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1. Graphical examination of the OLS residuals
After estimating a model, it is usually important to examine tesiduals
g,i=1,...,T. (1.1)

&; is an estimator of;.

In principle, the residuals; should behave approximately like i.i.d. random vari-
ables.

One should notice:

a) “very large” residuals;
b) systematic relations between residuals and certain variables;
c) heteroskedasticity in the errors;

d) autocorrelation in the errors.



2. Properties and standardization of OLS residuals

2.1. Basic structure of the residuals

XB+e , €~NJ0,0°%]
Tx1 X:Txk, €:Tx1

< <

€1, ..., &t do not have the same variance and are not independent.
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X
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Noteh; = h;j is thei-th diagonal element dfl, hence

-ihi = tI’[H]

= tr[X(X'X)"X]]

= tr[(X'X)"IX'X] =tr[lk] =K, (2.8)
.
_Z(l— h) = tr[lt —H]
- = tr(ly)—tr(H) =T — K, (2.9)

and the “average value” ¢f is

%T =X (2.10)
Since
€= (It —H)g,
we have .
éizei—Zhijsj , i=1,...,T. (2.11)

Each residuaé; is the difference between the “true” errgrand a weighted aver-
age of all the errors.



2.2. Graphical methods

We usually proceed to a preliminary examination of the residglgraphical
methods.
A) For time series, we graph:

& against timgt). (2.12)
B) More generally, we graph:
1. -&; againsty;
2. & against each explanatory variable
(%i, 1 <k <K) (2.13)

or against other variables.



2.3. Standardized and Studentized residuals

If one wishes to obtain residuals with the same variance, we @asicer:

g=8&/[1-nY?, i=1..,T, (2.14)
Var (§;) = o°. (2.15)

If we wish to make them more easily interpretable, we can dividesby
An 1/2
€8 /(T-K)|]7":

" Ei _
==& /S= , 1=1
I I/ S[l—hi]l/z

“Internally Studentized residuals”

T

g o0 ey

We wish to determine whetheris “large”.
ri does not follow a Student law.



Let

y(i):(yla"'7yi—17yi+17'°°7yT)/7 |:177T
Xiy=Xe, ooy Xicg, Xign, -0, Xr)'

Vi=Vi— ><i/[3(l)
One can check easily that
Var(vi)) = o?[1+dj]
B Vi Externally Studentized
W= iz~ HT—K=) residuals
Siy 1+ di]
We can also show that
d.
ho = X(XX) %=
|
s _ Vi)
& = 1+d;

(T-K)$* = (T-K-1)s,+ (1+d)t’
hence "
(T—K—-r?)12

t=(T-K-1)Y?



t; is @ monotonic nondecreasing transformatiomn; aind
ti~t(T-K-1). (2.16)
To test whether a given residuglis large, it is sufficient to compute
ri=&/s[1—h]Y? (2.17)

= (T —K—1)Y/2 T K”_ ; (2.18)

1/2

and see whether
6 > tajo(T - K~ 1)

This test is however only applicable for a given single redidua



3. Test for an outlier

If we observe one or several residuals which appear “large”, we wish to
declare that these correspond to “outlying observations”.

If we make a tests at level on a residua&;, we can reject the latter if
ti] > ta)2(T —K—1).

Problem: If we makeT tests, the probability of rejecting at least one observation
as “outlying” (even if there is none) is larger than
To control the level, we adopt a rule of the following type:

Max |tj| > C

1§i§T’ | = Ca
or

Max [tf| > c;

1<i<T
The observations which are declared “outlying” are those suath th

ti| >cq or t?>ca.

Difficulty : The distribution oMax|t;| is difficult to determine.
However, we can show (using the Boole-Bonferroni inequality) tha

2
Co <Far (LT —K—=1) = [tajor (LT —K—-1)]".
If we declare an observation as outlying when
Maxt? > Fy 1 (1, T —K—1)

or
Max [t >ty or(t—K — 1)



4. Tests for heteroskedasticity

vw=xB+e& , t=1..,T (4.19)
0f =V(&) =E(}) (4.20)
Ho:02=05=---=0%2=0°  (Homoskedasticity) (4.21)

Suppose we have reasons to believe that the variance increitiséisng.
Var(&;) > Var(&-1)

This can be informally checked by plotting the residugls



Figure 1. Residuals with increasing variance

Let us divide the sample in two parts:

E:]"’T]) , E:Tl‘i_l;a-l:
Tlgbs. Tz‘OrbS.

(e.g. T]_ = T/2 = Tz)

Ti+To=T
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(4.22)



Under the hypothesis of an increasing variance, we have:

1 1
—E(ef+--+€F) < —E(ef 1+ +€F)

Ty T
1 1 k2
E —Zef < E|= Z g2
L= T2 1
If we knewe,, ..., &1, we could compute:
I 2 I 2
t—TZ 1gt/T2 Tt—TZ 18t
P EmT)
e 0y €l
=1 t=1

1. One-sided tests
(a) Againsto? increasing, we rejedly when
F>F,(Tp,Th). (4.23)
(b) Againsto? decreasing, we rejeéty when
F<FL 4Ty, T1). (4.24)
2. Two-sided test — We rejekly when
F> F% (T, Ty) orF < Fl_%(Tz,Tl)- (4.25)
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It is tempting to replace; by & in F.
Difficulty : the &; are not independent.
Goldfeld-Quandt solution:

Yo = XaB+Ea=Ea=Ya—XaBa . Ba= (XaXa) "Xaya (4.26)

T]_Xl
Yo = Xof+es=Ea=Yo—Xafa . o= (XXe) Xeys (427)
2X
EpEn/0% ~ Z3(T—K) (4.28)
Epép/0° ~ Z?(To—K) (4.29)

_ Eg€r/(To—K) _ Ti— K Egép
éfAéA/(Tl — K) T, — Ky éfAé‘fA\
We rejectHy when:

~F(T,—K, Ty, —K) Goldfeld-Quandt test

F>F, .

F<F . } One-sided tests
F>Fyp or F< Fl_gz} Two-sided test

Notes:

1. If we think that
E(e9)=0°X; t=1,...,T,

we can reorder the observations according to the ord¥g of

2. It is recommended to suppress a small group of observations mitkdle to
make the contrast more visible.
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5. Tests against autocorrelation

Let Xy, ..., Xr be i.i.d. random variables with distributiot| 11, o]
We wish to test whetheXy, ..., Xy are i.i.d. against

CX,%-1)>0 ,t=2...,T (positive autocorrelation) (5.30)

or
CX,%-1)>0 ,t=2...,T (negative autocorrelation). (5.31)
An alternative would be:
egxt — pXt—1+ H:
The von Neumann statistic for testing the absence of seri@rabgnce is:

T
SRX (T g
VN =15 — =

3 -XyT O

t

whereX = Z X /T.

If there posmve (negative) autocorrelatidf\ will tend take small (large) val-
ues.
One-sided tests:

rejectH, (against positive autocorrelation)ifN < CL

rejectHy (against negative autocorrelation\iN > CY
Two-sided test:

rejectHo if VN <Cj , or VN>Cy ,
Tables in Theil (1971, pp. 726-727).

13



If we kneweq, ..., e7,we could replace; by €; and test whether the errors are
autocorrelated.

3 (6 —80 1)%/(T =1

VN ="
(&t —€)?/T

M-

t
Difficulty: the £; are unknown.
Durbin-Watson proposed to use instead:

Y.
> (&t —&t-1)

DW — (=2 vS. positive adductorrelatio®™W < dq

VS. negative autocorrelatioDW > d,

-
> &

t=1

Er,t=1,..., T are not independent (even undy):
E=[I-X(X'X)"X]e=M ¢

Problem: the distribution of DW depends on the maiXixHowever, Durbin-
Watson could establish bounds for the critical values.
For a given, we haved, ,dy) such that

if DW < d. we rejectHy
if DW > dy we accepHy
d. < DW < dy thetestisinconclusive

Against an alternative of negative autocorrelation, we canpetien4— DW and
use the same test.
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Generalizations to other lags

T T
d= 3 @-a)?/y &

t=)+1
1. j=4; see Wallis (1972).
2.1 =2,3,4, with binary variables; seeVinod (1973).

3. Tests with a trend and seasonal dummies: King (1981).
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