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1. Graphical examination of the OLS residuals

After estimating a model, it is usually important to examine the residuals

ε̂ i, i = 1, . . . , T. (1.1)

ε̂ i is an estimator ofε i.
In principle, the residualŝε i should behave approximately like i.i.d. random variables.
One should notice:

a) “very large” residuals;

b) systematic relations between residuals and certain variables;

c) heteroskedasticity in the errors;

d) autocorrelation in the errors.
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2. Properties and standardization of OLS residuals

2.1. Basic structure of the residuals

y = Xβ + ε , ε ∼ N
[
0,σ2IT

]
(2.2)

y : T ×1, X : T × k , ε : T ×1 (2.3)

ε̂ = y−X β̂ = MX ε (2.4)

MX = IT −X(X ′X)−1X ′ = IT −H

H = X(X ′X)−1X ′

E(ε̂) = 0 (2.5)

V (ε̂) = σ2MX (2.6)

ε̂ = (ε̂1, . . . , ε̂T )′ (2.7)

ε̂1, . . . , ε̂T do not have the same variance and are not independent.

X =








X ′
1

X ′
2
...

X ′
T








V (ε̂ i) = σ2[
1−X ′

i (X
′X)−1Xi

]
= σ2(1−hi) ≤ σ2

hi = X ′
i (X

′X)−1Xi

Cov(ε̂ i, ε̂ j) = σ2(−hi j) , for i 6= j

hi j = X ′
i (X

′X)−1X j

Notehi = hii is thei-th diagonal element ofH, hence

T

∑
i=1

hi = tr[H]

= tr[X(X ′X)−1X ′]

= tr[(X ′X)−1X ′X ] = tr[IK ] = K , (2.8)

T

∑
i=1

(1−hi) = tr[IT −H]

= tr(IT )− tr(H) = T −K , (2.9)
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and the “average value” ofhi is
1
T

T

∑
i=1

hi =
K
T

. (2.10)

Since
ε̂ = (IT −H)ε,

we have

ε̂ i = ε i −
T

∑
j=1

hi jε j , i = 1, . . . , T. (2.11)

Each residual̂ε i is the difference between the “true” errorε i and a weighted average of all the errors.
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2.2. Graphical methods

We usually proceed to a preliminary examination of the residuals by graphicalmethods.
A) For time series, we graph:

ε̂ t against time(t) . (2.12)

B) More generally, we graph:

1. -ε̂ t against ˆyi

2. ε̂ i against each explanatory variable

(xki,1≤ k ≤ K) (2.13)

or against other variables.
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2.3. Standardized and Studentized residuals

If one wishes to obtain residuals with the same variance, we can consider:

ε̃ i = ε̂ i/ [1−hi]
1/2 , i = 1, . . . , T , (2.14)

Var (ε̃ i) = σ2 . (2.15)

If we wish to make them more easily interpretable, we can divide bys =
[
ε̂ ε̂

/
(T −K )

]1/2
:

ri = ε̃ i/s =
ε̂ i

s [1−hi]
1/2

, i = 1, . . . , T

“Internally Studentized residuals”

We wish to determine whetherri is “large”.
ri does not follow a Student law.
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Let

y(i) = (y1, . . . , yi−1,yi+1, . . . , yT )′ , i = 1, . . . , T

X(i) = [X1, . . . , Xi−1,Xi+1, . . . , XT ]′

β̂ (i) =
[

X ′
(i)X(i)

]−1
X ′

(i)y(i) OLS estimator ofβ based ony without yi

ε(i) = y(i)−X(i)β̂ (i)

s2
(i) = ε ′

(i)ε(i)/(T −K −1)

di = X ′
i

[

X ′
(i)X(i)

]−1
Xi

vi = yi −X ′
i β̂ (i)

One can check easily that

Var(vi) = σ2 [1+di]

ti ≡
vi

s(i) [1+di]
1/2

∼ t(T −K −1)
Externally Studentized

residuals

We can also show that

hi ≡ X ′
i (X

′X)−1Xi =
di

1+di

ε̂ i =
v(i)

1+di

(T −K)s2 = (T −K −1)s2
(i) +(1+di)t

2
i

hence
ti = (T −K −1)1/2 ri

(T −K − r2
i )

1/2
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ti is a monotonic nondecreasing transformation ofri and

ti ∼ t(T −K −1) . (2.16)

To test whether a given residualε̂ i is large, it is sufficient to compute

ri = ε̂ i/s [1−hi]
1/2 (2.17)

ti = (T −K −1)1/2 ri
[
T −K − r2

i

]1/2
(2.18)

and see whether
|ti| ≥ tα/2(T −K −1)

This test is however only applicable for a given single residual.
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3. Test for an outlier

If we observe one or several residuals which appear “large”, we maywish to declare that these
correspond to “outlying observations”.

If we make a tests at levelα on a residual̂ε i, we can reject the latter if

|ti| ≥ tα/2(T −K −1) .

Problem: If we makeT tests, the probability of rejecting at least one observation as “outlying”
(even if there is none) is larger thanα .
To control the level, we adopt a rule of the following type:

Max
1≤i≤T

|ti| ≥ cα

or
Max
1≤i≤T

∣
∣t ′i

∣
∣ ≥ c2

α

The observations which are declared “outlying” are those such that

|ti| ≥ cα or t2
i ≥ c2

α .

Difficulty : The distribution ofMax |ti| is difficult to determine.
However, we can show (using the Boole-Bonferroni inequality) that

c2
α ≤ Fα/T (1,T −K −1) =

[
tα/2T (1,T −K −1)

]2
.

If we declare an observation as outlying when

Max t2
i ≥ Fα/T (1,T −K −1)

or
Max |ti| ≥ tα/2T (t −K −1) .
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4. Tests for heteroskedasticity

yt = x′tβ + ε t , t = 1, . . . , T (4.19)

σ2
t = V (ε t) = E(ε2

t ) (4.20)

H0 : σ2
1 = σ2

2 = · · · = σ2
T = σ2 (Homoskedasticity) (4.21)

Suppose we have reasons to believe that the variance increases with time.

Var(ε t) > Var(ε t−1)

This can be informally checked by plotting the residualsε̂ t .

Figure 1. Residuals with increasing variance
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Let us divide the sample in two parts:

t = 1, . . . , T1
︸ ︷︷ ︸

T1 obs.

, t = T1 +1, . . . , T
︸ ︷︷ ︸

T2 obs.
T1 +T2 = T

(4.22)

(e.g. T1 = T/2 = T2)

Under the hypothesis of an increasing variance, we have:

1
T1

E
(
ε2

1 + · · ·+ ε2
T1

)
<

1
T2

E
(
ε2

T1+1 + · · ·+ ε2
T

)

E

[

1
T1

T1

∑
t=1

ε2
t

]

< E

[

1
T2

T2

∑
t=T1+1

ε2
t

]

If we knewε1 , . . . , εT , we could compute:

F =

T
∑

t=T1+1
ε2

t /T2

T1

∑
t=1

ε2
t /T1

=
T1

T2

T
∑

t=T1+1
ε2

t

T1

∑
t=1

ε2
t

∼ F (T2, T1)

1. One-sided tests

(a) Againstσ2
t increasing, we rejectH0 when

F > Fα (T2,T1) . (4.23)

(b) Againstσ2
t decreasing, we rejectH0 when

F ≤ F1−α (Tα ,T1) . (4.24)

2. Two-sided test – We rejectH0 when

F ≥ Fα
2
(T2,T1) or F ≤ F1− α

2
(T2,T1) . (4.25)
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It is tempting to replaceε t by ε̂ t in F .
Difficulty : the ε̂ t are not independent.
Goldfeld-Quandt solution:

yA
T1×1

= XAβ + εA ⇒ ε̂A = yA −XAβ̂ A , β̂ A =
(
X ′

AXA
)−1

XAyA (4.26)

yB
T2×1

= XBβ + εB ⇒ ε̂B = yB −XBβ̂ B , β̂ B =
(
X ′

BXB
)−1

XByB (4.27)

ε̂ ′
Aε̂A/σ2 ∼ X

2(T1−K) (4.28)

ε̂ ′
Bε̂B/σ2 ∼ X

2(T2−K) (4.29)

F =
ε̂ ′

Bε̂B/(T2−K)

ε̂ ′
Aε̂A/(T1−K)

=
T1−K
T2−K1

ε̂ ′
Bε̂B

ε̂ ′
Aε ′

A

∼ F(T2−K,T1,−K) Goldfeld-Quandt test

We rejectH0 when:
F ≥ Fα

F ≤ F1−α

}

One-sided tests

F ≥ Fα/2 or F ≤ F1− α
2

}

Two-sided test

Notes:

1. If we think that
E(ε2

t ) = σ2X2
tk t = 1, . . . , T ,

we can reorder the observations according to the order ofX2
tk.

2. It is recommended to suppress a small group of observations in the middle tomake the con-
trast more visible.
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5. Tests against autocorrelation

Let X1, . . . , XT be i.i.d. random variables with distributionN
[
µ,σ2

]
.

We wish to test whetherX1, . . . , XT are i.i.d. against

C(Xt ,Xt−1) > 0 , t = 2, . . . , T (positive autocorrelation) (5.30)

or
C(Xt ,Xt−1) > 0 , t = 2, . . . , T (negative autocorrelation). (5.31)

An alternative would be:
e.g.Xt = ρXt−1 + µτ

The von Neumann statistic for testing the absence of serial dependence is:

V N =

T
∑

t=2
(Xt −Xt−1)

2/(T −1)

N
∑

t=1
(Xt − X̄)2/T

=
δ 2

σ̂2

whereX̄ =
T
∑

t=1
Xt/T.

If there positive (negative) autocorrelation,V N will tend take small (large) values.
One-sided tests:

rejectH0 (against positive autocorrelation) ifV N ≤CL
α

rejectH0 (against negative autocorrelation) ifV N ≥CU
α

Two-sided test:

rejectH0 if V N ≤CL
α/2 or V N ≥CU

α/2

Tables in Theil (1971, pp. 726-727).
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If we knewε1, . . . , εT ,we could replaceXt by ετ and test whether the errors are autocorrelated.

V N =

T
∑

t=2
(ε t − ε t−1)

2/(T −1)

T
∑

t=1
(ε t − ε̄)2/T

Difficulty: the ετ are unknown.
Durbin-Watson proposed to use instead:

DW =

T
∑

t=2
(ε̂ t − ε̂ t−1)

2

T
∑

t=1
ε̂2

t

vs. positive adductorrelation:DW ≤ dα
vs. negative autocorrelation:DW ≥ dα

ε̂τ , t = 1, . . . , T are not independent (even underH0):

ε̂ =
[
I −X(X ′X)−1X

]
ε = M ε

Problem: the distribution of DW depends on the matrixX . However, Durbin-Watson could establish
bounds for the critical values.

For α given, we have(dL,dU) such that

if DW ≤ dL we rejectH0

if DW ≥ dU we acceptH0

dL < DW < dU the test is inconclusive

Against an alternative of negative autocorrelation, we can compute 4−DW and use the same test.
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Generalizations to other lags

d j =
T

∑
t= j+1

(êt − êt− j)
2/

T

∑
t=1

ê2
t

1. j = 4; see Wallis (1972).

2. j = 2,3,4, with binary variables; seeVinod (1973).

3. Tests with a trend and seasonal dummies: King (1981).
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