average value” ¢f is

14 K
?i;hi == (2.10)
Since
E= (It —H)e,
we have .
g=e—5hjg , i=1...T (2.11)

Each residuad; is the difference between the “true” ermrand a weighted average of all the errors.



2.2. Graphical methods

We usually proceed to a preliminary examination of the residuals by graphetabds.

A) For time series, we graph:
& against timet) . (2.12)

B) More generally, we graph:
1. -& againsty
2. &; against each explanatory variable

(%, 1 <k<K) (2.13)

or against other variables.



2.3. Standardized and Studentized residuals

If one wishes to obtain residuals with the same variance, we can consider:

Ei=&/1-hY2, i=1..,T,

If we wish to make them more easily interpretable, we can dividey£¢ /(T —K)]

- £ .
r=¢&/s=— ., i=1....T
| I/ S[l—hi]l/z

“Internally Studentized residuals”

We wish to determine whetheris “large”.
ri does not follow a Student law.

(2.14)
(2.15)
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Let

Vi) = Vo, - Vit Yigts o yr), =1, T
X(I) = [X].) sy Xi—l;xi-i,-]_, ey XT]/

-1
B = [X(/i)x(i)} XY@ ~ OLS estimator o based ory withouty;

£ = Y —XiBa)
5(2') =¢&€n)/(T-K-1)

di =X [anX(i)} X

Vi =Yi— X{B(i)
One can check easily that
Var(vi)) = 02%[1+d]
Vi Externally Studentized
i = I iz ~UT—K-1) residuals
S(iy [1+di]
We can also show that
_ I —1 di
ho= X)X =
|
~ Vi
g 1+d;

(T-K)$* = (T-K- 1)3(2i) + (1+di)ti2
hence i

1/2
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ti is @ monotonic nondecreasing transformation; @nd
t~t(T-K-1). (2.16)
To test whether a given residuglis large, it is sufficient to compute

r = & /s[1—h]Y? (2.17)

r.
t=(T-K-1)Y2—1 (2.18)
| Tk

and see whether
[ti] > tg/2(T —K—1)

This test is however only applicable for a given single residual.



3. Test for an outlier

If we observe one or several residuals which appear “large”, wemsly to declare that these
correspond to “outlying observations”.

If we make a tests at level on a residua&;, we can reject the latter if
Iti 2ta/2(T—K—1).

Problem: If we makeT tests, the probability of rejecting at least one observation as “outlying”
(even if there is none) is larger than
To control the level, we adopt a rule of the following type:

Max [ti| > cq4

1<i<T

or
> 2
1“4% ] > ca
The observations which are declared “outlying” are those such that
ti| >cq or t2>c%.

Difficulty : The distribution oMax t;| is difficult to determine.
However, we can show (using the Boole-Bonferroni inequality) that

2
o <For (LT —K—1) = [tg/or (LT -K-1)]".
If we declare an observation as outlying when
Maxt? > F r (1, T —K—1)

or
Max [ti] > tg o7 (t—K — 1).



4. Tests for heteroskedasticity

yt:)<B+€t , t=21,...,T (419)
0f =V (&) = E(&?) (4.20)
Ho:02=05=..-=02=0? (Homoskedasticity) (4.21)

Suppose we have reasons to believe that the variance increases with time.
Var (&) > Var(&-1)

This can be informally checked by plotting the residiugls

Figure 1. Residuals with increasing variance



Let us divide the sample in two parts:

t=1...., Ty, , t=T+1...,T
Tlgbs. T, obs.

(e.g. Tl = T/2 = Tz)

AT T (4.22)

Under the hypothesis of an increasing variance, we have:

1 1
ﬁE(gi—i_“'—i_g%l) < ?ZE(g%l-i-l—’—“'_'_s—zr)

1 T ) 1 T2 )
— ) € < E|= €
T tZl t T2 t:Zﬁl '

If we kneweq, ..., €7, we could compute:

E

T T
t—Tz 1£t2/T2 T; t—Tz 1'gtz
F=2=2F =150 F(To,Tw)

T1 -I—2 T1
Y &/T Y &
t=1 t=1

1. One-sided tests
(@) Againsto? increasing, we rejedtly when
F>Fy(To,Ta). (4.23)
(b) Againsta? decreasing, we rejeéty when
F<F_o(Tg,T1). (4.24)
2. Two-sided test — We rejetly when

F > F% (Tz,Tl) orF < Flf%(Tz,Tl). (425)
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It is tempting to replace; by & in F.
Difficulty : the & are not independent.
Goldfeld-Quandt solution:

Ya = XaB+6a=Ea=Ya—XaBa » Ba= (XaXa) " Xaya (4.26)
1X
Y8 = XeP+e5 =25 =Ys—XaBs , Bo=(XXe) Xy (4.27)
2X

EhEn/0? ~ 2(T1—K) (4.28)

8pés/0? ~ 2?%(To—K) (4.29)

_ &pfp/(T2—K)  Ti—K &gés
EnEn/ (T —K)  To—Ki&pe)

We rejectHg when:

F

~F(T,—K,T1,—K) Goldfeld-Quandt test

F>Fq

F<F o }One-5|ded tests

F>Fgp2 or F< Fl,%} Two-sided test

Notes:

1. If we think that
E(e?)=0%X% t=1,...,T,

we can reorder the observations according to the ord¥g of

2. Itis recommended to suppress a small group of observations in the middkk&the con-
trast more visible.
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5. Tests against autocorrelation

Let Xy, ..., Xr be i.i.d. random variables with distributiot| 1, 52].
., X7 are i.i.d. against

We wish to test whetheXy, ..
, T (positive autocorrelation)

- (5.30)

C%., % 1) >0 ,t=2 ...

or
, T (negative autocorrelation). (5.31)

C(%.X-1)>0 ,t=2,...

An alternative would be:
€.0.X = pX_1+ U

The von Neumann statistic for testing the absence of serial dependence is:

T

3 (X =Xe2?/(T =1
VN = —

Q>‘o«
N N

5 (% —X)2/T
t=1

T
whereX = 5 X/T.
t=1
If there positive (negative) autocorrelatidAN will tend take small (large) values.

One-sided tests:
rejectHo (against positive autocorrelation)iN < C}

rejectHo (against negative autocorrelationMf > CY

Two-sided test:
rejectHg if VN < C'&/z or VN> Cg/z

Tables in Theil (1971, pp. 726-727).
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If we kneweq, ..., er,we could replace; by €; and test whether the errors are autocorrelated.

(& —&-1)?/(T - 1)

I\)M_|

VN == -
> (& —€)%T

t=1

Difficulty: the £; are unknown.
Durbin-Watson proposed to use instead:

vS. positive adductorrelatioW < d,
2 vs. negative autocorrelatiobW > dq
t

L
> (Et—&ta)
bw=%9=2____
P

TN =

t=1

gr,t=1,..., T are not independent (even undy):
E=[I-XX'X)"X]e=M ¢

Problem: the distribution of DW depends on the maXixdowever, Durbin-Watson could establish
bounds for the critical values.
For a given, we haved, ,dy) such that

if DW < d. werejectHy
if DW > dy we accepHy
d. < DW<dy thetestisinconclusive

Against an alternative of negative autocorrelation, we can compute\W and use the same test.
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Generalizations to other lags

1. j=4; seeWallis (1972).
2. ] =2,3,4, with binary variables; seeVinod (1973).

3. Tests with a trend and seasonal dummies: King (1981).
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